
RESEARCH
Quantitative Phosphoproteomics Analysis Uncovers
PAK2- and CDK1-Mediated Malignant Signaling
Pathways in Clear Cell Renal Cell Carcinoma
Authors
Aydanur Senturk, Ayse T. Sahin, Ayse Armutlu, Murat Can Kiremit, Omer Acar, Selcuk Erdem,
Sidar Bagbudar, Tarik Esen, and Nurhan Ozlu
Correspondence Graphical Abstract
2022, Mol Cell Proteomics 21(11), 10
© 2022 THE AUTHORS. Published b
Molecular Biology. This is an open a
creativecommons.org/licenses/by-nc
https://doi.org/10.1016/j.mcpro.2022
nozlu@ku.edu.tr

In Brief
Senturk et al. (2022) identified
>16,000 phosphopeptides in
clear cell Renal Cell Carcinoma
tumors, of which 600 were
determined to be differentially
regulated between tumor and
normal adjacent tissues.
Furthermore, several oncogenic
pathways were determined to be
enriched in the tumors such as
RAC1 activation, MAPK and
VEGF signaling, EGFR signaling,
and cytokine signaling.
Moreover, the kinase PAK2 was
identified as one of the key
drivers of tumor migration and
invasion, having prognostic
impact on the survival of ccRCC
patients.
Highlights
• More than 16,000 phosphopeptides identified in clear cell Renal Cell Carcinoma tumors.• Mesenchymal profile implies increased migratory behavior of ccRCC tumors.• PAK2 and CDK1 are undescribed key kinases in ccRCC tumorigenesis.• High expression of PAK2 leads to significantly worse survival of ccRCC patients.
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RESEARCH
Quantitative Phosphoproteomics Analysis
Uncovers PAK2- and CDK1-Mediated Malignant
Signaling Pathways in Clear Cell Renal Cell
Carcinoma
Aydanur Senturk1, Ayse T. Sahin1 , Ayse Armutlu2, Murat Can Kiremit3, Omer Acar3 ,
Selcuk Erdem4 , Sidar Bagbudar5, Tarik Esen3, and Nurhan Ozlu1,6,*
Clear cell Renal Cell Carcinoma (ccRCC) is among the 10
most common cancers in both men and women and
causes more than 140,000 deaths worldwide every year. In
order to elucidate the underlying molecular mechanisms
orchestrated by phosphorylation modifications, we per-
formed a comprehensive quantitative phosphoproteomics
characterization of ccRCC tumor and normal adjacent
tissues. Here, we identified 16,253 phosphopeptides, of
which more than 9000 were singly quantified. Our in-depth
analysis revealed 600 phosphopeptides to be significantly
differentially regulated between tumor and normal tissues.
Moreover, our data revealed that significantly up-regu-
lated phosphoproteins are associated with protein syn-
thesis and cytoskeletal re-organization which suggests
proliferative and migratory behavior of renal tumors. This
is supported by a mesenchymal profile of ccRCC phos-
phorylation events. Our rigorous characterization of the
renal phosphoproteome also suggests that both
epidermal growth factor receptor and vascular endothelial
growth factor receptor are important mediators of phos-
pho signaling in RCC pathogenesis. Furthermore, we
determined the kinases p21-activated kinase 2, cyclin-
dependent kinase 1 and c-Jun N-terminal kinase 1 to be
master kinases that are responsible for phosphorylation of
many substrates associated with cell proliferation,
inflammation and migration. Moreover, high expression of
p21-activated kinase 2 is associated with worse survival
outcome of ccRCC patients. These master kinases are
targetable by inhibitory drugs such as fostamatinib, min-
ocycline, tamoxifen and bosutinib which can serve as
novel therapeutic agents for ccRCC treatment.

Clear cell Renal Cell Carcinoma (ccRCC) is the most com-
mon (~75% frequency) and most malignant histological sub-
type of kidney cancer caused primarily by loss of the tumor
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suppressor von-Hippel-Lindau (VHL) gene (1). The disease
accounts for more than 140,000 deaths worldwide every year
(2) and is characterized by a 5-year survival rate of <10% for
advanced tumors (3). Despite the increasing interest in under-
standing the pathogenesis of this cancer type, RCC is still
mainly treated by surgical resection of the tumor mass as it is
considered to be resistant to traditional chemotherapy and
radiotherapy (2). In recent years, high-throughput mass
spectrometry–based phosphoproteomics analysis of cancer
biopsies has emerged as promising tool to elucidate the un-
derlying molecular mechanisms of tumor pathology. Phos-
phorylation is the most common and most important reversible
post-translational modification (4). It is assumed that around
75% of the human proteome is transiently phosphorylated in
order to regulate andmaintain biological processes such as cell
division, protein synthesis, cell growth, apoptosis and devel-
opment (4, 5). In fact, kinases, which are in many cases en-
zymes or receptors, are attractive targets for numerous Food
and Dug Administration (FDA)-approved drugs (4, 6). Howev-
er, attempts to portray the phosphorylation profile of ccRCC
tumors are scarce. Deb et al. (7) conclude by comparing the
respective Clinical Proteome Tumor Analysis Consortium
(CPTAC) data that the ccRCC phosphoproteome is in general
distinct from that of five other cancer types, as lower abun-
dance levels for 161 common phosphosites were determined in
RCC. Furthermore, theCPTACphosphoproteome of ccRCC (8)
includesmore than 40,000 identified phosphosites detected by
Fe3+-immobilized metal affinity chromatography and repre-
sents, besides the study of Peng et al. (9), one of the largest
phospho-profiles of ccRCC tissues. However, while the
CPTAC analysis uncovered druggable phosphorylation
signaling events such as the epidermal growth factor receptor
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Phosphoproteome Analysis of ccRCC
(EGFR)-mediated mitogen-activated protein kinase (MAPK)
and AKT1-mTOR pathways, Peng et al. were rather interested
in the general identification of missing proteins (evidenced only
at the transcript level but predicted at the protein level). Another
attempt described by Haake et al. (10) aimed to characterize
tyrosine phosphorylations by pY-immunoprecipitation in
ccRCC tissues and cell lines, respectively. Elevated tyrosine
phosphorylation profiles were determined for the EGFR, MAPK
as well as the focal adhesion kinase pathways in the different
biospecimens, which can be effectively targeted by various
tyrosine-kinase inhibitors (10).
Here, we performed dimethylation-based quantitative phos-

