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14-3-3z coordinates adipogenesis of visceral fat
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Corey Nislow3 & James D. Johnson1

The proteins that coordinate complex adipogenic transcriptional networks are poorly

understood. 14-3-3z is a molecular adaptor protein that regulates insulin signalling and

transcription factor networks. Here we report that 14-3-3z-knockout mice are strikingly lean

from birth with specific reductions in visceral fat depots. Conversely, transgenic 14-3-3z

overexpression potentiates obesity, without exacerbating metabolic complications. Only the

14-3-3z isoform is essential for adipogenesis based on isoform-specific RNAi. Mechanistic

studies show that 14-3-3z depletion promotes autophagy-dependent degradation of C/EBP-d,

preventing induction of the master adipogenic factors, Pparg and C/EBP-a. Transcriptomic

data indicate that 14-3-3z acts upstream of hedgehog signalling-dependent upregulation of

Cdkn1b/p27Kip1. Indeed, concomitant knockdown of p27Kip1 or Gli3 rescues the early block in

adipogenesis induced by 14-3-3z knockdown in vitro. Adipocyte precursors in 14-3-3zKO

embryos also appear to have greater Gli3 and p27Kip1 abundance. Together, our in vivo and

in vitro findings demonstrate that 14-3-3z is a critical upstream driver of adipogenesis.
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O
besity, a risk factor for many diseases, can result from
increased proliferation and/or differentiation of adipocyte
precursor cells1–3. Modulating processes that control

the expansion or differentiation of adipose tissue may yield
promising drug targets4,5, but an incomplete understanding of the
complex gene networks that underlie adipogenesis stands in the
way of this goal. Precise temporal and spatial control of specific
protein–protein and protein–DNA interactions drive the
induction of master adipogenic factors6,7. The principle events
underlying adipogenesis involve the nuclear translocation of
CCAAT/enhancer-binding protein (C/EBP)-b and C/EBP-d to
initiate the adipogenic programme, leading to the expression
of C/EBP-a and peroxisome proliferator-activated receptor-g
(Pparg) during terminal adipocyte differentiation6,7. Currently, it
is not known which proteins ensure the accurate binding and
localization of such transcriptional complexes in adipocytes.

Signalling events and networks can be coordinated by adaptor
proteins, which facilitate the proper localization of effector
molecules, transcription factors and kinases8–10. Adaptor
proteins, such as those of the highly conserved 14-3-3 protein
family, remain poorly understood compared with other classes of
signalling molecules. These adapters interact with transcription
factors harbouring canonical phosphorylated serine and
threonine motifs, facilitating their nuclear import or export9–11.
Little is known about the specific adaptor proteins that coordinate
the stability and/or nuclear translocation of critical adipogenic
factors, but 14-3-3 proteins are ideal candidates. While 14-3-3
isoforms across species display a high degree of homology and
may have some functional redundancy, each isoform could
perform unique, context-specific functions12,13. We have
demonstrated that not all 14-3-3 isoforms have equal roles in
pancreatic b-cell survival14. Whether 14-3-3 isoforms specifically
regulate other physiological processes, such as adipogenesis, is
still unclear due to the lack of functional studies employing side-
by-side comparisons.

Aberrant 14-3-3 protein abundance has been proposed to drive
the development of various chronic diseases15,16. In fact,
elevations in 14-3-3b, 14-3-3g and 14-3-3z protein levels have
been reported in adipose tissue from obese individuals17–19.
Whether such increases have causal roles in the development of
obesity is unclear, but these observations suggest pro-obesogenic
roles of this family of adaptor proteins. Given the ability of 14-3-3
proteins to control differentiation in other cell types20, it is
reasonable to hypothesize that one or more 14-3-3 proteins could
play pivotal roles in adipogenesis.

We report herein that out of the seven 14-3-3 isoforms, only
14-3-3z plays an essential role in adipocyte differentiation
in vitro. Deletion of 14-3-3z in mice causes marked reductions
in adipose tissue within specific depots, as well as metabolic
impairments, while 14-3-3z overexpression promotes fat tissue
expansion without deleterious metabolic defects. Targeted
analysis and unbiased transcriptomics reveals complex mechan-
isms whereby 14-3-3z regulates a diverse set of parallel and
sequential events to drive the adipogenic programme. Loss of

14-3-3z causes the aberrant expression of hedgehog signalling
effector, Gli3, and the cyclin-dependent kinase inhibitor, p27Kip1,
which attenuates adipogenesis. Taken together, our data support
the concept that 14-3-3z is a critical upstream regulator
of adipocyte differentiation. Therefore, targeting 14-3-3z and
components of its interactome may represent novel therapeutic
targets for obesity.

Results
14-3-3f regulates adiposity and adipocyte differentiation.
To understand the developmental and physiological roles of 14-3-
3z, we examined 14-3-3z-knockout mice (14-3-3zKO). This
previously generated mouse model had been used to implicate
14-3-3z in PI3K activation9, but characterizations of body
composition and/or energy homeostasis had not been reported.
Before birth, 14-3-3zKO embryos were smaller and weighed
significantly less than wild-type embryos (Fig. 1a; Supplementary
Fig. 1a). Despite catching up in length to wild-type mice in early
adulthood (24 weeks), 14-3-3zKO mice were significantly lighter
than wild-type controls due to significantly reduced fat mass as
revealed by DEXA body composition analysis (Fig. 1b,c;
Supplementary Fig. 1b,c). Analysis of subcutaneous and visceral
fat depots showed significant decreases in both gonadal fat and
peri-renal fat, but no effect on inguinal fat or brown adipose
tissue (Fig. 1d; Supplementary Fig. 1d). The reduction in fat mass
was reflected by significantly reduced fasting and random-fed
plasma leptin concentrations, as well as significantly lower
triglyceride levels in 14-3-3zKO mice (Supplementary Fig. 1e).
The decrease in adiposity was not associated with alterations in
energy expenditure or food intake (Supplementary Fig. 1f),
suggestive of a specific function of 14-3-3z in adipocytes.

