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To characterize each cognitive function per se and to understand the brain as an
aggregate of those functions, it is vital to relate dozens of these functions to each other.
Knowledge about the relationships among cognitive functions is informative not only
for basic neuroscientific research but also for clinical applications and developments of
brain-inspired artificial intelligence. In the present study, we propose an exhaustive data
mining approach to reveal relationships among cognitive functions based on functional
brain mapping and network analysis. We began our analysis with 109 pseudo-activation
maps (cognitive function maps; CFM) that were reconstructed from a functional
magnetic resonance imaging meta-analysis database, each of which corresponds to
one of 109 cognitive functions such as ‘emotion,’ ‘attention,’ ‘episodic memory,’ etc.
Based on the resting-state functional connectivity between the CFMs, we mapped the
cognitive functions onto a two-dimensional space where the relevant functions were
located close to each other, which provided a rough picture of the brain as an aggregate
of cognitive functions. Then, we conducted so-called conceptual analysis of cognitive
functions using clustering of voxels in each CFM connected to the other 108 CFMs with
various strengths. As a result, a CFM for each cognitive function was subdivided into
several parts, each of which is strongly associated with some CFMs for a subset of
the other cognitive functions, which brought in sub-concepts (i.e., sub-functions) of the
cognitive function. Moreover, we conducted network analysis for the network whose
nodes were parcels derived from whole-brain parcellation based on the whole-brain
voxel-to-CFM resting-state functional connectivities. Since each parcel is characterized
by associations with the 109 cognitive functions, network analyses using them are
expected to inform about relationships between cognitive and network characteristics.
Indeed, we found that informational diversities of interaction between parcels and
densities of local connectivity were dependent on the kinds of associated functions.
In addition, we identified the homogeneous and inhomogeneous network communities
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about the associated functions. Altogether, we suggested the effectiveness of our
approach in which we fused the large-scale meta-analysis of functional brain mapping
with the methods of network neuroscience to investigate the relationships among
cognitive functions.

Keywords: human brain, fMRI, meta-analysis database, functional connectivity, network analysis, data mining,
machine learning

INTRODUCTION

Ones of main missions of cognitive neuroscience and psychology
is to understand each cognitive function per se and to understand
the human brain as an aggregate of cognitive functions. To this
end, it is vital to relate dozens of cognitive functions, which
will provide integrated views for the entire cognition in the
human brain and will enable to characterize each cognitive
function by relating it to others. Such understanding will
provide testable hypotheses for the cognitive neuroscience and
psychology communities. In addition, it will give the artificial
intelligence community guidelines and ideas to develop novel
brain-inspired AI algorithms (Hassabis et al., 2017).

Several efforts in psychology have been conducted to reveal
hidden relationships among cognitive functions. Developing
atlases and/or ontologies for psychological concepts is one of
these endeavors to do so (Price and Friston, 2005; Poldrack
et al., 2011; Turner and Laird, 2012; Poldrack and Yarkoni,
2016). Using such ontological data has been shown to be efficient
for probing the neural bases of cognitive functions (Varoquaux
et al., 2018). Therefore, we consider that building atlases and
ontological databases for psychological constructs are promising
approaches. However, currently existing atlases and ontological
databases are highly conceptual but not sufficiently empirical,
which means that most of the relationships are proposed based
on the ‘common senses’ in psychology. It also may lead to missing
many meaningful relationships latent in the experimental data
which have become big data nowadays. Another effort is to
compare cognitive concepts (or psychological constructs) with
each other by trying to identify relationships in idiosyncratic
features or performances in several cognitive tasks (Beaty et al.,
2014; Chuderski and Jastrzêbski, 2018; Eisenberg et al., 2019;
Fuhrmann et al., 2019; Rey-Mermet et al., 2019) as well as by
investigating overlaps in neural substrates using neuroimaging
and neuropsychological methods (Hassabis et al., 2007; Mullally
and Maguire, 2014; Woolgar et al., 2018; Brandl et al., 2019;
Jonikaitis and Moore, 2019). While these approaches provide
insights based on empirical facts, completing such low-profile
tasks exhaustively is challenging.

The magnitude of such exhaustive explorations of common
or dissociated neural bases among many cognitive functions may
dampen the willingness of identification of relationships among
them. However, leveraging neuroscientific knowledge is still
expected to be effective to our aim because the cognitive functions
that overlapping brain regions are responsible for should be
interrelated. Additionally, we also consider that the cognitive
functions that connected brain regions are responsible for should
be interrelated. Therefore, the use of large-scale meta-analysis

databases with knowledge about network topology of the brain
is essential to find relationships among cognitive functions to
characterize each function and the entire cognition in the brain.

BrainMap (Laird et al., 2005, 2011a; Laird, 2009) and
Neurosynth (Yarkoni et al., 2011; Poldrack et al., 2012) are
databases specialized toward linking cognitive functions to
brain regions. The former is a manually constructed database
and includes activation coordinates and ontological data (e.g.,
behavioral domain, task paradigm, and stimulus modality)
reported in fMRI studies. The latter is an automated database
including activation coordinates and terms extracted from
fMRI studies. We can reconstruct pseudo-activation patterns
underlying the reports in each study using the stored activation
coordinates. Therefore, we are able to relate cognitive functions
investigated in the study to the (pseudo-)activation patterns.
For instance, the BrainMap’s team proposed an approach to
provide interpretations of independent components of brain
activity based on the cognitive functions (Smith et al., 2009;
Laird et al., 2011b; Ray et al., 2013). In another instance, brain
parcellation related to cognitive functions was performed by
applying decoding based on the cognitive data in BrainMap
to parcels identified using connectivity data from the Human
Connectome Project database (Fan et al., 2016). In addition,
a Bayesian topic model that relates components of cognitive
functions to well-localized brain regions was developed (Rubin
et al., 2017). This enables decoding of functionality, expressed
as rich text information, from any pattern of brain activity.
The approaches using BrainMap or Neurosynth are effective
for identifying functionalities of sub-divided brain areas,
such as the temporoparietal junction (Bzdok et al., 2013),
the dorsolateral prefrontal cortex (Cieslik et al., 2013), the
insula (Chang et al., 2013), the striatum (Pauli et al., 2016),
and the medial frontal cortex (de la Vega et al., 2016).
More generally, we can construct pseudo-activation maps
corresponding to various cognitive functions (Yarkoni et al.,
2011). Hereafter, we term such a pseudo-activation map cognitive
function map (CFM).

Here, we explore the relationships among dozens of cognitive
functions on the basis of two simple assumptions: (1) cognitive
functions that overlapping brain regions are responsible for
should be interrelated, and (2) cognitive functions that connected
brain regions are responsible for should be also interrelated. To
this end, we analyze the CFMs derived from the meta-analysis
database with resting-state functional connectivity (RSFC).
Therefore, we consider the relationships among cognitive
functions from a network neuroscience perspective, which is the
subfield of neuroscience to reveal complex but well-organized
interdependencies among brain regions using the methods of
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network analysis (Sporns and Kötter, 2004; Sporns et al., 2007;
Bassett et al., 2008; Hagmann et al., 2008; van den Heuvel et al.,
2008; Bullmore and Sporns, 2009, 2012; Power et al., 2011, 2013;
van den Heuvel and Sporns, 2011; Zuo et al., 2012; Bertolero
et al., 2015; Fornito et al., 2016; Nigam et al., 2016; Bassett and
Sporns, 2017; Hwang et al., 2017). We use these methods to reveal
relationships among cognitive functions.

In the present study, we analyzed 109 cognitive functions
from the viewpoints of connectivity and network analysis
using RSFC. First, we provide a comprehensive view of those
cognitive functions by constructing relational mapping among
them based on the distances quantified as the strengths of
RSFCs between the CFMs. This facilitates understanding the
brain as a relational network among cognitive functions. Then,
we conducted so-called conceptual analysis (in philosophy) of
each cognitive function by sub-dividing corresponding CFM
on the basis of the connectivity between each voxel within
the CFM and the other CFMs, resulting in decomposition of
the concept of the function into several sub-concepts. Next,
by applying clustering analysis to the whole-brain voxel-to-
CFM RSFC, we constructed a whole-brain parcellation where
each parcel is labeled with a vector whose components are the
degrees of associations to the 109 cognitive functions. Then,
by applying matrix factorization to the matrix constructed by
concatenating these vectors, we identified six cognitive factors,
including ‘concept processing,’ ‘action and expression,’ ‘vision
and attention,’ ‘executive function,’ ‘value and judgment,’ and
‘memory.’ Each parcel had degrees of contributions with those
factors. Using methods of network analysis to characterize the
network consisting of the parcels, we quantified the diversity of
the information sources/receivers for the six factors, identified
three densely connected subnetworks which are specialized for
‘concept processing,’ ‘action and expression,’ and ‘vision and
attention,’ and found (un-)uniformity of factors associated with
the parcels within each network community.