phoproteomics analysis of ccRCC tissues to illuminate previ-
ously undescribed signaling cascades. For thephosphopeptide
enrichment, we employed on-column TiO2-MOAC (metal oxide
affinity chromatography) and detected more than 16,000
phosphopeptides. Our approach revealed that besides the
MAPK and EGFR pathways, a vascular endothelial growth
factor receptor (VEGFR)-induced pathway is strongly activated
in the tumor tissues leading to the activation of multiple CDK
and p21-activated kinases (PAK) kinases. Our findings suggest
that these events drive tumor growth, progression and invasion.
EXPERIMENTAL PROCEDURES

Ethics Statement

The study proposal was approved by the Ethics Committee of Koc
University in September 2017 (no. 2017.145.IRGB2.051) and was
prolonged for two more years. Tissue samples were collected with the
patients’ informed written consent following the guidelines of the
Declaration of Helsinki.

Sample Collection

The same tumor and matched normal adjacent tissue (NAT) sam-
ples of the discovery cohort from our previous publication were used
for phosphoproteomics analysis (11). The age of the 13 patients varied
between 47 and 74 and reflected a typical gender representation for
RCC with a 1.6:1 male-to-female-ratio (supplemental File S1).
Resected tissue samples were reached to the pathologist within
10 min and viable tumor areas were immediately sectioned and stored
at −80 ◦C for subsequent pathological evaluation and proteomics
sample preparation (supplemental Fig. S1).

Experimental Design and Statistical Rationale

For quantitative phosphoproteomics analysis, proteins from 13
frozen tumor and normal tissue biospecimens, respectively, were
isolated and subjected to LC-MS/MS analysis. The order of sample
preparation was randomized and independent of the patient list
(supplemental File S1). The same processed peptide samples that
were used for global proteome analysis in our previous publication (11)
were used in this study for phosphoproteomics characterization. To
prevent bias from the chemical labeling of peptide samples (dime-
thylation), the labeling was swapped for half of the patient samples.
Phospho-enriched samples were analyzed as triplicates and the total
set of identified phosphopeptides was subjected to multiple filtration
steps to reduce the data into “high-confidence” (quantified in ≥75% of
the cohort, Tier I) and “medium-confidence” (quantified in ≥50% of the
cohort, Tier II) phosphopeptides. For comparative analysis, the ob-
tained phosphopeptides were compared to different databases such
2 Mol Cell Proteomics (2022) 21(11) 100417
as PhosphoSitePlus, CPTAC (ccRCC) and The Cancer Genome Atlas
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC), respectively. To
determine significantly regulated phosphopeptides between tumor
and normal tissues, one-sample Wilcoxon signed-rank test (p-value
<0.05) was employed on the median log2 tumor/normal ratios.

In-Solution Digest, Isotopic Labeling and Fractionation of Samples

Sample preparation steps including protein digest, peptide labeling
and fractionation are described in our previous study (11). Briefly, NAT
and tumor tissue samples were subjected to protein isolation using a
urea based lysis buffer followed by extensive homogenization in a bullet
blender. Trypsinized samples were then labeled at their primary amines
(N terminus and lysine residues) with heavy and light dimethyl isotopes
to incorporate a fixed mass difference between sample types. Labeling
reagents were swapped for half of the samples in order to prevent bias
from the labeling choice (supplemental File S1). After mixing the labeled
samples of a patient at 1:1 heavy-light-ratio, the peptide mixtures
(estimated protein amount 1.2 mg) were fractionated on-column by
strong cation exchange chromatography into 10 fractions. Desalted
fractions were stored at −20 ◦C.

Phosphopeptide Enrichment

Enrichment of phosphopeptides was performed on-column by
MOAC using 500 μg of titanium dioxide (TiO2) beads (5 μm, Sachtle-
ben) packed into microcolumns (20 μl GELoader, Eppendorf), which
were equilibrated with loading buffer [80% acetonitrile (ACN) and 6%
trifluoroacetic acid] (12). The dried desalted dimethyl-labeled peptide
fractions were reconstituted in loading buffer to a final concentration
of 1 μg/μl and the 10 fractions were pooled into six fractions. The
peptides were slowly loaded onto the positively charged micro-
columns at 50g. The bound phosphopeptides were washed with 0.1%
trifluoroacetic acid in 50% ACN and then eluted with 20 μl of 10%
ammonia solution into a new tube containing 35 μl of 10% formic acid
(FA). The eluted peptides were further acidified by addition of 3 μl of
100% FA and immediately analyzed in LC-MS/MS.

