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Abstract: In recent years, the use of deep learning-based models for developing advanced healthcare
systems has been growing due to the results they can achieve. However, the majority of the proposed
deep learning-models largely use convolutional and pooling operations, causing a loss in valuable
data and focusing on local information. In this paper, we propose a deep learning-based approach
that uses global and local features which are of importance in the medical image segmentation
process. In order to train the architecture, we used extracted three-dimensional (3D) blocks from the
full magnetic resonance image resolution, which were sent through a set of successive convolutional
neural network (CNN) layers free of pooling operations to extract local information. Later, we sent
the resulting feature maps to successive layers of self-attention modules to obtain the global context,
whose output was later dispatched to the decoder pipeline composed mostly of upsampling layers.
The model was trained using the Mindboggle-101 dataset. The experimental results showed that the
self-attention modules allow segmentation with a higher Mean Dice Score of 0.90 ± 0.036 compared
with other UNet-based approaches. The average segmentation time was approximately 0.038 s per
brain structure. The proposed model allows tackling the brain structure segmentation task properly.
Exploiting the global context that the self-attention modules incorporate allows for more precise and
faster segmentation. We segmented 37 brain structures and, to the best of our knowledge, it is the
largest number of structures under a 3D approach using attention mechanisms.

Keywords: medical image segmentation; deep learning; transformers; convolutional neural networks;
brain structures

1. Introduction

The scientific community has developed tools that allow for obtaining brain infor-
mation so doctors can study the human brain. Among these tools we find brain imaging,
which includes methods such as computed tomography (CT), magnetic resonance imaging
(MRI), positron emission tomography (PET), and ultrasound (US), among others. However,
not all methods produce quality images when applied to the brain because high contrast
images are required to study the human brain. Therefore, highly sensitive methods such as
magnetic resonance imaging or positron emission tomography must be used [1].

Although PET scans are capable of obtaining good quality images, they are not the
preferred choice for specialists as they have several disadvantages. PET scans cannot reveal
structural information at the microscopic and macroscopic levels in the white and gray
matter of the brain; cannot detect changes in brain activation, and pose health risks due
to the required radiation [2]. For these reasons, the MRI method has been widely used in
the brain for medical studies and scientific research [3,4]. There are several types of MRI
sequences that are capable of improving contrast and brightness in certain types of tissues.
T1-weighted, T2-weighted, Fluid Attenuated Inversion Recovery (Flair), and Diffusion
Weighted Imaging (DWI) are among the most common MRI sequences [5].
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Traditionally, interpretations of medical images have been made by human experts.
However, the existence of variations in the criteria among various human specialists is
a limitation in relation to the generation of an efficient and precise diagnosis [6]. This
weakness has been addressed through the development of computer aided diagnostic
systems using computer vision for analysis of medical Images [7]. In this field, traditional
algorithms were initially applied for the segmentation of brain anatomical structures, such
as thresholding techniques [8], growth of regions [9], machine learning algorithms for
classification [10], or grouping [11], among others. Based on the growth in computational
capacity and the amount of data available, it is possible to use more robust and complex
modern algorithms achieving better results in medical segmentation tasks [12].

In general, multiple methods for the segmentation of brain magnetic resonance im-
ages have been proposed. These methods can be grouped as follows: manual methods,
spatial dimensionality-based methods (2D and 3D), pixel/voxel intensity-based meth-
ods, atlas-based methods, surface-based methods, and methods based on deep learning
techniques [13].

The manual segmentation of magnetic resonance images is based on the use of highly
trained personnel to obtain the different types of brain tissues. In order to perform seg-
mentation, experts commonly use manual delineation tools that allow them to delineate
different regions of the brain. Some examples of these tools are FreeSurfer [14], Brain-
Suite [15], FSL [16], ITK-SNAP [17], 3D Slicer [18], SPM [10], and Horos [19], among others.

