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Focal repetitive transcranial magnetic stimulation (rTMS) has been applied to improve

cognition in Alzheimer’s disease (AD) with conflicting results. We applied rTMS in AD

in a pilot placebo-controlled study using the H2-coil. H-coils are suitable for targeting

wider neuronal structures compared with standard focal coils, in particular the H2-coil

stimulates simultaneously the frontal-parietal-temporal lobes bilaterally. Thirty patients

(mean age 70.9 year, SD 8.1; mean MMSE score 16.9, SD 5.5) were randomized

to sham or real 10Hz rTMS stimulation with the H2-coil. Each patient underwent

3 sessions/week for 4 weeks, followed by 4 weeks with maintenance treatment (1

session/week). Primary outcome was improvement of ADAS-cog at 4 and 8 weeks

compared with baseline. A trend toward an improved ADAS-cog score over time was

observed for patients undergoing real rTMS, with actively treated patients experiencing

a mean decrease of −1.01 points at the ADAS-Cog scale score per time point (95%

CIs −0.02 to −3.13, p < 0.04). This trend was no longer evident 2 months after the

end of treatment. Real rTMS showed no significant effect on MMSE and BDI changes

over time. These preliminary findings suggest that rTMS with H-coil is feasible and safe

in patients with probable AD and might provide beneficial, even though transient, effects

on cognition. This study prompts larger studies in the early stages of AD, combining

rTMS and cognitive rehabilitation.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04562506.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting memory,
language and several other cognitive functions, representing the leading cause of dementia.
At present, only a few therapies are available for AD patients. Converging evidence suggests
that neuromodulation with repetitive transcranial magnetic stimulation (rTMS) may be useful
as an additional, non-invasive and safe treatment for AD (1, 2). Previous rTMS studies
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on AD were conducted with focal traditional figure-of-eight coils
(3–11). High rTMS frequencies (>5Hz), considered to have
an excitatory effect (12) probably through synaptic long-term
potentiation (LTP) mechanisms. Conversely, low frequencies
(≤1Hz) are associated with inhibitory effects and may act on
cortical hyperexcitability (13, 14). One of the main brain target
associated with cognitive improvement after excitatory rTMS in
AD is the dorso-lateral prefrontal cortex (DLPFC) (3–5, 8, 15).
Excitatory stimulation of other fronto-parietal targets has shown
conflicting results (2, 16). Several functional neuroimaging
studies showed indeed hyper-activation of the right DLPFC in
subjects affected by AD and mild cognitive impairment (17–19),
interpreted as a compensatory mechanism. Accordingly, high-
frequency non-invasive brain stimulation over left and right
DLPFC, applied either unilaterally (4, 20, 21) or bilaterally in
sequence (3, 5, 8, 15), as well as low frequency stimulation
of the right DLPFC have been reported to improve cognitive
function in AD (16). Compared with focal coils, the Hesed
coil (H-coil) is designed to reach wider brain regions, owing
to a lower decay of the electric field with distance. Moreover,
the H-coil allows simultaneous stimulation of different brain
regions (22, 23). High-frequency rTMS with H-coil has been
already applied in major depressive disorder (24), Parkinson’s
disease (25), language disorders (26–28), and stroke-related
upper and lower limb motor deficits (29, 30). However, little is
known about the potential usefulness of H-coil in AD. The H2-
coil simultaneously stimulates medial pre-frontal, lateral frontal
regions and temporal-parietal areas (31). The H2-coil rTMS
has been reported promising in a small open-label case series
(32). Our aim was to explore feasibility, safety and efficacy
of excitatory rTMS of bilateral fronto-temporo-parietal regions
with H2-coil in AD in a pilot randomized, placebo-controlled,
double-blind study.

MATERIALS AND METHODS

Participants
We enrolled thirty subjects referred to the Memory Clinic of our
Institute for a diagnosis of probable AD according to NINCDS-
ADRDA criteria (33). Since some patients were enrolled before
2011, all the diagnoses were reviewed according to the recent
revision of the NINCDS-ADRDA criteria (34) at the end of the
study. A record was judged to fulfill NINCDS-ADRDA criteria
for probable AD if (a) the MMSE score was ≤ 24 and (b) there
were demonstrable deficits in memory and at least one other
area of cognition as defined by the criteria statement. Other
inclusion criteria were: presence of a reliable caregiver and ability
to sign a written informed consent. Exclusion criteria were: other
neurological or psychiatric disorders accounting for the cognitive
deficits; contraindications to TMS (35); therapeutic changes in
the last 5 weeks; participation in other clinical trials in the
previous 3 months. Patients fulfilling these criteria have been
consecutively enrolled in the study. Two patients randomized to
sham rTMS have been discarded from the study for a subsequent
confirmed diagnosis of SCA17 and acute myocardial infarction
prior to treatment start, respectively. All but two subjects were
under conventional AD treatment at the therapeutic dosage:
rivastigmine, (n = 7); donepezil, (n = 9) memantine (n = 2),

