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Abstract: Although our previous study revealed that gamma-irradiated chrysin enhanced anti-
inflammatory activity compared to intact chrysin, it remains unclear whether the chrysin derivative,
CM1, produced by gamma irradiation, negatively regulates toll-like receptor (TLR) signaling. In this
study, we investigated the molecular basis for the downregulation of TLR4 signal transduction by
CM1 in macrophages. We initially determined the appropriate concentration of CM1 and found no
cellular toxicity below 2 µg/mL. Upon stimulation with lipopolysaccharide (LPS), CM1 modulated
LPS-stimulated inflammatory action by suppressing the release of proinflammatory mediators
(cytokines TNF-α and IL-6) and nitric oxide (NO) and downregulated the mitogen-activated protein
kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways. Furthermore, CM1 markedly
elevated the expression of the TLR negative regulator toll-interacting protein (Tollip) in dose- and
time-dependent manners. LPS-induced expression of cell surface molecules (CD80, CD86, and MHC
class I/II), proinflammatory cytokines (TNF-α and IL-6), COX-2, and iNOS-mediated NO were
inhibited by CM1; these effects were prevented by the knockdown of Tollip expression. Additionally,
CM1 did not affect the downregulation of LPS-induced expression of MAPKs and NF-κB signaling
in Tollip-downregulated cells. These findings provide insight into effective therapeutic intervention
of inflammatory disease by increasing the understanding of the negative regulation of TLR signaling
induced by CM1.

Keywords: chrysin derivative; anti-inflammatory activity; toll-like receptor negative regulator;
toll-interacting protein; macrophage

1. Introduction

The inflammatory response is regarded as a series of complex and unbalanced pro-
cesses involving multiple cells, and the innate immune system is a major contributor to
early inflammation [1]. Ultimately, inflammatory processes are initiated by the activation of
pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are the best-characterized
PRRs and recognize pathogen-associated molecular patterns (PAMPs) [2]. TLR activation
in response to ligand binding induces the expression of various inflammatory mediators,
resulting in a pathological inflammatory response [3]. TLR4 plays a key role in various
diseases, such as inflammatory bowel disease, sepsis, Alzheimer’s disease, and cancers; it
can induce prolonged and excessive inflammatory signals, resulting in serious damage to
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various tissues [4,5]. For example, TLR4 signaling activation triggers a cascade of events
leading to inflammatory response of innate immune cells via NF-B activation as well as
activated T cell responses, which is considered as the major immunological cause in the
onset of inflammatory bowel disease [6,7]. Furthermore, TLR4 signaling activation pro-
motes colitis-associated tumorigenesis by inhibiting enterocyte apoptosis in early tumor
promotion [8,9]. Similarly, TLR4 activation is associated with development of Alzheimer’s
disease. The upregulated TLR4 by aggregated Aβ leads to activation of microglia, as a
principal innate immune cell in brain development, subsequently leading to systemic neu-
roinflammation via crosstalk with the complement and inflammasome [10,11]. Sustained
inflammatory responses are major features of neurodegenerative disorders [12,13]. There-
fore, pharmacological inhibitors of TLR4 are considered attractive drugs for the treatment
of the above-mentioned diseases.

Flavonoids are extensively present in various plants, and flavonoid-rich diets are
thought to play a key role in the prevention and treatment of inflammatory chronic dis-
eases [14]. In particular, many researchers have reported that various flavonoids have
strong anti-inflammatory activities, which are related to their regulatory effect of TLR-
related molecules [15–17]. For this reason, flavonoids and their derivatives have drawn
wide attention as a therapeutic candidate for inflammatory disease [18–20]. Chrysin
(C15H10O4) is one of the most commonly distributed flavonoids in vegetable and fruit
plants, and has been widely studied for several decades owing to its physiological prop-
erties, including anti-inflammatory, antioxidative, anticancer, and antihypertensive ef-
fects [21,22]. In our previous study, we identified a new chrysin derivative (CM1) which ex-
hibited greater anti-inflammatory activity in dendritic cells than chrysin and exerted protec-
tive effects in a mouse colitis model [23]. We had previously identified that CM1 is a hydrox-
yethyl derivative of chrysin that is produced by ionizing radiation from chrysin methanolic
solution (Figure 1a) [24]. However, the mechanism underlying the anti-inflammatory effect
of CM1-mediated negative regulation of TLR signaling has not yet been elucidated. Thus,
we aimed to determine the molecular mechanisms of CM1, which could contribute to better
understanding of therapeutic application for inflammatory diseases.

