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Abstract: 
 
Brain computer interfaces (BCIs) have the potential to restore communication to people who have lost the 
ability to speak due to neurological disease or injury. BCIs have been used to translate the neural correlates of 
attempted speech into text1–3. However, text communication fails to capture the nuances of human speech 
such as prosody, intonation and immediately hearing one’s own voice. Here, we demonstrate a “brain-to-voice” 
neuroprosthesis that instantaneously synthesizes voice with closed-loop audio feedback by decoding neural 
activity from 256 microelectrodes implanted into the ventral precentral gyrus of a man with amyotrophic lateral 
sclerosis and severe dysarthria. We overcame the challenge of lacking ground-truth speech for training the 
neural decoder and were able to accurately synthesize his voice. Along with phonemic content, we were also 
able to decode paralinguistic features from intracortical activity, enabling the participant to modulate his BCI-
synthesized voice in real-time to change intonation, emphasize words, and sing short melodies. These results 
demonstrate the feasibility of enabling people with paralysis to speak intelligibly and expressively through a 
BCI. 
 
Introduction: 
 
Speaking is an essential human ability, and losing the ability to speak is devastating for people living with 
neurological disease and injury. Brain computer interfaces (BCIs) are a promising therapy to restore speech by 
bypassing the damaged parts of the nervous system through decoding neural activity4. Recent demonstrations 
of BCIs have focused on decoding neural activity into text on a screen2,3 with high accuracy1. While these 
approaches offer an intermediate solution to restore communication, communication with text alone falls short 
of providing a digital surrogate vocal apparatus with closed-loop audio feedback and fails to restore critical 
nuances of human speech, including prosody, intonation, and tone. 
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These additional capabilities can be restored with a “brain-to-voice” BCI that decodes neural activity into 
sounds in real-time that the user can hear as they attempt to speak, rather than words or word-components 
like phonemes. Developing such a speech synthesis BCI poses several unsolved challenges: the lack of 
ground truth training data, i.e., not knowing how and when a person with speech impairment is trying to speak; 
causal low-latency decoding for instantaneous voice synthesis that provides continuous closed-loop audio 
feedback; and a flexible decoder framework for producing unrestricted vocalizations and modulating 
paralinguistic features in synthesized voice. 
 
A growing literature of studies have reconstructed voice offline from able speakers using previously recorded 
neural signals measured with electrocorticography (ECoG)5–11, stereoencephalography (sEEG)12, and 
intracortical microelectrode arrays13,14. Decoders trained on overt speech of able speakers could synthesize 
unintelligible speech during miming, whispering or imaging speaking tasks online8,15 and offline16. Recently, 
intermittently intelligible speech was synthesized seconds after a user with ALS spoke overtly (and 
intelligibly)17 from a six-word vocabulary. While the aforementioned studies were done with able speakers, the 
study by3 with a participant with anarthria adapted a text decoding approach to decode discrete speech units 
acausally at the end of the sentence to synthesize speech from 1,024 words vocabulary. However, this is still 
very different from healthy speech, where people immediately hear what they are saying and can use this to 
accomplish communication goals such as interjecting in a conversation. In this work, we sought to synthesize 
voice continuously and with low latency from neural activity as the user attempted to speak, which we refer to 
as “instantaneous” voice synthesis to contrast it with earlier work demonstrating acausal delayed synthesis.  
 
Here, we report an instantaneous brain-to-voice BCI using 256 microelectrodes chronically placed in the 
precentral gyrus of a man with severe dysarthria due to amyotrophic lateral sclerosis (ALS). Despite lacking 
ground-truth voice data from this participant, we were able to train a deep learning model that synthesized his 
intended voice in real-time by decoding his neural activity causally within 10 ms. To overcome this challenge of 
lacking ground truth speech, we generated synthetic target speech waveforms from the prompt text and time-
aligned these with neural activity to estimate the participant’s intended speech. The resulting synthesized voice 
was often (but not consistently) intelligible and human listeners were able to identify the words with high 
accuracy. This flexible brain-to-voice framework – which maps neural activity to acoustic features without an 
intermediary such as discrete speech tokens or limited vocabulary – could convert participant’s neural activity 
to a realistic representation of his pre-ALS voice, demonstrating voice personalization, and it enabled the 
participant to speak out-of-dictionary pseudo-words and make interjections.  
 
We also found that in addition to previously-documented phonemic information1,2, there is substantial 
paralinguistic information in the intracortical signals recorded from ventral precentral gyrus. These features 
were causally decoded to enable the participant to modulate his BCI voice to change intonation in order to ask 
a question or emphasize specific words in a sentence, and to sing a melody with different pitch targets. Finally, 
we investigated the dynamics of the neural ensemble activity, which revealed that putatively output-null neural 
dimensions are highly active well before each word is vocalized, with greater output-null activity present when 
there were more upcoming words planned and when the upcoming word needed to be modulated.  
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.14.607690doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.14.607690
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Results: 
 
Continuous speech synthesis from intracortical neural activity with immediate auditory feedback 
  
We recorded neural activity from four microelectrode arrays with a total of 256 electrodes implanted in the 
ventral premotor cortex (6v), primary motor cortex (M1) and middle precentral gyrus (55b) (see Fig. 1a, b) as 
estimated using the Human Connectome Project pipeline1,18 in BrainGate2 clinical trial participant ‘T15’ 
(Extended Fig. 1). T15 was a 45-year-old man with ALS and severe dysarthria. He retained some orofacial 
movement and an ability to vocalize but was unable to produce intelligible speech (Video 1).  
 
We developed a real-time neural decoding pipeline (Fig. 1c) to synthesize T15’s voice instantaneously from 
intracortical neural activity, with continuous audio feedback, as he attempted to speak a sentence cued on a 
screen at his own pace. Since the participant could not speak intelligibly, we did not have the ground truth for 
how and when he attempted to speak. Therefore, to generate aligned neural and voice data for training the 
decoder, we developed an algorithm to identify putative syllable boundaries directly from neural activity. This 
allowed us to generate target speech that was time-aligned to neural recordings as a proxy to T15’s intended 
speech (Fig. 1d).  

 
Fig. 1. Closed-loop voice synthesis from intracortical neural activity in a participant with ALS. a. Schematic of the 
brain-to-voice neuroprosthesis. Neural features extracted from four chronically implanted microelectrode arrays are 
decoded in real-time and used to directly synthesize his voice. b. Array locations on the left hemisphere and typical 
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neuronal spikes from each microelectrode recorded over 1s. Color overlays are estimated from a Human Connectome 
Project cortical parcellation. c. Closed-loop causal voice synthesis pipeline: voltages are sampled at 30 kHz; threshold-
crossings and spike-band power features are extracted from 1ms segments; these features are binned into 10 ms non-
overlapping bins, normalized and smoothed. The Transformer model maps these neural features to a low-dimensional 
representation of speech involving Bark-frequency cepstral coefficients, pitch, and voicing, which are used as input to a 
vocoder. d. Lacking T15’s ground truth speech, we first generated synthetic speech from the known text cue in the 
training data using text-to-speech, and then used the neural activity itself to time-align the synthetic speech on a syllable 
level with the neural data time-series to obtain a target speech waveform. e. Representative example causally 
synthesized neural data, which matches the target speech with high fidelity.  
 
We trained a multilayered Transformer-based19 model to causally predict spectral and pitch features of the 
target speech every 10 ms using the preceding binned threshold crossings and spike-band power. The base 
Transformer model architecture was augmented to compensate for session-to-session neural signal 
nonstationarities20 and to lower the inference time for instantaneous voice synthesis. The entire signal 
processing from signal acquisition to synthesis of speech samples occurred within 10 ms, enabling nearly-
instantaneous speech synthesis. The resulting audio was synthesized into voice samples by a vocoder21 and 
continuously played back to T15 through a speaker (Fig. 1e). 
  