The goals of our research are to exhaustively reveal
relationships among cognitive functions and relationships
between cognitive functions and network characteristics in the
brain. Although several previous studies partially suggested such
relationships by focusing on some part of the cognitive functions,
to the best of our knowledge, there has been no exhaustive
effort to those subjects, at least explicitly. Therefore, the main
contribution of the present study is, firstly, to provide promising
ways to construct comprehensive knowledge of organizations
of dozens of cognitive functions as exhaustively as possible.
Moreover, we also contribute to providing hopeful ways to
reveal relationships between dozens of cognitive functions and
network characteristics in the brain. Indeed, we found several
new insights into the relationships among cognitive functions
and the relationships between cognitive functions and network
characteristics. These were achieved by the fusion of large-
scale meta-analysis of studies of functional brain mapping and
methods in the network analysis.

Taken together, we suggest the effectiveness of our approach in
which we fused the large-scale meta-analysis of a task-based fMRI
database with network neuroscience approaches to investigate
the relationships among cognitive functions to understand each

cognitive function per se and the human brain as a relational
system consisting of cognitive functions.

MATERIALS AND METHODS

Subjects
Fifty-two subjects (21 women) without a history of neurological
or psychiatric diseases participated in this study. The mean ages
of the male and female subjects were 21.5 and 22.3 years (standard
deviation, 1.27 and 6.94 years), respectively. All subjects were
right-handed. They had a normal or corrected-to-normal vision.
We did not use any power analysis to determine the sample size
but decided the size by reference to previous resting-state fMRI
studies (e.g., Fox et al., 2005; Honey et al., 2009; Smith et al.,
2009). To recruit participants, we mainly used announcements
through Web sites (including SNS) and snowball sampling.

The study was performed in accordance with the
recommendations of the institutional ethics committee of
the National Center of Neurology and Psychiatry (NCNP),
with written informed consent from all subjects, in accordance
with the Declaration of Helsinki. The institutional ethics
committee of the NCNP approved the study protocol
(Approval No. A2014-072).

MRI Acquisition
We used a 3T MRI scanner (Trio, Siemens Medical Solutions,
Erlangen, Germany) with an 8-channel head coil for all
measurements. Structural images were acquired using a T1-
weighted 3D magnetization-prepared-rapid-gradient-echo
sequence. The parameters used were: flip angle = 8◦, voxel
size = 1 mm isotropic, TR = 2000 ms, TI = 990 ms, TE = 4.38 ms,
and number of voxels = 208× 256× 208. Functional images were
acquired with a T2∗-weighted echo-planar imaging sequence.
The parameters used were: flip angle = 90◦, voxel size = 3 mm
(isotropic, with no slice gap), TR = 3000 ms, TE = 30 ms, and
number of voxels = 64 × 64 × 44. The slices were acquired in
interleaved order.

Resting-State fMRI
We acquired 148 volumes of images. As TR was 3 s, the total
acquisition time was approximately 7.4 min. During imaging, a
fixation point centered on a gray background was presented. We
instructed the subjects to look at the fixation point and to think
of nothing in particular.

Preprocessing of MRI Data
We performed the preprocessing mainly using FSL (FMRIB
Software Library Version 5.0.61) (Jenkinson et al., 2012). All
steps were executed by running commands in FSL from custom-
made shell scripts.

First, we applied slice-time correction to functional images
using the slicetimer command. Next, we conducted head motion
correction using the mcflirt command (Jenkinson et al., 2002)
with the ‘-stages 4 -sinc_final -meanvol -mats -plots’ option.

1http://www.fmrib.ox.ac.uk/fsl/

Frontiers in Human Neuroscience | www.frontiersin.org 3 January 2020 | Volume 13 | Article 457

http://www.fmrib.ox.ac.uk/fsl/
https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00457 December 24, 2019 Time: 15:48 # 4

Kurashige et al. Revealing Relationships Among Cognitive Functions

Afterward, we applied the bet command (Smith, 2002) to
structural images to extract the brain regions from whole images.
For these structural images, the flirt command (Jenkinson and
Smith, 2001; Jenkinson et al., 2002; Greve and Fischl, 2009)
was executed with the MNI152_T1_2mm_brain template as a
reference. In this step, we used six degrees of freedom, resulting
in rigid-body transformation. Therefore, we executed this step
only for alignment and changing the resolution to 2 mm.
Then, we applied the bet command to the mean functional
image and obtained registration parameters of the image to
the 2-mm-resolution structural image using the flirt command.
Using these parameters, we registered all functional images
to the 2 mm-resolution structural image, resulting in 2-mm-
resolution functional images. Next, we obtained non-linear
transformation parameters by applying the fnirt command to the
2-mm-resolution structural image, with the MNI152_T1_2mm
template as a reference. Then, we transformed the 2-mm-
resolution functional images using the applywarp command with
the non-linear transformation parameters. This yielded 2-mm-
resolution functional images that were standardized into the
Montreal Neurological Institute (MNI) 152 space. Additionally,
we masked these functional images with the regions of the
MNI152 standard brain and smoothed them with a 5-mm full-
width at half-maximum. These functional images were used in
the following analyses.

Additionally, the structural image was standardized into
the 1-mm-resolution MNI 152 space followed by the recon-
all process in Freesurfer (version 5.3.02). This yielded cortical
and subcortical atlases (Fischl et al., 2002; Desikan et al., 2006)
standardized into the 1-mm-resolution MNI 152 space.

In the analyses for the resting-state fMRI shown in the
following subsections, we excluded subjects whose translational
head motions were 1 mm or more or whose rotational head
motions were 1◦ or more, since head motion severely affects the
inference of RSFC (Power et al., 2012; van Dijk et al., 2012).
Our criterion is more stringent compared with the conventional
criteria from previous studies (Guo et al., 2012; Jackson et al.,
2016; Liu et al., 2016; Zhu et al., 2017). According to the criterion,
we excluded twenty-five subjects We did not adopt any other
criterion for excluding data.

Whole-Brain Anatomical Atlas
To construct a whole-brain anatomical atlas, we used the output
files of the recon-all process in Freesurfer. As described above,
the input file for the process was an individual structural image
standardized into the MNI152 space. Therefore, the output file
provided the whole-brain atlas for each subject standardized
into the MNI152 space. In this atlas, each voxel is labeled with
an intensity to specify the anatomical area according to the
Freesurfer convention.

We decomposed the whole-brain atlas for each subject to the
anatomical regions. For each region, we aggregated the atlases
for all subjects into one average atlas by the following method.
First, for each voxel, we counted the number of subjects whose
individual atlases for the region included the voxel and assigned

2https://surfer.nmr.mgh.harvard.edu/

it to the voxel. Then, we binarized the resulting image with a
threshold of the number of subjects for the inclusion of voxels
into the aggregated atlas, which made the number of voxels in the
image closest to the mean of the number of voxels composing
the region across the subjects. This provided an average atlas
across the subjects for the anatomical regions. Finally, we
merged these average atlases into one whole-brain anatomical
atlas on the MNI152 standardized brain. In this whole-brain
atlas, each voxel is labeled with the intensity indicating the
corresponding anatomical region in a manner following the
Freesurfer convention.

Construction of Pseudo-Activation Maps
We constructed a pseudo-activation map for each cognitive
function. To this end, we followed the method based on χ2

statistics described previously (Yarkoni et al., 2011). We will give
an in-depth explanation of the procedure in the remainder of this
section. In the procedure, we used version 0.4 of Neurosynth data
downloaded from the Neurosynth page on GitHub3.

First, for the articles registered in Neurosynth data, we
obtained titles, keywords, and abstracts by accessing PubMed4

using the Entrez Programing Utilities (E-utilities) API5 executed
from the Biopython module (Cock et al., 2009) in Python. Then,
we counted the appearances of cognitive concepts in the title,
keywords, and abstract for each article. As for the cognitive terms
considered in this study, we prepared 702 concepts. Of these,
692 were extracted from the list named ‘concepts’ in Cognitive
Atlas (Poldrack et al., 2011). The extraction date was 8/18/2014.
We added ten cognitive terms. The cognitive terms that we
considered are listed in Supplementary Table S1.

We considered a cognitive term to be present in an article if
the term appeared one or more times per 100 words in the text
merged from the title, keywords, and abstract of the article. We
included only the cognitive terms that appeared in ten or more
articles in the following analyses. Additionally, we discarded the
terms that are used as general words in neuroscience literature,
such as ‘focus’ and ’strength.’ Thus, we selected the 121 cognitive
terms shown in Supplementary Table S2 as the targets to be
considered in this study.

Then, we reconstructed the binary activation map on the
2-mm-resolution MNI 152 brain for each article registered in
Neurosynth data by the following steps. First, we transformed
the coordinates reported in the Talairach brain into the MNI
brain using icbm2tal transform (Lancaster et al., 2007). Then,
we assigned the number ‘1’ to the voxels located within
10 mm of the registered coordinates and the number ‘0’
to the other voxels. Based on these binary activation maps,
we calculated the χ2 statistics for each cognitive term, in
which we compared the appearance of the term and activation
of the voxel. Additionally, we calculated the φ coefficients
corresponding to the χ2 statistics. Thus, we obtained χ2 and φ
maps for each cognitive term. For convenience, in the following
statistical test, these maps were masked by voxels that were

3https://github.com/neurosynth
4https://www.ncbi.nlm.nih.gov/pubmed/
5https://www.ncbi.nlm.nih.gov/books/NBK25501/
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activated in 3% or more articles, which reduced the number of
voxels to be tested.