In terms of the spatial dimensionality methods, these are subdivided into 3D and 2D
approaches. Three-dimensional-based segmentation approaches seem to be the natural
way to approach the problem because it allows to exploit the three-dimensional nature of
MRI by considering each voxel and its relationship to neighbors at different acquisition
planes (sagittal, coronal, and axial). However, the 3D approach still has limitations, mainly
related to the high computational cost in computers with limited memory, the increase in
the complexity of the models and the number of parameters, making the learning process
slower [20–22]. Therefore, researchers usually use the 2D representation of a brain MRI to
avoid memory restraints and computational limitations of the 3D representation.

Intensity-based methods attempt to find a threshold value that separates the different
tissue categories. These methods include techniques of thresholding, growth of regions,
classification, and grouping [8]. In [23,24], authors presented work on pixel intensity using
thresholding techniques to segment brain tumors.

Works that use region growth techniques, use the similar characteristics of pixels found
together to perform the separation of a common region [25]. Region growth techniques have
been applied for the segmentation of brain tumors [9], organs [26], cerebral vessels [27], and
lesions in both the brain and the breast, applying other techniques such as morphological
filters [28] or with quantitative values such as the measurement of the roughness of the
tumor border [29]. Within this group, we also find classification and grouping techniques
that make use of labeled and unlabeled data for their operations. In fact, multiple brain
segmentation tools that are widely used in the scientific community, such as FreeSurfer [14],
3D Slicer [18], and SPM [10] make use of Bayesian Classifiers. The k-means algorithm is
the most used in clustering because it is simple to implement, relatively fast, and produces
good results. Some examples of work for tissue or tumor segmentation are presented in [11]
and in [30], where the k-means algorithm is combined with a vector support machine and
a Fuzzy C-means algorithm with thresholding techniques, respectively.

Atlas-based methods are those that make use of brain anatomical information from
a specific population for image segmentation. Likewise, in [31–34], it is shown that this
method is not limited to the use of a specific atlas; multiple atlases and techniques such as
tag fusion can also be used to improve the delimitation of brain regions.

Several works have also been proposed that make use of deformable models. These
techniques are part of the group of surface-based methods where the main objective is the
delimitation of regions with similar characteristics through the use of elastic curves [35].
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Similar to the approaches mentioned above, surface-based methods have been used for the
segmentation of brain regions [36] and tumors [37,38].

Recently, deep learning has become an area of interest in the scientific community
due to the important results that have been achieved in multiple disciplines [39–43]. The
strength of convolutional networks is that they automatically identify relevant charac-
teristics without any explicit human supervision [44]. In addition, compared with their
predecessors, fully connected neural networks, convolutional networks significantly re-
duce the number of trainable network parameters, facilitating computation and making
it possible to build large-scale architectures. Likewise, they efficiently link the output of
the network with the extracted characteristics by jointly training the classification layers
and the characteristic extraction layers [45]. Specifically, in the problem of brain magnetic
resonance imaging segmentation, deep learning has achieved better results than previously
exposed methods [12]. Within the deep learning branch, there are multiple algorithms
based on neural networks that have been developed with specific objectives, such as autoen-
coders [46], Boltzmann machines [47], recurrent neural networks [48], convolutional neural
networks [49], and Transformers [50], among others. Convolutional neural networks are
precisely the algorithms most widely used by researchers to perform image segmentation
and classification tasks, given that they have achieved the best results to date.

Convolutional neural networks are a type of neural network that was created by
LeCun but was inspired by Fukushima’s work on the neocognitron for the recognition of
handwritten Japanese characters [51]. In the study of brain magnetic resonance imaging
using neural network architectures, it is common to see convolutional neural networks
as the basis of the architectures. In fact, in [52], the authors presented a solution for brain
tissue segmentation on MRI images taken in infants approximately six to eight months of
age using CNNs in the deep learning architecture.

Similarly, the authors of [53] were able to use CNNs for the segmentation of subcorti-
cal brain structures using the datasets of Internet Brain Segmentation Repository (IBSR)
and LPBA40 [15].

Some of the most important deep learning solutions have been proposed using a 2D
representation allowing researchers to segment more structures than a 3D representation
allows them to do. In fact, the segmentation of more than 25 brain structures into a 3D
representation has been achieved by a few works, while using a 2D representation, deep
learning works can segment more than 95 brain structures [54].