rivastigmine and memantine (n = 7), donepezil and memantine
(n = 2). Two subjects were not assuming any conventional anti-
AD drugs for intolerance to the active molecule. All subjects and
caregivers gave their written informed consent to participate in
the study, which was approved by our Institutional Review Board.

Study Design and H-Coil rTMS
The study was a double-blind, placebo-controlled paradigm.
We used a 1:1 unrestricted randomization protocol to allocate
participants to a real rTMS group or a sham (placebo) rTMS
group (clinicaltrials.gov ID NCT04562506). Repetitive TMS
was applied using the H2-coil (Brainsway Ltd., Jerusalem,
Israel) designed to simultaneously target the bilateral frontal-
parietal-temporal regions (31) coupled to a Magstim Rapid2
stimulator (Magstim Company Ltd., Whitland, Dyfed, UK).
Sham stimulation was delivered through an alternative circuit
through another coil in the same stimulation device, non-
tangentially oriented to the scalp and with elements producing
significant field cancellation. The sham coil induces an electric
field <30% compared with the active coil but with similar
acoustic artifact and scalp sensations, without effectively reaching
the brain (36). The intensity of rTMS was chosen according
to individual resting motor thresholds (RMT), defined as the
minimal intensity able to evoke a reproducible motor-evoked
potential (>50 µV) on the right abductor pollicis brevis, or
any visible right hand movement, in at least 5 out of 10
stimuli. After having identified the hotspot over the left motor
cortex and measured the RMT by tilting the coil in the medio-
lateral direction, the coil was centered medially and moved 6 cm
anteriorly along the nasion-inion line, in order to cover the
bilateral prefrontal areas (25, 27) with right-left symmetry. At
this position, the H2-coil ensures bilateral and simultaneous
stimulation of structures both in the right and left prefrontal
cortices and in temporal-parietal areas (31). For each rTMS
session, 840 stimuli were delivered at 10Hz (42 trains of 20
stimuli, with 22 s intervals), at intensity of 120% RMT. A
blank-coded magnetic card, able to activate the real or sham
modality on the H-coil controller was randomly assigned to each
participant and the reading codes were kept by administrative
personnel not involved in the study. This procedure ensured
blindness of patients and operators administering rTMS. In
addition, the assessing clinicians and neuropsychologists were
kept away from the stimulation environment to also ensure their
blindness. Treatment consisted in 16 rTMS sessions: 4 weeks of
full treatment with 3 sessions/week, followed by 4 weeks with
only one weekly maintenance session, coupled with interview to
patient and caregiver for side effects.

Clinical Evaluations
Each patient was clinically evaluated at 4 time-points: at
baseline (t0), after 4 weeks of treatment (t1) and after the
maintenance treatment period which included 4 additional
weekly sessions (t2). A follow-up evaluation at 4 months was
also carried out (t3). Subjects underwent a complete neurological
examination with side effect reporting and neuropsychological
testing including: MMSE (Mini Mental State Examination), BDI-
II (Beck Depression Inventory scale-II), CGI-I (Clinical Global
Impression-Improvement) and ADAS-cog (Alzheimer’s Disease
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Assessment Scale-cognitive) (37–40). The ADAS-cog consists of
11 cognitive items and its total score ranges from a minimum
of 0 (absence of cognitive deficits) to a maximum of 70 (severe
cognitive deficit). Similarly to MMSE, ADAS-cog is a global tool
for testing several cognitive domains (i.e., memory, language,
comprehension, praxis, orientation). However, the MMSE is a
screening test with relatively modest sensitivity and high inter-
session variability. It has floor and ceiling effects and limited
sensitivity to change. This limits its wider use in detecting change
in clinical work and in research studies. For this reason ADAS-
cog is preferable to assess cognitive benefits induced by an
experimental treatment on AD patients (41). The Italian version
of the ADAS-cog was used (M. Fioravanti, Giunti Organizzazioni
Speciali, Firenze). Since lower ADAS-cog raw scores indicate
better cognitive function, a negative post-treatment change from
baseline represents a clinical improvement. BDI-II improvement
was considered as a reduction from baseline values, as well; on the
contrary, improvement in MMSE score is reflected by a positive
change at follow up. Finally for CGI-I, which is a 7-point scale
ranging from 1 (very much improved) to 7 (very much worse),
the lower the score the higher the improvement from baseline is.
Vital signs (blood pressure and heart rate) were recorded before
and after each rTMS session as an additional safety measure.

