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Abstract: Centipeda minima (L.) A. Braun & Asch is a well-studied plant in Chinese medicine that
is used for the treatment of several diseases. A recent study has revealed the effects of extract of
Cetipeda minima (CMX) standardized by brevilin A in inducing hair growth. However, the mechanism
of action of CMX in human hair follicle dermal papilla cells (HFDPCs) has not yet been identi-
fied. We aimed to investigate the molecular basis underlying the effect of CMX on hair growth in
HFDPCs. CMX induced the proliferation of HFDPCs, and the transcript-level expression of Wnt
family member 5a (Wnt5a), frizzled receptor (FZDR), and vascular endothelial growth factor (VEGF)
was upregulated. These results correlated with an increase in the expression of growth-related
factors, such as VEGF and IGF-1. Immunoblotting and immunocytochemistry further revealed
that the phosphorylation of ERK and JNK was enhanced by CMX in HFDPCs, and β-catenin ac-
cumulated significantly in a dose-dependent manner. Therefore, CMX substantially induced the
expression of Wnt signaling-related proteins, such as GSK phosphorylation and β-catenin. This study
supports the hypothesis that CMX promotes hair growth and secretion of growth factors via the
Wnt/β-catenin, ERK, and JNK signaling pathways. In addition, computational predictions of drug-
likeness, together with ADME property predictions, revealed the satisfactory bioavailability score of
CMX compounds, exhibiting high gastrointestinal absorption. We suggest that CMX could be used
as a promising treatment for hair regeneration and minimization of hair loss.

Keywords: Centipeda minima; human hair follicle dermal papilla cells; Wnt/β-catenin signaling; VEGF

1. Introduction

Hair loss or alopecia is an incurable disease that affects the quality of life and is
emotionally distressing, especially regarding self-confidence. Hair loss is caused by physio-
logical situations related to hormonal imbalance, age, autoimmune conditions, medications,
and genetics [1]. Androgenetic alopecia (AGA) is a pattern of hair loss that affects both men
and women [2]. AGA arises as the result of stepwise miniaturization of the hair follicle
and alteration of hair-cycle dynamics [3].

Hair growth and hair loss in mammalian species are also controlled by a follicular cell
cycle that includes periods of growth (anagen phase), regression (catagen phase), and rest
(telogen phase) [4]. These cyclic changes involve rapid remodeling of the epithelial and
dermal components of hair follicles. The hair growth cycle requires reciprocal interactions
between mesenchymal and epithelial cells in the hair follicles [5]. Hair follicles consist of
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various lineages of epithelial cells surrounding the hair shaft, with mesenchymal cells aggre-
gated in the dermal papilla. During hair growth cycling, complicated crosstalk/interactions
occur between epithelial and mesenchymal cells, which regulate the proliferation and dif-
ferentiation of epithelial cells [6,7].

Centipeda minima (L.) A. Braun & Asch. is plant in the Asteraceae family widely
distributed in China, Korea, Japan, Australia, and India, and is commonly used Chinese
herbal medicine. Aerial parts of C. minima have been used for centuries to treat diar-
rhea, asthma, nasal allergies, and malaria. Recent pharmacological studies on an extract
of C. minima have demonstrated that it has antioxidant, neuroprotective, antibacterial,
and anticancer biological activities. Twelve major chemical constituents such as flavonoids,
polyphenolic acid, and sesquiterpene lactones have been identified through HPLC-Q-TOF-
MS [8,9]. Previously, we evaluated the effects and mechanisms of action of a standardized
emulsion extract of C. minima (CMX) by brevilin A on hair loss using a framework that
integrated an in vitro investigation, a clinical study, and a network pharmacology-based
analysis [10,11]. The clinical study showed that total, terminal, and anagen hair counts were
significantly higher in the CMX group than in the placebo group, suggesting that CMX is
an effective treatment. Moreover, the network pharmacology-based approach identified the
gene targets of CMX and their potential mechanisms, focusing on the JAK-STAT signaling
pathway. This study suggested that the medicinal herbal mixture CMX could be useful
in the treatment of mild to moderate vertex balding and resulted in favorable effects on
hair quality that contributed to visible improvements in hair growth in treated patients.
In this study, we investigated the mechanism by which CMX affects hair growth via the
Wnt/β-catenin signaling pathway.