The use of this type of neural network is not limited to the segmentation of brain tissues
or brain structures. These have also been used in the segmentation of brain lesions, as
in [55–57], the segmentation of brain tumors [58–60], the detection of ischemic strokes [61],
and even genomic prediction of tumors [62]. The most important thing to note from
these works is that many use branches within their neural network architectures. In
general, they use two branches, where one of them is focused on the extraction of globally
related characteristics (global context), while the other is in charge of the extraction of local
characteristics (local context) to achieve better segmentation.

One of the architectures most commonly used in medical image segmentation tasks is
the U-Net architecture [63]. Due to the structure of its architecture, U-Net has advantages
over other convolutional neural network architectures of its time. This was built having a
path that encodes the characteristics of the image and then continues with its expansion,
that is, an encoder-decoder structure. In addition, to avoid the vanishing gradient and
explosion problem, the U-Net architecture incorporates skip connections, between the
encoder and decoder layers, which improves performance in small datasets compared with
other architectures at the time.

Multiple neural network architectures based on U-Net have been proposed for the
field of medical image segmentation. The primary goals of these works were to improve
the network by using skip connections between the layers of the coding and expansion
path [64,65] and to combine the architecture with others such as SegNet [66]. It is important
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to note that several of these studies were also applied to the segmentation of white matter,
gray matter, and cerebrospinal fluid from brain magnetic resonance images.

However, convolutional neural networks have serious limitations. One of them is
the loss of image characteristics due to pooling operations [67]. This is because the CNNs
require these operations to reduce the feature maps resulting from the convolutions and
thus reduce the computation required in subsequent layers. Due to this, a large amount of
data is necessary in the training process for deep learning networks to be able to generalize
and achieve good results [67].

On the other hand, researchers have proposed multiple deep learning architectures
based on attention mechanisms such as the Transformer’s architecture [22,23,68]. This
one was initially proposed in the field of natural language processing [69] as being in
charge of transforming one sequence into another from multiple attention blocks [50]. The
Transformers replaced the recurrent neural network models (RNN) used until then for the
translation of texts because it solved its main weakness. This was because the performance
of the recurring models fell when very long sequences were introduced due to the long-
term dependency learning problem [68], and although this problem was attacked by the
Long Short-Term Memory (LSTM) networks, they did not achieve as good results as the
Transformers. This became possible since the latter, through self-attention mechanisms,
are capable of processing the entire sequence entered, even if it is very long, optimizing
processing times due to parallel processes within the network.

Thus, the scientific community has achieved that the Transformer’s architecture can
obtain results comparable to those established as the state of the art in computer vision
methods [70]. In fact, some methods based on Transformers’ architectures were proposed
for the segmentation of medical images. The TransUNet [71] network, which is based on
the U-Net architecture [63], consists of a set of convolutional layers to extract the most
important characteristics of the image. The resulting feature maps are then the input to
successive attention blocks, which then send this output to the decoder. The decoder is
fabricated of convolutional and upsampling layers to achieve the output of a segmented
image. It is necessary to mention that the set of convolutional layers is connected with the
layers of the decoder through skip connections.

Also, another Transformer-based architecture is the Medical-Transformer network [72],
which is based on the use of two branches for its operation. The important thing to
highlight in this study is that it has a local and global branch, as has been proposed in
various convolutional neural network architectures and the use of convolutions in the
feature coding process. Specifically, the local branch has a greater number of encoder
and decoder blocks than the global branch. The encoder blocks are fabricated of 1 × 1
convolutional layers, normalization, Rectified Linear Unit (ReLU) activations, and multiple
layers of attention for its operation, while the decoder has closed axial attention layers.

In this study, a 3D architecture of deep neural networks is proposed for the task of
segmenting volumes associated with brain structures from MRI. Our proposal uses an
encoder/decoder approach, strengthening the connection between them by incorporating
self-attention modules and skip connections. The attention modules as well as the convo-
lution operations allow the network to incorporate global and local characteristics, and
achieve a more detailed segmentation of the edges of structures.

