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Several computational approaches for predicting subcellular localization have been developed and proposed. These approaches
provide diverse performance because of their different combinations of protein features, training datasets, training strategies, and
computational machine learning algorithms. In some cases, these tools may yield inconsistent and conflicting prediction results. It is
important to consider such conflicting or contradictory predictions from multiple prediction programs during protein annotation,
especially in the case of a multiclass classification problem such as subcellular localization. Hence, to address this issue, this work
proposes the use of the particle swarm optimization (PSO) algorithm to combine the prediction outputs from multiple different
subcellular localization predictors with the aim of integrating diverse prediction models to enhance the final predictions. Herein, we
present PSO-LocBact, a consensus classifier based on PSO that can be used to combine the strengths of several preexisting protein
localization predictors specially designed for bacteria. Our experimental results indicate that the proposed method can resolve
inconsistency problems in subcellular localization prediction for both Gram-negative and Gram-positive bacterial proteins. The
average accuracy achieved on each test dataset is over 98%, higher than that achieved with any individual predictor.

1. Introduction localization can accelerate this process. Over the past de-

cades, numerous prediction methods have been proposed as

The prediction of the subcellular localization of proteins is a
significant step in protein function annotation, providing
useful insights into biological functions and interactions.
Information involving the subcellular localization of pro-
teins in bacteria can support the development of drugs and
vaccines [1]. Bacterial cell surfaces and secreted proteins are
of interest for their potential as vaccine candidates or di-
agnostic targets. Using experimental techniques, identifying
the subcellular localization of a protein is relatively laborious
and time consuming. However, reliable and accurate
computational methods of predicting subcellular

a result of independent efforts by various research teams
(summarized in Table 1). Yu et al. [2, 3] developed CELLO, a
multilayered SVM classification system that uses 4 types of
sequence coding schemes, namely, amino acid composition,
dipeptide composition, partitioned amino acid composition,
and physicochemical-property-based sequence composi-
tion, to predict protein locations. Bhasin et al. [5] developed
PSLpred, which includes various SVM modules based on
features such as amino acid composition, dipeptide com-
position, physicochemical properties, and evolutionary in-
formation from PSI-BLAST. Later, SLP-Local [6] was
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eukaryotes

extracellular region, fimbria, outer
membrane, periplasm, and plasma
membrane)
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TaBLE 1: Summary of predictors used in this work.
Predictor Organism categories Subcellular compartments predicted URL References
Extracellular region, outer membrane,  http://harrier.nagahama-i-bio.ac.jp/
SOSUI- . . . . : . . .
GramN Gram-negative bacteria periplasm, inner membrane, and sosui/sosuigramn/sosuigramn_submit. [1]
cytoplasm html
Extracellular region, outer membrane,
CELLO Bacteria, eukaryotes inner membrane, periplasm, and http://cello life.nctu.edu.tw/ (2, 3]
cytoplasm
Archaea. bacteria Extracellular region, outer membrane,
CELLO2GO ™ inner membrane, periplasm, and http://cello.life.nctu.edu.tw/cello2go/ [4]
eukaryotes, viruses
cytoplasm
Extracellular region, outer membrane,
PSLpred Gram-negative bacteria inner membrane, periplasm, and http://crdd.osdd.net/raghava/pslpred/ [5]
cytoplasm
3 locations for prokaryotes (cytoplasm,  http://sunflower.kuicr.kyoto-u.ac.jp/
SLP-local Prokaryotes, eukaryotes extracellular region, and periplasm) ~smatsuda/slplocal.html [6]
Cytoplasm, extracellular region,
Gneg- Gram-necative bacteria fimbria, flagella, inner membrane, http://www.csbio.sjtu.edu.cn/bioinf/ 7, 8]
mPLoc gative ba nucleoid, outer membrane, and Gneg-multi/ ’
periplasm
Gpos- s . Cytoplasm, cell wall, plasma http://www.csbio.sjtu.edu.cn/bioinf/
mPLoc Gram-positive bacteria membrane, and extracellular region Gpos-multi/ (8, 9]
4 locations for Gram-positive bacteria
and archaea (cytoplasm, cytoplasmic
membrane, cell wall, and extracellular
. region) .
PSORTD 3.0 Archaea, bacteria 5 locations for Gram-negative bacteria http://www.psort.org/psortb [10]
(cytoplasm, inner membrane,
periplasm, outer membrane, and
extracellular region)
4 locations for Gram-positive bacteria
(cytoplasm, inner membrane, cell wall,
and extracellular region) )
ngLOC Prokaryotes, eukaryotes 5 locations for Gram-negative bacteria http.//genogle.unmc.edu/ngLOC/ [11]
. index.html
(cytoplasm, inner membrane,
periplasm, outer membrane, and
extracellular region)
3 locations for archaea (cytoplasm,
extracellular region, and plasma
Archaea, bacteria membrane)
LocTree3 ’ ’ 6 locations for bacteria (cytoplasm, https://rostlab.org/services/loctree3/ [12]

