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ABSTRACT
Gut microbiome composition depends heavily upon diet and has strong ties to human health. 
Dietary carbohydrates shape the gut microbiome by providing a potent nutrient source for 
particular microbes. This review explores how dietary carbohydrates in general, including individual 
monosaccharides and complex polysaccharides, influence the gut microbiome with subsequent 
effects on host health and disease. In particular, the effects of sialic acids, a prominent and 
influential class of monosaccharides, are discussed. Complex plant carbohydrates, such as dietary 
fiber, generally promote microbial production of compounds beneficial to the host while prevent-
ing degradation of host carbohydrates from colonic mucus. In contrast, simple and easily digestible 
sugars such as glucose are often associated with adverse effects on health and the microbiome. The 
monosaccharide class of sialic acids exerts a powerful but nuanced effect on gut microbiota. Sialic 
acid consumption (in monosaccharide form, or as part of human milk oligosaccharides or certain 
animal-based foods) drives the growth of organisms with sialic acid metabolism capabilities. Minor 
chemical modifications of Neu5Ac, the most common form of sialic acid, can alter these effects. All 
aspects of carbohydrate composition are therefore relevant to consider when designing dietary 
therapeutic strategies to alter the gut microbiome.
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Introduction

The human gut microbiome is defined as the sum of 
genomic DNA of all microbes inhabiting this environ-
ment. With up to a hundred times more bacterial 
genes than human genes in the human body, including 
an especially high number of microbes in the gut, the 
microbial communities in our body are crucial to 
human life and play a key role in human development 
and homeostasis.1 As in every natural ecosystem, bac-
teria in the human gut influence the surrounding 
environment of their host. The human gut microbiota 
is involved in many essential host functions, such as 
the processing of nutrients to bioactive molecules like 
neurotransmitters, vitamins, and fatty acids and pro-
tection from pathogens.2 One of the most well-known 
examples of this is the breakdown of non-digestible 
carbohydrates found in plants. As humans do not have 
the metabolic capability to degrade these complex 
glycans in the gastrointestinal tract, they reach the 
colon to be fermented by gut bacteria and lead to the 

production of short-chain fatty acids (SCFAs), which 
participate in the acidification of the digestive tract.3 

Through these and other similar processes, the human 
gut microbiota has a major impact on the host’s phy-
siology in health and disease.

In addition to a greater number of genes and meta-
bolic capabilities than the human genome, the com-
position of the gut microbiome is also highly 
malleable.1 Diet surpasses the role of host genetics in 
shaping the gut microbiome through modification of 
the nutritional environment of the bacteria populating 
the gut.4–8 Given the influence of the gut microbiome 
in human health, the ability to alter this microbiome 
through dietary changes indicates that promoting 
a healthy microbiome has great potential to 
improve human well-being and disease prevention 
and control. Glycans (i.e. carbohydrates) are of 
major importance in determining the gut microbiome 
composition.9 Glycans come in many forms, from 
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long polysaccharide chains that humans are 
unable to digest (e.g. cellulose, pectins, resistant 
starch), to oligosaccharide chains attached to 
proteins and lipids, to individual mono – and 
disaccharides, such as glucose, lactose, or sialic 
acids.9 In this review, we detail how dietary 
glycans can shape the structure and function of 
the human gut microbiota and the impact this 
has on human diseases. We start with an over-
view of the broad impacts of carbohydrates on 
gut microbiota composition and metabolic activ-
ity. We then focus on the role of sialic acids, 
a specific monosaccharide class, in shaping the 
gut microbiome. Sialic acids are a prominent 
component of the mammalian glycosylation sys-
tem, and their interactions with the human 
immune system make their impact on the gut 
microbiome of particular interest. This review of 
sialic acids, the gut microbiome, and impacts on 
health will summarize recent research and sug-
gest directions for future studies.

Broad impact of carbohydrates on gut 
microbiome structure and function
Human studies have repeatedly demonstrated that diet-
ary changes modify the relative abundance of major gut 
bacterial groups in a rapid and reversible manner.10,11 For 
example, low-carbohydrate, weight-loss, and animal- 
based diets reduce the proportion of the butyrate- 
producing phyla Firmicutes and Actinobacteria,11–13 

while high animal product consumption increases the 
proportion of Bacteroidetes and specific Proteobacteria 
like Bilophila wadsworthia in the human gut.11 Lifestyle 
urbanization and Westernization are key factors influen-
cing dietary behavior, with subsequent impacts on the gut 
microbiome and potential harmful effects on human 
health.14 A rural diet, typically rich in host-indigestible 
carbohydrates like fiber, is associated with a higher abun-
dance of Prevotella and Xylanibacter spp., while an urba-
nized diet, which generally contains more saturated fat 
and protein from animals, is associated with an increase 
of Bacteroides spp. and a decrease of overall microbiome 
gene diversity.15–17 Interestingly, those Bacteroides- 

a.

b. c.