Flexible and accurate closed-loop voice synthesis 
  
We first tested the brain-to-voice BCI’s ability to causally synthesize voice from neural activity while T15 
attempted to speak cued sentences (Fig. 2a and Video 2). Each trial consisted of a unique sentence which 
was never repeated in the training or evaluation trials. The synthesized voice was similar to the target speech 
(Fig. 2b), with a Pearson correlation coefficient of 0.89±0.04 across 40 Mel-frequency bands (Extended Fig. 2 
reports Mel-cepstral distortion). We quantified intelligibility by asking 15 human listeners to match each of the 
933 evaluation sentences with the correct transcript (choosing from 6 possible sentences of the same length). 
The mean and median accuracies were 94.23% and 100%, respectively (Fig. 2i). The instantaneous voice 
synthesis accurately tracked T15’s pace of attempted speech (Extended Fig. 3), which – due to his ALS – 
meant slowly speaking one word at a time. These results demonstrate that the real-time synthesized speech 
recapitulates the intended speech to a high degree, and can be identified by non-expert listeners. We also 
demonstrated that this brain-to-voice speech neuroprosthesis could be paired with our previously-reported high 
accuracy brain-to-text decoder1, which essentially acted as closed-captioning (Video 3). 
 
All four arrays showed significant speech-related modulation and contributed to voice synthesis, with the most 
speech-related modulation on the v6v and 55b arrays (Extended Fig. 3). Thanks to this high neural 
information content, the brain-to-voice decoder could be trained even with limited data, as shown by an online 
demonstration using a limited 50-word vocabulary on the first day of neuroprosthesis use (Video 14). Lastly, 
we compared this instantaneous voice synthesis method to an acausal method3 that decoded a sequence of 
discrete speech units at the end of each sentence (Audio 1). As expected, acausal synthesis – which benefits 
from integrating over the entire utterance – generated high quality voice (MCD 2.4±0.03); this result illustrates 
that instantaneous voice synthesis is a substantially more challenging problem.  
 
People with neurodegenerative diseases may eventually lose their ability to vocalize all together, or may find 
vocalizing tiring. We therefore tested the brain-to-voice BCI during silent “mimed” speech where the participant 
was instructed to attempt to mouth the sentence without vocalizing. Although the decoder was only trained on 
attempted vocalized speech, it generalized well to mimed speech: the Pearson correlation coefficient was 
0.89±0.03, which was not statistically different from voice synthesis during vocalized attempted speech (Fig. 
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2c, d and Video 4). Extended Fig. 4 shows human perception accuracy of synthesized speech during miming. 
T15 reported that he found attempting mimed speech less tiring. 

 
Fig. 2. Voice neuroprosthesis allows a wide range of vocalizations. a. Spectrogram and waveform of an example trial 
showing closed-loop synthesis during attempted speech of a cued sentence and the target speech. The Pearson 
correlation coefficient (r) is computed across 40 Mel-frequency bands between the synthesized and target speech. b. 
Pearson correlation coefficients (mean ± s.d) for attempted speech of cued sentences across research sessions. 
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Sessions in blue were predetermined as evaluation sessions and all performance summaries are reported over these 
sessions. c. An example mimed speech trial where the participant attempted to speak without vocalizing and d. mimed 
speech Pearson correlations across sessions. e. An example trial of self-guided attempted speech in response to an 
open-ended question and f. self-guided speech Pearson correlations across sessions. g. An example personalized own-
voice synthesis trial. h, j, k. Example trials where the participant said pseudo-words, spelled out words letter by letter, and 
said interjections, respectively. The decoder was not trained on these words. i. Pearson correlation coefficients of own-
voice synthesis, spelling, pseudo-words and interjections synthesis. l. Human perception accuracy of synthesized speech 
where 15 naive listeners for each of the 979 evaluation sentences selected the correct transcript from 6 possible 
sentences of the same length. Individual points on the violin plot show the average matching accuracy of each evaluation 
sentence (random vertical jitter added for visual clarity). The bold black line shows median accuracy (which was 100%) 
and the thin blue line shows the (bottom) 25th percentile.  
 
The aforementioned demonstrations involved T15 attempting to speak cued sentences. Next, we tested if the 
brain-to-voice BCI could synthesize unprompted self-initiated speech, more akin to how a neuroprosthesis 
would be used for real-world conversation. We presented T15 with questions on the screen (including asking 
for his feedback about the voice synthesis), which he responded to using the brain-to-voice BCI (Fig. 2e). We 
also asked him to say whatever he wanted (Video 5). The accuracy of his free response synthesis was slightly 
lower than that of cued speech (Pearson correlation coefficient 0.84±0.1, Fig. 2f, Wilcoxon rank-sum, p=10-6, 
n1=57, n2=933). We speculate that this reflected him using a different attempted speech strategy (with less 
attention to enunciating each phoneme) that he commonly used for his personal use with the brain-to-text 
BCI1. 
 
This brain-to-voice decoder directly predicts acoustic speech features and is therefore not restricted to a 
vocabulary or a language model. This approach allows the user to produce a variety of expressive sounds, 
including non-word sounds and interjections, which are not possible with language- and vocabulary-dependent 
speech BCIs. To demonstrate this flexibility, we instructed T15 to use the brain-to-voice BCI to say made-up 
pseudo-words and interjections (e.g., “aah”, “eww”, “ooh”, “hmm”, “shoo”) (Fig. 2h, k and Videos 7, 8). The 
neuroprosthesis also enabled T15 to spell out words one letter at a time (Fig. 2j and Video 9). The brain-to-
voice decoder was not trained on pseudo-words, spellings or interjections tasks but was able synthesize these 
sounds with a Pearson correlation coefficient of 0.90±0.01 (Fig. 2i).  
 
Voice is an important element of people’s identities, and synthesizing a user’s own voice could further improve 
the restorative aspect of a speech neuroprosthesis. We therefore demonstrated that the instantaneous brain-
to-voice framework was personalizable and could approximate T15’s pre-ALS voice (Fig. 2g and Video 6). To 
achieve this, we trained the brain-to-voice decoder on target speech produced by a voice cloning text-to-
speech algorithm22 that sounded like T15. The participant used the speech synthesis BCI to report that 
listening to his own voice “made me feel happy and it felt like my real voice” (Fig. 2e). The accuracy of the 
own-voice synthesis was similar to the previously described default voice synthesis (Pearson correlation 
coefficient of 0.87±0.04, Fig. 2i).  
 
Through these varied speech tasks, we demonstrated that the brain-to-voice BCI framework is flexible and 
generalizable, enabling the participant to synthesize a wide variety of vocalizations.  
 
Online decoding of paralinguistic features from neural activity  
  
Paralinguistic features such as pitch, cadence, and volume play an important role in human speech, allowing 
us to be more expressive. Changing the stress on different words can change the semantic meaning of a 
sentence; modulating intonations can convey a question, surprise or other emotions; and modulating pitch 
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allows us to sing. Incorporating these paralinguistic features into BCI-synthesized voice is an important step 
towards restoring naturalistic speech. We investigated whether these paralinguistic features are encoded in the 
neural activity in the ventral precentral gyrus and developed algorithms to decode and modulate these speech 
features during closed-loop voice synthesis. 
  