2. Results
2.1. Inhibitory Effect of CM1 on LPS-Induced Pro-Inflammatory Cytokine and NO Production
Without Cytotoxicity

CM1 isolated from gamma-irradiated chrysin was used in all experiments. First, we
examined the cytotoxicity of CM1 at various concentrations (0.5–2 µg/mL). Staurosporine
was used as a positive control. As CM1 did not exhibit any toxicity toward RAW264.7
cells (Figure 1b,c), CM1 was used at concentrations <2 µg/mL in all subsequent experi-
ments. Next, we examined whether CM1 played a modulatory role in the expression of
lipopolysaccharide (LPS)-induced proinflammatory cytokines, such as TNF-α and IL-6.
As shown in Figure 1d, cytokine (TNF-α and IL-6) and NO production in the culture
supernatants of RAW264.7 cells was significantly increased following LPS treatment, but
overexpression of the proinflammatory cytokines and NO was significantly inhibited in
response to CM1 (1–2 µg/mL) treatment. These findings strongly suggested that CM1 plays
a key role in modulating LPS-induced inflammatory activity by inhibiting proinflammatory
cytokine and NO production.
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Figure 1. Cell viability and anti-inflammatory effect of CM1 on RAW264.7 cells. HPLC chromatogram and chemical
structure of CM1 are shown (a). RAW264.7 cells were treated with CM1 (0.5, 1, 1.5, and 2 µg/mL) for 24 h. Cell viability was
assessed using the MTT assay (b). RAW264.7 cells were treated with CM1 (0.5, 1, 1.5, and 2 µg/mL) and 50 nM staurosporine
for 24 h, and cytotoxicity was assessed by annexin V/PI staining and flow cytometry (c). Staurosporine was used as a
positive control for measuring cell death. RAW264.7 cells were treated with LPS (200 ng/mL) or LPS and CM1 (1, 1.5, and
2 µg/mL) for 24 h, and TNF-α, IL-6, and NO levels in the culture medium were analyzed by ELISA and Griess assay (d).
All bar graphs show the mean ± SD of three samples from one representative plot among three independent experiments.
Statistical analysis was performed by one-way ANOVA in conjunction with Tukey’s multiple test; ** p < 0.01 and *** p < 0.001.
CON: untreated RAW264.7. Abbreviations: MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide; PI,
propidium iodide; LPS, lipopolysaccharide; TNF, tumor necrosis factor; IL, interleukin; NO, nitric oxide.

2.2. Effect of CM1 on LPS-Induced NF-κB, MAPK Signaling and Tollip Protein

To further investigate the effect of CM1 on the expression of proinflammatory me-
diators, we measured the levels of MAPK and NF-κB signaling pathway intermediaries,
because these pathways can regulate cytokine production in various immune cell types [25].
As shown in Figure 2a–c, activation of MAPK (phosphorylation of ERK and p38) and NF-
κB (degradation/phosphorylation of IκB-α and nuclear translocation of p65) signaling
was measured by immunoblotting. The results showed that CM1 significantly inhibited
LPS-induced activation of MAPK and NF-κB signaling. Based on these and our previous
results, we predicted that the mechanism of action of CM1 involved the modulation of
LPS-induced proinflammatory cytokine expression. Several intracellular molecules, such
as SOCS1, Tollip, and IRAK-M proteins, can regulate inflammatory action by negatively
regulating TLR activity [26]. To determine whether the negative regulators of TLR mediate
the anti-inflammatory effect of CM1, we examined the expression of Tollip, SOCS1, and
IRAK-M in the background of CM1 treatment in RAW264.7 cells. As shown in Figure 2d–f,
CM1 (2 µg/mL)-treated RAW264.7 cells—compared to untreated cells—showed a dose-
and time-dependent increase in Tollip expression, but SOCS1 and IRAK-M expression
remained unaffected. Additionally, immunoblotting revealed Tollip knockdown in the
Tollip-shRNA-transfected cells, but TLR4 expression did not differ between the Tollip
shRNA-transfected and untransfected RAW264.7 cells in the background of CM1 treatment
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(Figure 2g). Based on these results, we hypothesized that the anti-inflammatory effect of
CM1 was due to upregulation of Tollip.