Figure 1. Structural composition of the main poly – and oligosaccharides discussed in this review. Monosaccharide symbols are 
represented as in the Symbol Nomenclature for Glycans (assignments for this figure provided in the box).22,23 The numbers between 
monosaccharides represent the glycosidic linkage. A) Fiber is a general classification encompassing many types of dietary poly-
saccharides. Examples of the polysaccharides cellulose, arabinoxylan, and inulin are provided here. B) Mucin-type O-linked glycans are 
host glycans linked to serine or threonine (Ser/Thr) residues on mucin proteins. Like most mammal-derived glycans, they are often 
tipped with sialic acids such as N-acetylneuraminic acid. An example structure is shown; many other monosaccharide and linkage 
compositions are possible. C) Human milk oligosaccharides (HMOs) are short oligosaccharides found in human breast milk. HMOs are 
composed of a lactose base (a disaccharide of glucose and galactose) with additional monosaccharides such as N-acetyl- 
D-glucosamine, the sialic acid N-acetylneuraminic acid, or fucose attached. Three example structures are shown.
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dominated, less diverse gut communities are associated 
with a higher incidence of obesity and metabolic 
syndrome.18 The loss of diversity and shift from 
a Prevotella – to Bacteroides-dominated microbiome has 
been observed in non-Western immigrants as early as 9 
months after moving to the USA.19 These data demon-
strate the plasticity of the human gut microbiota in 
response to dietary carbohydrate changes and the poten-
tial impact of these changes on human health.

Many studies examine the impact of plant carbohy-
drates in particular on the gut microbiome. Diets with 
high resistant starch intake have been associated with 
increased relative abundance of Firmicutes and parti-
cularly Ruminococcaceae family members, while resis-
tant potato starch specifically has been associated with 
increased Bifidobacterium genera and wheat bran has 
been associated with increased Lachnospiraceae family 
members.10,12,20 A recent study also demonstrated 
rapid modifications of the gut microbiota in mice fed 
raw versus cooked plant products, due to the improve-
ment of starch digestibility and degradation of plant- 
derived compounds during the cooking process. 
Similar observations have been made in the human 
population, showing that everyday nutritional habits 
can influence the gut microbiota.8

Within plant carbohydrates, dietary fiber is one of 
the most heavily studied groups. Dietary fiber is gen-
erally defined as edible carbohydrate polymers, mostly 
from plants and edible fungi, that are not digestible by 
human enzymes.21 Examples include inulin, dextrin, 
pectin, cellulose, resistant starch, arabinoxylans, and 
chitin (Figure 1A).24 Dietary fiber exists in soluble 
and insoluble forms, although some polymers can be 
soluble or insoluble depending on conditions like 
cooking or food processing.21 Although human meta-
bolism cannot digest fiber, the gut microbiome often 
contains many enzymes capable of degrading these 
polymers and utilizing the sugars released for nutri-
tion or other metabolic processes.

Fiber passes mostly undigested through the small 
intestine and is fermented in the colon by gut 
bacteria, leading to the production of SCFAs 
(Figure 2).25 The SCFAs acetate, propionate, and 
butyrate are the main metabolites produced during 
microbial fiber fermentation, and they have multi-
ple beneficial effects on the host.14 Once produced 
in the colon, SCFAs are rapidly absorbed by host 
epithelial cells, where the great majority are directly 
used as an energy source. SCFAs that are not meta-
bolized by the gut epithelium (estimated as <10% of 

Figure 2. Broad overview of carbohydrate digestion and host effects discussed in this review; other effects are also possible for each 
glycan. Generally beneficial and detrimental effects are represented by green and red arrows, respectively. Most host digestion and 
nutrient absorption occurs in the small intestine. Microbes conduct most of the nutrient degradation that occurs in the large intestine, 
with varying effects on host health and function.
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total SCFAs produced)26,27 are then transported 
through the portal circulation to the liver, where 
they can be incorporated by hepatocytes and used 
as energy substrates or for the synthesis of glucose, 
cholesterol, and fatty acids.28

A small fraction of the initial SCFAs will reach the 
main blood circulation and have systemic effects, par-
ticularly on the immune system.28 Notably, SCFAs 
downregulate the production of pro-inflammatory 
cytokines by colonic macrophages29 and promote the 
differentiation of naive CD4 + T cells into immuno-
suppressive regulatory T cells (Treg),30,31 by binding to 
G-protein coupled receptors32 or by inhibiting histone 
deacetylases.29,33,34 SCFAs derived by the gut micro-
biota from dietary fiber thus participate in the home-
ostasis of the immune response, with a demonstrated 
protective effect against inflammatory diseases, such as 
multiple sclerosis (MS),33 inflammatory bowel disease 
(IBD),31 and allergic asthma,35 as well as other pathol-
ogies, such as infection36,37 and carcinogenesis.16 

Colorectal cancer (CRC) is also known to be linked 
with a gut microbiota dysbiosis characterized by 
decreased microbial diversity38 and an under- 
representation of SCFA-producing bacteria.39 A high- 
fiber dietary intake is associated with a lower risk of 
CRC,40 while patients with CRC precursor lesions 
tend to have lower fiber dietary intake than controls.41

However, not all studies have shown universal ben-
efits from fiber intake. In a recent study, Singh et al. 
supplemented the diet of toll-like receptor 5 (TLR5)- 
deficient mice with fermentable fibers for 6 months, 
with the goal of demonstrating the beneficial effect of 
such a diet on metabolic syndrome. While the authors 
observed some of the expected effects (reduction of 
adiposity, amelioration of glycemic control), they also 
observed that purified fiber supplementation induced 
icteric hepatocellular carcinoma in 40% of the TLR5- 
deficient mice.42 These studies indicate that dietary 
supplementation with such purified compounds may 
have a negative effect on some individuals, and that 
large-scale enrichment of processed food with purified 
prebiotic fiber should be taken with great caution.43 