Based on the connections between Wnt/β-catenin activation and hair development,
researchers have identified the activators of this signaling pathway as potential inter-
ventions for hair therapy. Many natural and synthetic compounds have been reported
to promote hair regeneration through the activation of Wnt/β-catenin signaling [12].
However, the number of people suffering from hair loss is increasing despite the develop-
ment of therapies. Therefore, it is crucial to develop new treatment strategies to combat
hair loss and increase hair proliferation. Therefore, in this study, we investigated the mecha-
nism of hair regeneration which activates the Wnt/β-catenin pathway, and the therapeutic
effects of CMX, a medicinal herbal extract that stimulates hair regrowth.

2. Materials and Methods
2.1. Antibodies and Reagents

Antibodies against β-catenin (D10A8), GSK3β (27C10), phospho-GSK3β (Ser 9),
p38(A-12), phospho-p38 Thr180/Tyr182 (D3F9), ERK1/2 (p44/42), phospho-ERK
(Thr202/Tyr204), SAPK/JNK, phospho-JNK (Thr183/Tyr185), AKT (5G3), phospho-AKT
(Ser473), and GAPDH were purchased from Cell Signaling Technology (Danvers, MA,
USA). Additionally, antibodies against IGF (W18) and VEGF (C-1) were purchased from
Santa Cruz Biotechnology (Santa Cruz, CA, USA). Goat anti-rabbit IgG cross-adsorbed
secondary antibody, Texas Red-X, and SlowFade Gold antifade reagent with DAPI were
obtained from Invitrogen (Carlsbad, CA, USA). Cell culture slides for immunofluorescence
were purchased from SPL (Gyeonggi-do, Korea).

2.2. Plant Materials and Preparation of CMX

C. minima was purchased in December 2019 from Natural-herb (Goesan, Korea).
The material was identified by 1 of the authors (J.P.). A voucher specimen of the material
(CM-2019-001) was deposited in the herbarium at Kyungsung University. CMX was
prepared by D. Nature Co., Ltd. (Seongnam, Korea) using the efficient separation of brevilin
A from C. minima by inducing phase separation in the emulsion as reported previously [11],
and its International Nomenclature Cosmetic Ingredient ID number is 33849.
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2.3. High-Performance Liquid Chromatography (HPLC)

The amounts of major compounds of the CMX were determined by HPLC-UV (Thermo
Scientific Dionex Ultimate 3000, Thermo Fisher Scientific, Sunnyvale, CA, USA). For the
HPLC conditions, refer to the previous study [11]. Filtered samples (10 µL) were injected
into a SUPERSIL column ODS-I (250 mm × 4.6 mm, 5.0 µm), and the column temperature
was maintained at 40 ◦C. For the mobile phase, 0.1% formic acid in distilled water was used
as Solvent A and methanol was used as Solvent B. The composition of the solvent was (A)
45% and (B) 55%, and an isocratic composition was used. The measured UV wavelength
was 224 nm, and the flow rate of the mobile phase was 1 mL/min.

2.4. Cell Culture

Human hair follicle dermal papilla cells (HFDPCs) were purchased from PromoCell
(Heidelberg, Germany). The cells were maintained in a follicle dermal papilla cell basal
medium (PromoCell) supplemented with 4% fetal calf serum, 0.4% bovine pituitary ex-
tract, 1 ng/mL basic fibroblast growth factor, and 5 µg/mL recombinant human insulin
(PromoCell) at 37 ◦C in a humidified atmosphere of 5% CO2.

2.5. Cell Viability Assay

Cell viability was determined using an EZ-Cytox assay kit (DoGenBio, Seoul,
Korea) [13]. Briefly, HFDPCs were seeded into 96-well plates at a density of 2 × 104

cells per well. After 24 h of incubation, the cells were treated with CMX at various concen-
trations of 0.39, 0.78, 1.56, 3.13, 6.25, and 12.5 µg/mL for 24 h. The cells were incubated
with water-soluble tetrazolium salt (WST-1) for 1 h. The absorbance was measured at
450 nm using an enzyme-linked immunosorbent assay (ELISA) plate reader, and the results
were expressed as percentages of the untreated controls.