Figure 2. CM1-induced Tollip expression and inhibition of MAPK and NF-κB activation in RAW264.7 cells. RAW264.7
cells were pretreated with CM1 (1, 1.5, and 2 µg/mL) for 1 h and then stimulated with LPS (200 ng/mL) for 45 min (a–c).
The cytosolic and nuclear fractions were subjected to SDS-PAGE, and immunoblotting was performed using specific Abs
against p-ERK1/2, p-p38, p-JNK, p-IκB-α, IκB-α, and p65 NF-κB. β-Actin and lamin B were used as the loading controls
for the cytosolic and nuclear fractions, respectively. RAW264.7 cells were treated with CM1 (2 µg/mL) for 1 h (d). Total
cellular proteins were resolved by SDS-PAGE, and immunoblotting was performed using specific SOCS1, IRAK-M, and
Tollip Abs. RAW264. 7 cells were treated with CM1 for the indicated time periods (e) or at indicated concentrations
(f), and Tollip levels were measured by immunoblotting. RAW264.7 cells were transfected with the control and Tollip
shRNA vectors (g). Cells were treated with CM1, and Tollip and TLR4 levels were measured by immunoblotting. One
representative blot from three independent experiments is shown. Statistical analysis was performed by one-way ANOVA in
conjunction with Tukey’s multiple test (a–c,e) or unpaired Student’s t test (d,g); n.s: no significance, * p < 0.05, ** p < 0.01, and
*** p < 0.001. Abbreviations: MAPK, mitogen-activated protein kinase; NF, nuclear factor; Tollip, Toll-interacting protein;
LPS, lipopolysaccharide; Abs, antibodies; p-ERK1/2, phosphor-extracellular signal-regulated kinase-1/2; p-p38, phosphor-
p38; p-JNK; phosphor-c-Jun N-terminal kinase; IκB, inhibitor of κB; p-IκB; phosphor-IκB; SOCS1, anti-suppressor of cytokine
signaling 1; IRAK-M, anti-interleukin-1 receptor-associated kinase; shRNA, short hairpin RNA; TLR4, Toll-like receptor-4.
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2.3. CM1-Induced Inhibition of Pro-Inflammatory Mediator and Surface Molecule Expression via
Tollip Upregulation

To verify our hypothesis that CM1 suppressed macrophage maturation through Tollip,
we quantified the expression of macrophage activation-related surface molecules, such as
CD80, CD86, and MHC classes I/II. As shown in Figure 3, CM1 inhibited LPS-induced
expression of costimulatory molecules (CD80 and CD86) and MHC class molecules (MHC-I
and II); however, the levels of surface molecules in Tollip shRNA-treated cells—compared
to those in the control LPS/CM1-treated cells—were recovered. To determine whether CM1-
induced Tollip expression mediated the downregulation of proinflammatory mediators,
such as cytokines (TNF-α and IL-6), NO, and COX-2, we stimulated Tollip-downregulated
RAW264.7 macrophage cells using LPS. As shown in Figure 4a,b, we found that CM1-
induced inhibition of NO, IL-6, and TNF-α production was prevented by Tollip silencing.
Next, we confirmed the expression of iNOS and COX-2, as these two enzymes are thought
to be the most important regulators of inflammatory progression [27,28]. As shown in
Figure 4c, LPS-induced expression of iNOS and COX-2 was significantly inhibited by CM1.
However, this inhibitory effect of CM1 was not observed in Tollip-downregulated cells.