2. Material and Methods
2.1. Dataset

We used the publicly available Mindboggle-101 dataset [73]. This dataset contains
101 manually labeled human brain images from healthy patients, containing more than
100 brain structures in each volumetric segmentation file aseg + aparc. In this dataset,
brain structures are labeled based on the brain hemisphere where they are located (e.g., left
hippocampus and right hippocampus).
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2.2. Data Preprocesing

We performed some preprocessing steps. We created an array representation of
the original MRIs and segmentation masks in the dataset making it straightforward for
training deep learning models. Additionally, for the selected structures, we created a label
remapping strategy with IDs 1 to 37 having the ID 0 set for background. We created the
segmentation ground truth files by taking the aseg+aparc files and mapping the existing
IDs to our desired IDs. After this, we applied a min-max scaling to the voxel values to be
in a range between 0 and 1. This intensity rescaling was performed using the histogram
equalization technique over each individual MRI.

Then, we applied a filter in each MRI where empty slides were removed from the brain
volumes, leaving on average 192 slides per brain plane. These preprocessed MRI volumes
were divided into nonoverlapping subvolumes of size 64 × 64 × 64 voxels that were
saved in single files containing stacks of volumes per brain MRI (see Figure 1). Finally, we
divided the dataset into two sets in the ratio of 8:2. The first set was for training the neural
network architecture, and the second one was for validating it. Due to the Mindboggle-101
dataset contains multiple datasets such as OASIS-TRT-20 which contains 20 MRIs, NKI-22
that contains 22 MRIs, among others, we performed the dataset division maintaining the
original dataset distribution, making sure that the validation set had at least one MRI from
all the datasets.
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2.3. Computational Resources

The computational implementations were performed with the open source library for
numerical computation Tensorflow and run on a computer with a 5th generation Intel I7
4820k@3.70 GHz processor, 64 GB of RAM memory, and two Nvidia 1080TI video cards
with 11 GB of GDDR 5x RAM at 405 MHz.

2.4. Model for Brain Structures Segmentation from MRI

The proposed deep neural network architecture is structured as an encoder-decoder
architecture. The contracting path follows the typical architecture of a convolutional
neural network. However, we applied Transformer layers at the end of this path using
the extracted feature maps from the CNN layers. The expansive path was composed of a
successive combination of convolutional neural networks and upsampling layers in order
to reach the original spatial resolution (see Figure 2). To avoid gradient vanishing and
explosion problems, we adopted skip connections between the encoder-decoder paths via
the usage of Res paths, initially proposed in [66].
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The architecture input is as follows: given an image x ∈ RH×W×D×C where H
represents height, W width, D depth, and C the numbers of channels. The objective of this
study is to segment multiple anatomical brain structures, predicting the corresponding
pixel-wise label maps of size H ×W × D.

2.5. Self-Attention Mechanism for Brain Segmentation

We used self-attention mechanisms via Transformers in the encoder path. This consists
of successive I layers of Transformers composed of Multi-Head Self-Attention (MHSA)
modules and Multi-Layer Perceptron (MLP) blocks, each preceded by a normalization layer.
The MLP blocks use the RELU activation function with a regularization dropout layer.

The attention mechanism was computed in parallel inside each of the heads of the
MHSA modules in each transformer using a set of vectors named as query, key, and value
vectors [50]. The query vector q ∈ Rd was matched against all key vectors organized in a
matrix K ∈ Rk×d using an algebraic operation known as the dot product. The results were
then scaled using a scaling factor 1√

dk
and normalized using a softmax function to obtain

the weights. The attention matrix inside each MHSA head is computed as:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (1)

where Q, K, and V are matrices representing a set of queries, keys, and values, respectively.
Finally, the results of each head were concatenated and linearly projected into a matrix

sequence at the end of the MHSA module. This can be described as:

MHSA(Q, K, V) = Concat(head1, head2, . . . , headh)WO

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

) (2)

where the projections are parameter matrices WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,
WV

i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel is the dimension of the Transformer’s hid-
den layers.