Analysis of white adipocyte morphology in gonadal fat pad
cross-sections showed significantly smaller adipocytes in
14-3-3zKO mice (Fig. 1e,f), suggesting a less mature cellular
phenotype. Protein abundance of Foxo1 and Pparg, markers
indicative of mature adipocytes, were significantly reduced in
14-3-3zKO gonadal white adipocytes (Fig. 1g). Pparg mRNA was
not altered, suggesting post-transcriptional regulation of this
master adipogenesis regulator (Fig. 1h). Of the C/EBP isoforms,
only mRNA expression of C/EBP-a was significantly reduced in
14-3-3zKO adipocytes (Fig. 1i), as were Fasn and Atgl mRNA
(Fig. 1h). These observations suggest that 14-3-3z deletion results
in poorly differentiated, immature adipocytes. The decrease in fat
pad size was not associated with increased steady-state apoptosis,
quantified by western blot analysis of cleaved caspase-3 (Fig. 1g).
Quantitative PCR confirmed that expression levels of remaining
14-3-3 isoforms were unchanged in 14-3-3zKO mice (Fig. 1j),
which indicates that any effects in adiposity were specific to
changes in 14-3-3z expression and not influenced by alterations
in the expression of other 14-3-3 members. Thus, 14-3-3z
controls the development and maturity of adipocytes in vivo.

The lean phenotype of the 14-3-3zKO mice prompted us to
examine whether excess lipids had accumulated in non-adipose
tissue sites. Indeed, 14-3-3zKO livers exhibited mild steatosis

Figure 1 | Reduced adiposity and adipocyte maturity in mice lacking 14-3-3f. (a) Weights of e19.5 wild-type (WT) and 14-3-3z knockout (14-3-3zKO)

(n¼ 3 per group). (b) Body weights of 14-3-3zKO mice and littermate control wild-type (WT) mice (n¼ 10–12 per group). (c) DEXA body composition

analysis of WT and 14-3-3zKO at 24 weeks of age (n¼ 5–7 per group). (d) Weights of inguinal, brown adipose (BAT), gonadal and peri-renal fat pads

relative to total body weight of male WT and 14-3-3zKO mice (n¼4 per genotype). (e,f) Analysis of white adipocyte area (e) and size distribution (f) of

inguinal fat tissue, as assessed by perilipin staining, from 26 week old WT and KO mice (n¼ 3 per genotype). (g–i) Immunoblot (g) and quantitative PCR

measurements (h,i) of pro-adipogenic factors or mature adipocyte markers, respectively, from gonadal fat pads (n¼4–6 per group). (j) Comparison of

remaining 14-3-3 isoforms in gonadal white adipose tissue from WT and 14-3-3zKO mice (n¼ 5 per group). (k–n) Intraperitoneal glucose (k,m; 2 g kg� 1

b.w.) and insulin (l,n; 1.5 U kg� 1) tolerance tests on WT and 14-3-3zKO littermates at 10 (k,l) and 25 (m,n) weeks of age. Area-under-the-curve

measurements are shown (n¼ 7–8 mice per group). Error bars represent s.e.m. Significant differences between WT and KO mice are indicated by *Po0.05

(assessed by Student’s t-test).
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(Supplementary Fig. 1g). Hepatic Hsl expression was decreased in
14-3-3zKO mice (Supplementary Fig. 1h), but no differences in
genes encoding gluconeogenic enzymes were observed between
wild-type or knockout mice (Supplementary Fig. 1i).

Decreased glucose and insulin tolerance in 14-3-3fKO mice.
Decreased 14-3-3z abundance is associated with insulin resistance
in humans21, but it is unclear if this relationship is causative.
Thus, we evaluated glucose homeostasis and insulin sensitivity in
14-3-3zKO mice. No differences in fasting glucose levels were
observed between groups (Fig. 1k,m). Intraperitoneal glucose and
insulin tolerance tests revealed that 14-3-3zKO mice were mildly
glucose intolerant and exhibited mild systemic insulin resistance
(Fig. 1k–n). Significantly higher fasting plasma insulin
concentrations were seen in 14-3-3zKO mice (Supplementary
Table 1), but the decrease in insulin sensitivity was not due to
differences in circulating adiponectin concentrations in
14-3-3zKO mice (Supplementary Table 1). The decrease in
insulin sensitivity was associated with decreased Akt activation
in livers of 14-3-3zKO mice following an intraperitoneal insulin
bolus (Supplementary Fig. 1j).

Over-expression of 14-3-3f promotes healthy fat expansion.
Obesity has been associated with increased adipose tissue 14-3-3
protein abundance in several studies17–19, although it is unknown
whether this change alone is sufficient to increase adiposity. To
test this hypothesis, we studied transgenic mice with modest
global overexpression of 14-3-3z under the control of the
ubiquitin-C promoter22. Levels of the transgene were equally
expressed in insulin-sensitive gonadal white adipose tissue and
skeletal muscle (Fig. 2a), as well as other tissues22. At 52 weeks of
age, 14-3-3z transgenic mice were significantly heavier than their
wild-type littermate controls even when fed a normal chow diet
(Fig. 2b). Notably, 14-3-3z transgenic mice did not develop
glucose intolerance or insulin resistance (Supplementary Fig. 2a–d),
suggesting expansion of metabolically neutral adipose tissue.

Next, we tested whether overexpression of 14-3-3z promotes
increased capacity for adipose expansion in the context of
nutrient excess. Indeed, high-fat diet feeding for 8 weeks triggered
significantly greater weight gain and fat mass in 14-3-3z
overexpressing mice when compared with wild-type littermates
(Fig. 2c–e). Furthermore, these mice had significantly higher
Pparg, Lpl and Ap2 expression in gonadal white adipocytes
(Fig. 2f). Overexpression of 14-3-3z did not affect expression of
other 14-3-3 isoforms in adipose tissue (Fig. 2g), suggesting that
these effects are solely due to increased levels of 14-3-3z. High-fat
diet promoted the expected glucose intolerance in both wild-type
and 14-3-3z-overexpressing mice (Fig. 2h). However, despite
markedly greater weight gain, there were no additional deleter-
ious effects on glucose homeostasis in 14-3-3z-overexpressing

mice. Similarly, no additional negative effects on insulin
sensitivity (1.5 U kg� 1) resulted from the increased fat mass in
14-3-3z-overexpressing animals (Fig. 2i). Using a lower dose of
insulin (0.75 U kg� 1), we found that 14-3-3z-overexpressing
mice were actually more insulin sensitive than wild-type
littermate controls (Fig. 2k). The degree of hepatic steatosis
following high-fat diet exposure was similar between groups, and
no differences in circulating plasma free fatty acids and
triglycerides were detected (Supplementary Fig. 2e–g). Analysis
of genes associated with hepatic lipid metabolism and gluconeo-
genesis revealed that 14-3-3z-overexpressing mice had decreased
transcript abundance of Fasn, Srebp-1c and Acc (Supplementary
Fig. 2h,i). Collectively, our findings suggest that 14-3-3z is
necessary and sufficient to control obesity in vivo.

