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Editorial on the Research Topic

Deep Learning for Toxicity and Disease Prediction

Deep learning (DL), alsocalled deep structured learning or hierarchical learning, is an important
subset of machine learning (ML). The distinction between DL and conventional “shallow” ML
is that DL algorithms allow computational models composed of multiple processing layers to be
fed with raw data and automatically learn multiple levels of abstract representations of data for
detection and classification (LeCun et al., 2015). The history of DL can be traced back to the
1940s when the first neural network model was developed (McCulloch and Pitts, 1943). It wasn’t
until recently that DL evolved into and reemerged as a prominent discipline within the artificial
intelligence domain, thanks to such revolutionary advances as backpropagation, parallel computing
with GPUs, availability of massive labeled data, improved architectures, robust optimizers,
regularization techniques, and activation functions (see https://www.import.io/post/history-of-
deep-learning/ and https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_
part1.html for more info). Over the past decade DL has regained popularity and has been
successfully applied to such diverse fields as image (Zeiler and Fergus, 2014) and speech (Hinton
et al., 2012) recognition, visual art (Huang et al., 2016) and natural language (Xiong et al., 2016)
processing, drug discovery (Gawehn et al., 2016), chemical toxicity prediction (Mayr et al., 2016),
and computational biology (Angermueller et al., 2016). For instance, deep convolutional neural
networks (CNNs) have brought about breakthroughs in computer vision and pattern recognition
(Krizhevsky et al., 2012), whereas recurrent neural networks have shed light on sequential data such
as text mining and speech applications (Hinton et al., 2012).

Despite great success, there remain many technical challenges, one of which is how to integrate
or transform subject-specific knowledge in order to adapt to DL algorithms and improve outcomes.
Technical hurdles exist in data preprocessing, model selection (e.g., feedforward, convolutional, or
recurrent networks), parametric function approximation (e.g., initialization strategies, activation
functions, architecture, and learning techniques), and model regularization and optimization. This
Research Topic addresses these challenges and hurdles with a specific focus on the application of
DL algorithms to chemical toxicity prediction and disease diagnosis, which has not been adequately
explored (Mayr et al., 2018; Xu et al., 2019). As a result, 11 manuscripts were accepted in four
participating journals: 7 in Frontiers in Genetics (Zhang L. et al.; Hu et al.; Jia et al.; Luo et al.;
Xie et al.; Zhang X. et al.; Ji et al.), 2 in Frontiers in Plant Science (Fuentes et al.; Lin et al.), 1 in
Frontiers in Physiology (Idakwo et al.), and 1 in Frontiers in Bioengineering and Biotechnology
(Matsuzaka and Uesawa). These papers are well-split between human (Zhang L. et al.; Jia et al.;
Luo et al.; Xie et al.; Zhang X. et al.) or plant (Fuentes et al.; Lin et al.) disease diagnosis and
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chemical toxicity (Matsuzaka and Uesawa; Idakwo et al.) or
drug efficacy (Hu et al.; Ji et al.) prediction. CNN architecture
dominated these studies, except three where autoencoder (Zhang
L. et al.; Hu et al.) or XGBoost (Ji et al.) was employed. The
input data varied from images (Fuentes et al.; Lin et al.; Xie
et al.) or converted images (Matsuzaka and Uesawa) to gene
mutations (Luo et al.), chemical molecular descriptors (Hu et al.;
Idakwo et al.), phenotypes (Jia et al.), physical examination
records (Zhang X. et al.), and mixtures of different data profiles
such as multi-omics data (Zhang L. et al.), chemical structures,
human phenotypes, pathways, protein targets, and protein–
protein interactions (Ji et al.).