For a more detailed discussion of the gut microbiota 
and specific health effects of dietary fiber, we refer the 
reader to ref. 42.44

Mono – and disaccharide dietary sugars can affect 
gut microbiome composition, with potential effects on 
human health. Fructose and glucose have been demon-
strated to specifically inhibit gut colonization by 

Bacteroides thetaiotaomicron, a mammal gut symbiont 
associated with lean and healthy individuals, by silen-
cing the Roc (regulator of colonization) protein, which 
promotes competitive colonization in gnotobiotic 
mice.45 High fructose intake has also been associated 
with development of nonalcoholic fatty liver disease 
(NAFLD) in humans46 and mouse models.47,48 The 
gut microbiome in general plays a causal role in 
NAFLD development in mouse models,49 and several 
studies have established correlations between 
NAFLD and altered abundance of taxa, such as 
Bifidobacterium,50 Lactobacillus,50,51 Bacteroides, and 
Ruminococcus.52 Supplementation of Lactobacillus 
rhamnosus in the gut microbiome of mice fed a high- 
fructose diet to induce NAFLD resulted in decreased 
liver inflammation and NAFLD disease development.51 

This finding highlights the potential regulatory effects 
of dietary sugars in the small intestine on gut coloniza-
tion by beneficial microbes. Later in this review, we will 
discuss in detail recent research on the effects of sialic 
acids, a biologically important class of monosacchar-
ides, on the gut microbiome and host health.

Interplay of dietary fiber and host mucins in the 
gut microbiome

Although dietary glycans make up the majority of 
nutrients the gut microbiota consumes, restriction of 
carbohydrates like fiber from the diet can push 
microbes to consume glycans produced by the host 
instead.53 The colon contains a mucus gel layer com-
posed of two parts: a loose luminal outer layer and 
a dense mucosal inner layer.54 The mucosal layer is 
composed mainly of host mucin proteins with regions 
of extensive O-glycosylation (forming up to 80% of the 
total mucin mass) (Figure 1B).55 Although microbes 
do not penetrate the dense inner layer in healthy 
subjects,37,56 microbial degradation of the outer layer 
is thought to be a normal part of mucin turnover and 
regeneration.57 For a review of how gut microbiota 
interact with and degrade the colonic mucosal layer, 
we direct the reader to ref. 56.58 Here we focus on how 
diet can alter the careful balance between gut micro-
biota and the host mucosal layer.

The section above discussed how the presence of 
complex polysaccharides, such as fiber, in the diet 
strongly affects the gut microbiome composition. 
Many studies have shown that fiber ingestion 
increases abundance of colonic bacteria capable of 
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fermenting fiber to SCFAs,7,10,13,20 with increased 
diversity of plant carbohydrates believed to support 
greater community diversity.59 Conversely, several 
studies have shown that a lack of dietary fiber can 
push bacterial metabolism away from fiber degrada-
tion to mucin degradation. Some organisms (e.g. 
Bacteroides thetaiotaomicron) degrade both fiber and 
mucins and shift their metabolism to mucin degrada-
tion when dietary complex polysaccharides are 
scarce.53,60 Other organisms (e.g. Akkermansia muci-
niphila) are able to degrade mucins but not fiber and 
experience expansion of their populations upon com-
plex polysaccharide scarcity.37,61,62

Excessive mucin degradation is associated with 
increased intestinal inflammation63,64 and increased 
penetration of bacteria into the dense mucosal mucus 
layer.65 In gnotobiotic mice mono-colonized with 
B. thetaiotaomicron, a diet lacking complex polysac-
charides (including fiber) resulted in a thinner colonic 
mucus layer, an increased proximity of colonic 
microbes to the gut epithelium, and increased expres-
sion of the inflammatory marker REG3β.60 Similarly, it 
has been shown that dietary fiber deprivation increased 
the abundance of mucus-degrading bacteria like 
A. muciniphila and Bacteroides caccae in mice, subse-
quently leading to an alteration of the intestinal barrier 
and higher susceptibility to mucosal pathogens.37,60 

Demonstrating the specific and essential role of the 
gut microbiome in mucus changes, antibiotic-treated 
mice fed a low-fiber Western diet but transplanted 
weekly with gut microbiota from mice fed a high- 
fiber chow diet had significantly lower mucus penetr-
ability and higher mucus growth than mice trans-
planted with gut microbiota from Western diet-fed 
mice.66 These studies indicate a lack of dietary fiber 
leads to changes in the gut microbiome that promote 
dysfunction and increased microbial penetrability of 
the inner colonic mucus layer.

On the other hand, a recent study suggests poten-
tially beneficial roles of microbial mucus metabolism 
in ulcerative colitis (UC). Certain organisms are cap-
able of producing the SCFA n-butyrate from mucin 
degradation,67 and n-butyrate as well as mixed SCFAs 
have been shown to reduce colon inflammation in 
UC.68,69 Yamada et al.67 found decreased mucinase 
activity and decreased levels of n-butyrate in the stool 
of UC patients, but a significantly higher O-glycan-to- 
mucin protein ratio. Hypothesizing a deficiency in 
mucin O-glycan utilization by gut microbiota, the 

authors assessed the impact of feeding mice a mucin- 
enriched diet. After 3 weeks, they observed an 
increased α-diversity; increased relative abundance of 
Akkermansia, Allobaculum, and Bacteroidales S24-7; 
increased cecal SCFAs; and increased colonic Treg 
and IgA+ plasma cells.67 In the setting of UC, mucin 
degradation may therefore be an important physiolo-
gic process to promote.