14-3-3f is required for adipocyte differentiation in vitro.
The in vivo studies described above define critical roles of 14-3-3z
in obesity. To define the isoform specificity of these effects and
the mechanisms by which 14-3-3z facilitates adipocyte differ-
entiation, we utilized three in vitro models. We first used 3T3-L1
pre-adipocytes, which recapitulate many signalling and tran-
scriptional events leading to the maturation of primary
adipocytes23, and pre-treated cells with a pan-14-3-3 small
molecule inhibitor that disrupts the interaction of 14-3-3 proteins
with their target proteins24. Inhibition of 14-3-3 proteins blocked
adipocyte differentiation and demonstrated a requirement for at
least one member of this molecular adaptor family (Fig. 3a).
Quantitative PCR revealed changes in expression levels of several
14-3-3 isoforms during in vitro adipogenesis, but only 14-3-3z
mRNA increased and stayed increased during the initial and
critical 48- hour period (Supplementary Fig. 3a). To test the
individual requirement of each isoform in adipogenesis, validated
isoform-specific siRNAs14 were transfected into 3T3-L1 pre-
adipocytes before differentiation (Supplementary Fig. 3b,c).
14-3-3z was the only isoform required for differentiation, as
assessed by Oil Red-O staining (Fig. 3b). Knockdown of 14-3-3z
had no effect on the expression of remaining isoforms
(Supplementary Fig. 3c). The effect of 14-3-3z depletion was
not due to a delay in differentiation, as si14-3-3z-transfected
3T3-L1 cells incubated for up to 14 days still did not undergo
adipogenesis (Supplementary Fig. 3d). 14-3-3z knockdown had
similar inhibitory effects on adipogenesis in 3T3-F442A cells
(Supplementary Fig. 4a)25. The prevention of differentiation was
not due to off-target effects of the RNAi approach because
embryonic fibroblasts derived from 14-3-3zKO mice also failed to
fully differentiate into adipocytes (Supplementary Fig. 4c).
Collectively, our data from three independent, in vitro 14-3-3z
loss-of-function models clearly suggest an essential, cell
autonomous role for 14-3-3z, but not other 14-3-3 family
members, in the process of adipocyte differentiation.

Figure 2 | Overexpression of 14-3-3f is sufficient for age-associated and high-fat diet-associated weight gain. (a) Expression of the TAP-tagged

14-3-3z (50 kDa) and endogenous 14-3-3z (30 kDa) in gonadal white adipose tissue (gWAT) and skeletal muscle (n¼ 3 per group). (b) Body weights

of WT and 14-3-3z-over-expressing transgenic (14-3-3zOE) mice were measured for 1 year (n¼4–9 per group; *Po0.05, assessed by Student’s t-test).

(c) Weekly body weights of 12 week old WT and 14-3-3zOE mice fed a high-fat diet (HFD, 60% fat) or the corresponding control diet (LFD, 10% fat) for 8

weeks (n¼ 6–8 per group, *Po0.05 when comparing HFD-WT to HFD-14-3-3zOE mice, assessed by Student’s t-test). (d,e) WT or 14-3-3zOE mice were

subject to DEXA body composition analysis before exposure to high-fat diet (d) or after 8 weeks (e) (n¼ 6–8 per group, *Po0.05, assessed by Student’s

t-test). (f) Quantitative PCR measurements of mature white adipocyte markers from WT and 14-3-3zOE mice (n¼6–8 per group; *Po0.05, assessed

by Student’s t-test). (g) Expression profile of remaining 14-3-3 isoforms in inguinal white adipose tissue from WT and 14-3-3zOE mice (n¼ 5 per group).

(h,i) Glucose tolerance (2 g kg� 1 b.w.; h) and insulin tolerance (1.5 U kg� 1 b.w.; i) tests were administered to WT or 14-3-3zOE mice after 8 weeks of

high-fat diet exposure (n¼ 6–8 per group, *Po0.05 when comparing WT-LFD with WT-HFD, $Po0.05 when comparing 14-3-3zOE-LFD with

14-3-3zOE-HFD, assessed by one-way ANOVA). (j,k) Glucose tolerance (j) and insulin tolerance (0.75 U kg� 1 b.w.; k) tests were administered to

WT or 14-3-3zOE mice after 2 weeks of high-fat diet exposure (n¼ 5–9 per group; *Po0.05, assessed by two-way ANOVA when comparing WT-LFD

with 14-3-3zOE–LFD). Error bars represent s.e.m.
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We next assessed the molecular consequences of 14-3-3z
knockdown in vitro. Measurement of early-stage adipogenic
transcription factors and mature adipocyte markers revealed a
critical role for 14-3-3z is this gene network (Fig. 3c,d).
Specifically, 14-3-3z knockdown prevented the increased abun-
dance of C/EBP-a, Pparg and Foxo1 (Fig. 3c), which are essential
master transcriptional regulators of adipogenesis7. The decreases

in Foxo1 and Pparg protein abundance in 14-3-3z-deficient
3T3-L1 cells recapitulated the significantly reduced expression of
these master adipogenic factors in 14-3-3zKO adipocytes in vivo
(Fig. 1h). Depletion of 14-3-3z also prevented the induction
of adipocyte-specific proteins associated with lipid metabolism
(Fig. 3d). In 3T3-F442A cells, the defects in adipogenesis caused
by depletion of 14-3-3z were also associated with impaired
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expression of various mature adipocyte markers (Supplementary
Fig. 4b). Together, with the in vivo data, these results further
support a key upstream role of 14-3-3z in adipogenesis.