2.6. RNA Isolation and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from cells using the RNeasy Mini Kit (Qiagen Inc., Valencia,
CA, USA) and quantified using the Nanodrop method. cDNA was synthesized using the
AccuPower RocketScript Cycle RT Premix (Bioneer, Daejeon, Korea), and 1 µg of cDNA
was used for PCR.

qRT-PCR was performed using a PowerUP SYBR Green PCR Master Mix (Thermo
Fisher Scientific) with a QuantStudio 3 Real-Time PCR System (Thermo Fisher Scientific)
according to the manufacturer’s protocol [14]. The mRNA expression level of each gene was
calculated using the 2−∆∆Ct method and normalized to that of glyceraldehyde-3-phosphate
dehydrogenase (GAPDH). The sequences of the primers used in qRT-PCR are listed in
Table 1. The cycling conditions were as follows: 10 min at 95 ◦C for enzyme activation,
denaturation for 15 s at 95 ◦C, and annealing for 60 s at 60 ◦C. qRT-PCR was performed for
at least 35 cycles.

Table 1. List of primers for real-time polymerase chain reaction.

Target Forward Primer Reverse Primer

WNT5a TCCACCTTCCTCTTCACACTGA CGTGGCCAGCATCACATC
LEF1 CAGTGACGAGCACTTTTCTC CGTGATGGGATATACAGGCT
LRP5 GCTGTACCCGCCGATCCT GGCGCCATTCCTCGAAT

FZDR1 CCAAGAGAGGAGCCGAGA CGGCACAAAGTTCCCAG
WNT3a CCTCAAGGACAAGTACGACA GGCACCTTGAAGTAGGTGTA
VEGF ATGACGAGGGCCTGGAGTGTA CCTATGTGCTGGCCTTGGGA

GAPDH GGTGGTCTCCTCTGACTTCAACA GTTGCTGTAGCCAAATTCGTTGT
Wnt5a: wingless type MMTV integration site family, member 5A, Lef1: lymphoid enhancer-binding factor-1,
LRP5: low-density lipoprotein receptor-related protein 5, FZDR1: frizzled receptor 1, Wnt3a: wingless type
MMTV integration site family, member 3, VEGF: vascular endothelial growth factor, GAPDH: glyceraldehyde
3-phosphate dehydrogenase.



Biomolecules 2021, 11, 976 4 of 16

2.7. ELISA

The expression levels of KGF/FGF-7 (keratinocyte growth factor/fibroblast growth
factor-7) and VEGF (vascular endothelial growth factor) in the culture medium were mea-
sured; 500 mL of the culture supernatant was harvested from the cultured cells. The levels
of KGF/FGF-7 and VEGF were measured using an ELISA kit (R&D Systems, Minneapolis,
MN, USA) according to the manufacturer’s instructions. Absorbance was determined at
450 nm using a microplate reader.

2.8. Preparation of Cell Lysates and Immunoblotting

HFDPCs were treated with the indicated concentrations of CMX for 24 h. Following treat-
ment, the cells were washed with phosphate-buffered saline (PBS) twice and then lysed
in a cold radioimmunoprecipitation assay (RIPA) buffer (Rockland, Limerick, PA, USA)
containing 1 mM DTT (Sigma, Saint Louis, MO, USA), a phosphatase inhibitor cocktail
(Merck, Darmstadt, Germany), and a protease inhibitor cocktail (Roche Diagnostics Corp.,
Indianapolis, IN, USA) [15]. The protein concentration of each sample was adjusted to a
constant value after measurements using the BCA Protein Assay Kit (Thermo Scientific,
Rockford, IL, USA). Next, cell lysates were resolved on an 8−10% sodium dodecyl sulfate-
polyacrylamide gel and proteins were subsequently transferred to an Immobilon-P PVDF
membrane (Millipore, Billerica, MA, USA). The membrane was blocked with 5% skim
milk prepared in Tris-buffered saline (TBS, pH 7.4) containing 0.1% Tween 20 (TBS-T) for
120 min and probed with specific primary antibodies overnight at 4 ◦C. The membrane
was then incubated with horseradish peroxidase-conjugated secondary antibody for 1 h
and washed with TBS-T 3 times before visualization using an ECL system.

2.9. Immunofluorescence Staining

HFDPCs were seeded in a 4-well chamber (2 × 104 cells/well) and cultured in a growth
medium containing the supplement mixture. Cells were fixed in 4% paraformaldehyde
diluted in PBS for 15 min at room temperature. After blocking with a blocking reagent
containing 5% BSA and 0.1% Triton X-100 in PBS for 60 min at room temperature, the cells
were stained with β-catenin antibody (1:100) (Cell Signaling Technology, Danvers, MA,
USA) overnight. The cells were rinsed 3 times with PBS and incubated with Texas Red-X
goat anti-rabbit antibody for 2 h at room temperature. Cells were counterstained with
DAPI and observed using a TH4-200 immunofluorescence microscopy system (Olympus,
Tokyo, Japan).