Based on the χ2 test using the χ2 map, we constructed
a pseudo-activation map for each cognitive function in the
following manner. We executed multiple-test corrections using
the Benjamini–Hochberg procedure for controlling the false
discovery rate (Benjamini and Hochberg, 1995) with q∗ = 0.05.
This yielded a significant mask for each cognitive function.
Additionally, we constructed a mask for each cognitive function
where the positive values of φ coefficients indicated a positive
correlation. Applying these masks to χ2 or φ maps, we obtained
pseudo-activation maps where the pattern of significant positive
activation induced with the cognitive function is expressed. We
call these pseudo-activation maps CFMs. In the present study,
109 CFMs had significant voxels. Therefore, we focused on these
109 cognitive functions (Supplementary Table S3).

Two-Dimensional Embedding of
Cognitive Concepts Based on the
CFM-to-CFM RSFC Matrix
We constructed a two-dimensional relational map among the
109 cognitive functions based on the time-series data of blood-
oxygen-level-dependent (BOLD) signals for each CFM. First, we
extracted the time-series data of BOLD signals of resting-state
fMRI for each voxel in the whole-brain mask. To reduce artifacts
due to motion and signal drift, six head motion parameters
and six differential values of head motion plus the linear trend
and constant component were regressed out. Then, a 0.009–
0.08 Hz band-pass filter was applied to remove the putative
non-neuronal signals according to previous reports (Biswal
et al., 1995; Cordes et al., 2001; Lu et al., 2007; Zuo et al.,
2010). We used the 5th-order Butterworth digital filter. This
filter was applied in forward and backward. We confirmed that
further increase of the order led to little change the resulting
waveform. In addition, the average signals of the gray matter
region, white matter region, and ventricles were regressed out.
Those data were transformed to Z-scores by each voxel to
erase the intensity bias between the voxels. For all voxels
for all subjects, the maximum and minimums Z-scores were
5.32 and −4.89, respectively. By applying the Kolmogorov–
Smirnov test to each voxel of each subject, we found that
0.38% voxels were judged as non-normal distributions. Such
a preprocessing flow was used also in the further analyses
described below.

Then, for each subject, we obtained the mean signal for each
CFM by averaging the signals across voxels in the CFM. We
calculated the correlation matrices between signals of CFMs
and averaged them across the subjects, resulting in the CFM-
to-CFM RSFC matrix. By shifting and scaling the RSFC values,
we obtained the CFM-to-CFM similarity matrix in which the
minimum and maximum values were 0 and 1, respectively.
Applying spectral clustering (see the next paragraph) to the
similarity matrix, we identified clusters of cognitive functions.
In this step, we determined the number of clusters as the
value corresponding to the maximum of silhouette coefficients
(Rousseeuw, 1987) up to 12 (Supplementary Figure S1).

The reason why we used the spectral clustering to identify the
clusters of cognitive functions is that our problem in this analysis
was based on the similarity matrix (not on the feature vectors).
For convenience to the readers, we give a brief introduction to
spectral clustering (von Luxburg, 2007). The procedure of the
spectral clustering consists of two steps. The first step is to embed
data into a representational space. In this space, coordinates
(or representations) of the data are determined to minimize a
loss defined with the similarity matrix and the coordinates. This
minimization problem is reduced to the eigenvalue problem.
Except for parameters used in the numerical calculus to solve
the eigenvalue problem, the parameter that we need to set is
the dimension of the representational space that is equal to the
number of eigenvectors that we consider. Throughout the present
study, we set this value to the same as the number of clusters. The
second step is to cluster the data based on the coordinates in the
representational space. In this step, we need to determine the way
to cluster. Here, we used k-means clustering.

Finally, we applied multidimensional scaling (Borg and
Groenen, 1997) to the CFM-to-CFM RSFC matrix using the
scikit-learn module in Python and obtained the relational map
that involves two-dimensional embedding of the 109 cognitive
functions, in which the well-correlated pairs of cognitive
functions were located as closely as possible. To check a distortion
caused by the embedding, we calculated the stress that is defined
as the difference between given dissimilarities and distances in
the embedding space and is the value to be minimized in the
multidimensional scaling.

Subparcellation of CFMs
For each cognitive function and subject, the resting-state fMRI
BOLD signals of the voxels in the corresponding CFM were
extracted and preprocessed in the same manner as described
in the previous sections. Now we focus on a CFM that we
term target CFM. We calculated the correlation values between
the processed signals of all voxels in the target CFM and the
mean signals obtained from the other CFMs by averaging signals
across the voxels belonging to the CFMs. These correlation values
were averaged across the subjects. Thus, we obtained the target
CFM voxel-to-CFM RSFC matrix. For instance, if we express
the number of voxels in the ‘emotion’ CFM as N (emotion), the
RSFC matrix has a dimension of N(emotion)× 108, since we
considered 109 cognitive functions.

Then, we executed principal component analysis for
dimensionality reduction. We determined the number of
principal components required to explain 95% of the total
variance. Finally, we applied k-means clustering to the resulting
data, in which we set the number of clusters as five.

Whole-Brain Parcellation Based on
Voxel-to-CFM Functional Connectivity
We conducted whole-brain parcellation based on RSFC. First, we
extracted the time series data of BOLD signals of resting-state
fMRI for each voxel in the whole-brain mask and calculated the
mean signal for each CFM. These procedures were the same as
those described above.
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From these processed data, we obtained a matrix of voxel-
to-CFM RSFC by calculating correlation coefficients between the
processed BOLD signals of the 160,296 voxels in the whole-brain
mask and the processed BOLD signals of the 109 CFMs for each
subject. Then, we transformed them into Fisher’s Z values and
averaged them across the subjects. We applied inverse Fisher’s
Z-transform to this and obtained the mean voxel-to-CFM RSFC
matrix in which each row was a 109-dimension feature vector for
each voxel. To reduce the number of dimensions, we performed
principal component analysis by solving the eigenvalue problem
for the covariant matrix for the voxels. We determined the
number of principal components required to explain 95% of
the total variance. Based on this dimension-reduced matrix,
we constructed a similarity matrix between voxels, where the
similarity was defined as the exponential of the correlation
coefficient between two voxels. To consider the spatial constraint,
we set the similarity between the voxels that were not neighbored
to 0, according to a previous study (Craddock et al., 2012),
resulting in a sparse similarity matrix.

To obtain whole-brain parcellation, we applied multiclass
spectral clustering (Yu and Shi, 2003) to this similarity matrix
using the scikit-learn module in Python with ‘discretize’ (to use
the optimal discretization approach searching a discrete partition
closest to the continuous representations to identify data clusters
in the representational space identified with spectral embedding)
and ‘amg’ options. (The reason why we adopted the spectral
clustering in this analysis was to use the spatial constraint
mentioned above.) Since this algorithm requires the similarity
matrix to be connected, we randomly chose 500,000 pairs of
voxels and assigned them a weak positive value (0.0001). We set
the number of clusters to 200 that was determined by reference to
several existing atlases (Destrieux et al., 2010; Power et al., 2011;
Shen et al., 2013; Baldassano et al., 2015; Fan et al., 2016). This
resulted in whole-brain parcellation with 199 parcels. One cluster
was discarded because it was empty (no voxel). We assigned
each parcel a label vector that was the mean voxel-to-CFM
RSFC obtained by averaging voxel-to-CFM RSFCs across the
voxels belonging to the parcel, which represents the relatedness
between the parcel and the 109 cognitive functions (parcel-to-
CFM RSFC matrix).

Dimensionality Reduction Using the
Non-negative Matrix Factorization
We applied the non-negative matrix factorization (NMF) (Lee
and Seung, 1999, 2001) to the parcel-to-CFM matrix to reduce the
dimensionality, which was executed using the NIMFA module
(Žitnik and Zupan, 2012) in Python. Before this process, we set
the negative values in the matrix to 0.

The NMF is a method to decompose a non-negative data
matrix (X) into a non-negative coefficient matrix (Y) and a
non-negative basis matrix (Z). The objective of the NMF is
to approximate X by YZ. Thus, we used the Frobenius norm
||X−YZ||F as the cost function and minimized it subject to
the Y ≥ 0 and Z ≥ 0. Our purpose in the dimensionality
reduction was to identify well-interpretable low dimensional
representations for the parcels. In the preprocessing procedure,

we regressed the mean time-course of the gray matter signals out
from the BOLD data. Although this is efficient to remove artifacts
resulting from biological and equipment factors (Satterthwaite
et al., 2013; Power et al., 2014; Li et al., 2019), it is suggested
that this procedure tends to cause artifactual negative correlation
(Murphy et al., 2009; Weissenbacher et al., 2009). Therefore, to
lead better interpretation for the parcels, focusing only on the
positive RSFCs is appropriate. Therefore, we chose the NMF as
the way for dimensionality reduction.