Impact of the monosaccharide sialic acid on gut 
microbiome structure and function

Thus far, we have discussed the impact of broad dietary 
glycan classes on the gut microbiome and host health, 
including how lack of fiber promotes microbial degra-
dation of host mucus glycans. Next, we focus on the 
impact of dietary sialic acids, a unique and essential 
class of monosaccharides, on the gut microbiome and 
human health. Sialic acids are essential to many phy-
siological processes, play a large role in shaping both 
the infant and adult microbiome, and allow explora-
tion of how minor chemical modifications in sugar 
structure can shape the microbiome. Although many 
authors have reviewed sialic acids in the past, to our 
knowledge a comprehensive review focusing specifi-
cally on dietary sialic acids and the gut microbiome has 
not been published. In the literature, “sialic acids” is 
often used to refer to both the group and its most 
common member, N-acetylneuraminic acid. In this 
review, we will refer to N-acetylneuraminic acid by 
its abbreviation Neu5Ac and reserve the term sialic 
acids for the group as a whole.

ialic acids are acidic 9-carbon monosaccharides, 
derivatives of neuraminic acid, and ubiquitous in 
all vertebrate glycosylation systems. Sialic acids 
often serve as the terminal sugars in N-linked and 
O-linked vertebrate glycans that decorate cell- 
surface proteins and lipids, and as such they are 
often some of the first monosaccharides encoun-
tered in cell–cell interactions.70,71 They play essen-
tial roles in immune system signaling, cell adhesion, 
membrane transport, and many other 
processes.71–73 The most abundant mammalian sia-
lic acids are Neu5Ac and its close chemical cousin 
N-glycolylneuraminic (Neu5Gc) acid (Figure 
3A).71 Humans cannot produce Neu5Gc due to 
loss of the CMP-N-acetylneuraminic acid hydroxy-
lase (CMAH) enzyme,83–85 and as such Neu5Gc is 
perceived as a foreign antigenic sugar by the human 

GUT MICROBES e1869502-5



immune system.86,87 Sialic acids are present in our 
diet in N – and O-linked glycans from animal- 
derived proteins, and Neu5Gc can be incorporated 
into human glycoconjugates following ingestion of 
certain animal-derived foods rich in Neu5Gc, 
chiefly red meat.88,89 Neu5Ac and Neu5Gc have 
drastically different effects on human health, with 
Neu5Ac a natural and beneficial component of 
human glycans and Neu5Gc an antigenic and pro- 
inflammatory component.90–94

Sialic acid metabolism by gut bacteria

Human-associated bacteria, including gut microbiota, 
use sialic acids primarily as either a nutrient source or 
as a signaling molecule to interact with their host.95 

For example, given the role of Neu5Ac on host cells in 
inhibiting autoimmune signaling through Siglec 
proteins,96 some pathogens evade the immune system 
by prominently displaying Neu5Ac on their cell 
surfaces.97,98 For an extensive review of sialic acids 
catabolism by human pathogens all over the body, 
we refer to ref. 87.98 Bacteria can synthesize sialic 
acids de novo or scavenge from the surrounding 
environment.72,95 Complete metabolism of sialic 
acids requires a sialidase to release the monosacchar-
ide from the glycan, a transporter protein to transport 
the monosaccharide inside the cell, and a suite of 
intracellular enzymes to convert sialic acids into 
a sugar fed into different metabolic pathways (Figure 
3B).72 Many common gut microbes contain genes for 
part of or for this entire pathway, affecting their role in 
the gut microbial community, and through that the 
community’s potential effects on human health.

The first full Neu5Ac metabolism pathway was 
described in Escherichia coli in 199999 and the ability 
of E. coli to metabolize Neu5Ac has since been shown 
to be important for gut colonization in mice.100 The 
Nan gene cluster in E. coli encodes the sialic acids 
uptake transporter NanT and three catabolic enzymes 
(NanA lyase, NanK kinase, and NanE epimerase) 
that catalyze the conversion of Neu5Ac to pyruvate 
and N-acetylglucosamine-6-phosphate. This is further 
metabolized through the N-acetylglucosamine 
(GlcNAc) catabolic pathway (Figure 3b). 
Neu5Gc is transported and catabolized by E. coli 
using the same NanT transporter and NanA lyase 
but producing glycolate instead of pyruvate.101 

