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Enabled by rapid advances in computational sciences, in silico logical modeling of

complex and large biological networks is more and more feasible making it an

increasingly popular approach among biologists. Automated high-throughput, drug

target identification is one of the primary goals of this in silico network biology. Targets

identified in this way are then used to mine a library of drug chemical compounds in

order to identify appropriate therapies. While identification of drug targets is exhaustively

feasible on small networks, it remains computationally difficult on moderate and larger

models. Moreover, there are several important constraints such as off-target effects,

efficacy and safety that should be integrated into the identification of targets if the

intention is translation to the clinical space. Here we introduce numerical constraints

whereby efficacy is represented by efficiency in response and robustness of outcome.

This paper introduces an algorithm that relies on a Constraint Satisfaction (CS) technique

to efficiently compute the Minimal Intervention Sets (MIS) within a set of often complex

clinical safety constraints with the aim of identifying the smallest least invasive set of

targets pharmacologically accessible for therapy that most efficiently and reliably achieve

the desired outcome.

Keywords: target identification, logical modeling, algorithms, signaling networks, experimental design, drug

therapy

INTRODUCTION

Rapid advances in the computational sciences has enabled biologists to study complex biological
phenomena using logical and mathematical techniques. Due to the close resemblance of biological
networks to digital circuits (Abdi et al., 2008; Morris et al., 2010), logical modeling techniques have
proven well-suited to the study of such phenomena. It has been shown that even complex biological
behaviors such as cellular differentiation and multi-stationarity can be captured by logical analysis
(Thomas and Kaufman, 2001a,b). Currently, reasonably large logical models can be identified by
training to experimental data (e.g., phosphoproteomics) (Klarner et al., 2012; Guziolowski et al.,
2013; Sedghamiz et al., 2017). Once a model is parameterized, biologists study its associated
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attractors (steady states) as well as the response dynamics of
the system around and between these steady states to gain
insight into illness onset and possible resistance to treatment.
Often a particular attractor (or set of attractors and their
associated basins) supports states that resemble a pathological
phenotype. Therefore, one would like to understand how such
intracellular, cellular, and organ system behaviors might be
manipulated and redirected into an alternative phenotype (e.g.,
health). Intuitively, we want to identify an intervention strategy
whereby a set of entities in the model are collectively modulated
(down or up-regulated) in a way that the treatment-modified
network preferentially accommodates states that evolve toward
the healthy attractor. However, even with advances in drug
compound design, direct, and indirect off-target effects can
highly reduce the efficacy and safety of therapy. Part of this
problem might be addressed by finding the minimal number of
entities that must be targeted concurrently in order to force the
transition from one cellular phenotype to the other. This is often
denoted as finding the Minimal Intervention Sets (MIS).

The computation of MIS was first addressed (Karlebach and
Shamir, 2010; Samaga et al., 2010; Verdicchio and Kim, 2011)
only in moderate sized Boolean networks. Recently, efficient
algorithms have been proposed in order to compute MIS for
Boolean networks based on Branch and Bound (BB) (Garg et al.,
2013) and Answer Set Programming (ASP) (Kaminski et al.,
2013) techniques. However, both methods are only applicable
to Boolean networks and support limited logical operators (e.g.,
AND, OR, etc.). Therefore, we still require a method that is
broadly applicable to multi-valued models and a more expressive
logical representation. With the exception of the algorithm
provided by Garg et al. (2013), these other studies (e.g., Karlebach
and Shamir, 2010; Samaga et al., 2010; Kaminski et al., 2013) do
not formally consider possible indirect off-target effects during
the computation of MIS patterns. Moreover, to our knowledge,
none of the above-mentioned methods formally account for the
robustness and efficiency of the state transition path associated
with a MIS. We propose that ranking MIS patterns based
on their efficiency and robustness supports screening of drug
library compounds such that intervention solutions are more
realistically translatable into practice. Importantly, Garg et al.
(2013) also showed that the most interesting MIS patterns
were observed when the initial state of the model was taken
into account prior to the computation of the MIS, a result
which is consistent with the trend toward personalized medicine
especially as it applies to complex illness. In this manuscript,
we propose an efficient Constraint Satisfaction (CS) based
algorithm that addresses the MIS computation as a multi-
objective problem where the objectives are to minimize the
Complexity of the intervention, while maximizing its reliability
or Robustness and the expediency of response or Efficiency. In
addition, increased Safety is articulated as a reduction in the
number of predicted off-target downstream effects. As explained
earlier, due to the high number of constraints involved with
identifying MIS such as Safety (e.g., downstream off-target
effects), Robustness and Efficiency, constraint programming
techniques seem to be well-suited. Our goal is to propose a
MIS that:

• Maps a regulatory network to a desired goal or target
steady state

• Maximizes the robustness and efficiency of the proposed
intervention therapy

• Reports the downstream off-target effects and informs on its
theoretical safety

Compared to previous contributions in this context, our work
allows for the initial state of the network (e.g., attractor) to
be considered as a constraint prior to the computation of
MIS. Also, we formally consider the trajectory of transition
from the initial state to the target state and find the most
efficient (e.g., shortest) and robust (e.g., fewest deviations from
the destination) path for this transition, using Monte-Carlo
simulations under different levels of biological noise (Sedghamiz
et al., 2018). Our proposed method is able to handle multi-
valued and Boolean logic schemes, as well as the combination
of both. Our framework consists of a preprocessing step
where logic synthesis techniques are employed to simplify the
dynamics associated with each entity with the help of Reduced
Ordered Multivalued Decision Diagrams (ROMDDs). A more
detailed description of these thresholds is given in section
Simplification With ROMDDs. After simplifying the network,
we employ One-hot encoding to convert a multi-valued network
into an equivalent Boolean model. Finally, the simplified and
converted model is analyzed based on three-valued Kleene’s logic
(Bergmann, 2008) to identify the MIS sets. The latter has been
previously employed successfully for fault detection in electrical
circuits (Abramovici et al., 1990). This paper is organized as
follows. First, we review the multi-valued formalism. Then, we
formally describe the necessary background in regards to the
computation of intervention sets. Finally, we present criteria in
order to rank the intervention sets and apply our algorithm
on three biological networks namely; established benchmark
models of the Hypothalamic Pituitary axis (HPA) (Sedghamiz
et al., 2018) and T-helper differentiation (Garg et al., 2013)
as well as a first novel model of immune signaling in young
children in the first year of life who display a Low Vaccine
Response (LVR) to two-thirds or more of their recommended
routine immunizations.