Figure 3. CM1-mediated suppression of macrophage surface marker expression through upregulation
of Tollip expression. Control and Tollip shRNA-transfected RAW264.7 cells were pretreated with
CM1 (2 µg/mL) for 1 h and then exposed to LPS (200 ng/mL) for 24 h. Cells were stained with
anti-CD80, anti-CD86, anti-MHC class I, and anti-MHC class II. The percentage of positive cells is
shown in each panel. Data are presented as the mean ± SD for triplicate determinations of one
representative plot among three independent experiments. Statistical analysis was performed by
one-way ANOVA in conjunction with Tukey’s multiple test; n.s: no significance and *** p < 0.001,
versus LPS treatment alone. Abbreviations: Tollip, Toll-interacting protein; shRNA, short hairpin
RNA; LPS, lipopolysaccharide.
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Figure 4. Tollip is indispensable for the inhibitory action of CM1 on proinflammatory mediators in LPS-treated RAW264.7
cells. Control and Tollip shRNA-transfected RAW264.7 cells were incubated with CM1 (2 µg/mL) for 1 h and then treated
with LPS (200 ng/mL) for 24 h. TNF-α and IL-6 levels in the culture medium were measured by ELISA (a). RAW264.7
cells were pretreated with CM1 (2 µg/mL) for 1 h and then stimulated with LPS (200 ng/mL) for 45 min. NO level in the
culture medium was measured using the Griess assay (b); *** p < 0.001. Data are presented as the mean ± SD for triplicate
determinations of one representative plot among three independent experiments. Cytosolic fractions were analyzed to
determine the COX-2 and iNOS protein levels using specific Abs (c). One representative blot from among three independent
experiments is shown. Statistical analysis was performed by one-way ANOVA in conjunction with Tukey’s multiple test;
n.s: no significance and *** p < 0.001. Abbreviations: Tollip, Toll-interacting protein; LPS, lipopolysaccharide; shRNA, short
hairpin RNA; TNF, tumor necrosis factor; IL, interleukin; NO, nitric oxide; COX-2, cyclooxygenase-2; iNOS, inducible NO
synthase; p-p38, phosphor-p38; p-JNK, phosphor-c-Jun N-terminal kinase; IκB, inhibitor of κB; p-IκB, phosphor-IκB; Abs,
antibodies; NF, nuclear factor.

2.4. CM1-Induced Inhibition of the MAPK and NF-κB Signaling Pathways via
Tollip Upregulation

To determine whether CM1-induced Tollip expression was correlated with MAPK
and NF-κB signaling, the phosphorylation levels of MAPKs (ERK, p38, and JNK), phospho-
rylation/degradation of IκB-α, and nuclear translocation of NF-κB p65 were analyzed in
Tollip-downregulated and control RAW264.7 macrophage cells. As shown in Figure 5a,b,
LPS-induced MAPK (ERK1/2, p38, and JNK) and IκB-α phosphorylation was inhibited
by CM1 (2 µg/mL), but the inhibitory effect of CM1 (2 µg/mL) on LPS-induced MAPK
phosphorylation was attenuated in Tollip-downregulated cells. In agreement with these
results, CM1 significantly inhibited LPS-induced nuclear translocation of NF-κB p65 in
control cells, but not in Tollip-downregulated cells. Collectively, these results suggested
that CM1-induced Tollip expression is the key factor in the downregulation of LPS-induced
MAPK and NF-κB signaling in macrophages.
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Figure 5. Tollip is indispensable for the inhibitory action of CM1 on MAPKs and NF-κB signaling in
LPS-treated RAW264.7 cells. Control and Tollip shRNA-transfected RAW264.7 cells were incubated
with CM1 (2 µg/mL) for 1 h and then treated with LPS (200 ng/mL) for 24 h. Control and Tollip
shRNA-transfected RAW264.7 cells were pretreated with CM1 (2 µg/mL) for 1 h and then treated
with LPS (200 ng/mL) for 45 min. Cytosolic fractions were analyzed to determine the p-ERK, p-
p38, p-JNK, p-IκB-α, IκB-α, and β-actin protein levels using specific Abs (a). Nuclear fractions
were analyzed to determine the p65 NF-κB and lamin B protein levels using specific Abs (b). One
representative plot from among three independent experiments is shown. Statistical analysis was
performed by one-way ANOVA in conjunction with Tukey’s multiple test; n.s: no significance,
* p < 0.05, and *** p < 0.001. Abbreviations: Tollip, Toll-interacting protein; LPS, lipopolysaccharide;
shRNA, short hairpin RNA; p-ERK1/2, phosphor-extracellular signal-regulated kinase-1/2, p-p38,
phosphor-p38; p-JNK, phosphor-c-Jun N-terminal kinase; IκB, inhibitor of κB; p-IκB, phosphor-IκB;
Abs, antibodies; NF, nuclear factor.