Similar Neu5Ac catabolic gene clusters with 

variations in the identity of sialic acid transporter 
were identified in 46 out of 1,902 bacterial genomes 
examined in a 2009 study.102 However, 91% of these 
46 organisms were able to colonize humans, indicat-
ing the ability to metabolize sialic acids is particularly 
valuable for bacteria in human-associated niches. 
Nine of these organisms were gut commensals 
(Anaerotruncus colihominis, Dorea formicigenerans, 
D. longicatena, Faecalibacterium prausnitzii, 
Fusobacterium nucleatum, Ruminococcus gnavus, 
Lactobacillus sakei, L. plantarum, and L. salivarius), 
while several others were known gut pathogens 
(E. coli, Shigella (species unspecified), Salmonella 
enterica, Yersinia enterocolitica, Vibrio vulnificus, 
and V. cholerae).102 A similar analysis in 2015, of 
4,497 genomes in NCBI at the time, found that 
5.9% of species contained genes for the full pathway 
of Neu5Ac metabolism; again, these organisms pri-
marily colonize humans or animals.98 An alternative 
Neu5Ac utilization pathway was identified in the gut 
commensal Bacteroides fragilis (Figure 3b) and 
involves a putative sialic acid transporter from the 
MFS superfamily (NanT), a non-orthologous 
Neu5Ac lyase (NanL), and two novel catabolic 
enzymes, epimerase NanE3 and kinase RokA.74 The 
nanLE2T gene cluster from B. fragilis was further 
identified in many colonic bacteria from the 
Bacteroidetes phylum, including B. vulgatus and 
Parabacteroides distasonis, but not in 
B. thetaiotaomicron, which encodes a sialidase but 
lacks the nanLE2T genes to fully metabolize sialic 
acids.103 Other microbes like Clostridioides difficile 
or E. coli lack a sialidase but encode a complete path-
way to metabolize sialic acids.104

We analyzed the distribution of sialic acids utiliza-
tion pathway and sialidase genes across a reference set 
of 2,662 genomes representing ~700 species and ~200 
genera of bacteria from the human gut.105 For genomic 
identification of genes encoding sialidases, Neu5Ac 
transporters, and catabolic enzymes (Figure 3b), we 
used a subsystems-based approach implemented in 
the SEED platform.106 Each reference genome was 
assigned binary phenotypes reflecting the presence/ 
absence of: (i) a complete Neu5Ac utilization pathway; 
and (ii) sialidase enzyme(s) (Figure 4). Approximately 
1,040 strains were predicted as Neu5Ac-utilizing 
strains, representing ~80 bacterial genera. Among 
these, a sialidase was identified in 40% of the strains, 
including prominent colonic bacteria from the 
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Figure 3. A) Structures of the sialic acids discussed in this review. Changes from the Neu5Ac structure are shown in red. Differences 
between Neu5Ac and Neu5Gc with regards to human physiology are listed below those structures. Diamonds by Neu5Ac and Neu5Gc 
structures depict the Symbol Nomenclature for Glycans symbol for each. B) Schematic of general Neu5Ac metabolism in bacterial cells. 
Steps with multiple characterized enzymes (sialidase and transporter) have protein names listed below the general enzyme name. 
Steps with one well-characterized enzyme have the enzyme name next to the arrow. The exception is the conversion of Neu5Ac to 
ManNAc, which has 2 well-characterized enzymes. Enzymes are color-coded based on function. References for enzyme functions: 
NanAEE2KL, RokA, NagAB;.74 NanHIJ;75 NanBCD;76 NanT;77 SiaBb2;78 BtsA;79 SatABCD;80 SiaT;81 SiaPQM.82
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Akkermansia, Bacteroides, Bifidobacterium, 
Clostridium, Flavonifractor, Parabacteroides, and 
Prevotella genera. Another subgroup of strains that 
lack a sialidase but are capable of sialic acid utilization 
includes both human gut symbionts such as 
Anaerococcus, Blautia, Escherichia, Eubacterium, 
Faecalibacterium, Fusobacterium, and also a number 
opportunistic pathogens including Clostridioides, 
Staphylococcus, and Streptococcus spp. Finally, ~100 
strains from 27 microbial genera possess a sialidase 
but apparently lack the sialic acid utilization capability. 
These include 18 Bacteroides strains (e.g. B. faecis, 
B. intestinalis, B. thetaiotaomicron), 6 Porphyromonas 
strains, and 6 Coprobacillus strains. The high preva-
lence of many of these strains in the gut microbiome 
suggests even strains that solely release Neu5Ac from 
underlying glycans contribute to the overall sialic acid 
degradation capability of gut communities.

These mixed catabolic capabilities fit with studies 
showing ingested complex polysaccharides can be 
digested and metabolized by different gut organisms, 
in a syntrophic or synergistic interaction network.110 In 
support of this, recent studies of Salmonella enterica 
and C. difficile showed that these organisms expand 
following antibiotic treatment through scavenging of 
sialic acids liberated from ingested food by other gut 
microbes such as B. thetaiotaomicron.111 Colonization 
with B. thetaiotaomicron lacking a sialidase inhibited 
C. difficile expansion in the mouse gut, while feeding 
with exogenous Neu5Ac reversed these effects.111 

Similarly, Huang et al.112 showed that increased siali-
dase activity from B. vulgatus drives E. coli expansion in 
a mouse model of colitis. Hence, sialic acids released in 
the gut by one organism can be scavenged and meta-
bolized by other organisms lacking a sialidase, causing 
effects that ripple through the metabolic network.