MATERIALS AND METHODS

Generalized Multi-Valued Formalism
In this study, we employ Generalized Multi-valued Formalism
(GMF) that was proposed, developed and enhanced over decades
by Kauffman (1969), Thomas et al. (1995), and Sedghamiz
et al. (2017). In such a formalism, molecular signaling and
regulatory actions are concentration dependent and the entities
being modeled are allowed to assume more than binary values.
In addition, a set of logical parameters (K) are defined to explain
the complex aggregate interaction of cofactors on a target. A
basic example of stress hormone regulation by the hypothalamic-
pituitary-adrenal (HPA) axis is described in GMF and shown
in Figure 1A. In this example, the expression states of nodes
v1 and v2 are denoted in binary values [e.g., low (0) and high
(1)] while nodes v3 and v4 assume three states [e.g., 0 (low), 1
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FIGURE 1 | HPA axis. (A) HPA as a discrete network and its logical parameter sets; solid red and dashed green edges indicate inhibiting and promoting effects,

respectively. The weights represent the expression threshold for above which the interaction becomes active. (B) The emergence of two cyclic attractors

demonstrates the multi-stability of the model HPA axis as described by the 4 state variables CRH, ACTH, Cortisol, and R. In attractor 1, node 3 (Cortisol) oscillates

between mid to high levels while in attractor 2 it oscillates between mid to low levels (Sedghamiz et al., 2018). (C) Intervention sets to induce mid-to-high node 3

(Cortisol) levels; ⇑ (light green), ⇓ (light red) indicate agonistic and antagonistic intervention effects, respectively.

(medium), and 2 (high)]. By default, the number of states for
each entity in the network is proportional to the number of
entities they act upon (e.g., out-degrees). Each positive (negative)
regulatory action in the graph is equipped with a threshold
above which it becomes functional. For instance, for node v1,
K1(∅) = 0 describes that this entity is deactivated once it has
no activating regulator and K1({3}) = 1 indicates that node v1
tends to express at a nominal level when its inhibitor (e.g., node
v3) is actively regulating (i.e., this inactivator’s state is expressed
below its threshold of action). In the more complex case of
node v2 involving both the upstream activator node v1, and
suppressor node v4, we have K1({1,4}) = 1 indicating that under
the combined and opposing regulatory actions of nodes v1 and
v4, node v2 will evolve toward a nominal state of 1 as dictated
by its image Yt. Typically, the set of logical K values are learned
from experimental time course and steady state measurements.
A more detailed description of these parameters is given in
section Simplification With ROMDDs. Formally, the transition

state image of each entity yi at time t, or yti , is defined as:

yti =
∑

I⊆q(i)
Ki (I)

[

∏

j∈I
Sui j

(

xtj ,wi j

)

×
∏

j∈q(I)\I

(

1− Sui j
(

xtj ,wi j

))

]

(1)

Where q(i) is the in-degree set of components vi (i.e., set of
regulators of vi), I a subset of q(i),

∏

is the multiplicative
operator and

∑

is the additive operator. Parameter uij is a
Boolean flag indicating the polarity of the incoming edge eij
and is true when xtj is a promoter. Yt = [yt1, . . . ., y

t
N] is called

the image vector of the regulatory graph G with N components
given its current state vector Xt = [xt1,. . . , x

t
N]. S

uij (xtj , wij)

is a threshold function that determines whether the expssreion
level xj of node vj is sufficient to exercise a control action
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e.g., promote (or suppress) a regulatory target xi:

Suij (xtj ,wij) =1 ↔







uij = 1 ∧
(

xtj≥wij

)

,

uij = 0 ∧
(

xtj<wij

) (2)

Where ↔ indicates a logical biconditional equivalence, ∧ a
logical conjunction AND, and where wij is the interaction
threshold of the incoming edge eij where it takes a value within
[1, li]. Expression level li is the maximum state level that entity vi
might assume. It can be shown (Devloo et al., 2003) that Eqation
(1) reduces to Ki(Ia) where:

Ia: =

{

i ∈ V

∣

∣

∣

∣

∣

(i, j) ∈ E
∧

Sui j
(

xtj ,wi j

)

}

(3)

Where V, E, and Ia are the set of all entities, all edges in the
network and active interactions on an entity vi, respectively.
Conventional operators := and ∈ signify a defining equivalence
and element set membership, respectively. Therefore, the set of
all active interactions on a node is in fact denoted in each case by
a unique Ki(Ia) logical value that collectively defines the image of
that node (see Figure 1A). The state of the network at the next
time point (Xt+1) is determined by choosing an updating scheme
such as synchronous or asynchronous (Sedghamiz et al., 2018).
Under the synchronous schedule, all of the entities in vector Xt

change their expression levels toward Yt simultaneously, while
under the asynchronous time update only a single entity is
allowed to change its expression level at any given time. We have
also reported an alternative method involving priority updating
which more readily captures different activation timescales such
as those that might exist across levels of biology and physiological
compartments (Sedghamiz et al., 2017, 2018).