Statistical Analyses
The primary analyses were conducted using a mixed effects
linear model (random coefficients model) which adjusts for
missing data in testing for differences in the intercepts (baseline
scores) and slopes (rate of change) of the ADAS-Cog, MMSE,
CGI-I, and BDI between treatment groups. For each of the
outcomes, a model was constructed with treatment effect, time
effect, and treatment x time interaction term, with age, sex,
years of education, disease duration as covariates. Each model
included random effects of time at the individual level after
comparing the log-likelihoods of models with and without
random effect. An unstructured covariance matrix was used to
model the independence of the slope and intercept parameters.
Parameters were estimated using restricted maximum likelihood.
The primary test of interest was the significance of the treatment
by time interaction. To investigate the magnitude of rTMS
efficacy, group differences have been tested from t0 to t2, while to
assess whether effects lasted beyond the last rTMS sessionwe have
included t3 as well. Group differences in normally distributed
variables, shown as mean (SD), were analyzed using unpaired t-
tests, while those in non-normally distributed variables, shown
as medians with 25 and 75% percentiles, were explored with
the Mann-Whitney U-test. Differences in categorical variables,
shown as proportions, were analyzed using χ²-tests. A two-
sided p-value of 0.05 was considered statistically significant.
All statistical analyses were performed using the computing
environment R (42).

RESULTS

A total of 28 subjects (mean age 70.9 years, SD 8.1, female:male
ratio 1:1) were included in the analyses. Sixteen patients have
been treated with real rTMS, while twelve have been treated with

TABLE 1 | Demographics and neuropsychological scores at baseline.

Characteristics Levels All patients Sham rTMS Real rTMS

Sex N◦ Females (%) 13 (46.4) 6 (50.0) 7 (43.8)

N◦ Males (%) 15 (53.6) 6 (50.0) 9 (56.2)

Age Mean years (SD) 70.9 (8.1) 72.6 (8.3) 69.6 (7.9)

Education Mean years (SD) 8.6 (4.1) 7.8 (3.4) 9.2 (4.5)

Disease duration Mean years (SD) 4.2 (1.7) 4.2 (1.1) 4.2 (2.0)

ADAS-cog total score Mean (SD) 32.0 (13.9) 35.0 (15.8) 29.7 (11.9)

MMSE Mean (SD) 16.9 (5.5) 15.5 (5.6) 18.0 (5.3)

BDI Mean (SD) 6.1 (6.1) 6.4 (6.6) 5.9 (5.9)

CGI Mean (SD) 4 (0.4) 4 (0.4) 4 (0.4)

FIGURE 1 | Random effect of time on ADAS-cog scores at an individual level.

BLUP, best linear unbiased predictor.

sham rTMS (Table 1). Resting Motor Threshold (RMT) did not
significantly differ between “sham” and “real” groups, neither at
baseline (p= 0.59) nor at t1 (p= 0.27) and t2 (p= 0.41).

At baseline, there were no significant group differences in age,
sex, education, disease duration and neuropsychological profile
(ADAS-cog, MMSE, CGI-I, and BDI-II).

ADAS-Cog scores changes over time varied significantly at
an individual level (Figure 1). A trend toward lower ADAS-
cog scores at the end of treatment was observed for patients
treated with real rTMS in comparison to sham-treated- patients.
Specifically, rTMS-treated patients had a mean decrease in
ADAS-cog score of −1.01 (95% CIs −0.02 to −3.13, p < 0.04)
per time point (Figure 2 and Table 2) in comparison to sham-
treated patients. This difference disappeared at t3, after 2 months
the treatment was over (Figure 2). Real rTMS, in comparison
to sham rTMS, showed no effects on MMSE, CGI-I, and BDI
changes over time.
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FIGURE 2 | Effect of rTMS on ADAS-cog scores over the treatment period and

the observational follow-up. T0 = baseline; T1 = 1 month after randomization;

T2 = 2 months after randomization corresponding to the end of treatment; T3

= 4 months after randomization, corresponding to two months after the end of

treatment. The figure represents predicted means ± standard errors.

TABLE 2 | Mixed effects (random coefficients) model of ADAS-Cog change over

time.