Data Acquisition

The phospho-enriched fractions were analyzed in triplicate with a
120 min linear gradient on an UltiMate 3000 RSLCnano reversed
phase chromatography platform (Thermo Fisher Scientific) coupled to
a Q Exactive HF hybrid quadrupole-Orbitrap mass spectrometer
(Thermo Fisher Scientific). The fractions were loaded onto an in-house
packed 100 μm i.d. × 17 cm C18 column (Reprosil-Gold C18, 5 μm,
200 Å, Dr Maisch) and run with a flow rate of 300 nl/min. The chro-
matographic separation of the peptides started at 4% of solution B
(ACN with 0.1% FA) and gradually increased to 25% in 67 min. The
gradient continued from 25% to 45% of solution B in the next 20 min.
Peptides in the mass range of 400 − 1,500 m/z and with a positive
polarity were allowed for detection in data-dependent mode. For the
MS1 spectra acquisition, the resolution was set to 120,000, the
automatic gain control (AGC) target to 1e6, and the maximum injection
time to 60 ms. The top 20 most intense peptides per cycle were
selected for fragmentation in the higher-energy collisional dissociation
cell with a normalized collision energy of 27. MS2 spectra acquisition
was conducted at a resolution of 30,000, an AGC target of 1e5, a
maximum injection time of 60 ms, and a fixed first mass of 100 m/z.
Furthermore, the isolation window was set to 2.0 m/z, the dynamic
exclusion to 20 s, the minimum AGC to 3e3, and the charge exclusion
was set as unassigned, 1.

Data Processing

Peptide identification and quantification from raw MS data files
were done with Proteome Discoverer (PD) (v1.4, Thermo Scientific)



Phosphoproteome Analysis of ccRCC
using the Mascot (v2.5.1, Matrix Science) search engine. The
peptide spectral matches were searched against a Swissprot
database containing 21,039 entries for Homo sapiens retrieved from
Uniprot in March 2016. Trypsin was selected as hydrolytic enzyme
with a maximum number of allowed missed cleavages of two. For
peptide identification, a mass tolerance of ±20 ppm for precursor
masses and ±0.05 Da for fragment ions was selected. For dimethyl
labeling, the 2plex dimethyl-based heavy/light quantitation method
with a mass precision requirement of 2 ppm for precursor ions was
used. Light and heavy dimethylation of peptide N termini and of
lysine residues, phosphorylation at serine, threonine and tyrosine
residues, as well as methionine oxidation were set as dynamic
modifications. Cysteine carbamidomethylation was set as fixed
modification. Determination of phosphosite positions was done by
using the implemented node phosphoRS (v3.0). The false discovery
rates (FDR) for peptide and protein identifications were set to 1%
using the Percolator node in PD (13). Furthermore, a filter was
applied to allow only peptide identifications with medium and high
confidence, with a sequence length between 7 and 25, a Mascot
score >20 and a peptide rank of 1.

Quantification ratios of samples with swapped dimethyl labeling
were converted to tumor/normal format. The data were filtered for
peptides quantified in at least two out of three technical replicates in
any of the 13 biological replicates. The 3810 resulting phosphopep-
tides are hereafter denoted as “quantified phosphopeptides”. A sec-
ond filter was applied to reduce the data to phosphopeptides
quantified in ≥75% of the cohort (Tier I) or ≥50% of the cohort (Tier II).
All quantification ratios were then normalized to the median of the
non-phosphorylated peptides in the sample and log2 transformed. The
phosphorylated peptides were further filtered for ≥50% phosphosite
probability.

For statistical analysis, the Python function scipy.stats.wilcoxon
(v0.14.0) was extended by the feature to omit missing quantification
values and was then applied peptide-wise on the whole technical
replicates data. p-values <0.05 were considered statistically signifi-
cant which led to a total of 600 (Tier I) and 1,223 (Tier II) “significantly
regulated phosphopeptides”, respectively. All subsequent analyses
were performed with the Tier I dataset unless otherwise stated.

For the determination of statistical difference between phospho-
peptide and non-phosphopeptide distributions, two-sample Student’s
t-test (p-value <0.05) was applied via the Python function
scipy.stats.ttest_ind.

Functional Annotation

Significantly up-regulated and down-regulated phosphorylated
proteins were annotated by their Gene Ontology biological process
association using the PANTHER (v14) platform (14) with an FDR
setting of 0.05. The proteins were further annotated by their function in
cancer using the COSMIC Cancer Gene Census database (v91) (15)
and also by associated FDA-approved drugs with inhibitor function
retrieved from the Drugbank database (v5.1.7, access August 2020)
(16). Chemical elements were excluded as drugs.

To further characterize the functionality of the phosphopeptides,
a previously published study from our group on the epithelial-to-
mesenchymal phosphoproteome (17) was used for sequence-
based comparison with the determined significantly dysregulated
phosphopeptides.