To further elucidate the molecular mechanisms involved in
controlling this master adipogenic network, we tested the
possibility that 14-3-3z might control the abundance of C/EBP-
b and C/EBP-d, regulators of transcription during the early stages
of adipogenesis7. During the critical first 48 h of 3T3-L1 cell
differentiation, we observed parallel increases in the abundance of
14-3-3z together with C/EBP-b and C/EBP-d (Fig. 4a).
Pull-down experiments showed that C/EBP-b, but not C/EBP-d,
associated with endogenous 14-3-3z in differentiating cells

(Fig. 4b,c). As 14-3-3 proteins participate in the nuclear
transport of key adipocyte transcription factors11, we tested
whether 14-3-3z knockdown might affect the nuclear
translocation of C/EBP-b or C/EBP-d during differentiation.
Indeed, subcellular fractionation experiments demonstrated that
the amount of nuclear-localized 14-3-3z increased during the
differentiation process (Fig. 4d). 14-3-3z knockdown had no
impact on C/EBP-b nuclear import (Fig. 4d). However, 14-3-3z
depletion led to an unexpected and marked degradation of
C/EBP-d during differentiation, which reduced its nuclear
localization (Fig. 4d). Direct binding to 14-3-3 proteins can
prevent protein degradation of target proteins26, but we could not
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detect direct association of C/EBP-d with 14-3-3z (Fig. 4b),
suggesting that 14-3-3z regulates the stability of C/EBP-d through
indirect mechanisms. We studied the effect of 14-3-3z depletion
on C/EBP-d degradation by treating cells with the translation
inhibitor cycloheximide and confirmed that 14-3-3z affected the
stability of C/EBP-d (Fig. 4e). These findings place 14-3-3z

actions at early stages of differentiation that are upstream of
canonical master adipogenic transcription factors.

We next sought to determine how 14-3-3z controls C/EBP-d
protein stability. To examine the possibility of proteasome-
mediated degradation of C/EBP-d, we treated 3T3-L1 pre-
adipocytes with MG132 or epoxomicin, during differentiation.
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Neither inhibitors affected C/EBP-d stability (Fig. 4f,g) nor were
they able to overcome the 14-3-3z siRNA-mediated inhibition of
3T3-L1 differentiation into adipocytes (Fig. 4g). Paradoxically, we
also observed a 14-3-3z-dependent increase in the abundance of
CHOP, which is known to inhibit C/EBP-b and C/EBP-d27 and
may account for the failure to restore adipogenesis in this context
(Fig. 4f). Next we tested the hypothesis that increased autophagy
accounted for the decrease in C/EBP-d following knockdown
of 14-3-3z, as this isoform has previously been shown to
inhibit processes involved in autophagy28. Analysis of C/EBP-d
protein abundance revealed that inhibition of autophagy with
chloroquine during the last 24 h of the induction period was able
to maintain C/EBP-d abundance in 14-3-3z-depleted cells. In
contrast, inhibition of autophagy during the entire induction
period (0–48 h) did not rescue C/EBP-d abundance and actually
promoted the loss of 14-3-3z (Fig. 4h). Therefore, autophagy
appears to play complex, context-dependent roles in adipogenesis
upstream and downstream of 14-3-3z. Inhibition of autophagy
itself had inhibitory effects on adipocyte differentiation, and

neither 3-methyladenine nor chloroquine rescued the defects in
adipocyte differentiation induced by 14-3-3z knockdown (Fig. 4i).
While these manipulations are not specific to C/EBP-d, this
observation implies that multiple, parallel 14-3-3z-dependent
processes are important for adipocyte differentiation and
prompted us to broaden the scope of our search for additional
mechanisms downstream of 14-3-3z in the context of adipo-
genesis.

14-3-3f regulates cell cycle progression of pre-adipocytes.
Loss of 14-3-3z may impair the nuclear import of critical tran-
scription factors (Fig. 4d)11,29 and therefore alter the
transcriptome of differentiating adipocytes. Thus, we used RNA
sequencing to quantitatively measure global changes in the
transcriptome and identify downstream effects of 14-3-3z. Over
1,200 genes were significantly altered due to induction of
adipocyte differentiation or by knockdown of 14-3-3z
(0.05 FDR-adjusted qo0.05) (Fig. 5a), which is not surprising
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given the magnitude of the phenotypic differences. Results from
the transcriptomic analysis were confirmed by quantitative PCR
measurement (Fig. 5b,c). Within the top 25 genes that were
significantly changed, we identified genes implicated in
adipogenesis, such as Arxes and G0s2 (refs 30,31) (Supple-
mentary Table 2).

To gain a broader understanding of how 14-3-3z depletion
affects biological processes within the differentiating adipocyte, we
first compared significantly changed genes at t¼ 0, 24 and 48 h after
differentiation (Fig. 5d, Supplementary Fig. 5a,b). Gene ontology
classification of significantly differentially expressed genes revealed
changes in various biological processes due to 14-3-3z knockdown.
Gene-set enrichment analysis32 revealed that 14-3-3z knockdown
significantly modulated multiple cell cycle genes (Supplementary
Tables 3–8). We next investigated how 14-3-3z regulates the cell

cycle, a key process in differentiating 3T3-L1 cells33, using flow
cytometry. Knockdown of 14-3-3z led to an accumulation of cells
at G1 phase during the first 48 h of differentiation (Fig. 6a–d). To
further understand how depletion of 14-3-3z promoted cell cycle
arrest, we examined the expression profiles of cell cycle regulatory
genes. Cdkn1b and its product p27Kip1 were consistently
upregulated in 14-3-3z-depleted cells (Fig. 6e,f). p27Kip1 controls
the G1- to S-phase transition in murine pre-adipocytes33, and
defects in adipogenesis were associated with increased p27Kip1

abundance during the critical period of differentiation (Fig. 6f). To
determine whether the regulation of p27Kip1 by 14-3-3z during
adipogenesis was required for adipogenesis, 3T3-L1 cells were co-
transfected with siRNA against 14-3-3z and p27Kip1 (Fig. 6g,h;
Supplementary Fig. 6a). Simultaneous knockdown of both proteins
rescued the defect in adipocyte differentiation, as observed by
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Pparg abundance and Oil Red-O incorporation (Fig. 7g,h;
Supplementary Fig. 6b). The rescue of differentiation was specific
to Cdkn1b/p27Kip1 knockdown, as depletion of Cdkn1a and
Cdkn2c did not rescue the defect in adipogenesis (Supplementary
Fig. 6d). These observations demonstrate that 14-3-3z functions
upstream of the master adipogenic transcriptional programme and
is required for the proper maintenance of cell cycle progression
during adipogenesis.