3. Discussion

CM1—a new chrysin derivative produced using irradiation technology—exerts greater
anti-inflammatory effect than the parent chrysin, and it is considered an attractive thera-
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peutic candidate for inflammatory bowel disease [23]. In this study, we investigated the
mechanism underlying the anti-inflammatory effect of CM1 that is known to act as an
important regulator of the early phase of inflammation in activated macrophages.

As demonstrated previously, TLRs are PRRs with key roles in innate immunity. Briefly,
when various TLRs bind to specific ligands, antigen presenting cells (APCs), such as
macrophages and dendritic cells, migrate to the lymph nodes, and activated APCs sub-
sequently induce the production of high levels of proinflammatory cytokines, NO, and
surface molecules [29]. LPS, a well-known PAMP found in the outer membrane of most
gram-negative bacteria, is widely used as a TLR agonist to induce an inflammatory re-
sponse in in vitro studies [30]. Here, we showed that CM1 inhibited the overexpression of
proinflammatory cytokines, NO, and surface molecules in LPS-stimulated macrophages by
inhibiting the activation of MAPK and NF-κB signaling pathways.

SOCS1, Tollip, and IRAK-M have been reported to negatively regulate excessive TLR
stimulation [26,31]. Among these proteins, Tollip is a critical negative regulator of TLR4-
mediated proinflammatory signals and is considered an effective target for the inhibition
of excessive cytokine production in inflammatory diseases and pathogenic infections [32].
In this respect, a previous study had revealed that Tollip was probably entirely or partly
involved in the inhibition of MAPK and NF-κB signals [33]. Tollip inhibits IRAK-1 au-
tophosphorylation by directly binding to IRAK-1 [34]. IRAKs are first signal transducers
of TLR that importantly mediate activation of NF-κB and MAPKs [35]. In other words,
Tollip activation inhibits inflammatory signal by impairing myeloid differentiation antigen
88 (MyD88)-dependent NF-κB activation and MAPKs pathways. In this regard, several
reports have been demonstrated that Tollip-knockout mice display a more aggravated
LPS-induced inflammatory response than normal mice [36]. Similarly, Tollip-knockout
mice are more susceptible to dextran sodium salt (DSS)-induced colon injury [32]. On the
other hand, several compounds that acts as inducer of Tollip have great anti-inflammatory
activities [37,38]. In agreement with the above reports, we observed significantly high dose-
and time-dependent expression of Tollip in response to CM1 treatment of macrophage
cells. Tollip knockdown abolished the inhibitory effects of CM1 on LPS-induced overex-
pression of inflammatory mediators (iNOS-mediated NO, cytokines, COX, and cell surface
molecules), and the MAPK and NF-κB signals were restored. These findings showed that
CM1-induced Tollip expression—serving as a key regulator of the MAPK and NF-κB signal-
ing pathways—regulated the expression of various genes during inflammatory responses
in LPS-activated macrophages, thereby demonstrating the therapeutic importance of CM1.
Our results provide better understanding of anti-inflammatory mechanism of CM1, which
support its potential application for inflammatory disease therapy.

However, there are several limitations to the present study. Although our study
was focused on Tollip function in macrophages, further mechanistic studies on other im-
munological diseases, such as allergic inflammation and autoimmune disease, are needed.
Additionally, future studies using the Tollip-knockout mouse model as an inflammatory
disease animal model should be performed. Specifically, we observed that CM1 had great
protective efficacy against DSS-induced colitis in our previous study [23], however, it is
yet unclear whether protective effects of CM1 are due to Tollip expression. Based on the
present findings, further studies on whether inhibitory effects of CM1 in DSS-induced
colitis are due to Tollip expression and these anti-inflammatory effects of CM1 are abolished
in Tollip-knockout mice are recommended for in-depth understanding of mechanistic role
of CM1 as a candidate for colitis therapy.