Since the brain-to-voice decoder causally and immediately synthesizes voice, it inherently captures the natural 
pace of T15’s speech. To quantify this, T15 was asked to speak sentences at either a faster or slower speed. 
The voice synthesized by the neuroprosthesis reflected his intended speaking speed (Fig. 3a). Fig. 3b shows 
the differing distributions of durations of synthesized words attempted at fast (average speed of 0.97±0.19 s 
per word) and slow (average speed of 1.46±0.31 s per word) speeds. Additionally, we were able to decode 
quiet or loud attempted speech volume from the neural features with 90% accuracy (Extended Fig. 5). 

 
Fig. 3. Modulating paralinguistic features in synthesized voice. a. Two example synthesized trials are shown where 
the same sentence was spoken at faster and slower speeds. b. Violin plots showing significantly different durations of 
words instructed to be spoken fast and slowly (Wilcoxon rank-sum, p=10-14, n1=72, n2=57). The bold black horizontal line 
shows the median value of the synthesized word duration and thin colored horizontal lines show the range between 25th 
and 75th percentiles. c. Trial-averaged normalized spike-band power (each row in a panel is one electrode) during trials 
where the participant emphasized each word in the sentence “I never said she stole my money”, grouped by the 
emphasized word. Trials were aligned using dynamic time warping and the mean activity across all trials was subtracted 
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to better show the increased neural activity around the emphasized word. The emphasized word’s onset is indicated by 
the arrowhead at the bottom of each condition. d. Spectrograms and waveforms of two synthesized voice trials where the 
participant says the same sentence as a statement and as a question. The intonation decoder output is shown below 
each trial. An arrowhead marks the onset of causal pitch modulation in synthesized voice. The white trace overlaid on the 
spectrograms shows the synthesized pitch contour, which is constant for a statement and increases during the last word 
of the sentence for questions. e. Confusion matrix showing accuracies for closed-loop intonation modulation during real-
time voice synthesis. f. Spectrograms and waveforms of two synthesized voice trials where different words of the same 
sentence are emphasized, with pitch contours overlaid. Emphasis decoder output is shown below. Arrowheads show 
onset of emphasis modulation. g. Confusion matrix showing accuracies for closed-loop word emphasis during real-time 
voice synthesis. h. Example trial of singing a melody with three pitch targets. The pitch decoder output that was used to 
modulate pitch during closed-loop voice synthesis is shown below. The pitch contour of the synthesized voice shows 
different pitch levels synthesized accurately for the target melody. i. Violin plots showing significantly different decoded 
pitch levels for low, medium and high pitch target words (Wilcoxon rank-sum, p=10-14 with correction for multiple 
comparisons, n1=122, n2=132, n3=122). Each point indicates a single trial. j. Example three-pitch melody singing 
synthesized by a unified brain-to-voice model. The pitch contour of the synthesized voice shows the pitch levels tracked 
the target melody. k. Violin plot showing peak synthesized pitch frequency achieved by the inbuilt pitch synthesis model 
for low, medium and high pitch targets. Synthesized high pitch was significantly different from low and middle pitch 
(Wilcoxon rank-sum, p=10-3, n1=106, n2=113, n3=105). Each point shows an individual trial.  
 
Next, we decoded the intent to modulate intonation to ask a question or to emphasize a specific word. We 
recorded neural activity while T15 attempted to speak the same set of sentences as either statements (no 
extra modulation in pitch) or as questions (with increasing pitch at the end of the sentence). This revealed 
increased neural activity recorded on all four arrays towards the end of the questions (Extended Fig. 6). To 
study the effect of attempted word emphasis on neural activity, on different trials we asked T15 to emphasize 
one of the seven words in the sentence “I never said she stole my money” by increasing that word’s pitch. This 
sentence, modeled after23, changes its semantic meaning for each condition whilst keeping the phonemic 
content the same. Similar to the effect observed during the question intonation task, we observed increased 
neural activity around the emphasized word (Fig. 3c) on all four arrays (Extended Fig. 7) starting ~350 ms 
prior to the onset of the word. 
 
As a proof-of-principle that these paralinguistic features could be captured by a speech neuroprosthesis, we 
trained two separate binary decoders to identify the change in intonation during these question intonation and 
word emphasis tasks. We then applied these intonation decoders in parallel to the brain-to-voice decoder to 
modulate the pitch and amplitude of synthesized voice in closed loop, enabling T15 to ask a question or 
emphasize a word (Extended Fig. 8). Fig. 3d shows two example closed-loop voice synthesis trials, including 
their pitch contours, where T15 spoke a sentence as a statement and as a question. The synthesized speech 
pitch increased at the end of the sentence during question intonation (Video 10). Fig. 3f shows two example 
synthesized trials of the same sentence where different words were emphasized (Video 11). Across all closed-
loop evaluation trials, we decoded and modulated question intonation with 90.5% accuracy (Fig. 3e) and word 
emphasis with 95.7% accuracy (Fig. 3g).  
 
After providing the aforementioned binary intonation control for questions or word emphasis, we investigated 
decoding multiple pitch levels from neural activity. We designed a three-pitch melody task where T15 
attempted to “sing” different melodies consisting of 6 to 7 notes of low, medium and high pitch (e.g., low-mid-
high-high-mid-low). These data were used to train a two-stage Transformer-based pitch decoder. During 
closed-loop voice synthesis, this pitch decoder ran simultaneously with the brain-to-voice decoder to modulate 
its pitch output; visual feedback of the decoded pitch level was also provided on-screen (Video 12). T15 was 
able to control the synthesized melody’s pitch levels (Fig. 3h). Fig. 3i shows three distinct distributions of pitch 
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levels decoded from neural activity across all singing task evaluation trials, demonstrating that the pitch and 
phonemic content of speech could be simultaneously decoded from neural activity in real-time. 
  
In the preceding experiments, we used a data-efficient separate discrete pitch decoder to modulate the 
synthesized voice because the vast majority of our training data consisted of neutral sentences without explicit 
instructions to modulate intonation or pitch. However, a more generalizable approach would be to develop a 
unified (single) brain-to-voice decoder that takes into account these paralinguistic features. We demonstrated 
the feasibility of such an approach by training our regular brain-to-voice decoder model architecture with the 
time-aligned target speech consisting of data from the three-pitch singing task. This enabled the decoder to 
implicitly learn the mapping between neural features and the desired pitch level in addition to learning the 
mapping from neural activity to phonemic content (as before). During continuous closed-loop voice synthesis 
evaluation, this unified “pitch-enhanced” brain-to-voice decoder was able to synthesize different pitch levels as 
T15 attempted to sing different melodies (Video 13 and Fig. 3j, k). This demonstrates that the brain-to-voice 
BCI framework has an inherent capability to synthesize paralinguistic features if provided with training data 
where the participant attempts the desired range of vocal properties (in this case, pitch).  
 
Rich output-null neural dynamics during speech production 
 
Instantaneous brain-to-voice synthesis provides a unique view into neural dynamics with high temporal 
precision. We noticed that neural activity increased prior to and during the utterance of each word in a cued 
sentence, but that the aggregate neural activity decreased over the course of the sentence (Fig. 1d, Extended 
Fig. 3). Yet despite this broad activity decrease, the synthesis quality remained consistent throughout the 
sentence (Extended Fig. 9). This seeming mismatch between overall neural activity and voice output 
suggested that the “extra” activity – which preceded voice onset for each word and also gradually diminished 
towards the end of a sentence – could be a form of output-null neural subspace activity previously implicated in 
movement preparation24, feedback processing25, and other computational support roles26. We estimated the 
output-null and output-potent neural dimensions by linearly decomposing the population activity into a 
subspace that best predicted the speech features (output-potent dimensions, which putatively most directly 
relate to behavioral output) and its orthogonal complement (output-null dimensions, which putatively have less 
direct effect on the behavioral output). Fig. 4a shows output-null and output-potent components of neural 
activity around the onset of each word in sentences of different lengths. A clear decrease in output-null activity 
can be seen over the course of a sentence regardless of its length, whereas the output-potent activity remains 
consistent (Fig. 4c). An exception to this was the very last word, which tended to have an increase in output-
null activity, especially as the last word was being finished. We do not know why the end of the sentence 
exhibited this effect but speculate that it is related to an end-of-trial cognitive change (e.g., the participant 
assessing his performance).  
 