2.10. Assessment of Pharmacokinetic and Drug-Likeness Properties

The pharmacokinetic and drug-likeness properties of CMX were predicted using the
web-based tool SwissADME (http://www.swissadme.ch/, accessed on 13 April 2021).
The SwissADME computational tool allows the prediction of the following pharmacokinetic
characteristics: gastrointestinal (GI) absorption, inhibition of some cytochrome P450 (CYP)
enzymes regularly involved in interactions with xenobiotics (CYP1A2, CYP2C19, CYP2C9,
CYP2D6, and CYP3A423), and skin permeability, with an accuracy of 71 to 89% [16].
The drug-likeliness profile of CMX was visualized and compared with the following 5 crite-
ria: the Lipinski rule of 5 (molecular weight (MW) ≤ 500, HBD ≤ 5, HBA ≤ 10, LogP ≤ 5),
the Veber filter (nrotb ≤ 10, TPSA ≤ 140 Å2), the Egan filter (LogP ≤ 5.88, TPSA ≤ 131.6 Å2),
the Ghose rule (160 ≤ MW ≤ 480, -0.4 ≤ LogP ≤ 5.6, 40 ≤ MR ≤ 130, 20 ≤ no. atoms ≤ 70),
and the Muegge filter (200 ≤ MW ≤ 600, −2 ≤ LogP ≤ 5, TPSA ≤ 150 Å2, no. rings ≤ 7,
no. carbons > 4, no. heteroatoms > 1, nrotb ≤ 15, HBD ≤ 5, and HBA ≤ 10). The bioavail-
ability score was calculated to predict the probability of 10% oral bioavailability or Caco-
2 diffusion.

2.11. Statistical Analyses

Data were expressed as the mean ± standard deviation (SD) from 3 independent
experiments. Statistical analyses were performed with GraphPad Prism 5 (GraphPad

http://www.swissadme.ch/
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Software, San Diego, CA, USA). Statistical significance was presented as * p < 0.05, ** p < 0.01,
and *** p < 0.001.

3. Results
3.1. Effect of CMX on the Proliferation of HFDPCs

The representative HPLC chromatograms of CMX are shown in Figure 1, and the four
major compounds of CMX are marked with their retention time. These four compounds
have been identified by HPLC-Q-TOF-MS as arnicolide D, arnicolide C, microhelenin C,
and brevilin A, and their chemical structures are shown in Figure 2 [11]. The concentrations
of these four major compounds were calculated by the calibration curve of the standard
(1–100 µg/mL); the contents of each component in CMX are summarized in Table 2.
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Figure 2. Chemical structures of arnicolide D, arnicolide C, microhelenin C, and brevilin A identified by HPLC-Q-TOF-MS.

We investigated the effect of CMX on the proliferation of HFDPCs. HFDPCs were
treated with different concentrations (0, 0.39, 0.78, 1.56, 3.13, 6.25, and 12.5 µg/mL) of
CMX for 24 h. Cell viability was estimated using the EZ-Cytox assay. The viability of
HFDPCs treated with CMX is shown in Figure 3, and the percentages of cell viability were
100.5% (0.39 µg/mL), 97.5% (0.78 µg/mL), 98.9% (1.56 µg/mL), 104.4% (3.13 µg/mL),
76.5% (6.25 µg/mL), and 52.4%(12.5 µg/mL), respectively. Compared with that in the
untreated HFDPCs, the CMX-treated cells (6.25 and 12.5 µg/mL) exhibited decreased
viability. The highest increase in viability was observed at a concentration of 3.13 µg/mL
CMX. Based on these data, 1.56 µg/mL and 3.13 µg/mL concentrations of CMX were
chosen for further experiments.
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Figure 3. Effect of CMX on the viability of hair follicle dermal papilla cells (HFDPCs). Cells were
treated with CMX at the indicated doses (0.39, 0.78, 1.56, 3.13, 6.25, and 12.5 µg/mL) for 24 h.
Cell viability was analyzed using the WST-1 assay. Data are presented as the mean ± standard
deviation (SD) from three independent experiments. *** p < 0.001.

