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Abstract 

Background:  Traditionally, mutational burden and mutational signatures have been assessed by tumor-normal pair 
DNA sequencing. The requirement of having both normal and tumor samples is not always feasible from a clinical 
perspective, and led us to investigate the efficacy of using RNA sequencing of only the tumor sample to determine 
the mutational burden and signatures, and subsequently molecular cause of the cancer. The potential advantages 
include reducing the cost of testing, and simultaneously providing information on the gene expression profile and 
gene fusions present in the tumor.

Results:  In this study, we devised supervised and unsupervised learning methods to determine mutational signa‑
tures from tumor RNA-seq data. As applications, we applied the methods to a training set of 587 TCGA uterine cancer 
RNA-seq samples, and examined in an independent testing set of 521 TCGA colorectal cancer RNA-seq samples. 
Both diseases are known associated with microsatellite instable high (MSI-H) and driver defects in DNA polymerase ɛ 
(POLɛ). From RNA-seq called variants, we found majority (> 95%) are likely germline variants, leading to C > T enriched 
germline variants (dbSNP) widely applicable in tumor and normal RNA-seq samples. We found significant associations 
between RNA-derived mutational burdens and MSI/POLɛ status, and insignificant relationship between RNA-seq 
total coverage and derived mutational burdens. Additionally we found that over 80% of variants could be explained 
by using the COSMIC mutational signature-5, -6 and -10, which are implicated in natural aging, MSI-H, and POLɛ, 
respectively. For classifying tumor type, within UCEC we achieved a recall of 0.56 and 0.78, and specificity of 0.66 and 
0.99 for MSI and POLɛ respectively. By applying learnt RNA signatures from UCEC to COAD, we were able to improve 
our classification of both MSI and POLɛ.

Conclusions:  Taken together, our work provides a novel method to detect RNA-seq derived mutational signatures 
with effective procedures to remove likely germline variants. It can leads to accurate classification of underlying driv‑
ing mechanisms of DNA damage deficiency.
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Background
Mutational identity of cancers
Clinical treatment of cancer is largely dependent on the 
mechanistic defect(s) giving rise to a tumor; subsequently 
the discovery of biomarkers for identifying these defects 

has become increasingly important. PD-L1 inhibitors are 
immunotherapy drugs and function by repressing the 
ability of tumors to disguise themselves from immune 
system. PD-1 on T cells binds to the PD-L1 receptor on 
some types of tumor cells, signaling to the T cell not to 
target the tumor cell  [1, 2]. Tumors that display high 
levels of genetic diversity are often susceptible to PD-L1 
inhibitors as variants in the DNA sequences lead to the 
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display of abnormal proteins on the tumor cell surface, 
allowing the immune system to attack the tumor in the 
absence of the PD-1/PD-L1 “off switch”  [3]. Classifica-
tion of patients as promising or unpromising candidates 
for PD-L1 inhibitors is therefore of great importance in 
therapeutic decisions.

Tumor Mutational burden (TMB) is a metric used to 
quantify the degree of mutational diversity in tumor cells 
by calculating the number of somatic variants per mega 
base. Different tumor types display highly different levels 
of mutational burden and high TMB is associated with 
response to immunotherapies  [4].

Mutations in the catalytic subunit of DNA polymerase 
epsilon (POLɛ), responsible for DNA repair during chro-
mosomal replication, have been associated with uterine 
and colorectal cancers with a large mutational burden  [5, 
6]. The mismatch repair system (MMR) repairs sponta-
neous mismatches in the DNA, and disruption of MMR 
leads to polymorphism in the length of microsatellite 
regions (microsatellite instability high, MSI-H, or micros-
atellite stable, MSS)  [7]. Additionally, an increased muta-
tional burden has been associated with MSI-H tumors  
[8].

Disruption of DNA repair mechanisms also results in a 
unique mutational signature as certain base substitutions 
occur more frequently based on the mechanism of repair, 
and with specific, adjacent sequence context. Mutational 
signatures are calculated over trinucleotide sequence 
context (e.g. ACA to AGA) resulting in 96 quantitative 
variables to compare as opposed to the single variable of 
mutational burden. The Catalogue of Somatic Mutations 
in Cancer (COSMIC) is a database of 30 mutational sig-
natures identified in a variety of tumor types, including 
the signature of natural accumulation of mutations dur-
ing aging.

Current method for characterization of tumors
Classically  [9], MMR status has been determined using 
PCR based methods, looking at five microsatellite regions 
for polymorphic changes in length, however these tests 
are effort, cost, and time intensive. More importantly 
there is a wide variation in mutational burden across 
MSI-H cases; hence there is a need for a global assay  
[10]. More recently, mutational signature models have 
been used to predict MMR and POLɛ status from vari-
ants identified from next generation sequencing  [11]. 
However, routine practice requires both a tumor and 
normal sample, to allow for private, germline variants to 
be subtracted out. Additionally, it is common to use vari-
ants identified from DNA sequencing, which contains 
variants from the entire exome or genome, including 
variants not expressed. Expressed variants detected in 

RNA-seq are more likely to result in neo-epitopes, which 
are likely to be targeted by immunotherapy.

In this study, we investigated the efficacy of MSI-H and 
POLɛ classification from RNA -sequencing, using only 
a tumor sample without its corresponding normal sam-
ple. By using RNA sequencing we also get gene expres-
sion and gene fusion data for the tumor, and the variants 
we identify are expressed. Finally, only using the tumor 
removes the requirement to take a normal sample, but 
also provides the greatest challenge in requiring us to 
contend with the presence of germline variants, that can 
make up well over 99% percent of called variants. We 
tested both supervised and unsupervised approaches 
to identify the mutational signature of samples and cre-
ated a regression based model. Based on identified sig-
natures and associated coefficients, we demonstrated 
potentially clinical meaningful application of classify-
ing MSI-H and POLE tumors, which are candidates for 
immunotherapies.