Although most research has been done on Neu5Ac, 
microbes can also act on modifications of Neu5Ac or 
on other sialic acids (Figure 3a). Neu5Ac modified 
with an O-acetyl group is generally resistant to release 
by sialidases. However, recent studies of B. fragilis 
show the O-acetylesterase EstA removes 9-O-acetyl 
esterifications, allowing sialidases to release these mod-
ified Neu5Ac molecules and promote in vitro growth 
of E. coli.113 Although not confirmed in vivo yet, this 
could provide another example of bacterial interactions 
to share metabolic capabilities. Previous studies of the 
commensal anaerobe Ruminococcus gnavus showed it 
cannot grow on unmodified Neu5Ac alone and instead 

uses an intramolecular trans-sialidase to release 
2,7-anhydro-Neu5Ac from α2-3-linked sialic acids.114 

2,7-anhydro-Neu5Ac is then selectively transported 
across the Ruminococcus cell membrane and converted 
back to Neu5Ac for further metabolism.115 This strat-
egy, which prevents other organisms from utilizing the 
uncommon 2,7-anhydro-Neu5Ac, seems designed to 
conserve resources for R. gnavus as opposed to the 
cross-talk seen in other sialic acid processing pathways. 
While the major part of sialidase research focuses on 
Neu5Ac, some recent studies have examined the activ-
ity of gut microbe sialidases on Neu5Gc. Zaramela 
et al.116 reported the discovery of Neu5Gc- 
preferential sialidases from the gut microbiome of the 
Hadza hunter-gatherer group,4 with four out of the five 
selected Bacteroides sialidases displaying preferential 
release of Neu5Gc over Neu5Ac in at least one of the 
tested conditions. Further exploration of metabolism 
of these and other sialic acid modifications will 
undoubtedly reveal more novel microbial strategies to 
harvest sialic acids.

Dietary sialic acids, gut microbiome composition, 
and human health

Sialylated HMOs and the infant microbiome
The infant gut microbiome is thought to start devel-
oping in utero through fetal ingestion of amniotic 
fluid.117 Peri – and post-natally, the microbiota com-
position is heavily influenced by mode of fetal delivery 
(vaginal versus Cesarean section) and infant food 
source (breast milk versus formula).117,118 Human 
milk oligosaccharides (HMOs) represent a potent 
source of sialic acids (and other monosaccharides) 
that is unique to the infant diet (Figure 1c). HMOs 
are a group of over 200 oligosaccharide structures 
present in human breast milk, making up the third 
most abundant component of milk at 5–15 g/L (fol-
lowing lactose at 70 g/L and lipids at 40 g/L).119 The 
composition and overall amount of HMOs in breast 
milk varies by woman and by time since delivery.120 

The majority of HMOs are not absorbed by the infant 
in the small intestine for nutrition, but instead persist 
into the colon where they have a significant impact on 
infant health (Figure 2).121 For example, HMOs have 
been shown to directly inhibit infant gut coloniza-
tion by pathogens like enterotoxic E. coli, 
V. cholerae toxin, Campylobacter jejuni, rotaviruses, 
and noroviruses.122–124
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HMOs in general, and sialylated HMOs (HMOs 
containing sialic acid) in particular, also promote the 
growth of particular beneficial microorganisms in the 
infant gut. Of the taxa studied from the infant gut 
microbiome, only the Bifidobacterium and 
Bacteroides genera have been shown to metabolize 
a broad range of HMOs.125,126 The gut microbiome 

of breast-fed infants is typically dominated by 
Bifidobacterium, representing up to 70% of gut micro-
biota in breast-fed infants compared to 31% in for-
mula-fed infants.127 A study of individual gut 
microbes in isolation showed that the sialylated 
HMOs 3ʹ-sialyllactose (3’SL) and 6ʹ-sialyllactose 
(6’SL) specifically promoted the growth of seven 

Figure 4. Genomic distribution of Neu5Ac utilizers and degraders in human gut microbiome strains. The phylogenetic tree was 
constructed using concatenated sequences of universal ribosomal proteins from approximately 2,600 human gut microbial genomes 
from the PATRIC genomic database107 by RAxML version 8,108 then shrunk to genus representatives and visualized via iTOL.109 

Numbers next to genera in the outermost level of the tree indicate the number of analyzed genomes per genus. Bars adjacent to each 
genus indicate the proportion of genomes that contain genes for: a Neu5Ac transporter and full Neu5Ac catabolism pathway (gold 
bars); and one or more Neu5Ac sialidase genes (purple bars). Genera mentioned in this review are shown in red text.
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Bifidobacterium longum strains, as well as B. vulgatus 
and B. thetaiotaomicron.126 6’SL but not 3’SL pro-
moted growth of Lactobacillus delbrueckii, although 
L. rhamnosus did not show appreciable growth on 
HMOs (Yu 2013).126 In particular, B. longum subsp. 
infantis is capable of fully metabolizing all HMOs 
studied to date and of growing on Neu5Ac alone in -
vitro.128 The B. longum subsp. infantis genome con-
tains a 43-kb gene cluster (HMO1) with 16 glycoside 
hydrolases and many oligosaccharide transport pro-
teins, as well as two sialidases, nanH1 in the HMO1 
gene cluster and nanH2.118,128,129 Intriguingly, 
B. longum subsp. infantis appears to transfer oligosac-
charides into its cytoplasm and digests HMOs to 
monosaccharides within the cell;118,130,131 by contrast 
other microorganisms (e.g. Bacteroides and 
Bifidobacterium bifidum) are thought to break down 
HMOs to di-/monosaccharides extracellularly and 
transport these components into the cytoplasm.118,132