We also examined the putatively output-null and output-potent activity when the participant volitionally 
modulated his intonation. We found that the output-null activity increased significantly (p=10-21) for the word 
that was modulated (Fig. 4b, d) as compared to the words that preceded or followed it, explaining the 
previously noted increase in overall neural activity preceding intonation-emphasized words (Fig. 3c, Extended 
Fig. 6).  
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Fig. 4. Output-null and output-potent neural dynamics during speech production. a. Average approximated output-
null (orange) and output-potent (blue) components of neural activity during attempted speech of cued sentences of 
different lengths. Output-null activity gradually decayed over the course of the sentence, whereas the output-potent 
activity remained consistent irrespective of the length of the sentence. b. Average output-null and output-potent activity 
during pitch modulation (intonation or emphasis); data are trial-averaged aligned to the emphasized word (center) and the 
words preceding or following that word in the sentence. The output-null activity increased during pitch modulation as 
compared to the words preceding or following it. c. Average null/potent activity ratios for words in the first-quarter, second-
quarter, third-quarter, and fourth-quarter of a sentence are summarized (mean ± s.e.). d. Average null/potent activity ratios 
of the pitch modulated word (red) and the words preceding or following it (gray) (mean ± s.e.). The null/potent ratios of 
modulated words were significantly different from that of non-modulated words (Wilcoxon rank-sum, p= 10-21, n1=460, 
n2=922). 
 
Discussion: 
 
This study demonstrated a “brain-to-voice” neuroprosthesis that directly mapped the neural activity recorded 
from four microelectrode arrays spanning ventral precentral gyrus into voice features. A man with severe 
dysarthria due to ALS used the system to synthesize his voice in real-time as he attempted to speak in both 
highly structured and open-ended conversation. The resulting voice was often intelligible. The decoding 
models were trained for a participant who could no longer speak intelligibly (and thus could not provide a 
ground truth speech target), and could be adjusted to emulate his pre-ALS voice. Unlike prior studies3,17, this 
brain-to-voice neuroprosthesis output sounds as soon as the participant tried to speak, without being restricted 
to a small number of words17 and without a constrained intermediate representation of discrete speech units 
that were generated after completion of each sentence3. To demonstrate the flexibility conferred by this direct 
voice synthesis BCI, the participant used it to synthesize various vocalizations including unseen words, 
interjections, and made-up words. 
 
Furthermore, this study demonstrates that a brain-to-voice neuroprosthesis can restore additional 
communication capabilities over existing brain-to-text BCIs1–3,27. Neuronal activity in precentral gyrus encoded 
both phonemic and paralinguistic features simultaneously. Beyond providing a more immediate way to say 
words, this system could decode the neural correlates of volume, pitch, and intonation. In online 
demonstrations, the neuroprosthesis enabled the participant to control a variety of aspects of his instantaneous 
digital vocalization, including the duration of words, emphasizing specific words in a sentence, ending a 
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sentence as either a statement or a question, and singing three-pitch melodies. This represents a step towards 
restoring the ability of people living with speech paralysis to regain the full range of expression provided by the 
human voice. 
 
We note that participant T15, who had been severely dysarthric for several years at time of this study, reported 
that he found it difficult to try to precisely modulate the tone, pitch, and amplitude of his attempted speech. 
Thus, we propose that using discrete classifiers to generate real-time modulated voice (which provides 
feedback to the participant that helps them mentally “hone in” on how to modulate their voice) can provide an 
intermediate set of training data useful for training a single unified decoder capable of continuous control of 
phonemic and paralinguistic vocal features. We demonstrated a proof of concept of this unified approach by 
training a single core decoder to intrinsically synthesize voice with different pitch levels, which the participant 
used for singing melodies.  
 
A functional neuroanatomy result observed in this study that would not be predicted from prior ECoG23,28–30 and 
microstimulation studies31,32 is that the neural activity is correlated with paralinguistic features across all four 
microelectrode arrays, from ventral-most precentral gyrus to the middle precentral gyrus. We also observed 
that cortical activity across all four arrays increased well before attempted speech. We hypothesize that this 
reflects output-null preparatory activity24,26, and note that its presence is particularly fortuitous for the goal of 
causally decoding voice features because it gives the decoder a “sneak peak” shortly before intended 
vocalization. A particularly interesting observation was that this output-null activity seems to decrease over the 
course of a sentence. This may indicate that the speech motor cortex has a “buffer” for the whole sentence, 
which is gradually emptied out as the sentence approaches completion. We also observed an increase in 
output-null activity preceding words that were emphasized or modulated, which we speculate may be a 
signature of the additional neural computations involved in changing how that word is said. These results hint 
at considerable richness in speech-related motor cortical ensemble activity, beyond just the activity that is 
directly linked to driving the articulators. These phenomena represent an opportunity for future study, including 
leveraging the computation through dynamics framework and neural network modeling which have helped 
explain the complexity of motor cortical activity for preparing and producing arm and hand movements 
(reviewed in26).  
 
Limitations 
This study was limited to a single participant with ALS. It remains to be seen whether similar brain-to-voice 
performance will be replicated in additional participants, including those with other etiologies of speech loss. 
The participant’s ALS should also be considered when interpreting the study’s scientific results. Encouragingly, 
however, prior studies have found that neural coding observations related to hand movements have 
generalized across people with ALS and able-bodied animal models33 and across a variety of etiologies of BCI 
clinical trial participants34,35. Furthermore, the phonemic and paralinguistic tuning reported here at cellular 
resolution has parallels in meso-scale ECoG measurements over sensorimotor cortex in able speakers being 
treated for epilepsy23,28.  
 
Although the performance demonstrated compares favorably with prior studies, the synthesized words were 
still not consistently intelligible. We also anecdotally observed that the participant’s energy level and 
engagement on a given block, as well as whether he attempted to enunciate the words clearly and fully, 
influenced synthesis quality. Brain-to-voice evaluations performed during the research sessions provided 
limited opportunity for practice-based improvement (i.e., sensorimotor learning). It remains an open question 
whether consistent long-term use will result in improved accuracy due to additional training data and/or 
learning. Separately, we predict that accuracy improvement is possible with further algorithm refinement and 
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increasing the number of electrodes, which was previously shown to improve brain-to-text decoding 
accuracy1,2. 
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Methods: 
 
Participant 
 
A participant with amyotrophic lateral sclerosis (ALS) and severe dysarthria (referred to as ‘T15’), who gave 
informed consent, was enrolled in the BrainGate2 Neural Interface System clinical trial (ClinicalTrials.gov 
Identifier: NCT00912041). This pilot clinical trial was approved under an Investigational Device Exemption 
(IDE) by the US Food and Drug Administration (Investigational Device Exemption #G090003). Permission was 
also granted by the Institutional Review Boards at the University of California, Davis (protocol #1843264) and 
Mass General Brigham (#2009P000505). T15 consented to publication of photographs and videos containing 
his likeness. This manuscript does not report any clinical trial-related outcomes; instead, it describes scientific 
and engineering discoveries that were made using data collecting in the context of the ongoing clinical trial. 
 