Moreover, we assessed for the significant phosphopeptides the
probability of biological relevance by using the data of Ochoa et al.
(18) and by annotating the phosphopeptides with their reported
functional score. More specifically, both datasets were matched by
the protein sequence position and the residue type of the modifica-
tion. Only phosphopeptides with a score >0.5 were considered
functional.
Kinase-Substrate Network Recreation

To predict kinase activities in the tumor and NATs, we implemented
the NetworKIN3.0 (19) algorithm (access August 2022), which anno-
tates kinases based on STRING interactions and phylogenetic links
within kinase families. For this purpose, the significantly regulated
phosphopeptides of the Tier II dataset were centered to their phos-
phosite and expanded by the surrounding ±7 amino acid (aa)
sequence window. Only kinase-substrate predictions with a Networ-
KIN score >5 were considered for network recreation using the visu-
alization software Cytoscape (v3.8.0). The network components were
annotated by their Gene Ontology cellular compartment feature using
QuickGO (20), limited only to Uniprot assignments. In case of multiple
cellular allocations, priority was given as follows: “membrane”, “nu-
cleus”, “cytoplasm”, “extracellular” and “other”, respectively. Addi-
tionally, the recreated network was complemented with the enriched
Reactome pathways retrieved as over-representation analysis of the
kinases and substrates via the webtool WebGestalt (v2019) (21) (ac-
cess August 2022) at default settings.

The predicted kinases were further mapped to the human kinome
phylogenetic tree using the KinMapbeta tool at www.kinhub.org (ac-
cess August 2022) (22).

Motif and Survival Analysis

To find conserved sequence motifs, the ±7 aa sequence windows
of the centered significantly regulated phosphosites were subjected to
the webtool MoMo (v5.3.3) (23) (access August 2022), which applies
the motif-x algorithm. For the predictions, a 15 residue motif width, 20
occurrences, and a p-value of <0.000001 were set.

For the determination of the prognostic power of kinases, the web
tool Kaplan–Meier Plotter (24) (access August 2022) was used with the
mRNA data of the TCGA-KIRC cohort (n = 530) (25) and the “auto
select best cut-off” option to optimally partition the patients based on
the lowest p-value and the highest hazard ratio.

Additionally, the proteome data of the CPTAC cohort (n = 102) (8)
was used for survival analysis. For this purpose, the CPTAC global
proteome and phosphoproteome data were processed by removing
control samples, non-ccRCC samples and contaminated samples,
respectively. Furthermore, the phosphopeptide data were aggregated
to obtain phosphoprotein quantification values by calculating the
mean abundance value from all quantified phosphopeptides of a
protein in a sample. Individual tumor quantification values were then
gene-wise normalized to the median quantification value of all normal
tissue samples. Partitioning of the CPTAC cohort into “low and high
expression” was based on the mean quantification value of the kinase
of interest as cut-off. Survival curves were created using the
KaplanMeierFitter and multivariate_logrank_test functions of the Py-
thon library lifelines (v0.25.0).

Comparison With Omics Data

The generated phosphoproteomics data were compared with the
corresponding global proteome data of the same tissue samples
previously described by our group (11). More specifically, the median
log2 tumor/normal ratio for a given phosphopeptide was compared
with the respective ratio of the available non-phosphorylated version
of the peptide.

The identified phosphosites of this study were also compared with
the PhosphoSitePlus database (access November 2020) (26) by
matching the ±7 aa sequence windows. We further compared our
ccRCC phosphoproteome with the processed CPTAC data (8) by
matching protein sequence positions of identified individual phos-
phosites. Furthermore, the phosphosite datasets were also compared
quantitatively by their median log2 tumor/normal ratios (CPTAC cohort
with both tumor and matched normal tissue samples, n = 80). Pearson
Mol Cell Proteomics (2022) 21(11) 100417 3
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FIG. 1. Phosphoproteome analysis of clear cell Renal Cell Carcinoma. A, experimental outline of dimethylation-based quantitative
phosphoproteomics approach. B, distribution of quantified phosphopeptides and non-phosphopeptides across all patients. C, number of
identified and quantified phosphopeptides and phosphoproteins. “Quantified” refers to quantifications in at least two out of three technical
replicates. D, MA plot depicting intensity distribution of quantified phosphopeptides and non-phosphopeptides. Top and right histograms show
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and Spearman correlations were calculated for common quantified
phosphosites using the respective Python scipy.stats functions.

Cell Viability Assay

Approximately 7500 cells (CAKI-2, A498 and MCF7) were seeded in
96-well cell culture plates and treated with different concentrations of
tamoxifen (25–100 μg/μl) for up to 72 h. After each 24-h treatment with
the drug, the cells were fixed with 50% trichloroacetic acid for 1 h
at +4 ◦C. Viable cells were stained for 30 min at room temperature
using 0.4% sulforhodamine B solution and washed with 1% acetic
acid. 10 mM Tris solution was then added to the wells and the optical
density was measured at 564 nm in a Thermo Scientific MultiskanGO
plate reader. For each individual experiment, cell survival changes
were expressed as percent of the untreated control. Statistical anal-
ysis was done using two-way ANOVA in GraphPad PRISM v9.