As summarized below, this collection of original research
papers presents a significant amount of progress made in the
above-mentioned scope of the Research Topic:

Development of novel DL-based tools: Autoencoder-based
classification models were developed to identify ultra-high
risk prognostic subgroups of neuroblastoma (Zhang et al.) or
distinguish drug-like compounds from common compounds
(Hu et al.). Luo et al. demonstrated that a CNN-based deepDriver
could learn information within somatic mutation data and
similarity networks simultaneously to enhance the prediction
of cancer driver genes. A CNN-based, pixel-level semantic
segmentation model was built for quantitative assessment of the
severity of powdery mildew in cucumber leaves, achieving an
average pixel accuracy of 96% (Lin et al.). Xie et al. applied
both CNN- and autoencoder-based DL and transfer learning
techniques to automatically extract high-level abstract features
from breast cancer histopathological images, which led to a
significant improvement in cancer diagnosis. Zhang X. et al.
reported a novel GroupNet model for multi-label chronic disease
classification that outperformed other DL (e.g., AlexNet) and
conventional ML (e.g., SVM) models.

Optimization of existing DL-based tools: Fuentes et al.
presented a two-tiered diagnosis system to address high false
positive rates caused by class unbalance and variation. The
system consists of a primary diagnosis unit that detects a set
of bounding boxes that likely contain a disease in the image, a
secondary diagnosis unit that verifies bounding boxes detected
from the primary diagnosis unit using independent CNN
classifiers trained with respect to each class, and an integration
unit that combines the results from the primary and secondary
units to effectively recognize 10 different types of diseases and
pests in tomato. This system showed an improved recognition
rate of 96%, 13% higher than previous work (Fuentes et al.,
2017).Matsuzaka andUesawa refinedDeepSnap, a DL-based tool
for quantitative structure-activity relationship (QSAR) analysis
previously developed byUesawa (2018), through optimizing such
parameters as the number of molecules per Structure Data File
(SDF), zoom factor percentage, atom size for van der Waals
percentage, bond radius, minimum bond distance, and bond
tolerance. The DeepSnap with an optimal set of parameter values
generated the best performing models.

Choosing between DL and conventional ML (cML): Despite
revolutionary breakthroughs, DL does not always provide better
performance or superior solutions to any specific problem than
cML. Such cML as Logistic Regression (LR), RandomForest (RF),
and Naive Bayes (NB) were employed along with Deep Neural

Network (DNN) to train classifiers with excellent precision
(≥98%) and recall (up to 95%) for rare disease diagnosis
implemented in a Rare Disease Auxiliary Diagnosis system (Jia
et al.). Idakwo et al. presented a case study where DNN and
RF were compared with and without parametric optimization
in terms of QSAR-based chemical toxicity prediction. Ji et al.
compared XGBoost, a cML algorithm, with DeepSynergy, a DL
algorithm, and other cML algorithms (e.g., RF, LR, and NB), and
concluded that XGBoost outperformed other classifiers in both
stratified five-fold cross-validation and independent validation
in identifying synergistic or antagonistic drug combinations.
These studies suggest that in the absence of large amounts of
training samples (e.g., in the 100 or 1,000 k range), cML may
be an alternative superior to DL in performance, as cML is
less likely to over-fit and often computationally less costly. Even
with available big data, DL algorithms need to be optimized to
achieve outstanding performance (Fuentes et al.; Idakwo et al.;
Matsuzaka andUesawa). Furthermore, transfer learning was used
in conjunction with DL to train a neural network model on a
problem similar to the one being solved (Xie et al.; Matsuzaka
and Uesawa).

Data preprocessing: In order to take advantage of the power
of CNN, Matsuzaka and Uesawa converted SMILES text files
into SDF image files, whereas Zhang X. et al. transformed
physical examination records into multi-label class data using
binary relevance and label powerset methods. Data rebalance
techniques (Hu et al.; Xie et al.) and focal loss (Zhang X.
et al.) or stratification (Ji et al.; Idakwo et al.) strategies
were often performed to overcome the influence of skewed
class distribution. Data preprocessing played a critical role in
improving performance of DL- or cML-based classification.

This collection of contributions highlights not only the
promising outlook of DL applications in disease diagnosis
and toxicity prediction, but also the necessity of optimizing
DL algorithms in order to achieve superior outcomes. Given
the remarkable success of DL application in classification
problems, the focus of future efforts may now shift to
quantification problems.
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