developed to predict the subcellular localization of proteins
based only on the local compositions of amino acids and
twin amino acids and the local frequencies of the distances
between successive amino acids. SOSUI-GramN [1] was
proposed as a predictive software system developed spe-
cifically for assessing the subcellular localization of proteins
in Gram-negative bacteria. It utilizes only the physico-
chemical parameters of the N- and C-terminal signal se-
quences and the total sequence. In particular, SOSUI-
GramN offers markedly improved accuracy for the locali-
zation prediction of extracellular proteins, which is com-
monly known as a weakness of other methods. Gneg-mPLoc
and Gpos-mPLoc were developed by Shen et al. [7, 9] as
components of Cell-PLoc [8, 13], a web server for predicting
the subcellular localization of proteins in various organisms.

These tools can be used for cases in which a query protein
may simultaneously exist in more than one location.
PSORTD 3.0, the latest version of a well-known method for
bacterial protein analysis [10], uses information on amino
acid composition, similarity to proteins of known locali-
zation, the presence of a signal peptide, transmembrane
alpha-helices, and motifs corresponding to specific locations
found for each given protein to determine its subcellular
localization. By using a probabilistic method, PSORTb 3.0
outperforms CELLO, Cell-PLoc, SLP-Local, and the pre-
vious versions of the same tool. King and Guda [11] pro-
posed an n-gram-based Bayesian subcellular localization
classifier called ngLOC. As part of its output, ngLOC pro-
vides a set of probabilistic scores for the top three possible
locations of each given protein. Later, in early 2014,
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Goldberg et al. [12] presented LocTree3, a profile kernel
SVM with the addition of homology-based inference, for
protein subcellular localization prediction. Yu et al. [4]
presented a new version of CELLO called CELLO2GO,
which combines the original technique with information
regarding gene ontology (GO) categories to describe the
functions of genes and gene products across species.

Nevertheless, each prediction program has unique
weaknesses and strengths depending on the adopted training
strategies and algorithms. Specifically, these tools differ in
three notable aspects: the underlying biological model, lo-
cation coverage, and prediction accuracy [14]. A given tool
may not be able to accurately predict the exact localization of
every protein. It often happens that one predictor performs
better for some cases while another predictor performs
better for another compartment or under other circum-
stances. During the genome annotation process, a user may
consider results from multiple prediction programs to
confirm the final prediction and may encounter conflicting
predictions. It is difficult for users to arrive at sensible de-
cisions when faced with two or more contradictory pre-
dictions made by multiple programs [15]. To address this
problem, the combination of multiple predictive models via
a consensus classifier has become a promising solution.
Efforts have been made to combine results from multiple
predictors to generate a final prediction. In 2012, a meta-
predictor for protein localization in Gram-negative bacteria
was introduced by Magnus et al. [16]. Their predictor
combines the results from various prediction tools by using 5
one-versus-rest binary logistic regression models. This ap-
proach was developed based on the conversion of the
multiclass classification problem into a set of independent
binary logistic regression classification problems. On this
basis, the class label corresponding to the logistic regression
classifier with the highest probability will be returned as the
final prediction. However, naively comparing the proba-
bilities of separate and independent binary logistic re-
gression classifiers may result in irrelevant decision
boundaries that will affect the correctness of the final pre-
diction due to imbalances between the classes. Therefore, the
motivation of this work is to instead estimate the proba-
bilities of all classes simultaneously; hence, the in-
terdependence of all classes will also be estimated as part of
the joint classification process.

To this end, we propose a new subcellular localization
predictor for bacterial proteins using particle swarm opti-
mization (PSO) that efficiently combines prediction results
from preexisting predictors to improve the overall predictive
accuracy and resolve incongruent results from different
predictors. To date, many subcellular localization predictors
have been proposed. The goal of this work is not to develop
another trained classifier based on certain selected features;
instead, the aim is to introduce a PSO-based consensus
classifier to combine and enhance the strengths of the
previous methods. The main reasons for choosing PSO
instead of another optimization method for this multiclass
problem are its iterative search capability for identifying the
global optimum in a multidimensional space and its ease of
continuous data representation, which permits easy

modification in the case of removing or adding predictors.
Moreover, PSO does not rely on the gradient of the problem
to be optimized; thus, PSO does not require that the opti-
mization problem be differentiable, as is required by classic
optimization methods [17-19]. Recently, a PSO-based
consensus method has been successfully applied to classify
eukaryotic protein localization results [20].