3.2. CMX Increases the Expression of Genes Related to the WNT/β-Catenin Pathway in HFDPCs

The Wnt pathway plays an essential role in induction of hair follicle growth [17].
To determine whether CMX modulates the activity of the Wnt/β-catenin pathway in
developing hair follicles, qRT-PCR was performed to examine the mRNA expression levels
of Wnt/β-catenin signaling intermediaries, including Wnt ligands (Wnt3a and Wnt5a),
Wnt receptors (FZDR1 and LRP5), Wnt transcription factors (LEF1), and VEGF, which is
one of the most important mediators of the hair growth cycle. Comparative gene expression
analysis was performed at 12 and 24 h of CMX treatment. A significant elevation in the
expression of Wnt pathway factors started from 12 to 24 h. Compared with the untreated
HFDPCs, cells treated with 1.56 µg/mL CMX exhibited the highest expression of Wnt5a
and FZDR1 at 24 h, and the highest expression of Wnt3a at 12 h (Figure 4). These results
suggest that CMX might possess the ability to stimulate hair follicles whose growth is
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regulated by Wnt/β-catenin-related genes. However, effect of CMX on LEF1 was not
statistically significant.
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cascades in the hair follicles at 12 h (A) and 24 h (B). Hair follicle dermal papilla cells (HFDPCs)
were seeded in six-well plates and treated with CMX (1.56 and 3.13 µg/mL). The transcript-level
expression of hair growth-regulating factors was measured by quantitative real-time polymerase
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presented as the mean ± standard deviation (SD) from three independent experiments. * p < 0.05,
** p < 0.01 and *** p textless 0.001 vs. the control group.
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3.3. CMX Enhances the Expression of Growth Factors Related to Hair Regeneration

Hair regeneration is controlled by dermal papilla (DP) cells, which manage hair follicle
cycling through secreted signaling factors [18]. Thus, we examined whether CMX could
produce VEGF, a possible key angiogenic factor that mediates hair growth in HFDPCs.
The amount of VEGF secreted from the the HFDPC growth medium was measured by
ELISA, and the results are shown in Figure 5a. ELISA demonstrated that VEGF was
released into the cell culture supernatant at higher levels in treated cells than in the
untreated control. The VEGF concentrations of the CMX-treated group in HFDPCs were
2343.65 and 2202 pg/mL, which were 122% and 130% higher than those of the control
group (100%), respectively. Furthermore, the growth factors secreted from the DP cells
included basic fibroblast growth factor, insulin-like growth factor-1 (IGF-1), hepatocyte
growth factor (HGF), fibroblast growth factor 1 (FGF1), and keratinocyte growth factor
(KGF) [19]. Hair follicle growth was found to be inhibited by fibroblast growth factor (FGF)
and transforming growth factor, while it was induced by insulin-like growth factor (IGF)
and hepatocyte growth factor (HGF) [20]. Therefore, KGF/FGF secretion was monitored in
the cell culture supernatants using ELISA. CMX-mediated KGF/FGF-7 secretions decreased
to 71.8% (3.13 µg/mL) and 49% (1.56 µg/mL) compared with the control (100%) (Figure 5b).
IGF-1 was not secreted from HFDPCs treated with CMX (data not shown). These results
indicated that CMX enhanced the secretion of growth factors and that these proteins may
stimulate hair follicle growth, thereby inducing hair regeneration.
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Figure 5. The secretion of growth factors in hair follicle dermal papilla cells (HFDPCs) treated
with CMX. (A) Effect of CMX on hVEGF. (B) Effect of CMX on KGF/FGF-7. The concentrations
of vascular endothelial growth factor (VEGF) and keratinocyte growth factor/fibroblast growth
factor-7(KGF/FGF-7) secreted from HFDPCs in the CMX medium were analyzed by enzyme-linked
immunosorbent assay (ELISA).