14-3-3f inhibits hedgehog signaling to regulate Cdkn1b.
Analysis of the Cdkn1b promoter revealed that 14-3-3z knock-
down potentiated basal promoter activity of the region between
939 and 554 (Fig. 7a). Within this region, several binding motifs
were identified for Gli proteins (Fig. 7b)34, which are hedgehog
signalling effectors known to regulate adipogenesis35,36. Previous
studies in other cell types have pointed to physical interactions
between the 14-3-3e isoform and Gli proteins37. Thus, we
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assessed whether there are physical and functional links between
14-3-3z and Gli proteins. Using Shh-light2 cells38 to measure Gli
protein-dependent hedgehog activity, we found that 14-3-3z
knockdown increased both basal and SAG-induced Gli protein-
dependent activity (Fig. 7c). The observation that 14-3-3z
knockdown increased Cdkn1b promoter activity and Gli-
dependent hedgehog activity (Fig. 7a,c) prompted us to
examine whether 14-3-3z regulated the expression of hedgehog
effectors themselves. 14-3-3z knockdown decreased Ptch1
expression and significantly increased Smo and Gli3 expression
(Fig. 7d). Gli3 can function as an activator or a repressor
depending on proteolytic cleavage39, and knockdown of 14-3-3z
did not promote the expression of the repressor form (Fig. 7e).
Gli3 was found to complex with 14-3-3z during differentiation
(Fig. 7f,g), and this was associated with decreased occupancy of
Gli3 on the Cdkn1b promoter (Fig. 7h), suggesting that 14-3-3z
restricts Gli3-dependent Cdkn1b/p27Kip1 expression. In
undifferentiated cells, transfection with si14-3-3z or siGli3, or
co-transfection of si14-3-3z and siGli3, upregulated p27Kip1

protein abundance. In cells treated with the differentiation
cocktail for 48 h, transfection of siGli3 alone potentiated Pparg
protein abundance despite increased abundance of p27Kip1.
Co-transfection of si14-3-3z and siGli3 reduced p27Kip1 protein
abundance and permitted the induction of Pparg and ultimately
differentiation into a mature adipocyte (Fig. 7i,j). In contrast,
knockdown of the closely related Gli1 and Gli2 genes did not
rescue the defect in adipogenesis (Supplementary Fig. 7).
Collectively, these rescue experiments clearly demonstrate that
14-3-3z regulates the expression of p27Kip1 and the adipocyte
progenitor cell cycle through the hedgehog effector Gli3 to
control adipocyte differentiation in vitro.

14-3-3f alters Gli3 and p27Kip1 expression in e18.5 embryos.
The number of adipocytes is established early in life, with mini-
mal proliferation or apoptosis later in adults40. The mechanistic
studies described above pointed to an early defect in adipogenesis,
perhaps at the level of adipocyte precursors, in 14-3-3zKO mice.
Indeed, differences in adiposity could be due to the fact that
14-3-3zKO mice are born either with a reduction in the number
of adipose precursor cells or a specific group of precursors that
cannot differentiate into mature adipocytes. Thus, we examined
e18.5 stage embryos using Pref-1 as a marker for adipocyte
precursors41. Qualitatively, the number of Pref-1 cells appeared to
be slightly decreased (Fig. 8a). We observed striking reductions in
the number of lipid-laden ‘mature’ adipocytes in 14-3-3zKO
embryos (Fig. 8a). Adipose precursors in 14-3-3zKO embryos
displayed marked increases in Gli3 and p27Kip1 immunoreactivity
(Fig. 8b,c), which complements our in vitro findings where
depletion of 14-3-3z increased Gli3 and p27Kip1 expression in
3T3-L1 pre-adipocytes (Fig. 6f,g; Fig. 7d). Taken together, these
findings suggest that in vivo deletion of 14-3-3z alters the
expression of Gli3 and p27Kip1 in adipose precursors in
developing embryos before birth and may help set life-long
adiposity.

Effects of high-fat feeding in 14-3-3fKO mice. Collectively, the
data presented above establish that 14-3-3z plays a critical role in
the differentiation of adipocyte progenitors towards a mature
state. Next we assessed whether the adipocytes that do develop in
14-3-3zKO mice were capable of expanding in response to a high-
fat diet challenge. The differences in body weight, body compo-
sition and leptin were maintained between 14-3-3zKO and wild-
type mice during a 12-week 60% fat diet (Fig. 9a–c).
No differences in fatty acid or triglyceride concentrations were
observed (Fig. 9d). High-fat diet-fed 14-3-3zKO mice were
modestly glucose intolerant compared with wild-type controls

(Fig. 9e–h). Analysis of white adipocyte morphology from
14-3-3zKO gonadal fat pads revealed an expansion in size
similar to that of wild-type mice fed the high-fat diet (Fig. 8i,j).
Transcriptome analysis of adult gonadal white adipose tissue
revealed only 78 genes that were significantly changed in
14-3-3zKO mice (Supplementary Table 9), suggesting that fat
from WT and 14-3-3zKO under these conditions was relatively
phenotypically normal. Both genotypes gained weight at a similar
rate, suggesting that adaptive weight gain in 14-3-3zKO mice is
still possible via hypertrophy of existing adipocytes (Fig. 9i,j). As
14-3-3zKO mice still maintain their differences in adiposity,
it implies that the functional capacity of precursor cells to dif-
ferentiate is reduced early in life.

Discussion
The goal of the present study was to understand the role of a
14-3-3 adaptor protein in obesity and energy homeostasis. We
report that the 14-3-3z isoform is uniquely essential for full
adipogenesis in vitro and in vivo. Mice lacking 14-3-3z had a
visceral adipose depot-specific lean phenotype from birth and
mild insulin resistance. Transgenic 14-3-3z overexpression led to
the opposite phenotype, exhibiting age-related and high-fat
diet-induced obesity without metabolic dysfunction. Mechanistic
studies demonstrated that 14-3-3z regulates parallel proximal
events underlying adipocyte differentiation, including the control
of C/EBP-d stability and cell cycle entry via hedgehog-dependent
p27Kip1 expression (Fig. 10). Collectively, our findings reveal
unexpected roles for 14-3-3z in pathways that govern adipocyte
differentiation and demonstrate that elevated 14-3-3z expression
alone is sufficient to drive obesity.