RESULTS

Shotgun Proteomic Approach Achieves Deep Coverage of
ccRCC Phosphoproteome

In this study, a comprehensive quantitative phosphopro-
teomics analysis of frozen ccRCC tumors and NATs has been
conducted to illuminate undiscovered signaling pathways
mediated by protein phosphorylation. For this purpose, the
dimethyl-labeled fractionated peptides of tumor and NATs
from our previous global proteomics analysis (11) were sub-
jected to phosphopeptide enrichment using TiO2 beads and
were analyzed as technical triplicates in LC-MS/MS (Fig. 1A).
The discovery cohort consisted of 13 patients of different age,
grade, stage and gender. In general, the identification and
quantification of phosphorylated and non-phosphorylated
peptides in the enriched samples were robust across patients
and spanned approximately 12 orders of magnitude in the
tumor/normal fold change dynamic range (Fig. 1B). In total, we
identified 16,253 phosphopeptides from the tumor and NAT
samples with an FDR of 0.01, which were assigned to 3486
phosphoproteins (Fig. 1C). The majority of the identified
phosphosites (15,136) were class I sites with a localization
probability of ≥75%. Out of these phosphosites, 10,811 were
unique sites (localization probability cut-off ≥50%). Further-
more, 3810 dimethyl-labeled phosphopeptides were quanti-
fied in both tumor and NATs, which corresponded to 1329
quantified phosphoproteins. In general, the abundance levels
of quantified peptides (log10 peak area) varied over 4 orders of
magnitude in dynamic range (Fig. 1D). Moreover, the fold
change distributions of quantified phosphopeptides and non-
phosphopeptides followed a near normal pattern (Fig. 1D, top
histogram), however, a significant skewness of phosphopep-
tide ratios toward positive values was noticeable suggesting
enhanced phosphorylation events in the tumor tissues
distribution of fold change values and intensities of non-phosphopept
distribution. E, histogram showing general distribution of median tumor/n
*Student’s t test was applied for statistical determination of skewness bet
serine (pSer), threonine (pThr) and tyrosine (pTyr) phosphosites with ≥50
(1P site) and multiply (≥2P sites) phosphorylated peptides with ≥50%
localization probability with PhosphoSitePlus database. ccRCC, clear ce
compared to NATs (Fig. 1E). As expected, most phosphosites
were serine residues (88.4%), followed by threonine (10.6%)
and tyrosine residues (1.01%) coinciding with previously re-
ported frequencies (4) (Fig. 1F). Furthermore, most peptides
were singly phosphorylated (70.3%), while only a small portion
of peptides harbored multiple phosphosites, which is also in
line with previous observations (9) (Fig. 1G). Comparing the
identified phosphopeptides of this study with the Phospho-
SitePlus database revealed that approximately 80.5% were
already reported, implicating that the majority of phosphory-
lation modifications in kidney cancer are not tissue-specific
(Fig. 1H).

Significantly Regulated Phosphorylations Play a Role in
Tumor Invasion and Harbor Conserved Kinase Recognition

Sites

Out of more than 3810 quantified phosphopeptides, we
determined 600 as statistically differentially abundant between
tumors and NATs (Wilcoxon signed-rank test, p-value <0.05)
(Fig. 2A), which were assigned to 323 unique proteins
(supplemental File S2). The majority were up-regulated
phosphopeptides (Fig. 2, A and B), supporting our observation
of elevated phosphorylation events in ccRCC tumors (Fig. 1E).
Interestingly, the 269 significantly up-regulated phosphopro-
teins in the tumors were primarily associated with protein
synthesis and cytoskeleton organization, while the 60 signifi-
cantly down-regulated phosphoproteins were associated with
actin-filament organization (Fig. 2C). These aberrant biological
processes suggest an increase in cell growth, cell motility and
invasiveness, which are indicators of malignant tumors and
have previously been linked to worse patient outcome (27).
Among the phosphorylated intermediate filament components
were vimentin (supplemental File S2 (Tier I & Tier II)) and
several keratins (KRT) such as KRT8 (supplemental Fig. S5, A
and B and supplemental File S2 (Tier II)) and KRT19
(supplemental File S2 (Tier II)).
To further understand the effect of phosphorylation, we

compared the generated phosphoproteome profile with our
global proteome data of the same ccRCC tissues (Fig. 2, D–F)
(11). The majority of the 323 dysregulated phosphoproteins
(76.5%) were not significantly regulated at the global prote-
ome level, while 76 phosphoproteins (23.5%) were also
significantly regulated on the global level (Fig. 2, D and E). This
implies that most of the phosphorylated proteins are similarly
abundant between tumor and normal tissues and that the
generally low stoichiometry of the phospho-proteoforms is
sufficient for molecular impact in the tumor cells such as
ides, respectively, with density lines representing theoretical normal
ormal ratios of quantified phosphopeptides and non-phosphopeptides.
ween distributions, p-value <0.05. F, frequency distribution of identified
% localization probability. G, frequency distribution of identified singly
site probability. H, comparison of identified phosphosites with ≥50%
ll Renal Cell Carcinoma.
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FIG. 2. Significantly regulated phosphorylations in ccRCC. A, overview of the number of quantified phosphopeptides. Inner pie chart
represents number of significantly regulated phosphopeptides with the majority being up-regulated in the tumor tissues. B, volcano plot
depicting significantly regulated phosphopeptides. C, enriched biological processes in ccRCC tumors compared to adjacent normal tissues.
Top 10 PANTHER GO-Slim biological process annotations of significantly up-regulated (pink) and down-regulated (blue) phosphoproteins,
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change in the activity, structure, conformation or localization
of proteins (28). To assess whether the phosphorylation
modification itself or the general abundance of the peptide
was elevated in the tumors, we compared for the 600 signif-
icantly regulated phosphopeptides the abundance levels be-
tween the phospho and available non-phosphorylated version
(Fig. 2F). In total, 204 of the 600 significantly regulated
phosphopeptides had a non-phosphorylated counterpart in
the global proteome. Indeed, the log2 tumor/normal ratios of
phosphorylated peptides were significantly higher compared
to those of the respective non-phosphopeptides (Wilcoxon
signed-rank test, p-value <0.00001) (Fig. 2F), confirming that
the observed signaling events are due to phosphorylation of
the proteins.
Furthermore, 296 of the 513 significantly up-regulated