In this work, the application of PSO in optimizing the
weights and biases of various prediction methods enhances
the accuracy of a prediction model for protein localization in
bacterial genome sequences. This method can be used to
identify the locations of the proteins from 5 locations in
Gram-negative bacteria (extracellular region or secreted
proteins, outer membrane, periplasm, inner membrane or
cytoplasmic membrane, and cytoplasm) or 4 locations in
Gram-positive bacteria (extracellular region, cell wall, inner
membrane, and cytoplasm). Empirical experiments per-
formed under various circumstances suggest that the pro-
posed PSO-based consensus classifier offers significantly
improved performance compared with the individual
predictors.

2. Materials and Methods

The flowchart of the proposed method is illustrated in
Figure 1.

2.1. Data Collection. Protein sequences with known loca-
tions were extracted from UniProtKB [21]. Only sequences
with the reviewed (Swiss-Prot manually annotated) status
were collected. Duplicated proteins with over 90% sequence
identity were removed by using CD-HIT [22]. We randomly
selected 2,150 Gram-negative and 1,866 Gram-positive
nonredundant bacterial proteins with less than 90% se-
quence identity from the resulting dataset. For each dataset,
approximately 80% of the data were used as a training set,
and the remaining proteins after removal were used as a test
set. The test dataset for Gram-negative bacterial proteins
covered five locations, with 86 proteins for each location.
The test dataset for Gram-positive bacterial proteins con-
sisted of 311 proteins, including 79 sequences from cyto-
plasm, 79 sequences from inner membranes, 77 sequences
from cell walls, and 76 sequences from extracellular regions.
After data collection, the following individual predictors for
bacterial protein subcellular localization were employed as
the selected classifiers: CELLO [2, 3], PSORTb 3.0 [12],
CELLO2GO [4], SOSUI-GramN [1], SLP-Local [6], ngLOC
[11], Gneg-mPLoc [9], Gpos-mPLoc [7], PSLpred [5], and
LocTree3 [12]. Some of them are available for local stand-
alone installation, whereas some are available only on web
servers. For servers that do not accept one file containing
multiple protein sequences, we used the screen-scraping
technique with Python to submit inputs and fetch outputs
(the screen-scraping codes are also provided with the
software). CELLO, PSORTb 3.0, ngLOC, and SLP-Local
yield scores for the probabilities of class assignment, whereas
the other programs provide only the location predictions;
hence, in the latter case, we assigned a label of 1 to the
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FiGure 1: Flowchart of the proposed algorithm.

predicted location and a label of 0 to the other locations.
Once all results had been obtained in the form of numerical
vectors, we simply combined them into one CSV file to serve
as the input for the PSO classifier.

In addition to the data described above, we also
employed the benchmark dataset S taken from [7, 9]. This
dataset includes 523 proteins (4 locations) for Gram-
positive bacteria and 1,404 proteins (5 locations) for Gram-
negative bacteria. None of the proteins included in dataset
S has a pairwise sequence identity of >25% with respect to
any other in the same subcellular location. This dataset S is
much more rigorous in excluding homology bias and re-
dundancy. Moreover, this dataset is well documented and
has been wused in benchmarking various predictors
[7, 9, 23-30].

2.2. Experimentation. This section briefly explains the ex-
perimentation involving the performance comparison of the
proposed method in different settings. All predictors were
evaluated on the same test datasets. The steps of the algo-
rithm are described below.

(1) The result score matrix was prepared and loaded
for the PSO classifier. This score matrix was used
for weight optimization in the PSO algorithm.

(2) The weights were multiplied by the scores. Scores
for the same location were summed together, and
the results were then sorted in descending order.
The location with the maximum score was selected
for comparison with the given class label of each
protein sequence.

(3) The performance of the method was further
evaluated by considering the following 9 experi-
mental cases:

(i) The classifier with the highest accuracy was re-
moved to observe how its removal would influence
the result.

(ii) Tools that exhibited an accuracy lower than 90%
were removed.

(iii) As a complement to 3.2, all other tools with an
accuracy of 90% or higher were removed to de-
termine whether the proposed method could im-
prove the prediction accuracy in the case of only
relatively inaccurate predictors.

(iv) Tools that exhibited an accuracy lower than 80%
were removed.

(v) As a complement to 3.4, all other tools with an
accuracy of 80% or higher were removed.

(vi) Tools that exhibited an accuracy lower than 70%
were removed.

(vii) As a complement to 3.6, all other tools with an
accuracy of 70% or higher were removed.

(viii) Tools that exhibited an accuracy lower than 60%
were removed.

(ix) As a complement to 3.8, all other tools with an
accuracy of 60% or higher were removed.