In the proposed architecture, we used the extracted feature maps from previous convo-
lutional layers as the input of the first transformer layer, using a trainable linear projection.
Indeed, we reshaped the feature maps x ∈ RH×W×D×C into a flattened representation as
the transformer layers expect a sequence as input. Then, we applied positional embedding
over the feature maps to add location information for the segmentation process. This can
be described as:

f xq,k,v
i = FeatureMapsEmbedding( f latten(xi)) (3)
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where positional embedding adds location information useful in the segmentation process.
This can be seen as:

z0 = [F1; F2; F3; · · · ; FN ] + Epos, F ∈ R, Epos ∈ RN×L (4)

where F denotes the feature maps in conjunction with the linear projection and Epos the
position embedding and N = H×W×D×C

16 . After successive layers of Transformers, the
output of the last transformer has a shape zI ∈ Rd×N . We applied a reshape before the
decoder path to recover its 3D dimensionality.

2.6. Loss Functions and Class Weights

Segmentation of brain structures is a highly imbalanced problem due to the signifi-
cant differences in size in the structures, presenting greater availability of information in
the image for those of greater size. Even the size difference between the structures and
the background is usually significant. Therefore, multiple loss functions and weighting
strategies for loss functions were proposed for improving imbalanced brain structure seg-
mentation [74]. In the proposed approach, we used a combination of Dice Loss [75] and
Focal Loss [76].

Dice Loss (DL) has its origin in the Dice Similarity Coefficient (DSC), which is widely
used as a metric for computer vision segmentation to calculate the similarity between two
images. Later, in [75], it was adapted as a loss function useful in medical image segmenta-
tion tasks, improving the imbalance problem between foreground and background. It is
formulated as:

Weighted Dice Loss = 1− 2
∑S

j=1 wj ∑N
i=1 yij pij

∑S
j=1 wj ∑N

i=1 yij + pij
(5)

where wj is the weight of the jth brain structure and S is the total number of segmentation
classes, yij is the label of voxel i to belong to brain structure j and pij is the probability of
voxel i to belong to brain structure j.

Meanwhile, Focal Loss (FL) is a variation in Binary Cross-Entropy that works better
with highly imbalanced datasets. It down-weights the contribution of easy examples and
mostly focuses on the hard ones. It can be described as follows:

FL(pt) = −αt(1− pt)
γ log(pt) (6)

where pt with p ∈ [0, 1] is the model’s estimated probability for the class, (1− pt)
γ is the

modulating term with γ as the focusing parameter that controls its strength.
In this study, we used a combination of these two functions.

2.7. Metrics

In order to evaluate the performance of the proposed segmentation method, the
ground truth and model prediction from the MRIs were compared. The selected metric for
this comparison is the DSC which can be seen as a harmonic mean of precision and recall
metrics. This metric can be mathematically expressed as:

DSC(x, y) = 2× x ∩ y
x + y

(7)

where x represents the image ground truth and y represents the predicted output for that
image. The marked labels for x and y should be binary represented for each class where all
voxels included in a given class should have a value of 1 and 0 for all the others. Therefore,
the DSC must be calculated individually for each class having output values in a range
between 0 (no segmentation) and 1 (perfect segmentation).
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Consequently, precision is the accuracy of positive predictions while recall is the ratio of
positive elements that were predicted correctly by the segmentation model. These metrics
can be expressed as:

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

where TP is the number of true positive predictions, FP the number of false positive
predictions and FN the number of false negative predictions for a given class.

Also, the Intersection over Union (IoU) metric is included in this study as an evaluation
metric for specific structures. It is useful for comparing similarities between two shapes A
and B and determining true positives and false positives from a set of predictions. It can be
expressed as:

IoU =
A ∩ B
A ∪ B

(10)

2.8. Training Process

The training process used a lineal learning rate schedule, initially set at 0.001 and
decreased after the 12th iteration to a power of 0.5, while the batch size is set by default
at 8. It used the Adam algorithm as the neural network optimizer. For the transformer
architecture based on the Visual Transformer (ViT) architecture [77], we set the successive
layers and heads per layer at 4, the hidden size at 64, the MLP size at 192, the dropout rate
at 0.1, the normalization rate at 0.0001, and a patch resolution of 8× 8× 8. It is important
to mention that the hyper-parameters were chosen via experimental design.