T15 was a left-handed 45-year-old man. T15’s ALS symptoms began five years before enrolment into this 
study. At the time of enrolment, he was non-ambulatory, had no functional use of his upper and lower 
extremities, and was dependent on others for activities of daily living (e.g., moving his wheelchair, dressing, 
eating, hygiene). T15 had mixed upper and lower-motor neuron dysarthria and an ALS Functional Rating Scale 
Revised (ALSFRS-R) score of 23 (range 0 to 48 with higher scores indicating better function). He retained 
some neck and eye movements but had limited orofacial movement. T15 could vocalize but was unable to 
produce intelligible speech (see Video 1). He could be interpreted by expert listeners in his care team, which 
was his primary mode of communication.  
 
Four 64-electrode, 1.5 mm-length silicon microelectrode arrays coated with sputtered iridium oxide (Utah array, 
Blackrock Microsystems, Salt Lake City, Utah) were placed in T15’s left precentral gyrus (putatively in the 
ventral premotor cortex, dorsal premotor cortex, primary motor cortex and middle precentral gyrus) (Fig. 1b). 
The array placement locations were identified based on pre-operative scans using the Human Connectome 
Project pipeline1,18. Neural recordings from the arrays were transmitted to a percutaneous connection pedestal. 
An external receiver (Neuroplex-E) connected to the pedestal sent information to a series of computers used 
for neural decoding. Data reported here are from post-implant days 25-342. 
 
Real-time neural feature extraction and signal-processing 
  
Raw neural signals (filtered between 0.3 to 7.5 kHz and sampled at 30 kHz with 250nV resolution) were 
recorded from 256 electrodes and sent to the processing computers in 1 ms packets. We developed the real-
time signal processing and neural decoding pipeline using the custom-made BRAND platform36, where each 
processing step was conducted in a separate “node” running asynchronously. 
  
We extracted neural features of threshold crossings and spike-band power from each 1 ms incoming signal 
packet within 1 ms to minimize upstream delays. First, each packet was band pass filtered between 250 to 
5000 Hz (4th order zero-phase non-causal Butterworth filter) by padding on both sides to minimize 
discontinuities at edges and denoised using Linear Regression Referencing (LRR)37. Then, threshold crossing 
was detected when the voltage was above -4.5 times the root mean squared (RMS) value for each channel. 
Spike-band power was computed by squaring and averaging the samples in the filtered window for each 
channel and was clipped at 50k μV2 to avoid outliers. 
  
Neural features were binned into 10 ms non-overlapping bins (counting threshold crossings and averaging 
spike-band power across 10 consecutive feature windows). Each bin was first log transformed, then 
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normalized using rolling means and s.d. from past 10 s and causally smoothed using a sigmoid kernel of length 
1.5 s of the past activity. Thus, a vector of 1x512 binned neural features was sent to the brain-to-voice decoder 
every 10 ms. After each “block” of neural recording, we computed RMS thresholds and LLR weights to be used 
in the next block, which helped in minimizing non-stationaries in the neural signal. 
 
Experimental paradigm 
  
This study comprises various closed-loop speech tasks to develop and evaluate voice synthesis 
neuroprosthesis. Research sessions were structured in blocks of ~50 trials of a specific task. Each trial began 
with a “delay” period of 1.5-4 s in which a text cue was shown on the screen (indicated by a red square) and 
the participant read the cue. This was followed by a “go” period (indicated by a green square) where the 
participant was instructed to attempt to speak the cued text at his own pace after which, he ended the trial 
using an eye tracker. Closed-loop instantaneous voice synthesis was done during the “go” period. There was a 
short 1-1.5 s interval before the start of the next trial. 
  
We conducted the following speech tasks with the above trial structure: attempting to speak cued sentences, 
mime (without vocalizing) cued sentences, respond to open-ended questions in his own words or say anything 
he wanted, spell out words letter by letter, attempt to speak made-up pseudo-words, say interjections, 
modulate intonation to say a sentence as a statement or as a question, emphasize certain words in a 
sentence, and sing melodies with different pitch level targets (this task had a reference audio cue for the 
melody which was played during the delay period). 
  
After the initial eight research sessions with a mix of open-loop and closed-loop blocks, all sentence trials in 
the rest of the sessions were conducted with either closed-loop voice synthesis, text decoding1 or both to 
improve participant’s engagement in the task. All other types of tasks had closed-loop voice synthesis 
feedback. In a typical research session, we recorded ~150-350 structured trials. 
 
Closed-loop continuous voice synthesis 
 
Target speech generation for decoder training 
Since T15 was unable to produce intelligible speech, we did not have a ground-truth reference of his speech to 
match with the neural activity required for training a decoder to causally synthesize voice. Hence, we 
generated a “target” speech waveform aligned with neural activity as an approximation of T15’s speech. 
  
We first generated synthetic speech waveforms from the known text cues in the training data using text-to-
speech (native TTS on Mac). Next, we identified putative syllable boundaries of T15’s attempted speech from 
the corresponding neural activity and aligned the synthetic speech by dynamically time stretching it to match 
these syllable boundaries. Thus, we obtained the time-aligned target speech. The target speech was aligned 
on syllable level because syllables are the fundamental units of prosody in human speech38. During our first 
research session, there was no prior neural data available, so we used coregistered microphone recordings of 
T15’s attempted (unintelligible) speech to segment word boundaries and generate time-aligned target speech. 
In subsequent sessions, we relied solely on neural data to estimate syllable boundaries – we used a brain-to-
voice model trained on past neural data to synthesize speech and used its envelope to segment syllable 
boundaries39 and align target speech with manual oversight. Thus, we used the previous brain-to-voice model 
to generate target speech for the current session iteratively from neural data alone. 
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Brain-to-voice decoder architecture 
The core brain-to-voice model was adapted from Transformer architecture19. The model had two main 
components: an input embedding network and a base Transformer. Separate input embedding networks 
consisting of 2 fully connected dense layers (512 and 128 units respectively, ReLU activation) were used for 
each week of neural data recording to compensate for week-to-week nonstationarities. The output from input 
embedding network was passed into the base Transformer model consisting of 8 Transformer encoder blocks 
(head size 128, number of heads 4, a dropout of 0.5 after multi-head attention layer and each of the two feed-
forward layers with 256 and 128 units respectively, and normalization layer at the beginning and the end). 
Positional encoding was added before the first Transformer block. Additionally, we included residual 
connections between each Transformer block (separate from the residual connections within each block). The 
output sequence from Transformer blocks was pooled by averaging and passed to two dense layers (1024, 
512 units, ReLU activation) and finally through a dense layer of size 20 to output 20-dimensional predicted 
speech features. 
  
At each step, an input to the brain-to-voice decoder was a 600 ms window of binned neural features (threshold 
crossings and spike-band power) of shape 60x512 (60 bins of 10 ms with 256 channels x 2 features). First 
layer of the model averaged two adjacent bins of the input sequence to sequence length. The output of the 
decoder was a vector of 20 predicted speech features (which were then sent to a vocoder to generate 
synthesized speech samples in closed-loop blocks). The decoder ran every 10 ms to produce a single 10 ms 
frame of voice samples. All the model hyperparameters were tuned manually with special consideration given 
to minimize the inference time for instantaneous closed-loop voice synthesis. 
 