All experimental results are reported and compared to
illustrate the effects of the different settings on the proposed
method. In every step of the evaluation, the overall pre-
diction accuracy was calculated as shown in

accuracy (ACC) = |[number of correct answersll (1)

|[number of instances|

2.3. Particle Swarm Optimization. PSO is a metaheuristic
method because it makes few or no assumptions regarding
the problem being optimized. A basic variant of the PSO
algorithm [17, 31] works by using a population of candidate
solutions (also known as particles) to explore the feasible
search space. Each of these k particles is represented by a
position vector X, and a velocity vector V. The movements
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of the particles are driven by their best-known positions Pb
(local best) in addition to the entire swarm’s best-known
position Pg (global best) in the search space, as shown in

Ve = oV c1r1<1>b7j _ X}f’) + c2r2<Pgd - X}f), 2)

x4 = x4V (3)

where d is the dimensionality of the problem, or the number
of decision variables to be optimized. The PSO algorithm
searches for the optimal solution in an iterative manner. In
each iteration, the velocity V is updated by using the most
recent velocity V' as well as the cognitive coefficient ¢, of the
particle and the social coefficient ¢, of the members of the
swarm multiplied by random variables r, and r,, re-
spectively. The new position X, is updated with respect to
the previous position X; in accordance with the updated V,.
A flowchart of the PSO algorithm is shown in Figure 2.

In this work, the time-varying acceleration coefficients
proposed in [18] are adopted. In this version of the PSO
algorithm, the cognitive coefficient ¢, and the social co-
efficient ¢, are defined to be adaptable. Beginning with a
larger cognitive component and a smaller social component,
the particles move around the search space instead of im-
mediately moving toward the population’s best solution.
After several objective function calls, each particle has ex-
plored and collected adequate information about the search
space, and the coefficients are correspondingly modified to
obtain a smaller cognitive component and a larger social
component to directly drive convergence to the global
optimum. The modification of these two acceleration co-
efficients can be represented as follows:

( ) MAXCALL — calls
Cy = - S ) .
1 Clmax ~ €1 min MAXCALLS €1 min

(4)

MAXCALL - calls
MAXCALLS C2max>

6= (CZmin - CZmax) * (

where the maximum coefficient values ¢, ., and ¢, ., and
the minimum coefficient values ¢, and ¢,,,;, are con-
stants, calls is the most recent count of objective function
calls, and MAXCALLS is the maximum allowed number of
objective function calls. Moreover, this method uses a time-
varying inertial weight factor (w), as shown in

( ) MAXCALLS - calls\ _ )
= — . * .
@ = Wmax = Cmin MAXCALLS @min>

where w,,,, and w,;, are the initial and final values, re-
spectively, of the inertial weight factors. This factor balances
the local and global search capabilities during the optimi-
zation process. With a larger inertial weight factor at the
beginning, the particles move more broadly and quickly
around the search space. In contrast, a smaller inertial
weight enables the particles to more precisely explore the
search space surrounding the global optimum.

For this problem, the weights for all tools are represented
in the PSO algorithm by the position vector of each particle.
The New Result Vector is structured as follows:

Initialize particles

Termination
criteria reached?

Evaluate particles

Update local and
global best particles

Update velocity and
position vectors

FiGure 2: Flowchart of the PSO process.

n

New Result Vector = [Z(wi’ Xi1 ), i(wp xi,z)’
1

1

| .,i(wi,xi,m)],

1

(6)

where w;, w,, ..., w, are the weights for all n classifiers and
Xi1» Xjg» -+ - X, are the elements of the normalized result
score vector corresponding to each of the m locations
generated by each classifier used in this work.

2.4. Decision-Making. While the PSO algorithm is running,
the New Result Vector is used to determine the protein
location. Only the location with the maximum score in the
matrix is determined as the final answer. Therefore, the
decision rule is as follows:
n n
seq — location k «— Z(wixfiq) = max Z(w-x?e»q).
1

iV, j
i ]

(7)

Later, the answer is automatically checked against the
class label to evaluate the performance of the PSO weights
in terms of accuracy. In our study, following the results of
an empirical study by Shi and Eberhart [17], the PSO
parameters were set to widely used values. ¢, and ¢, were set
to vary over time from 2.5 to 0.5 and from 0.5 to 2.5,
respectively. The inertial weight w was decreased linearly
from approximately 0.9 to 0.4 throughout a run. We set the
number of particles to 25, and we adopted a maximum
allowed number of objective functions calls of 1,000 per run
as the termination criterion.

2.5. Software Package. The PSO-LocBact software package
was developed in Python and Perl using Spyder with Python
2.7 and Perl v5.22.1. Detailed documentation is provided
with the package. The program offers cross-platform com-
patibility. The original dataset files are included in FASTA
file format. The user manual takes users through the basic
usage of the software package and the settings in the con-
figuration file for the summarization of the prediction results
from other classifiers. With the guidelines provided in the
user manual, users can also create and apply their own
training datasets. By changing the settings in the configu-
ration file, users can add new predictor programs and



weights for their results. The PSO algorithm will consider
these weights along with the probabilistic scores resulting
from each predictor in the calculation of the final results.
Since the software package was developed entirely in
scripting languages, no additional source code is needed.
Any desired modifications can be easily and freely made to
the software package.