Preprocessing
Our framework consists of two preprocessing stages; function
simplification with ROMDDs and one-hot encoding. The former
employs ROMDDs to represent a function describing entity vi
in its simplest possible form. The latter converts a multi-valued
network into an equivalent Boolean model.

Simplification With ROMDDs
Intuitively, each Ki(Ia) is a propositional formula consisting
of one or more literals. The disjunction of Ki(Ia) defines the
state level image (e.g., yti ) of an entity (Sedghamiz et al., 2018).
For instance, the equivalent propositional formula for v4 in
Figure 1A in an unsimplified form might be written as;

yt4=







0 ↔ K4 (φ) : =
[{

(xt3 = 0) ∨ (xt3 = 1)
}

∧
{

(xt4 = 0) ∨ (xt4 = 1)
}]

1 ↔ K4 ({3}) : =
[

(xt3 = 2) ∧
{

(xt4 = 0) ∨ (xt4 = 1)
}]

2 ↔ K4 ({4}) : =
[

(xt4 = 2) ∧
{

(xt3 = 0) ∨ (xt3 = 1)
}]

(4)

Therefore, each entity vi requires 2
qi , Ki(Ia) parameters to be

fully defined; where qi is the number of inputs to vi (indegrees).
Here again, := signifies a defining equivalence, ↔ a logical
biconditional equivalence, ∧ a logical conjunction AND, and ∨

a logical disjunction OR. The number of literals in a function
associated with vi grows exponentially as its number of inputs or

the size of fan-in increases. Thankfully, there exist logic synthesis
algorithms developed to perform the similar task of reducing
the number of components during the design of an electrical
circuit (Sentovich et al., 1992). These algorithms mostly rely on
generalization of Reduced Ordered Binary Decision Diagrams
(ROBDDs) to ROMDDs. In this study, we employ the logic
synthesis algorithm introduced in work by Mishchenko and
Brayton (2002). For instance, applying this simplification to Eq.
4 would result in a reduction of the number of literals in the last
condition (where yt4 = 2) from 5 to 1:

(yt4=2) ↔ (xt4=2) (5)

One-Hot Encoding
One of the most commonly employed methods to deal with
multi-valued variables in logic synthesis is one-hot encoding.
For example, if the state of entity vi is ternary (e.g., xi = {0,1,2}
or {low, medium, high}), it might be represented by a three-bit
vector xi = [xi1, xi2, xi3]. Therefore, if for instance, the first bit of
this vector is true [i.e., (xi1 ↔ 1)], then xi = 0. Note that for each
multi-valued variable vi a “don’t care” logic expression should be
considered as well. For example, if vi is ternary, then this logic
expression is defined as;

[xi1xi2+xi1xi3+xi2xi3]=0 (6)

This expression states that variable vi cannot have two states
at the same time [e.g., take low and medium (xi1 xi2)]. While
other more compact encodings exist such as the one proposed
by Didier et al. (2011), we decided in this work to employ one-
hot encoding due to its simplicity and convenience of expressing
“don’t care” or inadmissible states.

Intervention Sets
The state of a network with N entities at time t is denoted by
a vector Xt that represents the expression state of each entity at
that time. Eventually, the state of a dynamically stable network
will over time relax into an attractor where the expression levels
of all entities stabilize. An attractor contains a set of states such
that once a network reaches any of them, it will transition among
those states indefinitely. An attractor with only a single state is
called a steady state. It has been proposed that cell differentiation
toward distinct and stable cellular phenotypes may correspond
to a migration into separate attractors of a different type, shape
and location in the state space (Thomas and Kaufman, 2001a,b;
Chaouiya et al., 2003; Mendoza and Xenarios, 2006). Therefore, it
is of utmost interest to study how an attractor might be efficiently
and robustly mapped onto another. Finding the minimal number
of interventions (e.g., knock-out or knock-ins) in a network
that might achieve this goal (e.g., migrate from a steady state
to another or enforce an attractor) translates into finding the
most influential entities in the network that could be leveraged as
effective drug targets (Samaga et al., 2010). The enumeration of
MIS is computationally exponential where for a network with N
entities a set of 3n candidate combinations exists (where n ≤ N),
since each entity might be pharmacologically knocked-out (i.e.,
−1), over-expressed (i.e., +1), or not modulated at all (i.e., 0). In
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this study, for a multi-valued state variable xi = {0, . . . , li}, we also
assume that a knock-out or knock-in of the corresponding entity
would mean that this state variable is maintained constant at a
state of 0 or li, respectively.

MIS Computation
In order to compute the MIS, first we need to define:
• A perturbation vector P = [p1, . . . , pn] for pi ǫ {-1, 0, 1};

where {-1, 0, 1} stands for knock-out, no-intervention and
knock-in, respectively.

• A goal steady state G ⊆Xt(P) for which a set of variables
assume a desired target state and where Xt(P) is the
state of the network at time t being acted upon by
perturbation P.

• A cardinality C for the number of externally stabilized nodes
targeted by the perturbation vector P which is defined as C =
∑n

i=1

∣

∣pi
∣

∣; where |.| is the absolute value operator.
• An initial state X0(P) := Xinitial of the network for which the

MIS solutions would be computed.
• A path length m; where t = [0, m] for which under the

influence of P the system migrates fully from its initial state
to its target or goal state G.