Decoder training 
We trained a new decoder for each session using all trials (which were unique) from all previous research 
sessions. To train the decoder robustly, we used 4-20 augmented copies of each trial. Neural features were 
augmented using three strategies: adding white noise (mean 0, s.d. 1.2) to all timepoints of all channels 
independently, a constant offset (mean 0, s.d. 0.6) to all spike-band channels independently and its scaled 
version (x0.67) to threshold crossings, and same cumulative noise (mean 0, s.d. 0.02) to all channels along the 
time course of the trial. We extracted 600 ms sliding windows shifted by 10 ms from continuous neural features 
and its corresponding 10 ms frame (20-dimensional normalized and smoothed vector) of output target speech 
features as a single training sample. 20-dimensional speech features (18 Bark cepstral coefficients, pitch 
period and pitch strength) for every 10 ms of target speech waveform was extracted using the encoder for the 
pretrained LPCNet vocoder21. 
  
The model was trained for ~15-20 epochs with a batch size of 1024, a constant learning rate of 5x10-4, Adam 
optimizer (β1=0.9, β2=0.98, ε=1e-9) and Hubert loss (δ=1.35) which affords the advantage of both L1 and L2 
losses and is less sensitive to outliers. The training took between 20-40 hrs on three NVIDIA GeForce RTX 
3090 GPUs depending on the amount of data used for training. 
  
On the first session of neural recording, we collected 190 open-loop trials of attempted speech from a 50-word 
vocabulary to train the decoder and were able to synthesize voice in closed-loop with audio feedback on the 
same day. Although the closed-loop synthesis on this data was less intelligible due to the model not being 
optimized on the first day, we later demonstrated offline that with an optimized model, we could get highly 
intelligible synthesis with this small amount of neural data and limited vocabulary (Video 14). 
  
In subsequent sessions, we collected more attempted speech trials with large open vocabulary and iteratively 
optimized our brain-to-voice decoder architecture to improve the synthesis quality. Here, we report the 
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performance of closed-loop voice synthesis from neural activity using the stable final brain-to-voice decoder for 
predetermined evaluation sessions. For each of these sessions, the decoder was trained on all the data 
collected up to one week prior (total of ~5500-8900 trials). 
 
For training the personalized-own voice synthesis model, we first generated time-aligned target speech that 
sounded like T15’s pre-ALS voice using the StyleTT2 text-to-speech model22 fine-tuned on T15’s voice 
samples prior to developing ALS. Rest of the process for decoder architecture and training was the same as 
above. 
 
Closed-loop voice synthesis 
During closed-loop real-time voice synthesis, we first extracted neural features every 1 ms which were binned, 
log transformed, causally normalized and smoothed and aggregated into 600 ms causal sliding windows. This 
neural feature sequence was decoded by the brain-to-voice model into 20 acoustic speech features at each 
time step. The predicted speech features were rescaled to normal range and 16 linear predictive coding (LPC) 
features were reconstructed from the 18 predicted cepstral features. This 36-feature vector was synthesized 
into a single 10 ms frame of speech waveform (sampled at 16 kHz) using the pretrained LPCNet vocoder every 
10 ms. The entire pipeline from neural signal acquisition to reconstruction of speech samples of a single frame 
took less than 10 ms. These samples were then sent to the audio playback computer as they were generated 
and played through a speaker continuously providing closed-loop audio feedback. All results reported in this 
study are for closed-loop voice synthesis. 
  
Evaluation of synthesized speech 
We evaluated synthesis speech by measuring the Pearson correlation coefficient between the synthesized and 
target (fully intelligible) speech. We computed average Pearson correlation across 40 Mel-frequency bands of 
audio sampled at 16 kHz. The Mel-spectrogram with 40 Mel-frequency bands was computed using sliding 
(Hanning) windows of 50 ms with 10 ms overlap and converted to decibel units. We also computed Mel-
cepstral distortion between the synthesized speech and the target speech using the method described in27. 
  
To evaluate human perception of BCI-synthesized speech, we asked fifteen naïve listeners to listen to each 
synthesized speech trial and identify the transcript that matched the audio from six possible sentences of the 
same length. We used crowd analytics platform Amazon Mechanical Turk to evaluate 979 synthesized 
sentences (vocalized and mimed trials) each by fifteen individuals. To test if the crowd workers actually 
listened to the audio, we included a fully intelligible control audio clip with each synthesized audio. We rejected 
the trials with wrong answers for the control audio and resubmitted these trials for evaluation. 
 
Decoding paralinguistic features for modulating synthesized voice 
  
Decoding intonation from neural activity 
We collected neural data from blocks where T15 was instructed to modulate his attempted speech intonation to 
say cued sentences as statements (no change in pitch) or as questions (by changing the pitch from low to high 
towards the end of the sentence) and to emphasize capitalized words in cued sentences (by increasing pitch 
with slight increase in volume for emphasis). We analyzed question and word emphasis tasks separately but 
followed the same decoding procedure. We did not have the ground truth of when T15 modulated his 
intonations to train the intonation decoders. Hence, neural trials were grouped by the cue sentence and aligned 
using dynamic time warping40. The average of aligned trials was subtracted from each trial to reveal increased 
neural activity (example, Fig. 3c), which was used to label the portions of neural trial as intonation modulation 
(1) or no modulation (0). For intonation decoding, we only used the spike-band power feature due to its higher 
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signal-to-noise ratio. Sliding windows of 600 ms shifted by 10 ms were derived from binned neural activity to 
generate samples for decoder training. For each window, adjacent bins were averaged, and sequence of 
features was flattened to obtain a single feature vector as input to the decoder. A binary logistic regression 
decoder was trained to classify the neural feature vectors into ‘no change in intonation’ or ‘change in 
intonation’. During closed-loop trials, this decoder was used to classify features from preceding 600 ms of 
neural activity, every 10 ms leading to continuous decoding of intonation. Separate binary decoders were 
trained to detect intonation modulation for asking questions and for word emphasis. These intonation decoders 
ran simultaneously with the main brain-to-voice decoder. Same procedure was followed to train a volume 
decoder to classify quiet volume and normal volume from neural activity.  
  
Intonation modulation in synthesized voice 
One of the speech features predicted by the brain-to-voice decoder characterizes the pitch component which is 
used by the LPCNet vocoder to synthesize speech waveform. We leveraged this feature and modified its value 
upon detection of change in intonation from neural activity. The binary intonation decoder upon robustly 
detecting the change during question intonation, sent a trigger to modulate the pitch feature predicted by the 
brain-to-voice decoder according to a predefined pitch profile for asking a question (gradually increasing the 
pitch of the word from low to high) which was then synthesized by the vocoder as usual (see Extended Fig. 8).  
  
Similarly, for emphasizing certain words in a sentence in closed-loop, the binary emphasis decoder sent a 
trigger to modulate predicted pitch features by the brain-to-voice decoder according to a predefined pitch 
profile for word emphasis – modulating the pitch from high to low and increasing the volume of synthesized 
speech by 20%. 
  
We computed the accuracy of closed-loop intonation modulation by evaluating whether individual words in a 
sentence were modulated appropriately. Interestingly, both the binary decoders were able to detect change in 
intonation for question or word emphasis prior to the onset of the word being modulated, which allowed causal 
modulation of the resulting synthesized voice. 
 
Pitch decoding for singing melodies 
We collected neural data while T15 attempted to sing the three-pitch melodies comprised of 6-7 notes of three 
pitch levels (e.g., low-mid-high-high-mid-low). An audio cue of the melody was played during the delay period 
for reference. However, we did not define the exact pitch targets for these three different pitch levels as it was 
difficult for T15 to precisely modulate his pitch; rather we let T15 self-determine how he wanted to attempt to 
sing low, middle and high pitch notes. 
  