3. Results and Discussion

3.1. Predictive Performance Comparison. We assessed the
performance of the 10 predictors used in this study (as
summarized in Table 1). Table 2 shows the prediction
performance of each tool used in this study. Table 2
confirms the hypothesis that some tools are better than
others in predicting localization in certain compartments.
Additionally, the results from each predictor are not re-
liable for identifying the localization of proteins in every
compartment. For example, PSORTb 3.0 is the most ac-
curate classifier, but it is not as accurate as ngLOC, CELLO,
and LocTree3 in classifying cytoplasmic proteins. As an-
other example, SLP-Local outperforms SOSUI-GramN,
Gneg-mPLoc, and PSLpred for the prediction of peri-
plasmic proteins despite its limited overall prediction
competence. Similarly, despite its lack of performance in
identifying cytoplasmic proteins in Gram-negative bacte-
ria, Gpos-mPLoc (a complementary software package to
Gneg-mPLoc) performs well for cytoplasmic protein
samples from Gram-positive bacteria. To combine the
strengths of these various predictive programs, we take
advantage of PSO as a computational intelligence tech-
nique to optimize the weights associated with the different
output classes for each predictive tool and combine their
results to obtain a final decision. Generally, PSO has been
proven to be an efficient optimization algorithm for finding
an optimal solution in various fields by searching an entire
multidimensional problem space. The advantages of PSO
include its good robustness, simplicity, and fast conver-
gence speed, with relatively few parameters to adjust
[32-35].

As shown in Table 2, for both Gram-negative and Gram-
positive bacteria, the PSO-based combination of predictors
leads to a performance improvement over any single indi-
vidual predictor.

3.2. Effect of PSO as a Combiner in PSO-LocBact. We also
compared our PSO-based method with other consensus
classifiers and the recently proposed single predictor
called FUEL-mLoc [23]. Since no other consensus clas-
sifiers specifically designed for predicting the localization
of bacterial proteins are available, various consensus
classifiers using various fusion algorithms to combine a
set of predictors (the set of predictors used for Gram-
negative bacterial proteins consisted of CELLO, PSORTDb
3.0, CELLO2GO, SOSUI-GramN, SLP-Local, ngLOC,
Gneg-mPLoc, PSLpred, and LocTree3, and the set of
predictors used for Gram-positive bacterial proteins
consisted of CELLO, PSORTb 3.0, CELLO2GO, ngLOC,
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Gpos-mPLoc, and LocTree3) were implemented using the
Weka machine learning workbench [36]. All consensus
classifiers were trained on the training set using the 10-
fold cross-validation strategy and then tested with the test
sets. As shown in Table 3, our PSO-based tool shows high
overall accuracy when compared with the other consensus
classifiers.

Compared to the majority voting method, the PSO-
based method yields increased prediction accuracies for
secreted (extracellular), periplasmic, and cytoplasmic
proteins in the Gram-negative bacterial protein datasets
and for cell wall and extracellular proteins in the Gram-
positive bacterial protein datasets. In the PSO-based
method, an appropriate weight can be assigned to each class
for each predictor instead of an equal weight for each
predictor, which is especially important in the case of
multiclass classification. Moreover, this method provides
probabilistic scores indicating the confidence of the protein
localization predictions. These probabilistic scores can be
used to identify multiple locations of proteins. In the case of
multilocation proteins, which are collocated at or move
between two or more different subcellular compartments,
our method is able to contribute to the simultaneous
prediction of multiple subcellular locations. For individual
query sequences, the predicted location with the highest
score should be assigned as the most promising location of
a particular protein, while the second ranking can be
suggested as an alternative location for such a multilocation
protein.

3.3.  Performance of PSO-LocBact under Different
Circumstances. The choice of the individual predictors
considered in a consensus classifier also affects the pre-
diction results. Since, under most circumstances, users may
not know the limitations and merits of individual pre-
dictors, the aim of this section is to investigate how well
PSO-LocBact performs in terms of accuracy and robustness
with a limited number of predictor programs. To this end,
we designed 9 experimental cases to represent various
circumstances to evaluate the performance of the proposed
method by removing certain programs (based on the
performance results from Table 2) and then investigating
the effects of this removal on the final prediction results
(see Table 4). In the first experimental case, PSORTb 3.0,
which achieved the highest overall accuracy, was removed
from the system. With the best predictor in the list re-
moved, the PSO classifier needs to rely on other, less ef-
ficient tools. Its overall accuracy for Gram-negative
bacteria in this case is slightly decreased to 97.67% com-
pared to the result reported for PSO-LocBact with the all-
program strategy in Table 2.