phosphopeptides were associated with conserved serine
recognition sequences (Fig. 2, G and H and supplemental File
S4) such as the proline-containing serine motifs
xxxxxxxSPxxxSxx and xxxxxxxSPxxxxxx, which are known
target sites of the mitotic kinases cyclin-dependent kinase 1
(CDK1) and CDK5, respectively (29). Other frequent kinase
target motifs were xxLxRxxSxxxxxxx and xxxxRxxSxxxxxxx,
which are associated with different kinase groups such as
CaMK, AMPK, PKA and PKCα, respectively (29).

CDK1 and PAK2 Kinases Are Highly Activated in ccRCC
Tumors

In order to unveil the most prominent kinase activities, we
applied the kinase prediction tool NetworKIN on the deter-
mined significantly regulated phosphosites (600 in total, see
Fig. 2, A and B). We reduced the predictions to high-confident
ones with a NetworKIN score of ≥5 (178 predictions in total).
In summary, out of the 323 significantly regulated phospho-
proteins, 82 were substrates of a total of 53 different kinases
(supplemental File S4). Among the most frequently activated
kinases were different CDK kinases such as CDK1 and CDK5
(Fig. 3A), which confirms our previous finding that the
conserved phosphosite recognition sequences of these ki-
nases are highly enriched (Fig. 2, G and H). Furthermore, p21-
activated kinase 2 (PAK2) is the second most activated kinase
in the tumor tissues, followed by GSK3β and c-Jun N-terminal
kinase 1 (JNK1) (Fig. 3A). Also, predictions for the kinases
p38β (MAPK11) and p38γ (MAPK12) are highly enriched and
suggest the activation of the MAPK pathway (8). In contrast,
the activity for the kinases TGFbR2, AKT1, PAK1, CaMK2γ as
respectively. D, corresponding regulation of significantly regulated phosp
(11). E, scatter plot depicting distribution of matching phosphopeptides w
matches associated with significant protein abundance changes in globa
significantly regulated phosphopeptides with respective non-phosphoryl
p-value correction was applied after one-sample Wilcoxon signed-rank
and threonine phosphopeptides sorted by their ascending p-value (gra
phospho residue and enlarged by the ±7 aa sequence window) were used
Carcinoma.
well as PDHK2 and PDHK3 was reduced in the tumor tissues
compared to NATs. Furthermore, all predicted kinases
belonged to serine/threonine families (Fig. 3B). The majority of
the kinases belonged to the CMGC, AGC and STE families
with an overall increased activity in the ccRCC tumors
(supplemental Fig. S2C). Moreover, the rare kinase family
PDHK was only associated with reduced phosphorylation
events in the tumors.
To illuminate the most prominent signaling pathways in the

ccRCC tumors, we recreated the predicted kinase-substrate
interactions as network and complemented it with the associ-
atedReactomepathways (Tier II data, Fig. 3C and supplemental
File S4), which unveiled that certain malignant processes such
as AKT signaling, VEGF signaling, MAPK-related signaling, and
signaling by interleukins and second messengers shape the
pathobiology of renal cancers. Moreover, the activation of
RAC1 is the most enriched pathway in the tumors, with all
known six PAK kinase isoforms predicted to be activated in the
tumors (PAK1 and PAK4 are also associated with down-regu-
lated phosphopeptides, supplemental File S4). We further an-
notated the genes in the network by their role in cancer (colored
font) and noticed that several known oncogenes are substrates
of the kinases such as EGFR, MAPK1, AKT1, AKT2, MAP2K1,
MAP2K2, SGK1, BRAF and CDK4. Furthermore, nine sub-
strates were identified to have amesenchymal phosphorylation
(yellow border) (17) such as PKCi, CHAMP1, BCKDK, MYEF2,
PRCKa and PLEC, among others (supplemental File S4).