3.4. CMX Activates Wnt/β-Catenin and ERK/JNK Signaling Pathways in HFDPCs

Wnt/β-catenin signaling plays a crucial role in the growth of DP cells [21,22]. The
Wnt ligand is a secreted glycoprotein that binds to frizzled receptors, leading to the
formation of a surface complex with LRP5/6. Activation of the Wnt receptor complex
triggers the dissociation of the multifunctional kinase GSK-3β from the APC/Axin/GSK-
3β-complex and, finally, β-catenin phosphorylation is inhibited. The unphosphorylated
β-catenin accumulates in the cytosol, translocates into the nucleus, and binds to tran-
scriptional factors, such as LEF-1/TCF1, which regulates the expression of Wnt/β-catenin
signaling-regulated genes. Therefore, we investigated whether the Wnt/β-catenin sig-
naling pathways were activated by CMX. First, the levels of β-catenin accumulation and
phosphorylation status of GSK3β were analyzed. As shown in Figure 6A, immunoblotting
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revealed that CMX treatment increased β-catenin accumulation and the phosphoryla-
tion of GSK3β in a concentration-dependent manner in HFDPCs. Several studies have
reported that phosphorylation of the ERK and PI3K/Akt pathways is implicated in DP
cell proliferation [23,24]. Based on these results, we investigated the phosphorylation sta-
tus of MAPKs (ERK, JNK, and p38) and Akt in HFDPCs. As shown in Figure 6B, the
phosphorylation of ERK and JNK was increased in a concentration-dependent manner by
CMX for 24 h, whereas, in the case of p38 phosphorylation, CMX significantly reduced
the phosphorylation levels of stress-activated protein kinase (SAPK) in HFDPCs. Fur-
ther, we analyzed the phosphorylation status of Akt; the phosphorylation of Akt was
not affected by CMX treatment for 24 h in HFDPCs. Additionally, DP cells are known
to secrete growth factors for the regulation of hair growth via autocrine and paracrine
factors [23–25]. Therefore, we analyzed whether IGF and VEGF levels were increased by
CMX treatment. As shown in Figure 6C, the expression of IGF and VEGF proteins was
upregulated by CMX in a concentration-dependent manner for 24 h. Collectively, these
results indicated that CMX significantly increased the secretion of growth factors such as
IGF and VEGF, which are regulated by Wnt/β-catenin and the activation of ERK and JNK
signaling pathways in HFDPCs.
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Figure 6. Effect of Centipeda minima extract (CMX) on the Wnt/β-catenin-related signal pathway
in hair follicle dermal papilla cells (HFDPCs). (A) Effect of CMX on β-catenin, p-GSK3β and
GSK3β. (B) Effect of CMX on the phosphorylation of MAPKs. (C) Effect of CMX on IGF and VEGF.
(D) Quantified graphs for Western blots. HFDPCs were seeded into six-well plates (2 × 106 cells/well)
and treated with CMX at 1.56 and 3.13 µg/mL for 24 h. Whole-cell lysates were immunoblotted with
the specific antibodies indicated on the left side of each panel. GAPDH served as an internal loading
control. The bar chart displays the intensity of the immunoblot after normalization to the levels of
GAPDH or the total form of phospho-protein. Data are presented as the mean ± standard deviation
(SD) from three independent experiments. * p < 0.05 vs. the control group.

3.5. CMX Increases β-Catenin Localization in HFDPCs

When cells are not stimulated by Wnt, cytoplasmic β-catenin is phosphorylated and
degraded by kinases called casein kinase-I and GSK3 in the Axin and APC protein com-
plexes. However, when Wnt is activated by external stimulation, the degradation of
β-catenin is inhibited; therefore, the intracellular β-catenin level is increased and stabilized,
and β-catenin translocates into the nucleus. Therefore, we performed an immunofluores-
cence assay to examine the accumulation and localization of β-catenin in HFDPCs after
treatment with CMX for 24 h. CMX treatment resulted in a significant accumulation of
β-catenin in the nucleus in a concentration-dependent manner compared with the DMSO
control. This result correlated with the increase in β-catenin protein levels revealed by
immunoblotting (Figure 7).
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Figure 7. Effect of Centipeda minima extract (CMX) on the accumulation of β-catenin in hair follicle
dermal papilla cells (HFDPCs). HFDPCs were immunocytochemically stained with β-catenin anti-
body (red color, first row), and the corresponding images of DAPI nuclear staining are shown (blue
color, second row); merged images are shown in the bottom panel. Original magnification: 20×.