4. Materials and Methods
4.1. CM1 Preparation

CM1 isolated from gamma-irradiated chrysin was prepared in accordance with a
previously described protocol [24]. Briefly, chrysin-methanol solution was irradiated at a
dose of 50 kGy (10 kGy/h) using a cobalt-60 irradiator (point source AECL; IR-221; MDS
Nordion International Co., Ltd., Ottawa, ON, Canada). After irradiation, a preparative
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HPLC 1260 Infinity System (Agilent Technologies, Santa Clara, CA, USA) was used to
purify CM1.

4.2. Reagents and Antibodies

Fluorescein isothiocyanate (FITC)-conjugated Annexin V/propidium iodide (PI) Kit,
anti-CD80, anti-CD86, and phycoerythrin-conjugated anti-MHC-I and anti-MHC-II were
purchased from BD Biosciences (San Diego, CA, USA). Lipopolysaccharide (LPS) from
Escherichia coli O111:B4 was purchased from InvivoGen (San Diego, CA, USA). Anti-
phosphorylated extracellular signal-regulated kinase (ERK)-1/2 monoclonal antibody
(Ab), anti-phosphorylated p38 monoclonal Ab, anti-phosphorylated c-Jun N-terminal
kinase (JNK) monoclonal Ab, anti-phosphorylated inhibitor of κB (IκB)-α monoclonal Ab,
anti-IκB-α monoclonal Ab, anti-nuclear factor (NF)-κB (p65) polyclonal Ab, anti-lamin
B polyclonal Ab, anti-Toll-interacting protein (Tollip) monoclonal Ab, anti-suppressor
of cytokine signaling (SOCS) 1 polyclonal Ab, anti-interleukin (IL)-1 receptor-associated
kinase (IRAK)-M monoclonal Ab, anti-TLR4 polyclonal Ab, anti-cyclooxygenase (COX)-2
polyclonal Ab, anti- inducible nitric oxide (NO) synthase (iNOS) polyclonal Ab, and anti-β-
Actin monoclonal Ab were obtained from Cell Signaling Technology (Danvers, MA, USA).
Goat anti-rabbit-IgG-horseradish peroxidase (HRP) Ab and goat anti-mouse-IgG-HRP
Ab were purchased from Calbiochem (Merck KGaA, Darmstadt, Germany), and 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was purchased from
Sigma-Aldrich (St. Louis, MO, USA).

4.3. Cell Culture

The murine macrophage cell line RAW264.7 was purchased from the Korean Cell Line
Bank (Seoul, Korea). RAW264.7 cells were cultured in Dulbecco’s Modified Eagle’s Medium
(Grand Island, NY, USA) supplemented with 10% fetal bovine serum (Gibco, Thermo Fisher
Scientific Inc., Waltham, MA, USA), penicillin (100 U/mL), and streptomycin (100 U/mL)
at 37 ◦C in an atmosphere of 5% CO2.

4.4. Measurement of Cytotoxicity

Cytotoxicity was assessed using the MTT assay with an Annexin V/PI Staining Kit
(BD Biosciences), according to the manufacturer’s instructions. Cultured RAW264.7 cells
(1 × 105 cells/mL) were treated with CM1 in a 12-well plate and incubated for 24 h. The
cell death pattern of RAW264.7 cells was analyzed by annexin V/PI analysis. The harvested
RAW264.7 cells were washed with phosphate-buffered saline (PBS, pH 7.2) and stained
with FITC-conjugated annexin V and PI. The cells were analyzed using FACSVerseTM (BD
Biosciences), and the results were analyzed using FlowJo software (Tree Star, Ashland, OR,
USA). For the MTT assay, the culture medium was replaced with 1 mg/mL MTT (100 µL).
The cells were incubated at 37 ◦C for 1 h, the medium was removed, and the formazan
product was dissolved in dimethylsulfoxide. Absorbance was measured at 570 nm using a
microplate reader (Zenyth 3100; Anthos Labtec Instruments GmbH, Cambridge, UK).

4.5. Measurement of NO Production

NO concentration in the culture supernatants was measured using the Griess method [39].
Griess reagent (100 µL, 1% sulfanilamide/0.1% N-(1-naphtyl-ethylendiamine in 5% phos-
phoric acid) was mixed with the supernatants (100 µL) obtained from the experimental
RAW264.7 cultures. After 15 min, absorbance of the solution was measured at 540 nm
using a microplate reader. Standard curve of freshly prepared NaNO2 (0–100 µM) was
used to calculate nitrite concentration.