In the present study, we employed global knockout and
overexpression mouse models, which provide information on the
systemic effects 14-3-3z. However, without tissue-specific gene
manipulation it is not possible to formally rule out potential
contributions of non-adipocyte cell types and other tissues in the
phenotype of these mice. Notwithstanding, our metabolic cage
studies suggested that the decreased adiposity was not due to
changes in food intake or whole-body energy expenditure,
consistent with a primary role for direct effects on fat tissue.
The robust defects in adipogenesis could be recapitulated in
mouse embryonic fibroblasts derived from 14-3-3zKO mice and
3T3-L1 and 3T3-F442A pre-adipocytes, which points to cell
autonomous effects of 14-3-3z in these in vitro adipocyte models.
Comparing the differentiation of control and 14-3-3zKO adipose
precursors cells transplanted into wild-type mice42 would
conceivably translate our in vitro observations into an in vivo
context, but we estimate that such an experiment would require
up to 25 14-3-3zKO donor mice, which represents a nearly
insurmountable challenge given the low breeding efficiency in our
colony. Moreover, such an experiment would not rule out subtle
effects of other organ systems on the overall phenotype of the
14-3-3zKO mice. Collectively, our data point to adipocyte-
centred effects of 14-3-3z, but it will be important to assess this
directly in future studies once adipocyte-specific 14-3-3zKO mice
become available.

Another limitation of our study is that we were unable to
determine the precise stage(s) when 14-3-3z acts on adipogenesis
and glucose homeostasis in vivo without temporal control of our
gene manipulations. 14-3-3zKO mice were runted at birth and
exhibited rapid catch-up growth. Given that catch-up growth is
associated with metabolic disease43,44, some of the minor effects
on glucose homeostasis and insulin sensitivity in 14-3-3zKO mice
may result from aberrant fetal programming. However, the
primary phenotype stemming from systemic deletion of 14-3-3z
was decreased adiposity, rather than robust changes in glucose
homeostasis.
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The decreased adiposity from birth observed with in vivo
14-3-3z deletion suggests that 14-3-3z may predetermine the
number of maturing adipocyte precursors during development to
influence adiposity in adulthood40. Subcutaneous adipose tissue is
thought to develop embryonically, whereas gonadal adipose tissue
is thought to develop postnatally45,46, and while we observed
striking reductions in the number of mature adipocytes in

14-3-3zKO embryos, it is unclear which depots they will
correspond to postnatally. 14-3-3zKO mice still gained weight
when challenged with a high-fat diet, suggesting that the
developmental effects of 14-3-3z can be uncoupled from
pathways controlling adipocyte size in adults. Thus, adipocyte
precursors in adult 14-3-3zKO mice, if they play a role in
increased adipocyte tissue size, are likely to have intrinsic gene
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networks that are independent of the functions of 14-3-3z (refs
3,46,47). It is a limitation of our study that we did not quantify
the absolute number of adipocytes in fat pads in our mice, and
therefore the relative roles of hyperplasia versus hypertrophy are
uncertain in our models.

Molecular adaptors have not been well studied in the context of
obesity or glucose homeostasis. Knockdown of 14-3-3b has
previously been reported to impair 3T3-L1 differentiation due to
defects in lipid storage processes48, but we were unable to
replicate its requirement using our siRNAs validated not to affect
other 14-3-3 isoforms. In contrast, we found a unique role for
14-3-3z in controlling the induction of the master adipogenic
transcription factors Pparg and C/EBP-a, which are required for
the expression of genes involved in lipid uptake and storage.
Pparg and C/EBP-a are both dependent on the actions of
and activation of C/EBP-b and C/EBP-d (refs 6,7). Depletion of
14-3-3z promoted autophagy-dependent degradation of C/EBP-d,
but additional studies are warranted to understand how 14-3-3z
controls C/EBP-d stability, as neither protein was found to direct
interaction with the other. We did observe interactions of 14-3-3z
with C/EBP-b during differentiation, which suggests a novel
mechanism by which 14-3-3z may exert its effects on adipo-
genesis. Before binding to the Pparg promoter, C/EBP-b
is known to form macromolecular complexes consisting of
transcription factors, coregulators and 14-3-3y (refs 49,50). As
14-3-3 proteins form heterodimers9,10, 14-3-3z may dimerize

with 14-3-3y to aid in the formation of these complexes to drive
the expression of Pparg. It should be clearly noted that it remains
unclear whether the interaction between C/EBP-b and 14-3-3z is
direct or indirect, and it is not known whether C/EBP-b harbours
the canonical phosphorylation motifs that promote binding9,10.
We also found that 14-3-3z controls the expression of other genes
reported to be required for adipogenesis, such as G0s2 and
Arxes30,31. Our data point to multiple roles for 14-3-3z in the
highly regulated process of adipogenesis.

We also identified a novel role for 14-3-3z in adipocyte
progenitor cell cycle progression. Adult human pre-adipocytes,
derived from subcutaneous adipose tissue, are not thought
to undergo mitotic clonal expansion before undergoing adipo-
genesis51,52, but it remains unclear whether this also applies to
fetal pre-adipocytes and/or pre-adipocytes from other depots.
Murine pre-adipocytes enter the cell cycle during differentiation
via the rapid turnover of p27Kip1 to promote the expression of C/
EBP-b and C/EBP-d7,33. Depletion of 14-3-3z in vitro and in vivo
promoted the aberrant expression of Cdkn1b/ p27Kip1, which
prevented adipogenesis in vitro. Examination of the Cdkn1b
promoter revealed binding sites for Gli transcription factors,
which are established effectors of the hedgehog signalling
pathway and known to interact with 14-3-3 proteins36,37.
Activation of hedgehog signalling attenuates adipogenesis35,53,
but the downstream effectors that mediate these effects have yet
to be fully elucidated. Gli proteins are required for development
and organogenesis39,54, and their ability to function as
transcriptional activators or repressors39,54 made them likely
candidates to mediate the inhibitory actions of hedgehog
signalling on adipogenesis. Our findings directly implicate Gli3
in this process in vitro, as knockdown of 14-3-3z potentiated Gli
protein-dependent transcriptional activity and Gli3 depletion was
sufficient to restore adipogenesis in 14-3-3z-depleted cells. This
places 14-3-3z upstream of hedgehog signalling, p27Kip1-
dependent cell cycle progression and ultimately adipogenesis.
The in vivo function of Gli3 in the regulation of adipogenesis
requires further study, but we observed co-localization of Gli3, in
addition to p27Kip1, in all Pref-1-marked adipocyte precursor
cells in 14-3-3zKO embryos41. Taken with our in vitro findings
that demonstrate inhibitory actions of Gli3 and p27Kip1, this
suggests that adipose precursors present in adult 14-3-3zKO mice
may have acquired their defect in differentiation during
embryogenesis. Furthermore, this raises the possibility of
similar defects in human pre-adipocytes during embryo
development. Rescue studies employing new transgenic and
compound knockout animals will be required to confirm that the
Gli3/p27Kip1 axis is mechanistically downstream of 14-3-3z
in vivo.