Functional Phosphorylation Events Are Targetable by FDA-
Approved Drugs

Given that identified phosphorylations might be functionally
redundant or non-functional (5, 18), we sought to unravel
those most likely to contribute to tumor pathobiology. To this
end, we compared our phosphopeptide data with the func-
tionality analysis of Ochoa et al. (2020) (18) and determined
that out of the 600 significantly regulated phosphopeptides,
230 are most likely functional (score >0.5) (supplemental
Fig. S2D). Next, we annotated the functional up-regulated
phosphopeptides by their predicted kinases to find the most
relevant kinases in renal cancer (Fig. 4A). This revealed that
CDK1, PAK2, p38γ (MAPK12), JNK1 and p38β (MAPK11) are
the kinases responsible for most of the functional phosphor-
ylations in ccRCC tumors (Fig. 4A and supplemental File S4).
Since kinases are the major targets for cancer drugs (6), we
further annotated the predicted kinases by their inhibitory
hoproteins in global proteome of same ccRCC tissues as described in
ith non-phosphorylated counterpart of global proteome. Indication of
l proteome in light green. F, tumor/normal fold change distributions of
ated counterpart. For statistical evaluation of distribution, BH-adjusted
test. G–H, enriched consensus motifs of significantly regulated serine
dient coloring). Phosphosites with ≥50% probability (centered to the
for the analysis with the motif-x algorithm. ccRCC, clear cell Renal Cell
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FDA-approved drugs. Indeed, approximately 77% of the
activated kinases (41 out of 53) are druggable (supplemental
Fig. S2E). A subnetwork for the three most relevant kinases
with the indication of functional phosphorylations (black font)
is shown in supplemental Fig. S5A. While PAK2 and CDK1 can
be targeted by the tyrosine kinase inhibitor fostamatinib, JNK1
can be inhibited by tamoxifen and minocycline. Furthermore,
cell viability assays showed for tamoxifen (supplemental
Fig. S5E), which targets besides JNK1 several PKC kinases
(supplemental File S4), a significant toxic effect on CAKI-2 as
well as A498 cells at low concentrations (p-value <0.05). Both
kinase groups were previously reported to increase prolifera-
tion and invasiveness of ccRCC cells (30, 31). Tamoxifen is
widely used for breast cancer treatment (32) and our results
support the efficacy of this drug for ccRCC as a similar cell
viability was determined between A498 cells and MCF7 cells
(supplemental Fig. S5E). Moreover, 22 out of the 53 kinases in
Figure 4A have a prognostic value for ccRCC tumors based on
TCGA-KIRC follow-up data (n = 530 patients) including several
CDKs such as CDK1, CDK2, CDK3, CDK4 and CDK5, as well
as several MAPKs such as MAPK11, MAPK13, MAPK7 and
MAP2K2 (supplemental Fig. S3), which stresses the impor-
tance to investigate cell proliferation–related pathways.
Furthermore, CPTAC follow-up data showed for PAK2, CDK4,
PKCa and CLK4 significantly worse survival outcome (log-
rank test, p-value <0.05) for the global proteome supplemental
Fig. S4A) and phosphoproteome data (supplemental Fig. S4B)
of ccRCC patients, respectively, due to high expression of
these kinases in the tumor tissues compared to NATs.
A summary of the most elevated signaling pathways

orchestrated by phosphorylation in ccRCC tumors and rele-
vant kinase inhibitors is illustrated in Fig. 4B.
DISCUSSION

In this study, we identified 16,253 phosphopeptides on
3486 proteins by quantitative phosphoproteomics analysis of
ccRCC tissues and NATs (Fig. 1C). Comparison with other
high-throughput approaches to characterize the ccRCC
phosphoproteome revealed a high level of concordance be-
tween our study and the CPTAC phosphoproteome
(supplemental Fig. S5, B and C). Approximately 66% of the
identified phosphosites of this study are shared with the
CPTAC dataset. In total, 6775 quantified common phospho-
sites displayed a significant positive correlation (0.54, p-value
<0.05, supplemental Fig. S5C) between both datasets. More
than 3700 phosphosites are unique to our study suggesting
The web tool KinHub was used with indications of predicted kinases a
down-regulated (orange), and down-regulated (blue) phosphopeptides, r
Reactome pathways (Tier II data). Nodes are organized by their cellular co
pathways decreases from left to right. Mesenchymal phosphorylations
color) are also indicated. Incomplete node border indicates Tier II (quan
(quantified in ≥75% of cohort). ccRCC, clear cell Renal Cell Carcinoma;
previously undescribed observations of phospho signal
transduction in ccRCC such as ion homeostasis, microtubule
polymerization/depolymerization, protein localization, wound
healing and cell–cell junction assembly (supplemental File S2).
These phosphosites might have been caught due to the
different phosphopeptide enrichment method, as we applied
TiO2-MOAC based enrichment, while the CPTAC group used
Fe3+-immobilized metal affinity chromatography.
Our in-depth proteomics analysis predicted all six members

of PAKs to be highly activated in the ccRCC tumors (Fig. 3C).
PAKs are known to be switched on by the small GTPases
Rac1 and Cdc42, and to be crucial for cytoskeletal dynamics,
invasion, metastasis, cell death and proliferation (33). Previous
phosphoproteomics studies have not described PAKs as
relevant kinases in ccRCC tumorigenesis yet (8–10), however,
our data strongly indicate that especially PAK2 is highly
functional in the tumors as it is predicted to phosphorylate 13
functional peptides across seven different substrates (Tier II,
supplemental Fig. S5A). In addition, PAK2 is one of the few
kinases that has also been experimentally detected by our
proteomics approach (supplemental Files S2 and S3), sup-
porting its predicted elevated activity. While especially the role
of PAK1 is largely understood in different cancers, the function
and targets of PAK2 remain to be elucidated (33, 34).
Furthermore, PAK2 has previously been noted to bind to
CDK12, and thereby to activate the MAPK pathway (34). Our
study shows for CDK1 and CDK5 high activity (Fig. 3A), which
warrants further investigation to shed light into the synergistic
functionality of PAKs and CDKs regarding cell cycle regulation
in RCC. Moreover, both PAKs and CDKs have been linked to
hypoxia, which is one of the main characteristics of ccRCC
tumors (11, 35). More specifically, increased levels of PAKs
are caused by hypoxia-induced activation of the mediators
Rac1 and Cdc42 through phosphatidylinositol 3 kinase and
protein tyrosine kinase (Fig. 4B and (36)). In contrast, CDKs are
indirect downstream effectors of hypoxia as they are inter-
actors of the hypoxia-induced cell cycle proteins cyclin D1,
cyclin A and cyclin E, respectively (37). Furthermore, we
determined for PAK5, PAK6, CDK1, CDK2, CDK3, CDK4 and
CDK5 worse survival outcome at high expression levels based
on TCGA-KIRC mRNA data (supplemental Fig. S3). Addition-
ally, survival analysis based on both CPTAC proteome as well
as phosphoproteome data revealed that PAK2 has a prog-
nostic value for ccRCC patients (supplemental Fig. S4).
Moreover, our analysis suggests that all PAKs can be inhibited
by the tyrosine kinase inhibitor fostamatinib (Fig. 4B). It is
worthwhile to examine the efficacy of fostamatinib in ccRCC
ssociated with significantly up-regulated (red), both up-regulated and
espectively. C, kinase-substrate network depicting the most enriched
mpartment retrieved using the QuickGO web tool. Enrichment level of
(orange border) as well as the role of substrates in cancer (node font
tified in ≥50% of cohort), while complete node border refers to Tier I
NAT, normal adjacent tissue.