We used a two-stage pitch decoding approach to decode pitch produced by T15 from his spike-band power. 
We built a first Transformer-based decoder (same architecture as above, but with only two Transformer blocks 
and no input embedding network) to identify his intention to speak (before attempted speech onset) and a 
second Transformer-based decoder to decode his intended pitch level (1-low, 2-mid, 3-high) if intention to 
speak was detected. Both decoders were trained using the categorical cross entropy loss. Since results of the 
previous intonation modulation task showed that changes in paralinguistic features can be detected in advance 
of speech onset, labels for each pitch level were assigned to the neural data from 600 ms prior to the word 
onset to the end of the word attempted at that pitch. 
 
During the closed-loop singing task, the two-staged pitch decoder ran simultaneously with the core brain-to-
voice decoder. The output of the pitch decoder was smoothed with moving average and then used to 
continuously modulate the predicted brain-to-voice pitch feature in real-time, which was then vocoded as usual 
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(Extended Fig. 8). Thus, the participant was able to sing melodies through his synthesized voice. Additionally, 
we provided a closed-loop visual feedback on the screen by showing the decoded pitch level and interactive 
target cues for the note in the melody that T15 was singing (Video 13). 
  
Inbuilt pitch synthesis for singing melodies 
In the previous intonation and pitch modulation tasks, we used a separate decoder to detect changes in the 
paralinguistic features and modulate the synthesized voice. Here we developed a unified brain-to-voice 
decoder that is inherently capable of synthesizing pitch in the melody singing task. To achieve this, we used 
the regular brain-to-voice decoder and trained it using the target speech waveform with the desired pitch 
levels. The brain-to-voice decoder was generalizable and was able to inherently map the neural activity to the 
pitch levels in the target waveform, which flexibly enabled T15 to sing melodies. 
 
Output-null and output-potent analysis of neural activity 
  
To study the underlying neural dynamics of speech production, we decomposed the neural activity into two 
orthogonal output-null and output-potent components. To achieve this, we adopted a simplified linear decoding 
approach. We trained a linear decoder 𝑦 = 𝑊𝑥, where 𝑥 is a vector of neural features, 𝑦 is a 20-dimensional 
vector of speech features and 𝑊 is the linear decoder. We trained a separate linear decoder for each session 
to account for session-to-session nonstationarities. The linear decoder matrix 𝑊 was decomposed into 
orthogonal null- and row-subspaces. The neural activity 𝑥 was projected onto the null space and row space. 
The delta neural activity for null and row space projections for each trial was obtained by computing the 
Euclidean distance of the projections from the baseline (first 500 ms of the trial) and normalizing it between 0 
and 1 to get output-null and output-potent components respectively.  
  
Trial averaged output-null and output-potent components were obtained for all sentences of the same length 
between -700 ms to +1s from the onset of each word in a sentence (Fig. 4). Output-null and output-potent 
analysis was also done on intonation modulation for questions and word emphasis tasks and the output was 
compared with that of the regular cued attempted speech task. 
 
Statistical testing 
  
We used a two-sided Wilcoxon rank-sum test to compare two groups of data. The p-values were corrected for 
multiple comparisons using Bonferroni correction where necessary. We used a non-parametric test because 
datasets being compared were of different size and normal distribution was not assumed because the actual 
underlying distribution was unknown. 
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Extended figures 
 
 
 

 
Extended Fig. 1: Microelectrode array placement. a. The estimated resting state language network from Human 
Connectome Project data overlaid on T15’s brain anatomy. b. Intraoperative photograph showing the four microelectrode 
arrays placed on the surface of T15’s precentral gyrus.  
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Extended Fig. 2: Mel-cepstral distortion of synthesized speech. a. Mel-cepstral distortion (MCD) is computed 
across 25 Mel-frequency bands between the closed-loop synthesized speech and the target speech. MCDs (mean ± s.d) 
for attempted speech of cued sentences for eight evaluation research sessions are shown. b. MCDs between the 
synthesized and target speech during mimed speech trials. c. MCDs between the synthesized and target speech during 
free response trials where the participant responded to the open-ended questions. d. MCDs between the synthesized and 
target speech during own-voice synthesis, spelling words letter by letter, saying made-up pseudo-words, and interjections.  
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Extended Fig. 3: Example closed-loop speech synthesis trial. Spike-band power and threshold crossing spikes from 
each electrode are shown for one example sentence. These neural features are binned and causally normalized and 
smoothed on a rolling basis before being used to synthesize speech. The mean spike-band power and threshold crossing 
activity for each individual array are also shown. Speech-related modulation was observed on all arrays, with the highest 
modulation recorded in v6v and 55b. The synthesized speech is shown in the bottom-most row. The gray trace above it 
shows the participant's attempted (unintelligible) speech as recorded with a microphone.  
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Extended Fig. 4: Human perception assessment of voice synthesized during mimed speech. Human 
perception accuracy of synthesized speech miming trials where 15 naïve listeners for each of the 58 evaluation sentences 
selected the correct transcript from 6 possible sentences of the same length. Individual points on the violin plot show the 
average matching accuracy of each evaluation sentence (random vertical jitter added for visual clarity). The bold black 
line shows median accuracy (which was 100%) and the thin blue line shows the (bottom) 25th percentile.  
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Extended Fig. 5: Volume decoding from neural activity. Confusion matrix showing offline accuracies for classifying the 
volume of attempted speech from neural activity using a binary decoder while the participant was instructed to speak 
either quietly or in his normal volume.  
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Extended Fig. 6: Neural modulation during question intonation. Trial-averaged normalized spike-band power 
(each row in a group is one electrode) during trials where the participant modulated his intonation to say the cued 
sentence as a question. Trials with the same cue sentence (n=16) were aligned using dynamic time warping and the 
mean activity across trials spoken as statements was subtracted to better show the increased neural activity around the 
intonation-modulated word. The modulated word’s onset is indicated by the arrowhead at the bottom of each example. 
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Extended Fig. 7: Paralinguistic features encoding recorded from individual arrays. a. Trial-averaged spike-band 
power (mean ± s.e.), averaged across all electrodes within each array, for words spoken as statements and as questions. 
At every time point, the spike-band power for statement words and question words were compared using the Wilcoxon 
rank-sum test. The blue line at the bottom indicates the time points where the spike-band power in statement words and 
question words were significantly different (p<0.001, n1=970, n2=184). b. Trial averaged spike-band power across each 
array for non-emphasized and emphasized words. The spike-band power was significantly different between non-
emphasized words and emphasized words at time points shown in blue (p<0.001, n1=1269, n2=333). c. Trial-averaged 
spike-band power across each array for words without pitch modulation and words with pitch modulation (from the three-
pitch melodies singing task). Words with low and high pitch targets are grouped together as the ‘pitch modulation’ 
category, we excluded middle pitch target words where the participant used his normal pitch. The spike-band power was 
significantly different between no pitch modulation and pitch modulation at time points shown in blue (p<0.001, n1=486, 
n2=916). 
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Extended Fig. 8: Closed-loop pitch modulation. a. An example trial of closed-loop intonation modulation for speaking a 
sentence as a question. A separate binary decoder identified the change in intonation and sent a trigger to modulate the 
pitch feature output of the regular brain-to-voice decoder according to a predefined pitch profile for asking a question (low 
pitch to high pitch). Neural activity of an example trial with its synthesized voice output is shown along with the intonation 
decoder output, time of modulation trigger, originally predicted pitch feature and the modulated pitch feature used for 
voice synthesis. b. An example trial of closed-loop word emphasis where the word “YOU” from “What are YOU doing” was 
emphasized. To emphasize a word, we applied a predefined pitch profile (high pitch to low pitch) along with a 20% 
increase in the volume to the predicted speech features. c. An example trial of closed-loop pitch modulation for singing a 
melody with three pitch levels. The pitch classifier output was used to continuously modulate the predicted pitch feature 
output from the brain-to-voice decoder. 
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Extended Fig. 9: Pearson correlation coefficients over the course of a sentence. Pearson correlation coefficient (r) 
of individual words in sentences of different lengths (mean ± s.d.). The correlation between target and synthesized speech 
remained consistent throughout the length of sentence, indicating that the quality of synthesized voice was consistent 
throughout the sentence. Note that there were fewer longer evaluation sentences. 
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Supplementary media 
 