The number of factors is a key parameter to be predefined
in the NMF. A previous study suggests that the inflection point
in the decrementing line of residual sum of squares (RSSs) with
an increment of the values of the numbers of factors yields the
adequate number (Hutchins et al., 2008). We can detect the
inflection point as the crossing point between the curved lines
fitted to RSSs before and after the point. Therefore, we first
calculated the differentials of the RSSs and fitted them to straight
lines. We repeated the linear regression and obtained the sums
of the squared errors of before-point and after-point lines while
changing the point. We determined the inflection point as the
point realizing the minimum value of the summed squared error
(Supplementary Figure S2). Using the value corresponding to
the point as the number of factors, we conducted the NMF
with singular value decomposition (SVD)-based initialization
(Boutsidis and Gallopoulos, 2008).

Since the output vectors constituting the bases were not
normalized, we scaled them to generate unit vectors and applied
the inverse operation of the scaling to the coefficient matrix to
keep the product invariant.

Heat-Diffusion Analysis of Information
Sources/Receivers
We extracted the time series data of BOLD signals of resting-state
fMRI for each parcel in the whole-brain parcellation obtained
above. These data were preprocessed in the same manner
described in the previous sections. We calculated correlation
coefficients between the processed BOLD signals of the parcels
and obtained a parcel-to-parcel RSFC matrix averaged across
subjects. We set the negative values and diagonal components
in the matrix to 0 and treated it as an adjacency matrix A. In
addition, we defined the degree matrix D in which the diagonal
components were Dii =

∑
j Aij and the other components were

0. From these matrices, we defined graph Laplacian matrix
L = D−A (Chung, 1997), which is the homolog of the negative
Laplacian−∇ 2.

For each NMF factor, we regarded the values of the NMF
coefficients as the intensities of the heat sources distributed over
the parcels. Based on the heat source distribution, we calculated
the steady temperature distribution on the graph whose links
were defined by the adjacency matrix A between parcels as
graph nodes in the following manner, according to a procedure
developed in network theory (Newman, 2010). In the usual
partial differential equations, the temperature diffusion ψ with
heat sources f is governed by the equation ∂ψ/∂t = D∇2ψ −
βψ + f, where D is a diffusion coefficient and β is a decay
constant. As an analog of this equation for the graph, we obtained
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the equation ∂ψ/∂t = −DLψ− βψ+ f, where f is the vector
of heat source distribution defined as the NMF coefficient. As
we consider the steady state ∂ψ/∂t = 0. Therefore, the steady
temperature distribution is ψ = (DL+ βE)−1f, where E is an
identity matrix. We set D = 1 and β = 1 in the main analysis.

The temperature distribution was calculated for each NMF
factor. The temperature of the parcels for each NMF factor
represents a degree of information conveyed from the factor.
Thus, each parcel has a vector of temperatures of the NMF
factors. From the vector, we calculated the Gini coefficients
that represent disparity of conveyed information among the
NMF factors. If a parcel receives information from only one
factor, the value of the Gini coefficient becomes 1. Conversely,
if a parcel receives information from all factors uniformly, the
value becomes 0.

We defined the Gini coefficient for each cognitive function as
the mean of 10 Gini coefficients of parcels whose parcel-to-CFM
RSFCs for the function were the top ten values. In other words,
we averaged the ten Gini coefficients of parcels that were the most
related to the cognitive function and considered the resulting
mean as the Gini coefficient for the function.

In an additional analysis, we investigated the effects of the
parameter values. Since the result is dependent only on the ratio
of D and β , only D was varied and β was fixed (β = 1). Here, we
compared the Gini coefficients between NMF factors. For each
factor, we calculated an inner product between the vector of the
Gini coefficients for cognitive functions defined above and the
vector of the corresponding NMF basis that was normalized to
make the summation one. We call this inner product weighted
sum of the Gini coefficients. Intuitively, the weighted sum of the
Gini coefficients expresses the mean of the Gini coefficients for
the cognitive functions assigned to the factor.

Local Density Identification in the
Parcel-to-Parcel Network Using Clique
Percolation
In this analysis, we first created the parcel-to-parcel network
by defining the connectivity among parcels by thresholding
the adjacency matrix A with 0.3. Then, we applied the clique
percolation method (Palla et al., 2005) to this network to
investigate the local densities of connectivity in this network
using the networkX Python module. In graph theory, K-clique
implies the fully connected subgraph consisting of K nodes.
In the clique percolation method, first, K-cliques are identified.
Then, pairs of K-cliques are connected to form a cluster if they
share a (K-1)-clique. Furthermore, if the cluster shares a (K-1)-
clique with another K-clique, it is assimilated to the cluster. This
process is iteratively executed. When we set K to a large value, the
resulting cluster becomes a densely connected subgraph.

Community Analysis on the
Parcel-to-Parcel RSFC Matrix
By shifting and scaling the values in the parcel-to-parcel RSFC
matrix, we first obtained the parcel-to-parcel similarity matrix
in which the minimum and maximum values were 0 and 1,
respectively. To identify the community structure in the parcels

based on the similarity matrix, we applied spectral clustering
to the parcel-to-parcel similarity matrix using the scikit-learn
module in Python. As is the case with the clustering of
cognitive functions, we used the k-means method to identify
data clusters in the representational space identified with spectral
embedding. The number of communities was set at the value
maximizing the silhouette coefficients (Rousseeuw, 1987) up to
20 (Supplementary Figure S3). The other parameters were set to
the default values.

Reliability Check of RSFC Matrices
Since the analyses described in the above subsections were
basically based on the RSFC matrices defined as the correlation
matrices, checking the reliabilities of the estimations is worthful
to evaluate the stabilities of the results. Especially, we should be
careful about the possible instabilities that might be caused by
the smaller data size compared to the data stored in the recently
developing large-scale databases such as the Human Connectome
Project database (Smith et al., 2013; Van Essen et al., 2013). To
this end, we calculated the standard errors of means (SEMs) of
the RSFCs. Accordingly, we observed the small levels of the values
(∼0.035) compared to the absolute RSFC values (Supplementary
Figure S4), which means that the effects of the instabilities caused
by the small data size were substantially limited.

We also conducted a correlation analysis between the RSFCs
estimated from the present data and the Human Connectome
Project data (Supplementary Figure S5). We used only 706 of
about 2000 data in S500 dataset because of resource limitation.
The preprocessing pipeline was the same as the one explained
above. The correlation coefficients are acceptable (0.94 for CFM-
to-CFM RSFCs, 0.84 for voxel-to-CFM RSFCs, and 0.58 for
parcel-to-parcel RSFCs). Again, those results suggest that the
small size of the present data affected the results limitedly.

RESULTS

Relational Mapping for Cognitive
Functions
In the present study, we aimed to elucidate the relationships
among the cognitive functions in the human brain. To obtain a
comprehensive overview of the human cognition, a visualization
of the whole picture representing the relationships among
cognitive functions is required. To this end, we began our
analysis with the 109 CFMs which were reconstructed as pseudo-
activation maps corresponding to 109 cognitive functions
(Figure 1A). By applying multidimensional scaling to the CFM-
to-CFM RSFC matrix (Figure 1B and Supplementary Data S1),
we provided a relational mapping that involved two-dimensional
embedding of the cognitive functions, in which the closely related
cognitive functions were located close to each other (Figure 1C).
In addition, we identified six clusters of cognitive functions
(cognitive clusters) using the spectral clustering method with
the silhouette coefficients (Figure 1C and Table 1). Roughly, the
red-purple cluster included ‘self and others’-related functions,
the blue cluster included ‘executive function’-related functions,
the orange cluster included ‘language’-related functions, the
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FIGURE 1 | Relational mapping and clustering of cognitive functions based on the cognitive function map (CFM)-to-CFM resting-state functional connectivities
(RSFCs). (A) Examples of the reconstructed CFMs. (B) The CFM-to-CFM RSFC matrix. (C) Relational mapping of cognitive functions. The locations of cognitive
functions in the two-dimensional plane were determined by applying multidimensional scaling to the CFM-to-CFM RSFC matrix. Furthermore, spectral clustering was
applied and resulted in six clusters of cognitive functions, in which, roughly, the red-purple cluster included ‘self and others’-related functions, the blue cluster
included ‘executive function’-related functions, the orange cluster included ‘language’-related functions, the yellowish-green cluster included ‘value and
judgment’-related functions, the red cluster included ‘action and expression’-related functions, and the green cluster included ‘vision and attention’-related functions.
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TABLE 1 | Clustering of the cognitive functions based on the CFM-to-CFM RSFC matrix.

Action and expression Vision and attention Value and judgment Self and others Executive function Language

Movement Attention Emotion Memory Working memory Language

Pain Action Reward Retrieval Decision Reading

Integration Gaze Learning Judgment Cognitive control Context

Skill Spatial attention Risk Intention Response inhibition Meaning

Empathy Selective attention Fear Recall Goal Comprehension

Listening Search Anxiety Episodic memory Rule Concept

Motor imagery Navigation Decision-making Default mode network Reasoning Naming

Prosody Short-term memory Stress Familiarity Maintenance Semantic processing

Speech perception Mental rotation Loss Social cognition Planning Metaphor

Communication Consciousness Choice Inference Executive function Memory encoding

Sustained attention Spatial working memory Anticipation Belief Uncertainty Language processing

Motor control Visual search Sleep Thought Deception Phonological processing

Retention Visual attention Facial expression Theory of mind Task switching Sentence comprehension

Rehearsal Mental imagery Arousal Semantic memory Strategy

Syntax Face perception Emotion regulation Narrative Response selection

Induction Object recognition Extinction Autobiographical memory Executive control

Speech production Impulsivity Humor Intelligence

Motor learning Habit Remembering Memory retrieval

Melody Eating
Consolidation
Sequence learning
Associative memory
Emotional expression

Expectancy
Prospective memory

CFM, cognitive function maps; RSFC, resting-state functional connectivity.

yellowish-green cluster included ‘value and judgment’-related
functions, the red cluster included ‘action and expression’-related
functions, and the green cluster included ‘vision and attention’-
related functions.