3. Results
3.1. Performance of Proposed Deep Neural Network Architecture

We quantitatively and visually evaluated the performance of brain structures
segmentation.

Figure 3 shows the number of voxels for each of the 37 selected structures from
Mindboggle-101 dataset. It can be seen that there are significant differences between classes.
To mitigate the effect of class imbalance we use a loss function combining the weighted
coefficient Dice and the Focal Loss.
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The combination of these two loss functions helped us to alleviate the imbalance
problem in the segmentation of anatomical brain structures and encourages the correct
segmentation of tissue boundaries. Indeed, the use of class weights while training deep
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neural network architecture was necessary due to the large number of small structures
the brain has compared with the total number of brain voxels. In order to calculate the
class weights, we used the median frequency balancing algorithm, which is formulated
as follows:

αc = median_ f req/ f req(c) (11)

where f req(c) is the total number of voxels of class c divided by the total number of voxels of
the MRIs where class c appeared and median_ f req is the median of the calculated frequencies.

A graphic example of the segmentation result of the proposed deep neural network
architecture can be seen in Figure 4, where we show the results in the axial, sagittal
and coronal planes. The local details at the edges of the structures as well as the global
features can be noted compared with the reference image. Quantitatively, we calculated the
Precision, Recall, and Dice Score per segmented brain structure (see Table 1). These results
show that there are still problems with the segmentation of some structures, mainly small
structures that tend to lower values of quality metrics.
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Figure 4. Segmentation results of the proposed architecture in the axial, sagittal and coronal planes
where red, green, blue, purple, and yellow colors represent cerebral white matter, cerebellum white
matter, cerebellum cortex, thalamus, and putamen structures, respectively. (a) Original MRI slide;
(b) ground truth mask of the slide; (c) predicted MRI mask of the slide.

Table 1. Segmentation results per brain structure in a testing MRI.

Brain Structure Precision Recall Dice Score IoU

Left cerebral white matter 0.95 0.91 0.93 0.86
Right cerebral white matter 0.97 0.89 0.93 0.86
Left cerebellum white matter 0.90 0.75 0.82 0.69
Right cerebellum white matter 0.93 0.77 0.85 0.73
Left cerebellum cortex 0.87 0.82 0.84 0.73
Right cerebellum cortex 0.89 0.72 0.80 0.66
Left lateral ventricle 0.64 0.91 0.75 0.60
Right lateral ventricle 0.78 0.91 0.84 0.72
Left thalamus 0.80 0.92 0.86 0.74
Right thalamus 0.90 0.89 0.89 0.80
Left putamen 0.85 0.84 0.85 0.73
Right putamen 0.91 0.81 0.86 0.75
3rd ventricle 0.57 0.96 0.72 0.56
4th ventricle 0.67 0.94 0.78 0.64
Brain stem 0.87 0.93 0.90 0.83
Left hippocampus 0.88 0.67 0.76 0.62
Right hippocampus 0.89 0.80 0.84 0.73
Left ventral DC 0.78 0.83 0.80 0.68
Right ventral DC 0.62 0.87 0.72 0.57
Ctx left caudal middle frontal 0.84 0.43 0.57 0.40
Ctx right caudal middle frontal 0.50 0.24 0.32 0.20
Ctx left cuneus 0.56 0.65 0.60 0.44
Ctx right cuneus 0.54 0.74 0.62 0.46
Ctx left fusiform 0.68 0.61 0.64 0.48
Ctx right fusiform 0.78 0.65 0.71 0.55
Ctx left inferior parietal 0.64 0.54 0.58 0.42
Ctx right inferior parietal 0.60 0.70 0.65 0.49
Ctx left lateral occipital 0.69 0.74 0.71 0.56
Ctx right lateral occipital 0.73 0.69 0.71 0.56
Ctx left post central 0.54 0.82 0.66 0.49
Ctx right post central 0.71 0.70 0.71 0.55
Ctx right rostral middle frontal 0.57 0.81 0.67 0.50
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Table 1. Cont.