Video 1: Dysarthric speech of the participant. This video shows the participant, who has severe dysarthria 
due to ALS, attempting to speak the sentences cued on the screen. The participant’s speech is unintelligible to 
naïve listeners. From post-implant day 27. 
Link to view online: https://ucdavis.box.com/s/p8197z804du92225ff0o06l263tjhxcb 
 
Video 2: Closed-loop voice synthesis during attempted vocalized speech. This video shows 13 
consecutive closed-loop trials of instantaneous voice synthesis as the participant attempted to speak cued 
sentences. The synthesized voice was played back continuously in real-time through a speaker. From post-
implant day 179. 
Link to view online: https://ucdavis.box.com/s/esulu85i7meojqnpphr65ioq9pui9xbq 
 
Video 3: Closed-loop voice synthesis with simultaneous brain-to-text decoding. This video shows 15 
consecutive closed-loop trials of instantaneous voice synthesis with simultaneous brain-to-text decoding that 
acted as closed-captioning as the participant attempted to speak cued sentences. From post-implant day 110. 
Link to view online: https://ucdavis.box.com/s/mw6h5pzvvy6d9kzrt7ayzg1wiag7nxrv 
 
Video 4: Closed-loop voice synthesis during attempted mimed speech. This video shows 10 consecutive 
closed-loop trials of instantaneous voice synthesis with audio feedback as the participant “mimed” the cued 
sentences without vocalizing. The decoder was not trained on mimed speech neural data. From post-implant 
day 195. 
Link to view online: https://ucdavis.box.com/s/wpvbw5wogy5kvoalknomfgmf56kxnxmm 
 
Video 5: Closed-loop voice synthesis during self-initiated free responses. This video shows 9 closed-loop 
trials of instantaneous voice synthesis with audio feedback as the participant responded to open-ended 
questions or was asked to say whatever he wanted. We used this opportunity to ask the participant for his 
feedback on this brain-to-voice neuroprosthesis. A brain-to-text decoder was used simultaneously to help with 
understanding what the participant was saying. From post-implant days 172, 179, 186, 188, 193 and 195. 
Link to view online: https://ucdavis.box.com/s/bl24hf5kojnz5lm7b6rfq6ejxcm82f0o 
 
Video 6: Closed-loop own-voice synthesis during attempted speech. This video shows 9 consecutive 
closed-loop trials of instantaneous speech synthesis in a voice that sounds like the participant's own pre-ALS 
voice as he attempted to speak cued sentences. From post-implant day 286. 
Link to view online: https://ucdavis.box.com/s/0vbppq1bevhhblrdfs465fdwuvcn06nd 
 
Video 7: Closed-loop voice synthesis of pseudo-words. This video shows 5 consecutive trials of closed-
loop synthesis of made-up pseudo-words using the brain-to-voice decoder. The decoder was not trained on 
any pseudo-words. From post-implant day 179. 
Link to view online: https://ucdavis.box.com/s/4qhzyvr0i364xsvaej8zicaf5na4zr44 
  
Video 8: Closed-loop voice synthesis of interjections. This video shows 5 trials of closed-loop synthesis of 
interjections using the brain-to-voice decoder. The decoder was not trained on these words. From post-implant 
day 186. 
Link to view online: https://ucdavis.box.com/s/m234b9ilqpmmcv1yyrmqvchq1z8k3ttl 
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Video 9: Closed-loop voice synthesis for spelling words. This video shows 7 trials of closed-loop synthesis 
where the participant was spelling cued words one letter at a time using the brain-to-voice decoder. The 
decoder was not trained on this task. From post-implant day 186. 
Link to view online: https://ucdavis.box.com/s/cv8l2ef2t5u4i2km4lwi122z67mxckie 
 
Video 10: Closed-loop question intonation. This video shows 10 selected trials where the participant 
modulated his intonation to say a sentence as a question (indicated by ‘?’ in the cue) or as a statement by 
using an intonation decoder that modulated the brain-to-voice synthesis in closed-loop. From post-implant day 
286. 
Link to view online: https://ucdavis.box.com/s/67xnduo76355v93nzjuvez5utll5qung 
 
Video 11: Closed-loop word emphasis. This video shows 8 selected trials where certain (capitalized) words 
in the cued sentences were emphasized by the participant by using an emphasis decoder that modulated the 
brain-to-voice synthesis in closed-loop. From post-implant day 286. 
Link to view online: https://ucdavis.box.com/s/s7crvym9q9dro5mo9a6wmlltjuy0c88f 
 
Video 12: Singing three-pitch melodies in closed-loop. This video shows 3 consecutive trials where the 
participant sung short melodies with three pitch targets by using a pitch decoder that modulated the brain-to-
voice synthesis in closed-loop. At the start of each trial, an audio cue plays the target melody. The on-screen 
targets then turn from red to green to indicate that the participant should begin. The vertical bar on the left of 
the screen shows the instantaneous decoded pitch (low, mid, high). Additionally, interactive visual cues for 
each pitch target are shown on the screen. These cues show the note in the melody that the participant is 
singing, providing visual feedback. From post-implant day 342. 
Link to view online: https://ucdavis.box.com/s/quj4z50adoibkfysgse21b6t5jzk7xmp 
 
Video 13: Singing three-pitch melodies in closed-loop using a unified brain-to-voice decoder. This video 
shows 3 trials where the participant sung short melodies with three pitch targets by using a single unified brain-
to-voice decoder that inherently synthesizes intended pitch in closed-loop. At the start of each trial, an audio 
cue plays the target melody. The vertical bar on the left of the screen shows the instantaneous decoded pitch 
(low, mid, high) for visual feedback only and the decoded pitch is not used in the unified brain-to-voice model. 
Interactive visual cues show the note in the melody that the participant is singing, providing visual feedback. 
From post-implant day 342.  
Link to view online: https://ucdavis.box.com/s/qu5nwz8qg6hpxtqnvjqkxla1mhoic99c 
 
Video 14: Closed-loop voice synthesis in session 1. This video shows 3 closed-loop trials of instantaneous 
voice synthesis from the participant’s first day of neural recording (post-implant day 25). The brain-to-voice 
decoder was trained during this session using 190 sentence trials from a limited 50-word vocabulary recorded 
earlier on the same day. The second part of the video shows the same three trials reconstructed offline using 
an optimized brain-to-voice decoder (i.e., the algorithm used throughout the rest of this manuscript), which has 
improved intelligibility. 
Link to view online: https://ucdavis.box.com/s/aw59fr2kddxkyagw7phmobg1d1hiwp9d 
 
Audio 1: Acausal speech synthesis by predicting discrete speech units. This audio shows 3 example 
trials of speech reconstructed offline using the approach of predicting discrete speech units acausally at the 
end of the sentence using CTC loss. From post-implant day 25. 
Link to view online: https://ucdavis.box.com/s/b0r5n00n0rss0fjdk4b1xuzf1gvy3mwn 
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