To check a distortion caused by the embedding, for each
embedding dimension up to ten, we calculated the stress that is
an index quantifying the deviation of distances in the embedding
space from the distances defined based on the similarity matrix.
The decline of stress is shown as the scree plot in Supplementary
Figure S6. According to the scree criterion, an optimal dimension
seems to be four. Although the two-dimensional mapping has
good readability, this means that it was somewhat distorted
and could not exactly express the strengths of the RSFCs
between the CFMs. Therefore, we also provide figures that
are similar to Figure 1C but show the positive and negative
strengths of RSFCs using red and blue colors, respectively
(Supplementary Figure S7).

RSFC-Based Conceptual Analysis of
Cognitive Functions
One of the bottlenecks preventing us from understanding
information processing during cognitive functions is that we do
not have sufficient in-depth knowledge of the concepts of these
cognitive functions. Therefore, we require so-called conceptual
analysis of the cognitive functions (based not on philosophical
deliberation but on neuroscientific evidence) to elucidate their
deeper meanings. Here, we propose a method of conceptual
analysis based on the voxel-to-CFM RSFCs (Figure 2). In this

method, first, we selected a cognitive function (e.g., ‘emotion’)
and the corresponding CFM. For all voxels within the selected
CFM and the 108 remaining CFMs, a voxel-to-CFM RSFC
matrix was constructed (Figure 2A). Then, we applied k-means
clustering to the matrix and subdivided the CFM for the cognitive
function into five clusters (Figure 2B). Finally, each cluster was
related to the 108 remaining cognitive functions based on cluster-
to-CFM RSFCs.

As examples, the results for ‘emotion,’ ‘prospective memory,’
and ‘thought’ are shown in Figure 2C. The subdivision of
the ‘emotion’-corresponding CFM suggests that ‘emotion’ is
constructed of the subfunctions related to decision-making
(cluster 1), vision (cluster 2), self and others’ minds (cluster 3),
fear (cluster 4), and comprehension of abstract meanings
(cluster 5). The subdivision of the ‘prospective memory’-
corresponding CFM suggests that ‘prospective memory’ is
constructed of the subfunctions related to memory (cluster 1),
intelligent decision (cluster 2), motion (cluster 3), emotional
decision (cluster 4), and executive function (cluster 5). The
subdivision of the ‘thought’-corresponding CFM suggests that
‘thought’ is constructed of the subfunctions related to self
and others’ minds (cluster 1), imaginary navigation (cluster 2),
logical intention and intelligence (cluster 3), emotional decision
(cluster 4), and memory (cluster 5).

The results for all cognitive functions are provided in
Supplementary Data S2. In this analysis, we set the numbers
of clusters identical (i.e., five) across all CFMs by considering
interpretability. On the other hand, showing results from the
clustering in which the numbers of clusters were determined

Frontiers in Human Neuroscience | www.frontiersin.org 9 January 2020 | Volume 13 | Article 457

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00457 December 24, 2019 Time: 15:48 # 10

Kurashige et al. Revealing Relationships Among Cognitive Functions

FIGURE 2 | Conceptual analysis of cognitive functions based on subdivisions of the cognitive function maps (CFMs). (A) Schematic illustration of voxel-to-CFM
resting-state functional connectivities (RSFCs) between voxels in a CFM of cognitive function under consideration (e.g., ‘emotion’) and the other CFMs. (B) Example
of subdivision of the CFM of ‘emotion’ obtained by applying k-means clustering to the CFM. In this analysis, the number of clusters was fixed to five. Each color
corresponds to each cluster resulting from the subdivision. (C) Examples of subdivision-based conceptual analyses for ‘emotion’ (upper), ‘prospective memory’
(middle), and ‘thought’ (lower). The cluster-to-CFM RSFCs are shown with the names of corresponding cognitive functions. For each cluster, the cluster-to-CFM
RSFCs are defined as the mean values of the voxel-to-CFM RSFCs for the voxels belonging to the cluster.
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based on the silhouette coefficients are beneficial. Therefore, we
provide these results in which the numbers of clusters were
determined based on the silhouette coefficients (up to twelve
clusters) in Supplementary Data S3.

The nifti-formatted images of the subdivided CFMs will be
downloadable from the authors’ web page.

Cognitive Function-Based Whole-Brain
Parcellation
Network analyses using brain parcels that are associated with
cognitive functions as network nodes are promising to offer
insights into the characteristics of each function per se and the
relationships among those functions. To construct such parcels,
we administered a novel whole-brain parcellation method in
which voxels were assembled to one of 199 clusters (or parcels)
by applying spectral clustering to the voxel-to-CFM RSFC matrix
(Figures 3A–C). Each resulting parcel was characterized by its
relatedness with the 109 cognitive functions (i.e., parcel-to-CFM
RSFCs), defined as mean voxel-to-CFM RSFCs over the voxels
belonging to the parcel (Figure 4 and Supplementary Table S4).
Their links to the anatomical brain regions are provided in
Supplementary Table S5.

We also show the correspondence between the present
parcellation and the Glasser’s atlas (Glasser et al., 2016) in
Supplementary Table S6. We found that the voxels belonging
to one parcel in the present parcellation are assigned to several
parcels in the Glasser’s atlas. This is natural since the number of
parcels in the Glasser’s atlas is larger than ours. We show the ratios
of voxels assigned to the most overlapping region, the second
most overlapping region, the third most overlapping region,. . . in
Supplementary Figure S8. Thirty six percent of the voxels are
included in the most overlapping regions in the Glasser’s atlas.
Up to the fourth most overlapping regions, 84% of the voxels are
included in them.

The nifti-formatted CFM and parcellation images will be
downloadable from the authors’ web page.

Cognitive Factor Identification Based on
Dimensionality Reduction Using
Non-negative Matrix Factorization
The 109 cognitive functions were not independent of each
other. Some functions were highly interrelated, and therefore,
had common latent cognitive factors. We believe that all
cognitive functions can be characterized by combinations of
a few latent cognitive factors. When a group of cognitive
functions is commonly dependent on such factors, the parcel-
to-CFM RSFCs of members of the group should be similar.
Thus, to identify the latent cognitive factors, we applied non-
negative matrix factorization (NMF) to the parcel-to-CFM RSFC
matrix (Figure 5A).

The number of NMF factors was determined to be six
according to the evaluation of the residual sum of squares. The
top ten components for each basis vector (row vector in the
identified NMF basis matrix) with the corresponding cognitive
functions are provided in Table 2. All components in the bases
are shown in Supplementary Table S7. The NMF coefficient

matrix is shown in Supplementary Table S8. We found that these
cognitive factors roughly corresponded to ‘concept processing’
(factor 1), ‘action and expression’ (factor 2), ‘vision and attention’
(factor 3), ‘executive function’ (factor 4), ‘value and judgment’
(factor 5), and ‘memory’ (factor 6).

For each factor, the heat map of the NMF coefficients for
the corresponding parcels are shown in Figure 5B, in which we
observe factor-specific spreading patterns. The factor 1-related
parcels are located on the left inferior parietal cortex, left superior
and middle temporal cortex, left inferior frontal gyrus, and
the left superior frontal cortex. The factor 2-related parcels are
located on the bilateral sensorimotor areas and the superior
temporal cortices. The factor 3-related parcels are located on the
bilateral occipital cortices. The factor 4-related parcels are located
on the bilateral lateral prefrontal cortices and supramarginal gyri.
The factor 5-related parcels are located on the bilateral medial
prefrontal cortices. The factor 6-related parcels are located on the
bilateral precuneus areas and the inferior parietal cortices.

Diversity of Information
Sources/Receivers Is Dependent on
Cognitive Factors
Some cognitive functions may need various kinds of information
to be realized while others may require only limited kinds of
information. Similarly, information derived from some cognitive
functions may be required to realize various kinds of cognitive
functions while other information may be needed only from a
small number of cognitive functions. We considered the diversity
of informational interactions to be dependent on cognitive
factors. Therefore, we quantified the diversity of information
sources or receivers that were collected by parcels in the parcel
network. To clarify our method, we assumptively describe some
parcels, functions, or factors as sources in the present section.
However, we note that these may be receivers because our method
did not identify the directions of informational interactions.