Then, feasible intervention sets are those configurations
for which;







X0 (P) : = Xinitial ∧
{

(∀pi = 1 ↔ x0i = li) ∧ (∀pi = −1 ↔ x0i = 0)
}

∧

Xt (P) : = Xt+1(P) ∧
{

(∀pi = 1 ↔ xti = li) ∧ (∀pi = −1 ↔ xti = 0)
}

∧

G ⊆Xt(P)∧C ≤cmax
(7)

Intuitively, given an initial state of the network Xinitial, an
intervention set is an assignment of P for which the network
is steady (Xt (P) = Xt+1 (P)) at the desired goal G. For
practical reasons, we assume that there is an upper-bound
constraint cmax on the number of entities that might be
externally modulated. Furthermore, each intervention set is
associated with a path length m allowing transition of the
system from an initial state to a target or goal state. This
might be interpreted as the number of discrete time steps
it might take for an intervention to take effect and may
therefore be another important parameter to consider. Given
this framework, the computation of MIS consists of a series
of repeated simulations where the network is initialized at
a specific illness start state, or more generally at a random
state, and allowed to evolve iteratively until either the current
state of the network is identical to its next state (a steady state
has been reached) or the maximum number of the allowable
steps (path length m) has been reached. During these repeated
simulations, all possible combinations of the different candidate
perturbations (P vector) are applied at the initial state and
maintained constant. For instance, in order to verify if the
knock-out of the first entity in the network constitutes a valid
MIS, the state of this entity is initialized and maintained at 0
and the temporal evolution of the network is computed within
pathlength m to see whether the system will settle at the desired
goal steady state G. The choice of combination of candidate
intervention nodes and the order in which they are assessed is
articulated here as a constraintsatisfaction problem which can

be efficiently solved by resolving contradictions within the space
of constraints.

Kleene’s Logic
In a conventional two-valued Boolean logic, a network might
support none, one or several steady states. Moreover, a network
might support cyclic attractors which make the identification
of intervention sets based on the conditions in Equation (7)
difficult. Samaga et al. (2010) proposed to extend the two-valued
Boolean logic to three-valued Kleene’s logic. Under Kleene’s logic,
a logical value U is introduced which extends the two-valued
logic into {false := 0; U := 1; true := 2}. Under this formalism
a biological network would always have a single steady state
since, for the cyclic attractors and the entities that their stable
state might depend on, the initial values can be captured. In
other words, under Kleene’s logic, the state variable of an entity
is either fixed (e.g., ǫ{0, 2}) or unknown (e.g., 1). For instance,
based on the conventional Boolean logic, a model might have
two attractors whereby in one attractor an entity vi takes a state
value of On (i.e., 1) and in the other attractor Off (i.e., 0). Under
Kleene’s logic these two attractors are merged into one where the
entity vi takes an unknown state value instead. Abramovici et al.
(1990) employed Kleene’s logic for circuit verification and showed
its usefulness in failure mode detection in electrical circuits. In
this three-valued formalism, the extension of logical operators
is straightforward:







OR (A,B) ≡ Max (A,B) ,

AND (A,B) ≡ Min (A,B) ,

¬(A) ≡
[{

¬(A = 0) ↔ 2
}

,
{

¬(A = 2) ↔ 0
}

,
{

¬(A = 1) ↔ 1
}]

(8)

Where ↔ signifies logical equivalence, ¬ signifies logical
negation (NOT), and ≡ defines an identity. Now, it is even
possible to set the initial state Xinitial of the network to be
completely unknown, that is where all the entities take a
value of xi = 1.

Stochasticity and Time Updates
As mentioned earlier, there are two common update schemes
typically employed in logical modeling, namely synchronous and
asynchronous updating (Sedghamiz et al., 2017). Asynchronous
update implicitly considers the stochasticity associated with
time-delay of entities in the network while on the other hand,
synchronous update is computationally more efficient since
each state in a network’s State Transition Graph (STG) has a
unique successor (Chaouiya et al., 2003). Figure 2 graphically
illustrates both updating schemes applied to the basic model of
HPA axis regulation of Figure 1A. While the geometry of the
basins of attraction obtained under each scheme can vary, the
steady states, specifically the stationary points, are the same.
To take advantage of this computational efficiency, we have
chosen here to incorporate biological stochasticity by combining
synchronous update with a stochastic Monte Carlo simulation
scheme introduced in earlier work by our group (Sedghamiz
et al., 2018). In this approach, a probability of failure ∈ ǫ [0,
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1] is introduced for which an entity might disobey its defined
logical function. First, we compute the list of interventions based
on the synchronous assumption. Then, for each intervention, we
run parallel Monte-Carlo simulations forM times (e.g., 1,000) by
assuming a chance of failure in each entity’s regulatory function
(e.g., ǫ = 0.05). The number of times a given intervention
successfully reaches its goal destination corresponds to its
robustness. Simulation results produced under ideal conditions
(e.g., ǫ = 0 or zero noise) are included in File S1 demonstrating
that for each benchmark problem presented here, application of
the corresponding set of tabulated MIS prompts a migration of
the model system to a final stable state that corresponds exactly
to the desired goal state.

MIS Ranking
In practice there are several criteria that must be considered
when designing an intervention. Recall that in this work we
conceptualize treatment efficacy as an aggregate of efficiency in
response and robustness of outcome. We apply these and the
following other factors to rank the potential feasibility of each
predicted intervention set:

• Cardinality: Number of intervened entities (C). This might be
interpreted as the complexity of the intervention.

• Efficiency: Number of transitions required to achieve a goal
under that intervention (m).

• Off-target Effects: Number of entities that are over-expressed
or down-regulated but were not included in the goal steady
state G.

• Robustness: Number of times that an intervention is successful
under Monte-Carlo simulations normalized by the number
of runs.

• Safety: This is interpreted as the set of entities that are not
permitted to be targeted directly nor effected by intervention
downstream of a target. Safety is not a feature employed in our
ranking procedure but rather a hard constraint provided by
the user in the form of a set of entities in the network.