3.6. Pharmacokinetic and Drug-Likeness Profiles of CMX

Computational predictions of drug-likeness together with ADME property predictions
can assess the possibility of potential lead compounds [26]. We evaluated the pharma-
cokinetic and drug-likeness properties of CMX using the web-based tool SwissADME.
The results showed that all compounds were estimated to have high gastrointestinal ab-
sorption, which can be considered a favorable advantage in the case of oral administration
(Table 3). We found that none of the compounds of CMX interacted with the cytochrome
P450 (CYP) enzyme, indicating that these compounds did not affect the biotransformation
process. Drug-likeness is a qualitative inspection of a compound’s physicochemical or
structural properties to investigate the likelihood of the compound as an oral drug-like
candidate [27]. The result of the drug-likeness assessment showed that all compounds in
CMX followed all the prominent drug-like rules, including Lipinski’s rule of five, the Ghose
rule, the Veber filter, the Egan filter, and the Muegge filter, indicating that these compounds
had desirable properties similar to those of orally administered drugs. The polygon of
physicochemical space also showed that all parameters fell within the optimal range,
and therefore, all the compounds possessed good oral bioavailability (Figure 8). The satis-
factory bioavailability score of CMX compounds suggests that it is expected to exhibit high
gastrointestinal absorption.
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Table 3. Pharmacokinetics and drug-likeness properties of Centipeda minima extract (CMX).

Arnicolide C Arnicolide D Brevilin A Microhelenin C

Pharmacokinetics
GI absorption High High High High

CYP1A2 inhibitor No No No No
CYP2C19 inhibitor No No No No
CYP2C9 inhibitor No No No No
CYP2D6 inhibitor No No No No
CYP3A4 inhibitor No No No No

Log Kp (cm/s) −6.81 −6.86 −6.78 −6.78
Drug-likeness

Lipinski 0 0 0 0
Ghose 0 0 0 0
Veber 0 0 0 0
Egan 0 0 0 0

Muegge 0 0 0 0
Bioavailability score 0.55 0.55 0.55 0.55
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4. Discussion

Hair is one of the most unique features of mammals and is an indicator of individual
health, as it serves multiple physiological functions, including protecting the body from
environmental damage and maintaining body temperature [28]. The hair follicle, a specific
appendage of the skin, is composed of epidermal (epithelial) and dermal (mesenchymal)
compartments, and their reciprocal interaction plays a crucial role in the growth of the hair
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follicle development and the hair cycle [29]. HF is a perfect mammalian model system
for understanding the intra- and inter-cell signaling pathways that may be investigated in
other tissues.

C. minima is a well-known medicinal plant used for the treatment of whooping cough,
cold, nasal allergy, asthma, diarrhea, and malaria in Chinese medicine. It is widely found
in China, Korea, and Southeast Asia and is distributed over certain areas in Australia
and India. Twelve major chemical constituents such as flavonoids, polyphenolic acid,
and sesquiterpene lactones have been identified [8,9]. Brevilin A corresponds to the struc-
ture of sesquiterpene lactones, and it is a major constituent of C. minima [9]. CMX was
prepared by extracting sesquiterpene lactones such as brevilin A with high purity and
high content. Recently, CMX, an emulsion extract of C. minima, was shown to induce hair
regeneration, and increased hair count has been demonstrated by a previous study [11].
The patients in the CMX group showed significant improvements in the total, terminal,
and anagen hair counts. Therefore, it is important to understand the molecular mecha-
nisms and effects of CMX in HFDPCs. DPs are specialized fibroblasts that secrete several
molecules, such as wingless-int (Wnt), sonic hedgehog (Shh), and bone morphogenetic
protein (BMP), which signal to epithelial cells [30–32]. Canonical Wnt signaling plays an
essential role during the anagen-promoting process [22]. Therefore, factors affecting DPC
function in HFDPCs are important in potential hair loss therapies [33,34].

Wnt/β-catenin signaling, among other signaling systems, has been implicated in
the regulation of hair follicle morphogenesis and regeneration [7,22,35]. Various Wnt
(wingless type) ligands are involved in hair cycling. Wnt-responding stem cells in the bulge
produce Wnt1, Wnt4, and Wnt7b during the telogen phase. Wnt6, Wnt10a, and Wnt10b
are strongly expressed in the dermal papilla during the telogen to anagen transition.
During anagen, other Wnts, including Wnt5a and Wnt5b, are mainly expressed in the
peripheral layers of the dermal papilla [36]. The secreted Wnt protein is a ligand that binds
to the frizzled family receptor, which then passes the biological signal to the intracellular
protein “disheveled” (Dsh) inside the cell. Disheveled protein causes the accumulation
of β-catenin in the cytoplasm and its eventual translocation into the nucleus acts as a
transcriptional co-activator for the T-cell factor (TCF)/lymphoid enhancer factor (LEF)
transcription factors, a phenomenon that results in the induction of Wnt-regulated genes [7].
Therefore, we examined the transcript-level expression of the intermediaries of the Wnt
cascade at 12 and 24 h. We found that the transcript-level expression of Wnt5a, VEGF,
and FZDR was increased at 12 and 24 h. The expression of Wnt3a was upregulated at 12 h
but not at 24 h. The expression of Wnts 10a, 10b, and 5a was specifically upregulated in
hair follicles during the early morphogenetic phase [30]. Wnt3a is an inductive signal that
maintains HFDPCs in the anagen phase [22]. Wnt5a is a key target gene of Shh in hair
follicle morphogenesis, although Shh is not required for the positioning of follicles [36].
Millar et al. suggested that the observed decrease in the hair length of Wnt3 and Dvl2
transgenic animals could be due to a premature transition of follicles from the anagen to
the catagen phase of the hair growth cycle or could be caused by defects in the proliferation
or differentiation of hair matrix cells or cells derived from them [31].