First, for each parcel, we defined information sent from a
cognitive factor as steady pseudo-temperature calculated from
the heat diffusion equation in the network with heat sources
whose intensities were defined by the NMF coefficient vector
(column vector of the NMF coefficient matrix) (Figure 6A). This
resulted in a temperature distribution over the parcel network
for each cognitive factor. We observed that the temperatures of
some parcels were roughly uniform across all cognitive functions,
which implies equal collection of information. On the other hand,
in another parcel, only one factor provided a high temperature
and the other factors provided low temperatures, which implies
a polarized collection of information. To quantify the degree of
polarization, we used the Gini coefficients of the distributions
of temperatures across cognitive factors (Figure 6B). Smaller
Gini coefficients express more uniformity over cognitive factors,
suggesting more diverse information sources/receivers.

Moreover, we investigated the 109 cognitive functions in
terms of the diversity of information sources/receivers. For each
cognitive function (or CFM), we averaged the Gini coefficients
of the parcels whose parcel-to-CFM RSFCs were among the
top ten (Figure 6C). The resulting value was regarded as the
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FIGURE 3 | Whole-brain parcellation based on cognitive function maps (CFMs). (A) Schematic illustration of voxel-to-CFM resting-state functional connectivities
(RSFCs). A correlation coefficient between resting-state activities of each voxel and CFM was calculated, and was defined as the RSFC between them.
(B) Parcellation was obtained by applying spectral clustering to the whole-brain voxel-to-CFM RSFC matrix. Each panel on the right corresponds to each resulting
parcel. (C) The resulting parcellation consisting of 199 parcels.
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FIGURE 4 | Examples of parcels resulting from cognitive function-based whole-brain parcellation. Four examples of the parcels. Maps on a standard brain (left in
each parcel) and top 10 relatedness with cognitive functions (right in each panel) are shown. The relatedness was defined as mean voxel-to-cognitive function map
resting-state functional connectivities over the voxels belonging to the parcel.

Gini coefficient for the corresponding cognitive function. Upon
sorting the NMF bases by the Gini coefficients of the cognitive
functions, we observed cognitive factor-dependent differences
in the diversity of information sources/receivers (Figure 6D
and Supplementary Table S9). The factor 6-related cognitive
functions tended to collect information from the most diverse
sources/receivers. The factor 5- and 4-related functions had the
second- and third-most diverse information sources/receivers,
respectively. The diversity of information sources/receivers for
the factor 1-related functions was moderate. The factor 2- and 3-
related functions collected information from the most polarized
sources/receivers.

The method used in this section has two parameters: diffusion
coefficient D and decay constant β . Therefore, as an additional
analysis, we investigated the effects of those parameter values.
Since the result is only dependent on the ratio of those
parameters, we only varied the diffusion coefficient D. As we
observed, the Gini coefficients for the cognitive functions highly
loaded by some factors were small and others were large. Thus, we
compared the weighted sums of the Gini coefficients that express
the means of the Gini coefficients for the cognitive functions
assigned to the factors (see section Materials and Methods)
between factors (Figure 7). Throughout the parameter region,
we found qualitatively similar results to the one shown above
except for the factor 3 that relates to vision and attention. The
value of the weighted sum of the Gini coefficients for the factor
3 was largest when the diffusion coefficient was small, which
means that the diversity of information sources/receivers was
lowest. However, the diversity (indexed with the weighted sum
of the Gini coefficients) relative to the others increased with an
increase in the diffusion coefficient, and, finally became highest.
Since the diffusion coefficient decides the range of information
transmission, this result suggests the factor 3 (relating vision
and attention) changes the relative diversity of informational
interactions depending on the state of information transmission.

Cognitive Factor-Dependent Difference
in Densities of Local Connectivity
The connection density of network which processes a cognitive
function is an important factor to specify computational
characteristics of the function. Using the clique percolation
method, we identified local subnetworks within the parcels that
were densely connected (Figure 8). By increasing the clique
threshold K, subnetworks whose connectivity were denser came
to the surface. When K was set to 8, we identified three densely
connected subnetworks. By extracting the NMF coefficients for
the parcels belonging to densely connected subnetworks, we
found that these subnetworks were highly related with the factors
1 (blue), 2 (yellow), and 3 (green). The parcels composing
each subnetwork are shown with the anatomical information in
Supplementary Table S10.

The blue densely connected subnetwork includes the
following regions: the left temporal cortex, left inferior parietal
cortex, left supramarginal gyrus, left orbitofrontal cortex, left
inferior frontal cortex (pars triangularis and pars orbitalis), left
superior frontal cortex, left rostral middle frontal cortex, left
anterior cingulate cortex, left frontal pole, and a small part of the
left temporal pole.

The yellow densely connected subnetwork includes the
following regions: the bilateral putamen, bilateral pallidum,
bilateral caudal anterior cingulate cortices, bilateral posterior
cingulate cortices, left middle temporal gyrus, bilateral superior
temporal gyri, bilateral transverse temporal gyri, bilateral
superior parietal cortices, bilateral supramarginal gyri, bilateral
precuneus, bilateral precentral gyri, bilateral postcentral gyri,
bilateral paracentral lobules, bilateral insula, bilateral pars
opercularis (mainly left), and the bilateral superior frontal gyri
(slightly lateralized to the left hemisphere).

The green densely connected subnetwork includes the
following regions: the bilateral cerebellum, bilateral lateral
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FIGURE 5 | Identifying cognitive factors using non-negative matrix factorization (NMF). (A) Procedure for identification of cognitive factors. First, the
parcel-to-cognitive function map (CFM) resting-state functional connectivity matrix was thresholded with zero. Then, NMF was applied to the thresholded matrix, and
the NMF coefficient and basis matrices were identified. The rows and columns of the NMF coefficient matrix correspond to parcels and NMF factors (cognitive
factors), respectively. The rows and columns of the NMF basis matrix correspond to factors and CFMs, respectively. (B) The NMF coefficient values for each NMF
factor are mapped on the parcels (shown as dots) located according to coordinates on a standard brain using heat mapping.
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TABLE 2 | Cognitive factors defined using non-negative matrix factorization of the parcel-to-CFM RSFC matrix.

Factor 1 (concept processing) Factor 2 (action and expression) Factor 3 (vision and attention)

Comprehension 0.248 Movement 0.329 Mental imagery 0.342

Narrative 0.245 Motor imagery 0.314 Spatial attention 0.333

Concept 0.244 Speech production 0.302 Visual search 0.329

Judgment 0.227 Skill 0.283 Search 0.317

Metaphor 0.221 Speech perception 0.256 Object recognition 0.252

Theory of mind 0.211 Motor control 0.245 Attention 0.242

Inference 0.204 Melody 0.235 Gaze 0.241

Belief 0.204 Integration 0.226 Face perception 0.223

Intention 0.202 Prosody 0.213 Selective attention 0.218

Semantic processing 0.191 Listening 0.207 Navigation 0.204

Factor 4 (executive function) Factor 5 (value and judgment) Factor 6 (memory)

Cognitive control 0.303 Reward 0.320 Episodic memory 0.342

Rule 0.291 Anticipation 0.270 Default mode network 0.302

Working memory 0.289 Fear 0.263 Memory 0.293

Planning 0.288 Arousal 0.261 Autobiographical memory 0.278

Maintenance 0.276 Choice 0.255 Memory retrieval 0.266

Response inhibition 0.241 Decision making 0.233 Remembering 0.264

Expectancy 0.224 Loss 0.229 Retrieval 0.264

Task switching 0.216 Risk 0.225 Thought 0.262

Decision 0.210 Stress 0.224 Familiarity 0.254

Deception 0.198 Eating 0.202 Prospective memory 0.195

For each factor, the cognitive functions having the ten largest NMF basis values are shown with the corresponding NMF basis values. CFM, cognitive function map; RSFC,
resting-state functional connectivity; NMF, non-negative matrix factorization.

occipital cortices, bilateral cuneus, bilateral pericalcarine cortices,
bilateral lingual gyri, bilateral fusiform gyri, bilateral inferior
parietal cortices, and the bilateral superior parietal cortices.
Additionally, a small part of the inferior temporal cortex
is included.

Network Communities That Are
Uniformly or Diversely Associated With
Cognitive Factors
Previous studies suggest that the RSFC network has a modular
or community structure (He et al., 2009; Power et al., 2011;
Bertolero et al., 2015, 2018). Such a community is considered as a
module of information processing. To elucidate the information
processing executed in each community, it is important to
reveal whether the community is related to uniform or diverse
kinds of cognitive functions. To this end, we identified the
community structure by applying spectral clustering to the
parcel-to-parcel RSFC matrix and investigated the functional
uniformity or diversity of each community (Figure 9). The
number of communities was set to 10, which maximized the
silhouette coefficients. The NMF coefficients for the parcels
belonging to the identified communities showed uniformity
and diversity in their association with the cognitive factors in
a community-dependent manner. The communities 2 and 8
specifically associated with cognitive factors 3 and 2, respectively.
Conversely, the community 4, which was mainly located in the
cerebellum, associated with diverse cognitive factors.