Brain Structure Precision Recall Dice Score IoU

Ctx left rostral middle frontal 0.51 0.82 0.63 0.46
Ctx left superior frontal 0.74 0.81 0.77 0.63
Ctx right superior frontal 0.77 0.79 0.78 0.65
Ctx left insula 0.81 0.84 0.82 0.70
Ctx right insula 0.70 0.87 0.78 0.64

Macro average 0.75 0.78 0.75 0.63
Weighted average 0.97 0.97 0.97 0.95

Although to achieve the training process of the deep neural network architecture the
brain is divided into blocks of equal size, the results show that the segmented structures
maintain spatial coherence and can recover its representative organic form as can be seen
in a 3D visual representation shown in Figure 5.
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Figure 5. Segmentation results of the proposed architecture in 3D. (a) Segmentation of the 37 brain
structures; (b) segmentation of the cerebellum cortex (orange), putamen (magenta), and hippocampus
structures(yellow); (c) segmentation of the brain stem (gray), insula (yellow), and superior frontal
structures (green).

3.2. Patch Resolution Size Determination

For this experiment, we set four successive layers of transformers with patch resolution
blocks of 8× 8× 8, hidden size at 64, MLP size at 192; dropout rate at 0.1, and normalization
rate at 0.0001. Afterwards, we applied a reshape before the decoder path to recover its
3D dimensionality. Therefore, in order to obtain finer details (local information), it was
necessary to use convolutional layers at the beginning of the encoder path following a
classical U-Net [63]-based architecture with the proposed architecture.

We experimented with patch resolution sizes related to the transformer layers. As was
initially observed in [71], patch resolution size is important since it dictates the number
of complex dependencies that each element will have, with others, obtaining finer details
in the segmentation process. The ideal case would be to have a patch resolution size of
1× 1× 1. Nevertheless, there are not enough computational resources to train a deep
neural network architecture based on this patch resolution size. Consequently, we ran
experiments on the segmentation of three structures with patch sizes of 16× 16× 16 and
8× 8× 8 to see its influence on the segmentation of brain structures (see Figure 6).
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Figure 6. Patch size influence comparison on structure details segmentation in the axial, sagittal and
coronal planes where red, green, and blue colors represent cerebral white matter, cerebellum white
matter and cerebellum cortex structures, respectively. (a) Ground truth mask; (b) segmentation with
patch resolution size of 16× 16× 16; (c) segmentation with patch resolution size of 8× 8× 8.

3.3. Comparison with Other Methods

At present, the majority of the proposed deep neural network architectures for brain
segmentation using Transformers are oriented toward the segmentation of brain tumors.
Therefore, it is highly difficult to have a fair comparison since these models were oriented to
the segmentation of one class, and not for multiple classes excluding background. Because
of this, we implemented the 3D U-Net architecture, using it as our baseline, with an identical
experimental setup. This comparison using the Dice score and the Wilcoxon signed-rank
test can be seen in Table 2.
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Table 2. Comparison between methods by the Dice Score and p-value for the Wilcoxon signed-
rank test comparing proposed-UNet, proposed-DenseUNet samples pairs using the Mindboggle-
101 dataset.

Model Brain Structures Mean Dice Score p-Value

UNet (baseline) 37 0.790 ± 0.0210 0.0012850
DenseUNet (finetuned) 102 0.819 ± 0.0110 0.0211314

Proposed model 37 0.900 ± 0.0360 -

The time needed to perform the segmentation by this architecture and the comparison
with other deep learning models is shown in Table 3. It is important to mention that
transformer layers, thanks to the self-attention mechanism, are capable of processing
entire sequences in parallel, optimizing processing times. Unlike CPU processing units,
the GPU architecture was specifically designed to process data in parallel, allowing the
proposed model to take full advantage of computational resources and the Transformer’s
processing pipeline.

Table 3. Segmentation time per brain structure for a single MRI scan.