Other B. longum strains contain genes for specific 
portions of the sialic acids catabolism pathway (Table 
1). B. longum subsp. bifido can release monosacchar-
ides, including Neu5Ac, from HMOs but is unable to 
catabolize Neu5Ac, fucose, or N-acetylglucosamine.129 

In contrast, B. longum subsp. breve can ferment these 
monosaccharides but may or may not be able to release 
them from HMOs, in a strain-dependent 
manner.133,134 Bacteroides species also have variable 
sialic acids metabolic capabilities (Table 1). Similar to 
Bifidobacterium, B. fragilis can cleave and fully meta-
bolize Neu5Ac from HMOs, while B. thetaiotaomicron 
can cleave but not metabolize Neu5Ac.103 Bacteroides 
and most Bifidobacterium species metabolize HMOs 
through the same enzymatic pathways as host mucin 
glycan degradation.103 However, despite its facility at 
HMO digestion, B. longum subsp. infantis does not 
appear to digest host mucins.131 These results indicate 
dietary Neu5Ac in HMOs is heavily involved in shap-
ing the infant gut microbiome by promoting coloniza-
tion of Bifidobacterium and Bacteroides species, 
potentially laying the foundation of a life-long synergy 
between host and gut microbes.

As in sialic acids metabolism, studies of sialic acids 
and the infant microbiome focus primarily on 
Neu5Ac. Research on the effect of Neu5Gc on the 
infant microbiome is virtually nonexistent. Studies in 
the past have not identified Neu5Gc in human breast 
milk, although it is readily present in bovine 

milk.127,135,136 However, a recent study of human 
milk composition discovered that breast milk from all 
16 mothers tested (split between women who con-
sumed cow’s milk and dairy-free almond beverages) 
contained HMOs with Neu5Gc, indicating that diet- 
derived monosaccharides can be incorporated into 
breast milk HMOs.137 The presence of Neu5Gc in 
breast milk further adds another possible mechanism 
for the development of anti-Neu5Gc antibodies, which 
appears in infants within the first 6 months of life.138 

Anti-Neu5Gc antibodies drive a process of chronic 
low-level inflammation called xenosialitis, which has 
been shown in animal models to contribute to inflam-
matory pathologies, such as liver cancer,93 

atherosclerosis,94 and other autoimmune diseases.96 

Other possible mechanisms for anti-Neu5Gc antibody 
development include the presence of Neu5Gc in com-
mercial baby foods and exposure to Neu5Gc on the 
surface of bacteria like non-typeable Haemophilus 
influenzae.90,138

solating the impact of ingested HMOs containing 
Neu5Ac on the infant gut microbiome is relatively simple, 
arguably simpler than in adults given the stereotyped diets 
of infants. However, tying these changes to infant health 
outcomes is much more difficult. A study in 2016 pro-
vides one of the most comprehensive experimental inves-
tigations of this question. Researchers inoculated germ- 
free mice with a defined microbial community of 25 
strains isolated from the gut microbiota of a growth- 
stunted Malawian infant.139 Mice were then fed a typical 
Malawian diet with or without purified sialylated bovine 
milk oligosaccharides. Mice receiving the oligosaccharides 
treatment showed significantly increased weight gain, lean 
mass, and long bone growth, compared to the control 
group (caloric intake was equivalent between the groups). 
These effects were not seen in germ-free mice treated with 
oligosaccharides, indicating the microbiome plays a critical 
role in the health benefits observed. Similar results were 

Table 1. Summary of the ability of bacteria in the infant gut 
microbiome to release and metabolize the sialic acid Neu5Ac 
from HMOs.

Genus Species
Neu5Ac 
release

Neu5Ac 
metabolism

Bifidobacterium longum subsp. 
infantis

+ +

longum subsp. bifido + -
longum subsp. breve -/+ +

Bacteroides fragilis + +
thetaiotaomicron + -
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seen in gnotobiotic piglets.139 Intriguingly, despite the gut 
microbiome-dependent nature of the effects, the composi-
tion of the gut community was not significantly different 
between oligosaccharides and control groups after treat-
ment. However, significant transcriptional changes were 
observed in B. fragilis and E. coli, including upregulation of 
genes in the polysaccharide utilization locus of B. fragilis. 
The researchers also noted that the two B. longum subsp. 
infantis strains included in the community failed to colo-
nize in the gut community in both the treatment and 
control groups, although strains of B. longum subsp. breve, 
B. bifido, and B. catenulatum did colonize.139 This is 
surprising given the ubiquity of B. longum subsp. infantis 
in the gut microbiota of human infants and its superior 
abilities to digest and metabolize HMOs. However, recent 
research indicates the ability of bacterial strains to success-
fully colonize the infant gut is affected by many different 
factors.140 Follow-up studies on the mechanism of 
increased long bone growth with sialylated oligosaccharide 
treatment indicated the effect came from decreased osteo-
clast generation and activity, in a microbiota-dependent 
manner.141 Much work remains to be done to investigate 
the connections between the gut microbiome and infant 
health.