4.6. Measurement of Cytokines

Tumor necrosis factor (TNF)-α and IL-6 levels in the culture supernatants were de-
termined using commercial Cytokine Detection ELISA Kits (BD Biosciences), as per the
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manufacturer’s instructions. Protein levels were determined by measuring absorbance at
450 nm using a microplate reader, as described in our previous report [40].

4.7. Generation of Tollip-Depleted Cells

Tollip-depleted cells were generated using a previously described method [41]. Briefly,
short hairpin RNA (shRNA; Santa Cruz Biotechnology, Dallas, TX, USA) against Tol-
lip consisted of a pool of 3–5 lentiviral vector plasmids each harboring target-specific
19–25 nucleotides (plus hairpin). Cells were cultured in the presence of these shRNA for
7 h to knockdown Tollip expression. Neomycin selection was employed to obtain stably
transfected cells.

4.8. Immunoblotting

For extracting the cytosolic fraction, cells were lysed in PRO-PREP protein extract
buffer (100 µL; iNtRon Biotechnology, Seongnam, Korea), containing 1 mM phenylmethane-
sulfonyl fluoride (PMSF), and protease inhibitor cocktail. The nuclear fraction was prepared
by treating cells with cytosolic lysis buffer (100 µL; 10 mM HEPES (pH 7.9), 10 mM KCl,
0.1 mM EDTA, 0.5% Nonidet P-40, 1 mM dithiothreitol, and 0.5 mM PMSF) on ice for
10 min. Following centrifugation at 4000× g rpm for 5 min, the pellet was resuspended
in nuclear extraction buffer (100 µL; 20 mM HEPES (pH 7.9), 400 mM NaCl, 1 mM EDTA,
1 mM dithiothreitol, and 1 mM PMSF) and incubated on ice for 30 min. The nuclear
lysates were centrifuged at 16,000× g for 10 min, and the supernatant containing the nu-
clear extracts was collected and stored at −80 ◦C until use. Protein concentrations were
determined by performing the Bradford assay, and proteins (10–30 µg) were resolved
by SDS-PAGE, following which they were transferred onto a polyvinylidene difluoride
membrane (Millipore, Burlington, MA, USA). The membranes were blocked in 5% bovine
serum albumin (BSA) and then probed with the respective antibodies (Abs) for 4 h. The
membranes were washed with Tris Buffered Saline containing 0.05% Tween 20 buffer and
probed with HRP-conjugated secondary Abs at room temperature for 1 h. Protein bands,
including those of mitogen-activated protein kinases (MAPKs) and NF-κB, were visualized
using an ECL Advance Kit (Millipore). Western blot bands were quantified by image J.

4.9. Analysis of Cell Surface Molecules

RAW264.7 cells were harvested and preincubated with 0.5% BSA diluted in PBS
for 30 min. The cells were then probed with fluorescence-conjugated anti-CD80, anti-
CD86, anti-MHC-I, and anti-MHC-II (BD Biosciences) antibodies at 4 ◦C for 30 min. All
Abs were diluted 100-fold before use. After washing with PBS, the expression of the
corresponding molecules was measured by flow cytometry. The data were analyzed using
FlowJo software.

4.10. Statistical Analysis

All experiments were repeated at least thrice and showed consistent results. The sig-
nificance levels in comparisons between samples were determined by one-way analysis of
variance, followed by Tukey’s multiple comparison or unpaired Student’s t test. Statistical
analysis was performed using GraphPad 5.0 (GraphPad Software, San Diego, CA, USA).
The data in the graphs were expressed as the mean ± SD. Values of * p < 0.05, ** p < 0.01,
and *** p < 0.001 were considered significant.

5. Conclusions

In this study, we found that CM1 effectively inhibited LPS-induced expression of
proinflammatory mediators via the MAPK and NF-κB pathways, and that Tollip expression
was a key regulator of the anti-inflammatory activity of CM1 in macrophages. These find-
ings may provide an advanced understanding of the anti-inflammatory mechanism of CM1
and might aid the development of better therapeutic strategies for inflammatory diseases.
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