As the complement to the second experimental case, the
third experiment was carried out by removing all predictors
with an overall accuracy higher than 90%. The predictors
removed in this case for Gram-negative bacteria were PSORTb
3.0 and CELLO2GO. As shown in Table 4, our PSO-LocBact
can improve the prediction performance in this case. Each
predictor included in this case achieves an overall accuracy of
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TABLE 2: Accuracy of each individual classifier and PSO-LocBact.

Gram-negative bacterial proteins

Location: predictor Extracellular region Outer membrane Periplasm Inner membrane Cytoplasm Overall
CELLO 40.69% 48.84% 76.74% 87.21% 89.53% 68.60%
PSORTD 3.0 100% 100% 88.37% 100% 98.84% 97.44%
CELLO2GO 100% 100% 87.21% 100% 100% 97.44%
SOSUI-GramN 66.28% 56.98% 67.44% 90.70% 87.21% 73.72%
SLP-local 36.05% 0 75.58% 0 65.12% 35.35%
ngLOC 77.91% 96.51% 86.05% 93.02% 94.19% 89.53%
Gneg-mPLoc 82.56% 89.53% 1.16% 100% 0 54.65%
PSLpred 0 100% 1.16% 0 0 20.23%
LocTree3 84.88% 46.51% 80.23% 93.02% 93.02% 79.53%
PSO-LocBact 100% 100% 94.19% 100% 100% 98.84%
Gram-positive bacterial proteins
Location: predictor ~ Extracellular region Cell wall Inner membrane Cytoplasm Overall
CELLO 86.84% 29.87% 100% 100% 79.42%
PSORTD 3.0 93.42% 93.50% 100% 100% 96.78%
CELLO2GO 97.39% 90.90% 100% 100% 97.10%
ngLOC 86.84% 42.85% 93.67% 100% 81.03%
Gpos-mPLoc 34.21% 24.68% 77.21% 100% 59.81%
LocTree3 85.53% 0 91.14% 96.20% 68.49%
PSO-LocBact 97.39% 94.80% 100% 100% 98.07%

TaBLE 3: Accuracy of various consensus methods on the test sets.

Gram-negative bacterial proteins

Lo Extracellular Outer . N Inner Cytoplasm N
Location: region (%) membrane (%) Periplasm (%) membrane (%) (%) Overall (%)
Single predictors (as shown in 0-100 0-100 1.16-88.37 0-100 0-100  20.23-97.44
Table 2)

Consensus classifier: PSO-LocBact 100 100 94.19 100 100 98.84
Consensus classifier: majority 97.67 100 95.35 100 98.84 98.37
voting
Consensus classifier: Naive Bayes 100 98.84 94.18 100 98.84 98.37
Consensus classifier: logistic 98.84 100 97.67 95.35 98.84 98.14
regression
Consensus classifier: average 98.84 100 90.69 98.84 98.84 97.44
probability voting
Single predictor: FUEL-mLoc 79.07 97.67 96.51 93.02 82.56 89.76
(2017)

Gram-positive bacterial proteins

. Extracellular N Inner o 0
Location: region (%) Cell wall (%) membrane (%) Cytoplasm (%) Overall (%)
%ﬁ?gedlcmrs (as shown in 34.21-97.39 0-93.50 77.21-100 97.50-100  59.81-97.10
Consensus classifier: PSO-LocBact 97.39 94.80 100 100 98.07
Corllsensus classifier: majority 93.42 93.50 100 100 96.78
voting
Consensus classifier: Naive Bayes 69.73 92.20 100 100 90.67
Consegsus classifier: logistic 89.47 100 100 100 97.43
regression
Consensus classifier: average 96.05 87.01 100 98.73 95.49
probability voting
Single predictor: FUEL-mLoc 36.84 81.82 100 100 92.28
(2017)
less than 90%. By contrast, the overall prediction result of PSO- In the sixth experimental case, the predictors with

LocBact in this case is 90.69%, beyond the level attained by any ~ overall accuracies lower than 70% were removed: CELLO,
of the individual predictors (CELLO, SOSUI-GramN, SLP- SLP-Local, Gneg-mPLoc, and PSLpred for Gram-negative
Local, ngLOC, Gneg-mPLoc, PSLpred, and LocTree3). bacteria and Gpos-mPLoc and LocTree3 for Gram-positive
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TaBLE 4: Accuracy of PSO-LocBact in different experimental cases.
Gram-negative bacterial proteins