Dietary sialic acids and adult health
In contrast to studies of infants and dietary sialic acids, 
where studies focus on microbiome composition but 
often do not address direct health impacts, studies of 
adults and dietary sialic acids focus mainly on health 
impacts and rarely assess microbiome composition. The 
ubiquity of sialic acids in mammalian glycoconjugates 
gives them a role in many physiological and pathological 
processes, from brain development to immune regulation, 
infections, heart disease, and diabetes.71 Many of these 
pathological processes have been associated with hypo- 
sialylation, or low Neu5Ac levels, of relevant molecules. 
Several studies have therefore looked at the effect of 
exogenous Neu5Ac-feeding on disease development and 
progression. Neu5Ac-feeding in apoE−/ – mice (a model of 
atherosclerosis through knockout of ApoE, a protein heav-
ily involved in lipid circulation and metabolism)142 

reduced atherosclerosis plaque area, as well as lipid liver 
deposition, triglyceride and cholesterol levels, and expres-
sion of inflammatory cytokines and intracellular adhesion 
factors in aorta endothelial cells and liver cells.92 In 
a different study, oral supplementation of the Neu5Ac 
precursor N-acetyl-D-mannosamine in mice on a high- 
fat diet (to study type II diabetes) resulted in a restoration 

of IgG sialylation and preserved insulin sensitivity.143 The 
mechanism of action in these studies is unknown and 
changes in the microbiome were not investigated in either 
case. However, given the established connections between 
the gut microbiome and atherosclerosis and 
diabetes144–146 and the impact sialic acids can have on 
the microbiome, an investigation of gut microbiome com-
position in response to Neu5Ac in these disease models 
would be intriguing.

The impact of dietary sialic acids on the adult gut 
microbiome is often difficult to tease apart, given the 
varied diets of adults. In 2017, researchers analyzed the 
gut microbiota of the Hadza people, a community living 
an ancestral hunter-gatherer lifestyle in Tanzania, where 
diet composition is determined by seasonal food 
availability.4 A longitudinal analysis revealed important 
modifications of the microbiome over the course of 
a year, following shifts between dry and wet seasons that 
corresponded to periods of meat – and plant-based diets, 
respectively. Metagenomic sequencing revealed both an 
increased diversity and increased number (as reads 
per million) of carbohydrate-active enzymes (including 
sialidases) in dry season samples, when the Hadza diet is 
dominated by meat, a food rich in sialic acids.4 A different 
study, focusing specifically on sialidases, re-analyzed the 
Hadza data and found specific enrichment of an organism 
encoding a sialidase to release Neu5Gc from glycans in the 
dry season samples.116 Since Neu5Gc is not made by 
humans, but is specifically enriched in red meat, this 
finding indicates that a Neu5Gc-metabolizing microbe 
becomes more abundant in the Hadza gut microbiota 
when levels of Neu5Gc increase in the diet.

The ability of non-human mammals to produce 
Neu5Gc, through the functional CMAH enzyme that 
humans lack, has led to a great difficulty in studying the 
effects of anti-Neu5Gc inflammation in animal models. 
However, researchers have been able to work around this 
through the generation of Cmah−/ – animals that, like 
humans, produce only Neu5Ac.147,148 The presence of 
Neu5Gc in human glycoconjugates has been implicated 
in numerous disease processes, such as liver cancer and 
atherosclerosis.93,94 Neu5Gc-feeding in mouse models 
deficient in Neu5Gc exacerbates these diseases. Of parti-
cular interest, Cmah−/ – knockout in a background knock-
out of the low-density lipoprotein receptor (Ldlr−/-) 
reproduces the human-specific Neu5Gc deficiency in 
a classic atherosclerosis model.94 Neu5Gc-feeding in this 
Cmah−/ – Ldlr−/ – mouse model demonstrated signifi-
cantly more atherosclerosis plaque size and necrotic core 
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volume, compared to control groups.94 Feeding of 
Neu5Gc in a Cmah−/ – mouse model (without the 
Ldlr−/ – deletion) showed distinct changes in the gut 
microbiome, with Bacteroides, Barnesiella, Clostridium, 
Parabacteroides, Roseburia, and Turicibacter significantly 
enriched compared to feeding with Neu5Ac.116 

Examining the effects of Neu5Gc-feeding on the micro-
biome of the Cmah−/ – Ldlr−/ – model and potential 
relationships between these changes and atherosclerosis 
could further our current understanding of the role the 
gut microbiome plays in cardiovascular disease.

Conclusion

The impact of carbohydrates on the gut microbiome is 
nuanced, with differences seen from alterations in large 
carbohydrate classes, individual monosaccharides, and 
even modifications of individual monosaccharides. 
Many studies have examined the effects of broad glycan 
classes, such as fiber, in animals, and humans. Many other 
studies have looked at the ability of bacteria common in 
the gut microbiome to metabolize individual monosac-
charides or glycans, either in vitro or in vivo. Microbiome 
composition shifts rapidly and reproducibly with dietary 
changes, emphasizing the potential therapeutic benefits of 
diet modifications. However, as a genomic analysis of 
organisms from the Human Gut Microbiome project 
shows (Figure 4), we have barely scratched the surface in 
our studies of individual microbes that can metabolize 
monosaccharides like sialic acids. Studies are also lacking 
on the effect of dietary sialic acids on the adult gut micro-
biome. Given the prominent microbiome and health 
effects seen in infants with sialylated HMOs, we expect 
that dietary sialic acids could drive similarly important 
microbiome modifications in adults. These modifications 
could be a missing link to explain the changes in disease 
phenotypes observed with dietary sialic acids in animal 
models. The impact of individual dietary glycans on the 
gut microbiome is therefore an essential field of research 
as we continue to explore the relationship between the gut 
microbiome and human disease.
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