Mol Cell Proteomics (2022) 21(11) 100417 9



FIG. 4. Altered kinase activities in ccRCC tumors. A, predicted activated kinases associated with significantly up-regulated phospho-
peptides with a functional score >0.5 according to Ochoa et al. (2020). Indicated drugs are associated FDA-approved therapeutics with inhibitor
function (for complete drug list see supplemental File S4). The prognostic feature of the kinases refers to supplemental Fig. S3. B, summarized
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treatment along with inhibitors for other signaling components
such as CDKs and MAPKs as combinatorial anticancer
strategy.
Another highly up-regulated phosphoprotein in the tumor

tissues is the receptor tyrosine kinase EGFR. We have already
described the potential involvement of the oncogenic EGFR-
MAPK and EGFR-AKT1-mTOR axes, which are known to
drive proliferation, inflammation, survival and metastasis, in
our global proteome analysis of the same tissue samples (8,
11). EGFR has been reported to be overexpressed in RCC
tumors, however, no clinically approved drug against EGFR is
currently in use for RCC treatment (8, 10). Our data suggest
that EGFR is a substrate of different predicted kinases such as
PDK1, MAPK1, MAPK3, GRK2, CaMK2α and CaMK2γ (Tier II,
supplemental Fig. S5D). We identified two significantly up-
regulated phosphosites for EGFR, namely T693 and S1166,
which are predicted to be functional modifications. EGFR is
particularly known to be activated by tyrosine phosphoryla-
tions in its tyrosine kinase domain (713–965 aa) (supplemental
Fig. S5D) (4); however, we could not detect sites in this
domain, probably due to the intrinsic nature of our enrichment
method to primarily catch serine and threonine residues.
Based on our findings, we propose that both the experimen-
tally derived EGFR-mediated pathways, as well as the pre-
dicted VEGFR-mediated signaling cascades are likely to
synergistically govern malignant phospho signaling in ccRCC
tumors (Fig. 4B).
As indicated by our data, the hyperphosphorylation of in-

termediate filaments such as vimentin or keratins is a major
event in ccRCC tumors (Fig. 3C and supplemental File S2),
which further supports the suggested migratory behavior of
renal cancers (27, 38). It has been previously described that
the levels of vimentin are four times higher in ccRCC, while the
epithelial marker E-cadherin is expressed at half or only one
third of the level compared to five other cancer types (7). This
may provide a possible explanation for the fact that around
one third of ccRCC patients already display distant metastasis
at diagnosis (7). As with other epithelial carcinomas, keratins
are also used as biomarkers for the accurate classification of
renal cell carcinomas (39). ccRCC tumors mainly express
KRT7, KRT8, KRT18 and KRT19 (39). Our analysis identified
multiple up-regulated keratin phosphorylation sites, including
KRT8 and KRT19, in ccRCC tumors (Tier II). These phos-
phorylated proteoforms of keratins may serve as valuable
biomarkers in immunohistochemistry for subclassification of
renal cancers.
Overall, our comprehensive phosphoproteomics profiling of

ccRCC tissues shed new light on the signaling cascades
driving renal tumorigenesis. Current approved treatment re-
gimes for advanced tumors use the tyrosine kinase inhibitors
significantly enriched phosphorylated pathways in ccRCC tumor tissues
pathways decreases from left to right. Signaling events that are predicte
≥50% of cohort) are indicated with brighter colors. ccRCC, clear cell Re
sunitinib, pazopanib, cabozantinib, axitinib and sorafenib
against VEGFR in the first-line setting (40). Furthermore,
recent trials combining tyrosine kinase inhibitors with immu-
notherapeutics such as axitinib with pembrolizumab or with
avelumab showed better toleration and median survival
outcome than monotherapies (40). However, many trials have
failed to effectively target other important mediators of RCC
tumorigenesis such as EGFR (8, 10), which is also supported
by our data to be a central player alongside VEGFR. Hence,
future directions warrant the investigation of new targeted
therapies against EGFR and its downstream effectors PAK
and CDK kinases with the suggested agents fostamatinib and
minocycline, also as combinatorial treatments with approved
EGFR agents such as dacomitinib, cetuximab and erlotinib.
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