Pharmacological interventions for obesity have been
developed, but their effectiveness and efficacy have been limited55,56.
In obese individuals, expression of 14-3-3z and other isoforms has
been shown to be elevated in visceral and subcutaneous adipose
tissue depots17–19, but whether these changes in 14-3-3 protein
expression are causal or associative was not known. Our data
suggest that 14-3-3z overexpression exacerbates age-related and
diet-induced obesity, independent of changes in glucose tolerance,
insulin sensitivity or lipid profile. This suggests that 14-3-3z is a
novel factor that may preferentially drive the expansion of
metabolically healthy adipocytes4,5. It should be noted that 14-3-
3zKO and 14-3-3z-overexpressing mice have different genetic
backgrounds, precluding direct comparisons between strains.
Background strain differences may affect differences in glucose
tolerance, insulin sensitivity or weight gain, but do not invalidate the
within-model comparisons that involved strict littermate controls.
Further studies are required to examine the potential obesogenic
effect 14-3-3z overexpression on other genetic backgrounds57,58.
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Figure 10 | Working model of 14-3-3f-directed adipogenesis. During the

early induction phase of adipocyte differentiation, 14-3-3z functions as a
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In conclusion, results from this study demonstrate, for the first
time, essential roles for 14-3-3z in adipogenesis. Our data add
additional levels of complexity to our current understanding of
adipocyte differentiation, as one must now consider the function
of 14-3-3 proteins and other types of molecular adaptors during
adipogenesis. Aside from its ability to enhance the expression of
the key adipogenic transcription factors, our transcriptomic
analysis revealed the requirement for 14-3-3z in regulating the
expression of key genes involved in adipocyte differentiation. This
indicates that 14-3-3z has critical roles in the development
of mature visceral white adipocytes and that adaptor proteins
from the 14-3-3 family can therefore act as specific master
regulators of cell differentiation by controlling diverse processes.
Our study demonstrates the presence of a 14-3-3z-Gli3-p27Kip1

axis that regulates adipocyte differentiation and suggest that
targeting components of this axis may be a beneficial therapeutic
approach for the treatment of obesity.

Methods
Animal husbandry and metabolic analyses. Male 14-3-3z knockout mice on a
C57/BL6 background9 and 14-3-3zTAP transgenic mice on a CD1 background22

were housed in a specific pathogen-free facility at the University of British
Columbia in a 12:12 light: dark, temperature and humidity controlled
environment. On a pure C57/BL6 background, heterozygous breeding of mice with
14-3-3z null alleles did not yield progeny at the expected Mendelian ratio.
Littermate controls were used in all experiments. For glucose- and insulin-tolerance
tests, 14-3-3zKO or 14-3-3zTAP male mice at 10 and 25 weeks or 9 and 52 weeks,
respectively, were fasted for 6 h, followed by i.p. injection of 2 g kg� 1 glucose or
1.5 U kg� 1 Humalog insulin (Eli Lilly, Indianapolis, IN), respectively. Tail vein
blood glucose levels were measured with a glucometer (OneTouch UltraMini,
Life Scan, Milpitas, CA). Commercially available kits were used to measure plasma
levels of insulin, adiponectin and corticosterone (Alpco, Salem, NH); leptin
(Crystal Chem, Downer’s Grove, IL); and triglycerides and free fatty acids
(Biovision; Milpitas, CA). Body composition was measured by dual-energy x-ray
absorptiometry (DEXA) with a PIXImus Mouse Densitometer (Inside Outside
Sales, Madison, WI). Mice were also fed ad libitum a 60% fat diet or its respective
10% control diet (Research Diets, New Brunswick, NJ) for 8 or 12 weeks. Food
intake and energy expenditure were measured for 72 h using PhenoMaster
metabolic cages (TSE Systems, Bad Homburg, Germany), after 1-week acclimation.
Data were averaged from the last two full light:dark cycles. All procedures were
approved by the University of British Columbia Committee on Animal Care in
accordance with international guidelines.

Cell culture and transient transfections. 3T3-L1 pre-adipocytes (ZenBio;
Research Triangle Park, NC), 3T3-F442A cells25 (provided by Dr A. Sorisky,
Ottawa Health Research Institute, Ottawa, Canada), NIH-3T3 cells, mouse
embryonic fibroblasts (MEFs) from WT and 14-3-3zKO mice, and Shh-Light2
cells38 (provided by Dr V. Wallace, University of Toronto, Toronto, Canada) were
maintained in 25 mM glucose DMEM, supplemented with 10% newborn calf
serum and 1% penicillin/streptomycin. 3T3-L1 cells were differentiated by allowing
cells to reach confluence, followed by a cocktail (MDI) of 172 nM insulin, 500 mM
IBMX and 500 nM dexamethasone in differentiation media containing 25 mM
glucose DMEM and 10% fetal bovine serum. MEFs were differentiated with
differentiation media supplemented with 5 mM rosiglitazone (Sigma-Aldrich,
St Louis, MO). 3T3-F442A cells were differentiated in differentiation media
supplemented with 5 mg ml� 1 insulin. Two days following induction, cells were
maintained in differentiation media with insulin, and after 7 or 14 days, cells
collected for RNA or protein or stained with Oil Red-O to assess adipogenesis.
Cycloheximide, MG132 or epoxomicin, or 3-methyladenine or chloroquine
(Sigma-Aldrich) were used to inhibit protein translation, the proteasome or
autophagy, respectively. To inhibit all 14-3-3 proteins, 3T3-L1 pre-adipocytes were
pretreated with 14-3-3 Antagonist I,2-5 (14-3-3i, EMD Millipore, Bilerica, MA)
that disrupts the interaction of 14-3-3 isoforms with their ligands24. Lipofectamine
RNAiMax or 3000 was used to transfect cells with validated silencer select
pre-designed siRNA (Life Technologies, Burlington, ON, Canada) or plasmids,
respectively.