Lo Extracellular region ~ Outer membrane . N Inner membrane  Cytoplasm  Overall
Location: (%) (%) Periplasm (%) (%) (%) (%)
Experimental case 1 98.84 100 93.02 97.67 100 97.67
Experimental case 2 100 100 87.21 100 100 97.44
(>90)
Experimental case 3 80.23 91.86 90.69 94.19 96.51 90.69
(<90)
Experimental case 4 100 100 89.53 100 98.84 97.67
(>80)
Experimental case 5 3488 5465 84.88 95.35 94.19 82.79
(<80)
Experimental case 6 100 100 94.19 100 100 98.84
(>70)
Experimental case 7 44.19 66.28 81.4 88.37 95.35 75.12
(<70)
Experimental case 8 100 100 94.19 100 98.83 98.60
(>60)
Experimental case 9 76.74 96.51 86.05 81.39 93.02 86.74
(<60)

Gram-positive bacterial proteins
Location: Extracell(lé/le;r region Cell wall (%) Inner r(r(l)/e;nbrane Cytoplasm (%) Overall (%)
0 (

Experimental case 1 96.05 100 100 98.73 98.71
Experimental case 2 96.34 96.39 100 100 98.20
(>90)
Experimental case 3 89.02 5427 98.82 100 85.63
(<90)
Experimental case 4 9756 96.39 100 100 98.50
(>80)
Experimental case 5 78.05 43.37 91.76 100 78.44
(<80)
Experimental case 6 94.73 100 100 100 98.71
(>70)
Experimental case 7 68.29 12.05 100 100 70.66
(<70)
Experimental case 8 97,56 96.39 100 100 98.50
(>60)
Experimental case 9 NA NA NA NA NA
(<60)

Experimental case 1: performance of PSO-LocBact without PSORTD 3.0. Experimental case 2: performance of PSO-LocBact considering only classifiers with
accuracy >90%. Experimental case 3: performance of PSO-LocBact considering only classifiers with accuracy <90%. Experimental case 4: performance of
PSO-LocBact considering only classifiers with accuracy >80%. Experimental case 5: performance of PSO-LocBact considering only classifiers with accuracy
<80%. Experimental case 6: performance of PSO-LocBact considering only classifiers with accuracy >70%. Experimental case 7: performance of PSO-LocBact
considering only classifiers with accuracy <70%. Experimental case 8: performance of PSO-LocBact considering only classifiers with accuracy >60%.
Experimental case 9: performance of PSO-LocBact considering only classifiers with accuracy <60%.

bacteria. As shown in Table 4, the results for the Gram-
positive experiment in this case are even better than those
of PSO-LocBact with the all-program strategy, as reported
in Table 2. This finding indicates that the combination of
only a few efficient tools is also adequate to produce reliable
solutions.

In experimental case 9 for Gram-positive bacteria, since
Gpos-mPLoc is the only classifier with an accuracy of less
than 60%, we could not test our model under this condition.

Based on these 9 different experiments carried out in this
study to determine the effectiveness of the PSO-LocBact
method under various circumstances, we conclude that the
proposed method can provide users with more confidence in
the obtained predictions. These results also confirm that

PSO-LocBact can increase performance and/or provide
more reliable prediction results in all experimental cases.
Moreover, new prediction programs can be easily added to
our method; thus, any novel predictors that may be de-
veloped in the future can be easily included to further
improve the prediction accuracy.

3.4. Comparison with State-of-the-Art Predictors and the
Performance of PSO-LocBact on the Benchmark Dataset S.
Note that, in our training and test datasets, we used a
threshold of 90% instead of 25% sequence identity because
we needed to increase the number of proteins for some
classes for which only a limited number of proteins with
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TaBLE 5: Accuracy of PSO-LocBact compared to other state-of-the-art methods on the well-known benchmark dataset S taken from

(7,9, 30].

Gram-negative bacterial proteins

Benchmark dataset Inner membrane Outer membrane

Cytoplasm (410 Extracellular region Periplasm (180 Overall (1,404

S: predictor (557 proteins) (124 proteins) proteins) (133 proteins) proteins) proteins)

PSO-LocBact 547 116 387 129 171 1,350 (96.15%)
Gram-LocEN [25] 551 116 374 130 169 1,340 (95.44%)
PSORTb 3.0 [10] 529 114 380 117 168 1,308 (93.16%)
CELLO2GO [4] 519 107 383 128 170 1,307 (93.09%)
Gneg-PLoc [26] 454 68 362 59 87 1,030 (73.36%)
Gneg-mPLoc [7] 525 105 357 79 154 1,220 (86.89%)
iLoc-Gneg [24] 539 103 367 115 161 1,285 (91.52%)
Fuel-mLoc [23] 541 111 379 129 161 1,321 (94.09%)

Gram-positive bacterial proteins

Benchmark dataset  Cell membrane Cell wall (18

Cytoplasm (208 Extracellular region

Overall (523

S: predictor (174 proteins) proteins) proteins) (123 proteins) proteins)