It is important to remember that in this formulation the goal
steady state G is articulated as a rigid constraint. Though some
MIS will rank more favorably than others based on these criteria,
all candidate MIS must deliver complete and exact adherence
to this goal steady state or they will not be retained in the
solution set.

IMPLEMENTATION

The proposed framework is implemented in BioModelChecker
(BioMC), a standalone software developed by our group for
the reverse engineering and analysis of regulatory networks
based on Constraint Satisfaction (CS) techniques (https://github.
com/hooman650/BioModelChecker). BioMC first translates the
problem to a CS framework and then solves it with the state-
of-the-art solvers such as Google’s Operations Research tools (OR-
tools) (Perron, 2011) and Chuffed (Chu et al., 2014) that rely on
Lazy Clause Generation (LCG) techniques (see Sedghamiz et al.,
2017 for more details). All the benchmarks employed in this
study were first parameterized with BioMC. The top performing

models based on the ranking criteria proposed in our earlier
work (Sedghamiz et al., 2017) were selected for MIS analysis. The
complete work-flow is illustrated in Figure 3 and a snapshot of
the BioMC in-silico lab in Figure 4. The T-Helper benchmark
and its corresponding logical transition functions is adapted
from Mendoza and Xenarios (2006). BioMC is also extended
to support the fixed Boolean logic rules proposed by Mendoza
and Xenarios (2006) and ultimately only requires the modeler to
provide topology of the network. All of the benchmarks along
with their discretized experimental data are accompanied with
BioMC. Furthermore, the regulatory interactions used to define
each example network presented here are listed in File S2.

RESULTS

HPA Axis
The Hypothalamic-Pituitary-Adrenal (HPA) axis is one of the
most fundamental components of the body in regulating the
response to stress. Due to its important regulatory role, it
is no surprise that the HPA axis has been associated with
a number of complex chronic diseases such as Gulf War
Illness (GWI) and Myalgic Encephalomyelitis/Chronic Fatigue
Syndrome (Beishuizen and Thijs, 2004; Morris et al., 2017). In
our earlier work (Sedghamiz et al., 2018), we developed a discrete
multi-valued model of the HPA (Figure 1A) that supports two
cyclic attractors (Figure 1B) and demonstrated the predicted
effects of administering an antagonist of the glucocorticoid
receptor R. In the present work, we formally compute all
feasible intervention sets that drive this network away from a
hypocortisolic state toward higher levels of cortisol expression
(Cort). Figure 1C describes all 17 intervention sets where at
most 2 targets are modulated that force the network into an
attractor where cortisol is expressed at mid-range to high levels
by this model. Predictions suggest that cortisol supplementation,
applied alone or in combination with the modulation of other
targets, offers maximal robustness. However, direct modulation
of glucocorticoid levels with for example prednisone present
with increased risks of adverse events associated with broad
immunosuppression and metabolic upset (Dineen et al., 2018;
Graziadio et al., 2018). Recent pharmacological advances are
making this approach more feasible but these remain at the stage
of phase I clinical trials (Hoffman et al., 2018). Alternatively,
MIS3 and MIS13 are both robust and efficient and only require
either ACTH or glucocorticoid receptors (R) to be perturbed.
Inhibition of R has already been shown to be an effective
and common procedure for restoring appropriate cortisol levels
(Clark, 2008) and accordingly was identified as one of the most
promising intervention strategies using our MIS approach.

T-Helper GRN
As a further validation of this approach, we analyzed a
second larger benchmark problem, namely a well-studied
and documented immune signaling network describing the
differentiation of naive T helper (Th0) cells to either Th1 or
Th2 phenotype. The network consists of 23 entities connected by
35 regulatory interactions. This architecture offers a reasonably
large number of entities but with sparsely connected interactions
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FIGURE 2 | Visual comparison of synchronous and asynchronous time updates. The thick dashed edges indicate a stable attractor. Note that the basins of attraction

are different between the update schemes and therefore different initial states might result in different type of stable behavior. For example, in the left panel the system

evolves from an initial state of (0001) under synchronous updating to eventually a stationary steady state of (0021). In the right panel however, starting from either

(1122) and (1022) eventually leads an oscillatory behavior around a cyclic attractor. Contrary to asynchronous updating, when applying synchronous updating each

state has a single successor making the set of states leading to an attractor very different. It is this multiplicity of paths afforded by asynchronous updating as well as

the added effect of noise that motivated the Monte Carlo simulations in this work. The indices of the state variables are the same as in Figure 1.

FIGURE 3 | Different stages of computing the intervention sets in a regulatory network.

(approximately 7% connection density). A detailed description
of the dynamics of this model can also be found in Mendoza
and Xenarios (2006) and Garg et al. (2007, 2008). Excessive Th1
activation is a common feature in many auto-immune illnesses,

while an immune profile supporting over-activation of the Th2
axis has been associated with several forms of allergy (Murphy
and Reiner, 2002; Garg et al., 2008). We focus here on the
transition from a naive Th0 phenotype to a stable Th1 cell fate.
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Figures 5A,B illustrate the T-helper differentiation network, as
well as the marker expression profiles corresponding to the Th0
and Th1 cell phenotypes, respectively.