Measurement of Cdkn1b and Gli-dependent promoter activity. NIH-3T3 cells
were co-transfected with plasmids containing Cdkn1b promoter constructs of
various lengths upstream of firefly luciferase (provided by Dr D. Everly, Rosalind
Franklin University of Medicine and Science, North Chicago, IL)59 and Renilla
luciferase (10:1 dilution), followed by transfection of siRNA against 14-3-3z or the
scrambled control. To determine hedgehog-dependent transcriptional activity,
Shh-light2 cells were treated with the synthetic Smoothened agonist (SAG; Cayman
Chemicals, Ann Arbor, MI) or transfected with siRNA against 14-3-3z or the

scrambled control. Luciferase activity was measured after 24 or 48 h with the
Dual-Luciferase Reporter Assay system (Promega, Madison, WI). Transcription
factor binding sites were analysed with MotifMap34. ChIP analysis of Gli3 binding
to the Cdkn1b promoter was performed with antibodies against Gli3 and the Pierce
Magnetic ChIP kit, as per the manufacturer’s protocol (Thermo Scientific,
Rockford, IL).

Fluorescent microscopy and flow cytometry. Adipose tissue was harvested and
fixed in 4% paraformaldehyde. Adipocyte size was measured by staining for
perilipin in 5-mm-thick sections (Cell Signalling Technology, Danver, MA).
Embryos at e18.5 were harvested from timed-pregnant dams, sexed by tail clip
PCR60, fixed for 24 h in 4% paraformaldehyde, followed by storage in 70% ethanol,
flash-frozen and sectioned to 8-mm-thick sections. Embryo sections were stained
with antibodies (1:100 dilution) raised against Pref-1/DLK1 (C-19, sc-8624), Gli3
(H-280, sc-20688) or p27Kip1 (C-10, sc-528) (Santa Cruz). All sections were stained
with appropriate host-derived Alexafluor-conjugated secondary antibodies
(Life Technologies, diluted 1:2000), and when necessary, stained with LipidTOX
Deep-red (diluted 1:200, Life Technologies) for the visualization of mature
adipocytes. DAPI was used to visualize nuclei. Images of identical exposure times
were taken with a Zeiss 200M inverted microscope. Cell size was measured with
CellProfiler61.

Flow cytometry was performed on 3T3-L1 cells transfected with a scrambled
control or siRNA against 14-3-3z, then induced to differentiate with MDI and
harvested at 0, 24 and 48 h for, as previously described62, on a LSR II-561 Flow
Cytometer (BD Biosciences, San Jose, CA). Quantification of cells at various stages
of the cell cycle was performed by FlowJo software (v.10, Treestar, Ashland, OR).

Immunoblotting and protein detection. Cells or tissues were lysed in RIPA
buffer, supplemented with protease and phosphatase inhibitors, and in some
instances prepared for cytosolic and nuclear fractionation, in accordance
with manufacturer’s protocols (Thermo Scientific). Immunoprecipitation was
performed on whole-cell lysates from 3T3-L1 adipocytes at different stages of
differentiation with established protocols14. Proteins were resolved by SDS–PAGE
for detection, and PVDF membranes were probed with antibodies against 14-3-3z
(#7413), C/EBP-a (D56F10, #8178), C/EBP-b (#3082), C/EBP-d (#2318), Foxo1
(L27, #9454), Lipin1 (#5195), Pparg (81B8, #2443), cleaved caspase-3 (5A1E,
#9664), Pgc1-a (#4259), tubulin (#2146) and Lamin A/C (4C11, #4777)
(all antibodies diluted 1:1,000, Cell Signaling Technology); p27Kip1 and Gli3
(all antibodies diluted 1:200; Santa Cruz Biotechnology, Santa Cruz, CA); TAP
(CAB1001) and Gli3 (PA5-28029) (all antibodies diluted 1:1,000, Thermo
Scientific) and b-actin (AC-15, #NB600-501) (Novus Biologicals, Littleton, CO).
Original scans of immunoblots are shown in Supplementary Fig. 8.

RNA isolation, quantitative real-time PCR and transcriptome analysis. RNA
was isolated from mouse tissues or 3T3-L1 adipocytes with the RNEasy kit
(Qiagen, Mississauga, ON, Canada). Transcript levels of synthesized cDNA
(Quanta Biosciences, Gaithersburg, MD) were measured with SYBR green
chemistry on a StepOnePlus Real-time PCR System (Life Technologies). All data
were normalized to HPRT by the 2�DCt method as described by Livak and
Schmittgen63. Libraries for RNA-Seq were generated from isolated RNA, as
recommended by the manufacturer’s protocol (Illumina, Carlsbad, CA). Following
pooling of sequence-indexed libraries, sequencing was performed on a HiSeq 2500
(Illumina) collecting 20 million paired-end reads (150 bp x2). Alignment of reads
to the mouse genome (Ensembl NCBIM37) and analysis of differentially expressed
genes (0.05 FDR-adjusted qo0.05) were performed by TopHat software (v.2.0.11)
and the Cufflinks package (v.2.2.0), respectively64. Panther and gene-set
enrichment analysis (GSEA) were performed on all RNA-Seq results used to
examine gene sets or biological processes that were significantly enriched32,65.

Statistical analysis. All data are expressed as the mean±s.e.m. Data were
analysed by ANOVA followed by Dunnett or Bonferroni t-tests, or by Student’s
t-tests, and significance was achieved when Po0.05. A minimum of n¼ 3
independent experiments was performed for analysis.
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