We observed that the levels of β-catenin and GSK3β, which are key intermediaries
of the Wnt/β-catenin signaling pathway, were increased. Additionally, the MAPK and
Akt signaling pathways are major regulators of cell proliferation. Our results showed that
ERK and JNK were phosphorylated in CMX-treated cells in a dose-dependent manner.
We demonstrated that these proteins are involved in the proliferation of HFDPCs. Fol-
licle DP cells, located at the base of hair follicles, regulate the hair cycle by responding
externally to stimuli and signals conveyed through cytokines and junctions [33].

HDPFCs relay signals to epithelial cells through secreted molecules such as Wnt, Shh,
and BMP during the hair cycle [34]. Moreover, the cells show the active expression of
secreted molecules, such as growth factors, that regulate the proliferation of neighboring
epidermal cells and differentiation via epithelial–mesenchymal interactions [8]. Hair folli-
cles require sufficient nutrients for hair growth during the anagen phase. VEGF, which in-
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duces angiogenesis, is important for supplying nutrients to the hair follicles [36]. Our
studies on growth factors have shown that VEGF is secreted in a dose-dependent manner
in CMX-treated cells (RNA and protein levels). The level of IGF protein was also increased
by CMX in HFDPCs.

β-catenin is an important regulator of Wnt-induced gene transcription. Using im-
munocytochemistry, we confirmed that β-catenin was significantly localized in the nucleus
when the Wnt pathway was activated by CMX. Our results indicated that CMX upreg-
ulated the expression of growth factors such as VEGF and IGF via the Wnt/β-catenin,
ERK, and JNK signaling pathways in HFDPCs. Taken together, our findings demonstrated
that CMX can induce hair proliferation via the Wnt/β-catenin, ERK, and JNK signaling
pathways, and secreted growth factors (Figure 9). In addition, when the content of bre-
vilin A was calculated by considering the concentration of CMX in treated cells (3.13 and
1.56 µg/mL), it corresponded to 0.62 and 1.25 ng/mL, respectively, and it was considered
to have an effect at a very low concentration. Additionally, the bioavailability of CMX com-
pounds resulted in high gastrointestinal absorption. Therefore, CMX could be used as a
new therapeutic agent to facilitate hair growth.
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Figure 9. The effect of Centipeda minima extract (CMX) on hair growth. (A) Wnt activation and
related signal pathways. The above figure shows CMX as a major effector of the Wnt/β-catenin
signaling pathway. In the absence of the Wnt ligand, the levels of β-catenin are low in the cytoplasm.
However, when the Wnt ligand binds to frizzled (FZDR), LRP5/6 (low-density lipoprotein receptor-
related protein 5 or 6), and Axin disruption complexes, β-catenin accumulates in the cytoplasm,
migrates into the nucleus, interacts with the TCF transcription factor, and activates the target genes,
such as Wnt5a/FZDR/VEGF. Additionally, CMX enhances ERK activation and the expression of
growth factors, such as VEGF and IGF-1, in the extracellular medium. (B) Effect of CMX on anagen
stimulation. The activation of the Wnt/β-catenin signaling pathway promotes anagen induction.
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5. Conclusions

This study showed that CMX regulates signaling in HFDPCs and stimulates hair
regeneration through the Wnt/β-catenin, ERK, and JNK signaling pathways, resulting in
the upregulation of VEGF and IGF factors. In conclusion, our study suggests the use of
CMX, which has little toxicity, as an effective treatment for alopecia and highlights the
possibility of cosmeceuticals in promoting hair regeneration.
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