DISCUSSION

In the present study, we endeavored to show a whole picture
of the human cognition and to reveal characteristics of each
cognitive function that constitutes it. To this end, we investigated
the relationships among 109 cognitive functions based on two
ideas: (1) the cognitive functions that overlapping brain regions
are responsible for should be interrelated, and (2) the cognitive
functions that connected brain regions are responsible for should
be also interrelated. Especially, we characterized 109 cognitive
functions based on the CFM and RSFC-determined relationships
among them. First, we presented a relational mapping that
involved two-dimensional embedding of the cognitive functions
using the RSFCs among CFMs. Then, we performed conceptual
analysis in which a cognitive function was analyzed to identify
the subfunctions constituting it, based on the RSFCs between
voxels in the targeted CFM and the remaining CFMs. Moreover,
we obtained a novel whole-brain parcellation in which each
parcel had the vector of relatedness with these cognitive
functions. Based on the network analyses using the parcels,
we identified six cognitive factors, quantified the diversity of
information sources/receivers for each cognitive function and
factor, found the densely connected subnetworks associated
with specific cognitive factors, and identified the communities
that were associated with uniform or diverse cognitive factors.
Altogether, we suggest the effectiveness of our approach in
which we combined a large-scale meta-analysis of functional
brain mapping with the methods of network neuroscience
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FIGURE 6 | Cognitive factor-dependent diversity of informational interactions. (A) Heat source (left) and temperature (right) distributions on the parcels for the
cognitive factor 1. The heat source values were defined as the non-negative matrix factorization (NMF) coefficient values of the corresponding column. Temperatures
were calculated at steady states of the diffusion process governed by the graph Laplacian. (B) The Gini coefficient distribution. For each parcel, the Gini coefficient
represents inhomogeneity of temperatures across the factors. The Gini coefficients and polar graph of temperature for the parcel circled with magenta and blue are
shown on the right. (C) Example plots between the Gini coefficient values and parcel-to-cognitive function map (CFM) resting-state functional connectivities (RSFCs).
Upper and lower plots correspond to the CFMs of ‘episodic memory’ and ‘object recognition,’ respectively. Each dot expresses each parcel. The parcels that have
the 10 largest RSFCs are red-colored. The means and standard deviations of the Gini coefficients for these red-colored parcels are shown as the centers and
radiuses of the red circles, respectively. The means are also indicated by the red dotted line. (D) The transposed NMF basis matrix, sorted by the Gini coefficients.
The cognitive function corresponding to each CFM is shown on the right.
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FIGURE 7 | Effect of the value of the diffusion coefficient on the weighted sum
of the Gini coefficient. Log-log plots of the weighted sums of Gini coefficients
with varying the diffusion coefficient. Throughout the parameter region, relative
orders are qualitatively similar except for the factor 3. The weighted sum of
Gini coefficients for factor 3 moves from largest (i.e., lowest diversity of
informational interaction) to smallest (i.e., highest diversity of informational
interaction).

to investigate the relationships among cognitive functions to
understand each cognitive function per se and the human as a
relational system consisting of cognitive functions.

Implications of the Results and
Comparisons With Previous Studies
Categorization of cognitive functions is an essential first step
not only for the scientific understanding of the brain but also
for the clinical application of neuroscientific knowledge for
diagnosis of psychiatric diseases. In this study, we provided
such categorizations using two methods. One was based on the
clustering on the CFM-to-CFM network and also yielded six
cognitive clusters, including ‘language,’ ‘action and expression,’
‘vision and attention,’ ‘executive function,’ ‘value and judgment,’
and ‘self and others.’ The other was based on the NMF, and
yielded six cognitive factors: ‘concept processing,’ ‘action and
expression,’ ‘vision and attention,’ ‘executive function,’ ‘value and
judgment,’ and ‘memory.’

We show the entire correspondences between the cognitive
clusters and the factors in Figure 10. The cognitive factors
‘action and expression,’ ‘vision and attention,’ ‘executive function,’
and ‘value and judgment’ roughly correspond to the cognitive
clusters that are labeled with the same names. The ‘memory’
factor mainly relates to the ‘self and others’ cluster. Additionally,
we like to stress that several functions that are strongly
associated with the ‘memory’ factor (e.g., ‘memory retrieval’
and ‘prospective memory’) belong to the ‘executive function’
cluster. The ‘concept processing’ factor seems to relate to the
cognitive clusters in a complex manner. Considering the NMF
basis vector, it is suggested to be related to both ‘language’
and ‘self and others’ clusters. Therefore, the concepts of
‘memory,’ ‘concept processing,’ ‘executive function,’ ‘language,’

FIGURE 8 | Identifying densely connected subnetworks using clique
percolation method. Subnetworks are color-coded and the non-negative
matrix factorization coefficients of the parcels belonging to the subnetworks
are shown in corresponding colors. The clique threshold K is a criterion for
densities of connectivity in subnetworks to be identified. The connectivity
becomes dense with an increase in K. When K = 3, all parcels were
interconnected, which implies only one network was identified. When K = 5,
11 subnetworks were identified. When K = 8, three subnetworks were
identified, in each of which the parcels were densely interconnected.

and ‘self and others’ are entangled, and the information
processing relating these concepts may be executed through close
interactions among them.

In the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5), which describes the current standardized
criteria to diagnose psychiatric diseases, the neurocognitive
domain is categorized into six subdomains consisting of ‘complex
attention,’ ‘executive function,’ ‘learning and memory,’ ‘language,’
‘perceptual-motor,’ and ‘social cognition’ (American Psychiatric
Association, 2013). We found rough correspondences between
the categorizations in DSM-5 and our results. The ‘complex
attention’ subdomain in DSM-5 is considered to be included
in the ‘vision and attention’ cognitive factor and cluster in the
present study. The ‘executive function’ subdomain in DSM-5
probably corresponds to the cognitive factor and cluster labeled
with the same name in this study. The ‘learning and memory’
subdomain in DSM-5 mainly relates to the ‘memory’ factor
in this study. Since the immediate memory is included in the
‘learning and memory’ subdomain in DSM-5, this may relate
to the ‘executive function’ cognitive factor and cluster in this
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FIGURE 9 | Characterizing communities in the whole-brain network with the cognitive factors. Ten network communities were identified using spectral clustering.
The parcels belonging to each community are shown by magenta dots. For each community, the subpart of the non-negative matrix factorization coefficient matrix
corresponding to the parcels in the community is shown on the right. The lowest row shows the row mean of the matrix.

study that involves ‘maintenance’ and ‘working memory.’ The
‘language’ subdomain in DSM-5 roughly corresponds to the
‘language’ cluster in our analysis. Furthermore, it also relates to
the ‘action and expression’ cluster in this study because it includes

‘syntax,’ ‘listening,’ ‘communication,’ and so on. Additionally, the
‘language’ subdomain in DSM-5 probably has a close relationship
with the ‘concept processing’ and ‘action and expression’ factors
in this study. The ‘perceptual-motor’ subdomain in DSM-5
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FIGURE 10 | Correspondences between cognitive clusters and factors.
Correlation coefficients between NMF basis vectors for the factors and
presence/absence vectors of cognitive functions for the clusters are shown. In
the presence/absence vectors, the presences and absences in the cluster
were assigned to ‘1’ and ‘0’, respectively.

mainly relates to the ‘action and expression’ and ‘vision and
attention’ factors and clusters in this study. The ‘social cognition’
subdomain in DSM-5 mainly relates to the ‘value and judgment’
and ‘self and others’ clusters in this study. It may also relate to the
‘concept processing’ and ‘value and judgment’ factors.

The relational mapping among cognitive functions that we
obtained provides several insights into the mechanisms of
cognition. We found that the default-mode network was located
in a position close to ‘self and others’-related cognitive functions
(e.g., ‘theory of mind’ and ‘autobiographical memory’) and
social cognitive functions (e.g., ‘social cognition’ and ‘decision-
making’). In fact, many studies suggest that these cognitive
functions share underlying neural substrates (Spreng et al., 2009;
Andrews-Hanna et al., 2010, 2014; Spreng and Grady, 2010; Mars
et al., 2012; Reniers et al., 2012; Li et al., 2014; Meyer et al., 2019).
We also found that ‘phonological processing’ was located close
to the ‘executive function’ cluster. This seems to be consistent
with Baddeley’s working memory system (Baddeley, 2000), in
which phonological loop interacts with central execution. From
the same point of view, we can link ‘episodic memory’ with
episodic buffer in Baddeley’s system, since it was also located close
to the ‘executive function’ cluster. More globally, we observed
that the ‘executive function’ cluster neighbored the ‘self and
others’ cluster, centering on the ‘default-mode network.’ Several
studies reported cooperative activity between the brain areas
related to these cognitive functions when subjects experienced
spontaneous thoughts (Christoff et al., 2009) and engaged in
creative tasks (Beaty et al., 2015) and mental simulations (Gerlach
et al., 2011). Thus, our relational mapping of cognitive functions
provides a whole picture of cognition which is feasible because
it includes many known neurocognitive relationships. A study to
survey relationships among cognitive functions whose aim was
similar to ours was conducted using text analysis of neuroscience

literature (Beam et al., 2014). In this study, the authors identified
networks among 100 cognitive concepts, among 100 anatomical
regions, and among combinations of both on the basis of the
co-occurrences of the terms in the texts. More recently, a study
reported the relations among 120 cognitive functions using
hierarchical clustering based on correlations between pseudo-
activation patterns, not RSFCs (Alexander-Bloch et al., 2018).
Owing to methodological variations between the present and
those studies, the present study can endow another picture
complementing these studies.