Model Segments Time Per Brain Structure Mean Dice Score

DeepNAT [78] 27 ~133 s (on a Multi-GPU Machine) 0.906
QuickNAT [79] 27 ~0.74 s (on a Multi-GPU Machine) 0.901
DenseUNet 102 0.64 s (±0.0091 s) (Single GPU Machine) 0.819
FreeSurfer [79] ~190 ~75.8 s -
Proposed model 37 0.038 s (±0.0016 s) (on a Multi-GPU Machine) 0.903

4. Discussion and Future Work

This study presents a deep learning-based model for the segmentation of 37 brain
structures using transformer models. This network was trained with the manually anno-
tated dataset Mingboggle-101, which contains 101 MRIs with its respective segmentation
files processed using the Desikan-Killiany-Tourville (DKT) protocol [73]. In the scientific
community, it is common to find multiple approaches to perform the segmentation of MRIs.
Therefore, this architecture was indirectly trained to perform segmentation based on the
DKT protocol due to the used dataset.

Our architecture includes self-attention modules to strengthen the connection between
the encoding and decoding phases based on convolutional neural networks. The capabili-
ties of self-attention modules add to the model the possibility of retaining features across
voxels in the input patches of the model. Unlike 2D-based models, the 3D architecture
can find voxel relationships in the three different planes, maximizing the use of the spatial
nature implicit in MRI.

In addition, the results of the proposed segmentation model show that the quality
metrics have a wide range of values. For the Dice Score, for example, the values vary from
0.32 to values of 0.93, showing low-quality segmentations for some structures. We find that
the lower values tend to be related to structures with smaller volumes. The geometry at the
edges of the structures is a factor that we consider influences the quality of the segmentation.
Structures with borders of highly variable geometry tend to have segmentations with more
error. Simpler edge structures generally result in more stable quality segmentations. Our
intuition in this regard is that this is due, mainly, to the class imbalance problem and lack
of enough data to train the model for those structures specifically. For this reason, it is
important in the future to explore other methods that allow addressing this problem, for
example, improving the calculation of the weights of the classes used in the loss functions
similar to what is performed in [74], or using additional data augmentation techniques to
increase the samples of classes with less information. Another factor that we considered
in the analysis is the fact that deep learning methods based on transformers lack the
inductive biases inherent in CNNs requiring large amounts of data to be able to generalize
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well [77], so their usage in small-size medical datasets remains difficult without any internal
modification in their self-attention module. Incorporating these modifications can allow
us to improve the segmentation of a large number of highly unbalanced brain structures
using a 3D approach.

The patch resolution size is a determining factor to obtain finer details at the edges of
segmentations. The experiments show an inverse relationship with size, that is, the smaller
the patch size, the more detailed segmentation is obtained at the edges; the larger the patch
size, the segmentations tend to be less detailed. It must be considered not all structures
have geometrically complex edges, there are structures with simpler geometrics. Therefore,
a trade-off between the computational cost of reducing the patch size and the more detailed
segmentation requirements must be considered. Given the 3D representation used in this
study and the memory requirements, it was not possible to explore values smaller than
8 × 8 × 8.

The results show that our method uses less time for segmentation with a Mean Dice
Score similar to those found in the state of the art. Additionally, the segmentation of more
than 25 brain structures into a 3D representation is a difficult task that has only been
reported by a few groups of authors [54] due to computational and memory limitations.
However, it is not competitive in terms of the number of segments where the latest 2D deep
learning-based approaches are able to segment more than 100 structures. Consequently,
further study should be carried out to optimize the use of memory and computational
resources in the proposed architecture to segment more brain structures with a strong focus
on the transformer architecture.

Our method still has deficiencies related to the variation in the segmentation quality
for different structures. Class imbalance, as well as the broad geometric nature of the edges
are factors for which our method is still sensitive. The number of segmented structures
is also a limitation, it is desirable to be able to segment a greater number of structures,
especially compared with 2D-based approaches.

In future work, we will explore the existing computational and memory limitations
in our proposed architecture with a high focus on the transformer layers to see whether
a different tokenization of the patched feature maps can improve its performance and
segment more brain structures.
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