Similar to work by Garg et al. (2013), we computed
intervention sets with a maximum cardinality of 2 which favor
the Th1 steady state. Figure 5C shows 15 MIS solutions where
a network initialized at the Th0 naive phenotype would be
expected to transition to a Th1 phenotype. In an extension
of this framework, Figure 5D illustrates interventions predicted
to drive the network into the Th1 attractor regardless of
the initial state of the model, extending the problem of
differentiation to a broader range of phenotypes representative
of documented T cell plasticity (Hirahara et al., 2013; Caza
and Landas, 2015). Of note, our predictions show that this
more broadly induced plasticity that is independent of initial
phenotype (Figure 5D) usually requires direct perturbation of
multiple targets, 270 including the master T cell regulators T-
bet or Gata3, which are known to be difficult to target directly
(Weigmann and Neurath, 2002; Usui et al., 2003). Indeed,
of the 5 MIS solutions identified that were independent of
initial state, only one single-target strategy emerged, namely
manipulation of T-bet. It stands to reason that induction of Th1
from any theoretically achievable state in the network would
require a more complex intervention set. Nonetheless, the MIS
shown in Figure 5D typically exhibit very high robustness and
result in fewer downstream off-target markers being indirectly
perturbed, a potential byproduct of jointly manipulating two
targets. In comparison, those interventions computed based on
a specific initial state of the network (e.g., Th1 differentiation
from naive Th0 as depicted in Figure 5C) consisted mostly
of one intervention target. For instance, MIS6 and MIS11 in
Figure 5C indicate that promoting over-expression of IFNγ or
activation of its receptor IFNγR, both characteristic markers of
the Th1 phenotype (Figure 5B), would prompt a migration from
Th0 to Th1.

Interestingly, stimulation of another characteristic marker
of Th1 fate, SOCS1, was not predicted to be sufficient to
induce polarization to this phenotype. This exemplifies the point
that direct manipulation of differentially expressed markers in
absence of a deeper knowledge of network structure may or
may not yield the desired effect. High robustness (0.97 and 0.91)
and short state transition path-length (7 for both) nonetheless
suggest in this case that these interventions involving IFNγ and
its receptor appear especially noteworthy (Garg et al., 2013).
Showing slightly lower robustness and efficiency, the remaining
MIS candidates identified by these simulations include known
drivers of Th1 differentiation such as IL-12, IFNγ and T-bet.
Moreover, every identified MIS supports persistent activation of
T-bet and inactivation of GATA3, the hallmark switch in the
activation state of these master transcription factors governing
Th1/Th2 differentiation. This list of candidate targets can be
further refined based on their ease of targeting or the availability
of specific drugs.While T-bet activation is predicted to be a highly
robust means of inducing Th1 differentiation in both the naive
Th0 (Figure 5C) and in the context of a more broadly induced
plasticity (Figure 5D), it is known to be difficult to target directly
by pharmacological means. In such cases, a different target such

as STAT1, for which pharmacological activators are available
(Lynch et al., 2007), might be selected instead. Importantly, the
optimal targets need not necessarily be constitutively expressed
in the target state: in this example, transient STAT1 activation
is predicted to induce Th1 differentiation even though STAT1 is
not constitutively active in Th1 cells. It is important to note that
these target states constitute self-sustaining resting states and that
once reached these interventions may be discontinued without
compromising remission.

Vaccine Response Network
In this third example, we apply our approach to a network
consisting of a somewhat smaller number of entities compared
to the previous T helper network, but where these entities
are much more extensively interconnected. Our research
group has identified a pediatric population, comprising
some 10% of children that respond poorly to recommended
routine vaccinations in their first year of life, developing
sub-protective antibody responses to two-thirds or more
of the immunizations given. These children correspond
to a clinical phenotype we have defined as “low vaccine
responders (LVR),” as opposed to “normal vaccine responders
(NVR)” (Pichichero et al., 2016). We have reported defects
in immune cell function among LVR children, including
impaired polyclonal T cell response (Pichichero et al., 2016)
and reduced innate immune activation by Toll-like receptor
stimulants (Surendran et al., 2016, 2017).

To further the study of this population, we assembled a
preliminary Vaccine Response Network model, depicted in
Figure 6A, that consists of 15 entities linked by 81 regulatory
interactions which translates into an approximate connection
density of 36%. This is typical of immune cell signaling systems
(Frankenstein et al., 2006). These regulatory interactions were
extracted broadly from the scientific literature by applying
the MedScan natural language processing engine in a naive
context agnostic text mining of the Pathway Studio database
(Elsevier, Amsterdam) which is comprised of over 4 million
abstracts and full text references (Novichkova et al., 2003)
encompassing in vitro, in vivo animal as well as human
studies. This first coarse-grained regulatory model focuses
primarily on mechanisms important in the generation and
maintenance of protective vaccine immunity in the periphery,
aggregating additional phenomena occurring collectively
across the nasopharyngeal, peripheral blood and lymphatic
circulatory compartments. As such the model offers a first
glimpse of potential immune disequilibrium in LVR useful
in identifying gaps in our understanding and corresponding
experimental strategies by which the latter could be addressed.
In essence, these MIS offer a therapeutically-motivated
validation strategy.

Vaccination was modeled as an exogenous activation of HLA
by vaccine antigen and stimulation of immune response with
Alum as an adjuvant. In preliminary simulations informed by our
published descriptions of LVR and NVR vaccine responses, our
multi-valued logical model supported two attractors exhibiting
immune response profiles that might be interpreted as LVR
and NVR (see Figure 6B). In Figure 6C, we explore avenues
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FIGURE 4 | Snapshot of the BioModelChecker software virtual in-silico lab for identification of intervention sets. (A) Computed interventions. (B) Experimental design

panel that allows the user to setup the constraints and requirements. (C) Options for computation of robustness based on Monte-Carlo simulations.