PSO-LocBact 174 18 206 122 520 (99.42%)
Gram-LocEN [25] 173 17 203 120 513 (98.08%)
PSORTD 3.0 [10] 169 14 203 112 498 (95.22%)
CELLO2GO [4] 149 10 197 121 477 (91.2%)
iLoc-Gpos [27] 167 12 198 110 487 (93.12%)
Fuel-mLoc [23] 170 17 202 117 506 (96.75%)

Gpos-PLoc [30] — —
Gpos-mPLoc [9] — —
ML-KNN [28] — —
wML-KNN [29] — —

379 (72.47%)
430 (82.22%)
78.71%
91.49%

reviewed localization statuses were available in the database
in order to be able to build a balanced training dataset, which
is important for building a consensus predictor. Individual
homolog features are not needed to train such a model for
consensus prediction, unlike most individual predictor
methods, which depend on homolog features for model
training and thus need to consider the homology bias of the
features. In addition, we included the well-known fair
benchmark dataset S, which comprises proteins that share
less than 25% identity, as our validation dataset to enable
performance comparisons with various state-of-the-art
methods.

Table 5 shows the performance of PSO-LocBact and
various state-of-the-art predictors on dataset S, which is a
widely used benchmark dataset. This dataset was constructed
by the authors of [7, 9] and has been used to test various
predictors, including iLoc-Gneg [24], Gram-LocEN [25],
Gneg-PLoc [26], Gneg-mPLoc [7], and iLoc-Gpos [27]. The
overall accuracy of PSO-LocBact is 96.15% for Gram-neg-
ative bacterial proteins and 99.42% for Gram-positive
bacterial proteins, higher than the values for the other state-
of-the-art methods. In contrast to the dataset considered in
the previous section, which is a balanced dataset, this
benchmark consists of imbalanced data. Therefore, PSO-
LocBact shows high performance on both balanced and
imbalanced datasets.

4. Conclusions

With the growing number of research efforts employing
various machine learning approaches to predict the sub-
cellular localization of proteins, these tools can yield

incongruent prediction results in some circumstances. In
this paper, PSO-LocBact, a method of bacterial protein
subcellular localization prediction based on the simple
particle swarm optimization (PSO) technique, has been
proposed to integrate the prediction results from preex-
isting predictors to provide more reliable predictions and
increased accuracy under most circumstances. During
testing, our proposed method achieved an overall pre-
diction accuracy of over 98%. Hence, this method can
provide researchers in the field with more reliable answers
for protein localization together with probabilistic scores
indicating the confidence of the results.

4.1. Software Package Applications. The PSO-LocBact
method is a PSO method for combining the results of
multiple classifiers for the prediction of protein subcellular
localization in both Gram-negative and Gram-positive
bacteria. This method is capable of generating final locali-
zation predictions based on protein sequence data. In
particular, this method has been developed to address the
inconsistency problems encountered in this task. Our recent
work has focused on introducing a simple PSO method of
optimizing the prediction results obtained from other ap-
plications. The software package is designed to be easy to
understand and develop. In addition, users are able to use
new datasets for training and testing, thus updating this
software’s capabilities. By modifying the configuration file,
users can reconfigure the software, optimize the weights for
each predictor, add more result files to aid in prediction, and
even set the basic PSO parameters. These configuration
variables are shown in Table 6.
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TaBLE 6: PSO-LocBact configuration variables.

Copﬁguratlon Value Default value Description
variable type
wl Float 0.9 Inertial weight value at the beginning of PSO
w2 Float 0.4 Inertial weight value at the end of PSO
cli Float 2.5 Cognitive coefficient value at the beginning of PSO
clf Float 0.5 Cognitive coefficient value at the end of PSO
c2i Float 0.5 Social coefficient value at the beginning of PSO
c2f Float 2.5 Social coefficient value at the end of PSO
Particle num Integer 25 Number of particles generated in the swarm

Maximum number of allowable objective function
MAXOB] Integer 1,000 calls

Maximum number of allowable iterations; if this
MAXITER Integer - value is set, MAXOB]J will be ignored

(Gram-negative: CELLO, PSORTDb 3.0,
CELLO2GO, SOSUI-GramN, SLP-Local, ngLOC, .
. ... Alist of names of the programs used to calculate
(Program_name) String  Gneg-mPLoc, PSLpred, LocTree3; Gram-positive: the final result
CELLO, PSORTb 3.0, CELLO2GO, ngLOC, Gpos-
mPLoc, LocTree3)
(Weight) Float A list of weights given to represent the reliability of
every program included

Data Avai]ability [2] C.-S. Yu, C.-]. Lin, and J.-K. Hwang, “Predicting subcellular

The training and test datasets supporting the analysis in
this study are from previously reported studies and
datasets, which have been cited. The software is available
from the corresponding author upon request. http://
www.ncrna-pred.com/psolocbact.htm.
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