B 95% CIs p

Age—per year increase −0.06 −0.81 0.69 0.87

Sex—Male vs. female −3.45 −15.71 8.81 0.57

Education—per unit increase −0.42 −2.27 1.42 0.64

Disease duration—per unit increase 0.14 −3.29 3.58 0.93

Time—months −0.28 −1.72 1.17 0.70

Treatment −4.25 −16.20 7.69 0.47

Time × treatment −1.01 −0.02 −3.13 0.04

Concerning the safety of rTMS, none of the enrolled subjects
reported serious side effects related to treatment. A patient
belonging to the sham group had an acute myocardial infarction
after 2 weeks of treatment, away from the rTMS sessions,
considered unrelated to the participation in the study. After one
rTMS session, the same patient reported an episode of transient
headache. The procedure was overall well-tolerated, with the
exception of one patient of the real group, who did not tolerate
the intensity of 120% RMT in 11 out of 16 rTMS sessions,
requiring lowering it at 95–110% RMT.

DISCUSSION

To our knowledge, this is one of the first studies to have tested
feasibility, safety, and efficacy of bilateral simultaneous rTMS
with H-coil as add-on symptomatic treatment in AD. The design
of the present study is based on prior open-label experience
(32) in which AD patients reported improvement in cognitive

functions after rTMS with H2-coil using the same parameters
of the present study. We aimed at confirming these preliminary
results in a prospective double-blind study.

As this was a pilot study, we aimed at measuring the
specific contribution to a possible cognitive improvement of
r-TMS with H-coil alone, without any combined cognitive
training. Nevertheless, growing evidence suggests that the on-
line approach, i.e., the combination of r-TMS and cognitive tasks
during the stimulation sessions, offer the best results (8, 43). Our
study demonstrates significant, even though transient, beneficial
effect of rTMS on global cognition as measured with ADAS-
COG. We did not find any significant improvement in MMSE
score, instead. Even if MMSE is a global neuropsychological tool
to test for patients’ cognition, such as ADAS-cog, this is rather
predictable since MMSE is a very generic screening tool with
floor and ceiling effects and scarce sensitivity to detect clinical
improvements (41).

The limited rTMS effect in our sample is not entirely
surprising, considering the lack of associated cognitive training
and the relatively advanced disease stage of some patients
included. In fact, as shown in a previous study (8), the concept of
“brain reserve” is critical not only for determining the expression
of cognitive decline in the natural evolution of the disease (44–
46), but also for the impact of possible treatments. Our sample
had a relatively severe cognitive impairment, and lack of cortical
plasticity to rTMS has been found associated with a more severe
rate of cognitive decline (47) and to predict less benefits from
rTMS treatment associated with cognitive rehabilitation (11). We
can therefore argue that rTMS may be potentially more effective
especially when applied in the earlier disease stages, when the
neurodegenerative process is not overwhelming and there are still
preserved neuronal networks to be stimulated and strengthened
by rTMS.