FIGURE 5 | T-Helper Network. (A) Regulatory interactions involved in the model; the network consists of 23 entities where 4 are inputs. (B) Attractors describing Th0

and Th1. (C) Minimal number of perturbations required to enforce Th1 when the network is initialized at Th0; ⇑ (light green), ⇓ (light red), ⊕ (purple), and ⊖ (orange)

indicate knock-in, knockout, off-target up-regulated, and off-target down-regulated, respectively. Path length and robustness are computed based on 1,000

Monte-Carlo simulations under ǫ = 0:05 of noise. (D) Minimal Intervention Sets to force Th1 without any pre-requirement on the initial state of the network.
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FIGURE 6 | Vaccine Response Network (VRN). (A) Regulatory interactions describing the VRN network derived from literature and experimental knowledge; note that,

in this analysis Alum represents vaccine adjuvant, while the specific antigen is modeled as stimulating HLA. (B) Attractors describing NVR and LVR phenotype; 0, 1, 2

intuitively indicate low, medium, and high expression levels. (C) Minimal number of perturbations required to force LVR based on the assumption that the model starts

at NVR state; ⇑ (light green), ⇓ (light red), indicate knock-in and knockout, respectively. Path length and robustness are computed based on 1,000 Monte-Carlo

simulations under ǫ = 0:05 of noise.

supporting the onset of LVR by identifying perturbation sets
that induce a migration from NVR to this persistent phenotype,
highlighting potential insults and response mechanisms that
might underlie the etiology of LVR. Results of this analysis
suggested that onset was not a single-point failure and that
concurrent upset of at least 2 immune mediators was generally
required to promote deficits in vaccine response. Among
the MIS solutions identified for inducing LVR, almost all
required the suppression of IL-1β, a central regulator of
inflammation (Dinarello and van der Meer, 2013). While
IL-1β suppression alone was predicted to be sufficient to
induce migration to the LVR attractor, the robustness of this
intervention could be increased by simultaneous perturbation
of additional network nodes. For example, co-occurrence of
reduced IL-1β expression with over-expression of CCL5 is
predicted as the most robust or inescapable path of LVR onset.
The next most common targets were TNFα, another central
regulator of innate immunity, followed by IL-17 and IL-23, both
involved in Th17 differentiation and function (Toussirot, 2012).
Indeed, deficiency of these in combination with each other or
paired individually with low IL-1β expression also supported
robust vulnerability to LVR. This suggests that simultaneous
disruption of innate inflammatory responses and T cell activation
may be a major cause of sub-protective vaccine responses.

Although most cytokines are differentially regulated in the
NVR and LVR states, the only single target sufficient to induce
LVR was IL-1β.

It is important to note that unlike the previous examples
which consist of established benchmark problems, this last
circuit remains a first exploratory model of peripheral immune
function in low vaccine response children. The experimental
data employed were steady state measurements of the model
and are accompanied with BioMC. Indeed, while unique
models were used to derive MIS for HPA axis function
and T helper polarization, the complexity of the vaccine
response circuit was such that 132 variants of this model
could explain the limited experimental data available during
the parameterization, since the problem was under-determined
due to the limited amount of experimental data available.
In this particular case, in addition to other criteria defined
by our group (Sedghamiz et al., 2017) for ranking the
feasible models, the clinical experience of a domain expert
was used to help select the most immediately plausible model
to serve as a basis for estimating the MIS in Figure 6C.
As new data becomes available, for example as might result
from experimental assessment of MIS in Figure 6C, one may
expect such variants to eventually converge toward a single
consensus model.
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DISCUSSION AND CONCLUSION

In this study, we propose an efficient CS based formalism for
the computation of minimal intervention sets consisting of
parsimonious groups of targets in a biological regulatory network
that if concurrently promoted or inhibited would disrupt one
homeostatic regime in favor of another more desirable regulatory
equilibrium. The enumeration of these sets is computationally
exponential as we represent the dynamic behavior of these
biological networks with the highest biologically relevant fidelity
using our group’s refinement of a multi-state logic (Sedghamiz
et al., 2017, 2018) originally proposed by Thomas et al.
(1995), Thomas and Kaufman (2001b), and Chaouiya et al.
(2003). We address this complexity by first applying efficient
logic synthesis techniques developed in the microelectronics
community to simplify the logical equations that describe the
state change dynamics of each entity in the network. We
then generalize these using one-hot coding to support the
multi-valued logic required to adequately represent biological
mediators that express and act over a broader, more continuous
biological entities (e.g., signaling proteins). The combination
of network simplification techniques along with Constraint
Satisfaction enabled us to analyze relatively larger models. For
instance, the analysis of LVR network which has 15 ternary
nodes or an equivalent of 45 binary entities has a state transition
graph size of 245 ≈ 35 × 1012 that must be traversed for

each of candidate combinations

[

∑

C

i=0

(

N
i

)]2

= 14641

for maximum cardinality of C = 2 and a network of N

= 15 entities, where

(

n
k

)

is the binomial coefficient). Our

proposed method found all of the intervention sets for this
model within a maximum cardinality of 2 in <2min on an Intel
core i7 machine. Contrary to conventional evolutionary based
optimization methods, our proposed framework exhaustively
explores the whole search space and finds all of the MIS
candidates. This is very important aspect to consider, since
as indicated in several of this study benchmarks, some MIS
candidates might be equally feasible and can only be ruled out
during the chemical compound library search. The selection
of target mediators into these intervention sets is directed at
improving overall performance measures such as expediency of
treatment response and the reliability of the outcome reported
previously by our group as response efficiency and robustness,
respectively (Sedghamiz et al., 2017). We extend the concurrent
performance objectives in this context to also promote minimal
invasiveness which we articulate as a minimization of the number
of intervention targets directly modulated (set cardinality) as well
as the targets indirectly mediated by virtue of regulatory actions
propagated downstream, captured here under the additional
metric labeled safety. Importantly, while these targets are first
identified under essentially ideal noise-free conditions using
the less onerous synchronous update of the network’s state,
they are then tested extensively and these metrics recomputed
under increasing levels of noise to simulate variations in
decisional timing and regulatory outcome. Finally, intervention
solutions are computed that are specific to a given initial

state, extending the classical problem to suit a precision
medicine environment.