In the present study, we proposed a novel method for
conceptual analysis of cognitive concepts based on the CFMs
and RSFCs in the brain. This yielded functional subdivisions
of the cognitive concepts. Each sub-concept was characterized
by its relatedness with the other cognitive concepts. We found
several unexpectedly characterized sub-concepts. A sub-concept
of ‘emotion’ that is characterized by functionality involving
comprehension of abstract meanings is one such unexpected
sub-concept. This may imply that we need emotional processing
to receive an implicit message from linguistic expressions.
Conversely, emotional processing may require analysis of abstract
meanings. Further, we found that ‘thought’ had a sub-concept
related to imaginary navigation. Navigation is considered to be
handled by the grid and place cell systems. Several studies have
shown that these systems play roles not only in physical spaces
but also in abstract spaces such as social relationships, features
of objects and events, and relational knowledge (Tavares et al.,
2015; Constantinescu et al., 2016; Epstein et al., 2017; Garvert
et al., 2017; Aronov et al., 2017; Schafer and Schiller, 2018).
Therefore, imaginary navigation in an abstract space may be
generally used in thoughts.

In the analysis for diversity of informational interactions,
we observed that the nodes associated with cognitive functions
that were closely related to the ‘memory’ factor interacted
with the most diverse information. Since our analyses did not
indicate the directions of the interactions, it was not clear
whether these nodes were information sources or receivers.
If the nodes play the role of information source, our result
suggests that information processed with ‘memory’-related
functions is necessary to realize a wide range of cognitive
functions. Conversely, if the nodes are receivers of information,
it suggests that execution of ‘memory’-related cognitive functions
need information from a wide range of cognitive functions.
Since the ‘value and judgment’- and ‘executive function’-related
cognitive functions also have relatively diverse informational
interactions, these results suggest similar implications. To
support these results, an analysis to clarify the interaction
directions will be required. In the additional analysis, the
behavior of the factor relating to ‘vision and attention’ is
insightful since it suggests that the diversity of informational
interaction highly depends on the range of information
transmission. Since the efficacy of information transmission
changes depending on the brain state such as wakefulness
and sleep (Massimini et al., 2005), our observation may
suggest that the role of visual and attentional processing on
the entire cognitive information processing changes when the
brain state shifts.
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We identified a densely connected subnetwork that was
highly related to the ‘concept processing’ factor as well as the
subnetworks related to the ‘action and expression’ and ‘vision
and attention’ factors. The ‘concept processing’ subnetwork
included a direct pathway between the Broca’s and Wernicke’s
areas and an indirect pathway passing through the left
inferior parietal cortex, which has been previously identified
as constituents of the perisylvian language networks (Catani
et al., 2005). Moreover, we detected participation of a wide
range of structures in the left prefrontal cortex, including
the lateral, medial, and orbital regions as well as the frontal
pole in this subnetwork. Since these areas involve various
aspects of higher-order cognition (Passingham and Wise, 2012;
Fuster, 2015), this subnetwork suggests the existence of an
integrated cognitive function that is highly dependent on
language processing but is contributed also from functions
beyond language processing.

Previous studies have shown that functional communities
exist in the brain (He et al., 2009; Eickhoff et al., 2011;
Power et al., 2011; Crossley et al., 2013; Bertolero et al., 2015,
2018). The studies have emphasized functional specificities of
the communities. On the other hand, we found differences in
the degrees of functional specificities of the communities, in
which some communities were specifically associated with one
cognitive factor while other communities were associated with
diverse cognitive factors. One of the communities associated
with the most diverse cognitive factors was located mainly
in the cerebellum. Although the cerebellum was previously
considered to be related to motor functions, it is now recognized
that the cerebellum involves a remarkably wide range of
cognitive functions (Stoodley and Schmahmann, 2009; Strick
et al., 2009; Stoodley, 2012), which is consistent with our
results. Viewing the internal models in the cerebellum (Wolpert
et al., 1998) as a general controller working on various mental
activities may give rise to a theoretical foundation for the
diversity of cerebellar functionality (Ito, 2008). Additionally, a
theoretical study (Yamazaki and Tanaka, 2007) suggests that the
cerebellum is considered a kind of universal machine, the so-
called liquid state machine (Maass et al., 2002), which may also
support our finding.

Limitations and Future Directions
There are several limitations to the present study which
should be addressed in future studies. While constructing the
CFMs, we used abstract texts to count the occurrences of
cognitive terms. We did not utilize contextual information.
Therefore, we did not discriminate as to whether the occurrences
meant activation or deactivation. Additionally, to ensure
that a term was the main topic in a study, we only
used the frequency of the occurrences in its title, abstract,
and keywords. Utilization of contextual information is a
promising way to improve our analyses. The methods being
developed in the field of natural language processing will
probably provide such ways. Additionally, the use of natural
language processing technics can provide us useful data
revealing the constraints of inferring relationships among
cognitive functions.

Compared to the datasets stored in the recently developing
large-scale databases such as the Human Connectome Project
database (Smith et al., 2013; Van Essen et al., 2013), the dataset
used in the present study was small with respect to both the
number of subjects and the number of scan volumes. Although
we checked the reliabilities of the RSFC matrices and we consider
that the outlines of the results are validated, especially in details
of the results, some instabilities caused by the small data size were
probably not removed. Therefore, we should continuously revise
and establish knowledge suggested from our observations.

The number of parcels in the cognitive function-based whole-
brain parcellation was determined not based on data but by
reference to several existing atlases (Destrieux et al., 2010;
Power et al., 2011; Shen et al., 2013; Baldassano et al., 2015;
Fan et al., 2016). The selection of the number is a trade-
off problem. The larger number of parcels results in a set of
smaller parcels. This is suitable to reflect spatial heterogeneity
in the brain. On the other hand, since the BOLD signal of
the parcel is calculated by averaging the signals over the voxels
within it, the signal of a smaller parcel tends to be more
fluctuated. Several studies suggest that estimations of network
characteristics in the brain depend on a resolution of parcellation
(de Reus and van den Heuvel, 2013; Proix et al., 2016). Therefore,
we need to address the issue of the number of parcels in
the future study.

The connectivity measures used in this study were undirected
and did not provide any information regarding dynamic causality
and logical orders. On the other hand, we expect that the
identification of directions in connectivity will provide useful
insights into the issues dealt with in the present study. One
representative instance is the analysis of the diversity of
informational interactions, in which we found that cognitive
functions highly related to the ‘memory’ factor interact with
the most diverse kinds of information. If those cognitive
functions are information sources (or receivers), this result
suggests certain roles (or mechanisms) of memory-related
information processing in the entire cognitive information
processing. Similarly, directional information is required in
the RSFC-based conceptual analysis, in which we observed
that ‘emotion’ should implicate a sub-concept related to
comprehension of abstract meanings. To determine whether
emotional processing contributes to comprehension or vice
versa, we need to identify the direction of connectivity
between the CFM corresponding to ‘emotion’ and the CFMs
of the cognitive functions related to comprehension of abstract
meanings. Another instance in which directional information
is required is the relational mapping of cognitive functions.
This is expected to reveal the hierarchical dependencies
among the cognitive functions, which will provide a more
sophisticated perspective for the mechanism of the entire
human cognition. To these ends, we may use methods of
time series analyses, including the dynamic causal modeling
(Friston et al., 2003, 2014), Granger causality (Roebroeck
et al., 2005; Seth, 2010), and transfer entropy (Schreiber, 2000;
Vicente et al., 2011).

In our relational mapping, we used multidimensional scaling
to embed cognitive functions. Although this method provided
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an easily interpretable overview of the relationship among
cognitive functions, the distances between them were more
or less distorted. Therefore, we need more sophisticated
embedding methods. The t-SNE may be such a method (van
der Maaten and Hinton, 2008; van der Maaten, 2014). Recently,
embedding methods into non-Euclidean spaces, such as Poincaré
embedding, has been proposed (Nickel and Kiela, 2017). Such a
non-Euclidean embedding method is considered to reveal other
types of information regarding the relationships among cognitive
functions. In addition, on the basis of CFMs, RSFCs, and other
useful neuroscientific tools, exploring ontological relations [e.g.,
is-a and part-of relationships (Lenartowicz et al., 2010; Hastings
et al., 2014; Poldrack and Yarkoni, 2016)] is an important
future direction.

The methods and results provided in the present study let
us clarify the meaning of each cognitive concept and obtain an
analytic and synthetic understanding of the relationships among
cognitive concepts. This possibly provides an empirical sketch
of the research domains of cognitive neuroscience, which has
been the aim of neuroimaging studies involving meta-analytical
methods (Alhazmi et al., 2018). Moreover, this will stimulate
the research fields of biological brain- and/or cognition-inspired
artificial intelligences (Anderson and Lebiereeds, 1998; Anderson
et al., 2004; Anderson, 2005; Eliasmith et al., 2012; Hassabis
et al., 2017) by providing guidelines for understanding human
cognition as a whole.
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