On the other hand, the benefits of non-invasive brain
stimulation on higher brain function in the elderly and in AD
are greater when cognitive training is combined, as evidenced
in a meta-analysis by Hsu (43). It is widely accepted that rTMS
acts on brain, at least in part, by enhancing synaptic plasticity
through LTP (48–50). Since synchronous stimulation of two
neurons results in synaptic LTP, a long lasting enhancement
in inter-neuronal signal transmission and a crucial element of
synaptic plasticity, we think that a simultaneous stimulation of
neuronal circuits by both r-TMS and cognitive training may
enhance or consolidate the effects obtained with one single tool,
as already emerged from previous evidence on AD subjects
(8, 51). In this context, it is still unknown which type of
stimulation pattern and distribution would best facilitate the
enhancement of LTP mechanisms. While we may hypothesize
that a focal stimulation could better suit the circuit-specific
nature of LTP in crucial hubs, it is also possible to speculate that
the simultaneous stimulation of several relevant regions within
the same network could have the advantage of acting through
cortico-cortical connections. Furthermore, it is also possible
that when brain stimulation alone is applied—independently
from the coil type—further mechanisms might be involved.
At least two other mechanisms may be speculated: rTMS may
increase Brain Derived Neurotrophic Factor (BDNF) levels and
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enhance N-methyl-D-aspartate receptor (NMDAR) expression
in cortical neurons, as demonstrated in an animal model of
vascular dementia (52). An increase in plasma BDNF levels after
rTMS was confirmed by studies on human subjects suffering
from other neurodegenerative disorders, such as Amyotrophic
Lateral Sclerosis (53, 54). Brain Derived Neurotrophic Factor
is one of the most important neurotrophic factors, involved in
several neuronal protective mechanisms against injury (55). It
is not known whether the wider stimulation region of the H-
coil may further enhance this mechanism compared with focal
stimulation or the opposite. On the other hand, postsynaptic
activation of NMDARs induce Ca2+ influx which triggers a series
of reactions that lead to long-term changes in synaptic strength
(56). Therefore, given the lack of a synergic effect guaranteed
by simultaneous cognitive training, it is not surprising that
in the present study the advantage of active treatment over
sham was transient. This finding is in partial disagreement with
other r-TMS studies that demonstrated a persistent cognitive
improvement outlasting the end of treatment in real r-TMS
groups. Even if a direct comparison between the present and
other studies could be rather difficult due to differences in the
sample characteristics, treatment sessions, type of coil adopted
and number of stimuli, outcome variables used or association
with cognitive training, nevertheless some considerations can
be argued. Up to now, few longitudinal study that used
ADAS-cog as outcome variable. Among those, Rabey et al. (8)
used a figure-of-eight coil to apply rTMS over six different
cortical regions, primarily involved in the manifestation of AD
symptoms, in combination with a cognitive training specific to
the stimulated area. The protocol consisted of an intensive phase
of 5 stimulation days a week for 6 weeks, followed by a biweekly
maintenance for 3 months. ADAS-cog significantly improved in
the active compared with sham treatment and the effect persisted
at follow-up, differently from the present study. In our opinion
this not negligible difference can be due to several reasons:
the longer duration of treatment period and maintenance
phase, the higher number and frequency of rTMS sessions,
the association with a targeted cognitive training. In particular
we may hypothesize that performing cognitive tasks specific to
cortical regions typically involved in AD simultaneously with r-
TMS sessions on the same areas could have determined a synergic
effect on synaptic LTP, thus guaranteeing a long lasting cognitive
improvement in the real group. Nevertheless, improvement
in certain cognitive domains persisting at follow-up was also
reported in two studies using rTMS without cognitive training (3,
4). Cotelli et al. (4) reported significant improvement in sentence
comprehension, but not in other cognitive domains, 8 weeks after
the end of a 4 week-rTMS treatment applied over the left DLPFC
in 5 AD patients, compared to 5 patients who received 2 weeks
of sham rTMS followed by 2 weeks of real rTMS. In the present
study we did not use specific neuropsychological tools to test for
sentence comprehension, but the lack of cognitive improvement
in other cognitive tasks is consistent with our findings. In the
study by Ahmed et al. (3), cognitive improvement was present
only in mild to moderate and not in severe AD patients and
persisted after 3 months from the end of treatment. That finding
supports the view that r-TMS is more effective when applied in

earlier rather than in later AD phases and is in line with our
finding that patients less impaired at baseline tended to show
greater improvement after 1 month real rTMS. However, we may
consider that scores on MMSE were higher in the 20Hz group
even before the application of rTMS in that study.

Another possible factor accounting for differences in
magnitude and duration of rTMS effects between our study
and previous studies could be the number and spacing of the
weekly rTMS sessions (e.g., daily as in the previous studies
vs. interspaced as in the present study), besides association
with specific cognitive tasks. Finally, our number of stimuli
(840/session) was considerably lower compared with previous
studies using multi-site stimulation (1,300/session) associated
with cognitive training [e.g., (8)].

In the present study we did not use neurophysiological
markers to probe the effects of rTMS, such as EEG-derived
measures like event-related potentials, so we could not objectively
measure possible functional changes in relevant cognitive
pathways such as pre-frontal dopaminergic networks and parietal
norepinephrine-dependent pathways. Another limitation of
our study is the possible underestimation of the “placebo
effect” in patients receiving sham stimulation: even though
sham stimulation revealed to produce the same physical and
psychological sensations as the real one (36), in future studies it
would be useful to ask the patients to guess whether they received
active or sham stimulation.

CONCLUSIONS

Based on these considerations, our preliminary findings suggest
that rTMS with the H-coil is a feasible and safe procedure in
AD, with potential benefits on cognition. If confirmed, these
results may offer the possibility to provide a new add-on non-
pharmacological intervention in AD. The possible advantage
over other focal rTMS techniques (e.g., using the figure of eight
coil) owing to the simultaneous stimulation of wider neuronal
networks and different cortical areas during the same session
still needs to be explored, as well as the optimal dose, number
of sessions and predictors of treatment response. Future studies
on AD should mainly focus on the early disease stages, in
order to exploit a higher neuronal and network reserve, and
should explore the potential advantage of combination with
cognitive training.
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