In this work, we first demonstrate and test this approach by
computing intervention sets for two well-established benchmark
problems consisting of regulatory networks existing at the
organ system (HPA axis) and cell signaling levels of biology (T
helper cell fate selection). In both cases, known and accepted
intervention targets are consistently recovered and assigned
a high overall performance based on the metrics described
here. In the case of the HPA stress response axis, antagonism
of glucocorticoid receptors is a well-accepted means of re-
establishing cortisol levels. The importance of considering
context when designing combination therapy in a regulated
system is demonstrated even with this simple network where
for the same target an agonist or an antagonist may be used
depending on the choice of companion target suggesting a
context-specific directionality in joint interventions. Indeed, in
the context of therapeutic increases of either CRH, ACTH or
cortisol, both an agonist or an antagonist of glucocorticoid
receptor R will achieve the same desired result, both equally
disrupting the self-perpetuating cycle of chronically low cortisol
levels. Joint modulation of R is required but is independent of
direction. This is only true in the context of a combination
therapy, as when modulated alone, receptor activity must
be antagonized.

Another interesting observation also derives directly from
the networked architecture of these systems and further
challenges the conventional approach to therapy of attempting
to individually adjust markers to their desired “normal” state.
While in the case of the HPA axis and T helper polarization direct
manipulation of some of the markers will favor migration of the
system to a target equilibrium state, this does not apply broadly
and is the exception rather than the rule. For example, exogenous
stimulation of IFNγ which is constitutively up-regulated in the
target Th1 phenotype will indeed induce a transition from naive
Th0 toTh1. However, exogenous stimulation of SOCS1, also
constitutively up-regulated in Th1 cells, will not promote this
transition even with the help of a co-factor. Behaviors such as this
are becoming increasingly appreciated as an underlying cause
treatment resistance to single-target interventions (Hiddingh
et al., 2014; Lavi et al., 2014). This being said if we possess
a reasonable understanding of the regulatory interactions that
control a system, and the current initial state at which we are
applying the intervention, it is often possible to judiciously
chose a broad-acting or master regulator capable of resetting
equilibrium. Indeed 15 single target strategies were identified
for prompting Th1 polarization from the Th0 reference state.
In comparison, with the sole exception of T-bet, we require a
coordinated modulation of at least 2 targets for the induction of
Th1 polarization to be robust across a broad range of different
initial states. Indeed, biomarker panels have been shown to
improve the effectiveness of single target conventional therapies
by better defining high-response subgroups, in other words
individuals that occupy similar initial or untreated resting states
(Capobianco, 2017; Fricker et al., 2017).

These same observations from our analysis of established
benchmark problems also emerged when demonstrating the
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scalability of this framework to a much more densely connected
prototype network of immune signaling important to the
generation of a protective vaccine response. Inhibited expression
of central inflammatory mediators (IL-1β or TNFα), especially in
conjunction with type-17 T cell effectors (IL-17 and IL-23), was
required to blunt the response to common childhood vaccines.
The model was generally resilient to deficiencies (knock down)
in individual mediators, with the exception of IL-1β. Indeed,
despite the model’s simplicity the predicted combinatorial
nature of upsets required to increase the risk of persistent
illness is consistent with the general resilience of normal
regulatory homeostasis and aligns in principle with the reported
approximate 10% prevalence of this condition (Pichichero
et al., 2016). While these predicted deficits remain based on
a preliminary model of peripheral immune signaling, this
framework has nonetheless produced a set of testable hypotheses
that formally account for the mechanistic regulatory interactions
between these mediators. Indeed, applying a network-based
approach to further our understanding of vaccine immunology
is highly novel, and formally accounting for regulatory dynamics
even more broadly so. Though recent work has demonstrated
the use of broad-spectrum surveys of immune markers analysis
of this data continues to be centered on marker expression
or combinatorial co-expression without formal consideration of
interactions linking these markers as members of a signaling
network (Rechtien et al., 2017).

The specific area of vaccine immunology notwithstanding,
the analysis and application of network biology to the
identification of drug targets continues to evolve broadly in
the study of immunology with cancer immunology driving
many of these developments. The bulk of these applications
however continue to focus mainly on the analysis of network
topology and the distribution of marker-to-marker associations
(Wang et al., 2014). So far very few studies of drug target
selection consider network dynamics and these rely mainly on
conventional pharmaco-kinetic approaches (Joslyn et al., 2018).
These conventional rate equation methods typically require large
sets of time course data uniformly surveyed across samples.
In contrast, the use of constraint-based methodology described
here accommodates sparsely sampled and incompletely surveyed
data by design. Moreover, it provides significant gains in
efficiency compared to mainstream goal-seeking approaches
(Craddock et al., 2015) by solving the reverse problem of
constraint violations. While the discrete qualitative models
interrogated here do not have the same temporal resolution
as conventional pharmacokinetic (PK) models they nonetheless
rigorously enforce the correct causal sequence of events allowed
by the regulatory logic leading the to correct recovery of
known therapeutic targets. Moreover, the fidelity of these
network dynamics to those expressed by their counterparts in

the continuous space can then be controlled as required by
setting a maximum number of discrete state levels for each
individual entity of interest. Intermediate formulations exist
which formally integrate continuous and discrete dynamical
models (Heemels et al., 2010) but again these increases
in fidelity come with added complexity and limitations in
scalability. We submit that the framework proposed here offers
an attractive data-efficient alternative to conventional PK-
based target identification schemes, while being easily scalable
and capable of supporting the complex competing goals of
therapy design.
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