Aim of study
Determine the efficacy of classifying MSI-H and POLɛ 
status from mutational signatures derived from tumor-
only, RNA-seq data.

Methods
Materials
All raw UCEC and COAD RNA-seq data was acquired 
from The Cancer Genome Atlas (TCGA https​://porta​
l.gdc.cance​r.gov/).

Calling variants from RNA‑seq TCGA data
Bam files downloaded from TCGA had variants called 
using RVboost  [12]. RVboost provides a Q-score as a 
metric for confidence in the metric using the subsequent 
filtering steps.

Filtering to enrich for somatic variants
Filtering to enrich for somatic variants was performed in 
three steps. Step 1 was to reduce the number of sequenc-
ing errors and required variants to have a Q-score > 0.05 
and at least 25 supporting reads for the alternative allele. 
Step 2 removed common population variants by only 
accepting variants that were not present in the dbSNP 
database. Step 3 was to remove variants that had allele 
frequencies close to perfectly heterozygous (0.5) or 
homozygous (1). Any variants with an allele frequency 
between 0.45 and 0.55, or 0.95 and 1 were removed.

Mutational burden
Mutational burden was calculated as the number of vari-
ants remaining after filtering divided by the number of 
sequenced mega bases with at least 50 read depth. Read 
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depth was calculated using GATK DepthOfCoverage to 
find the number of bases at 50+ read depth.

Regression of mutational signatures
Regression of the 96 vector mutational signatures to the 
COSMIC signatures (https​://cance​r.sange​r.ac.uk/cosmi​c/
signa​tures​_v2) was performed in R.

Unsupervised signatures
Unsupervised signatures were determined using the pre-
existing R package mutationalPatterns (https​://bioco​
nduct​or.org/packa​ges/relea​se/bioc/html/Mutat​ional​Patte​
rns.html).

Validation
Validation was performed by taking random samplings 
of UCEC or COAD classifications and calculating recall 
and specificity. ROC plots were generated from classifica-
tions of the full dataset. Significance between two groups 
of data was determined by t-test.

To determine the percentage of true somatic variants 
identified through the enrichment steps (see Filtering to 
enrich for somatic variants), the enriched pool of variants 
from RNA-seq were compared to the identified somatic 
mutations from DNA-seq. DNA-seq somatic mutations 
were downloaded from TCGA.

Identification of RNA editing events
A comprehensive list of RNA editing events was down-
loaded from REDIportal  [13]. Variants from RNA-seq 
were compared to the list of RNA editing events to deter-
mine the fraction of RNA editing events per sample.

Results
To identify somatic variants from uterine corpus endo-
metrial carcinomas (UCEC) and colon adenocarcino-
mas (COAD), RNA-sequencing alignment files from 
587 UCEC and 521 COAD tumor samples were down-
loaded from The Cancer Genome Atlas (TCGA) and 
single nucleotide variants were called using the human 
reference hg38 genome (RVBoost, see methods)  [14]. 
The median sample had approximately 55,000 called 
variants, a majority of which are expected to be private, 
germline variants. We implemented a series of filtering 
steps aimed at selectively removing germline variants and 
enrich for somatic variants (Fig. 1a).

The first step was to select for high confidence variants, 
removing false positives such as sequencing errors, by 
requiring a read depth of at least 50 reads at the position, 
with at least 20 reads supporting the alternative allele. 
This and subsequent filtering steps greatly reduced the 
number of variants from the original pool (Fig. 1b). The 
second step was to remove all population variants that 

have been previously characterized in the dbSNP data-
base, as these variants would highly likely to be germline. 
The third step was to remove variants that had allelic fre-
quencies between 0.45 and 0.55 (heterozygous) or 0.95 
and 1 (homozygous). Tumor samples are often not 100% 
pure tumor, and additionally, tumors are often mosaic 
as mutations accumulate in subclones. As a result, the 
allelic frequencies of somatic variants deviate from ger-
mline variants of 0.5 and 1 (Fig. 1c). The number of vari-
ants in the resulting list enriched for somatic variants 
(referred to as the somatic variants for the remainder of 
the paper) was reduced by a median of 100-fold from the 
starting variant pool.

The mutational signature of germline variants was 
determined using the removed variants from filtering 
steps 2 and 3 (Fig. 1d), and used to estimate the remain-
ing germline population in the final pool of enriched 
somatic variants. The mutational signature for each 
sample’s somatic variants was determined in a similar 
method to the COSMIC signatures and germline signa-
ture mentioned above. Linear regression of the trinu-
cleotide frequencies for the somatic variant signatures 
against those of the germline signature gave a coefficient 
representing similarity to the germline (see methods). To 
determine if mutational burden, the number of somatic 
variants per sequenced Mb, was a function of variability 
in somatic variant numbers or variability in the filtering 
process, resulting in left over germline variants, we tried 
to correlate mutational burden with the similarity to the 
germline signature (Fig. 1e). Mutational burden was inde-
pendent of the similarity to the germline signature for all 
three cancer subtypes, POLɛ, MSI-H, and MSS, suggest-
ing higher mutational burden isn’t due to contaminating 
germline signatures.

Calling tumor mutational subtype using regression
We next determined if the mutational burden for the 
POLɛ and MSI-H tumor subtypes, both defined by dis-
ruption of DNA integrity mechanisms, was increased 
relative to MSS tumors, which should only acquire 
somatic variants from the natural aging process. The 
mutational burden of POLɛ samples showed significant 
separation from both MSS and MSI-H tumors (Fig.  2a, 
p-value < 0.001, unmatched t-test). MSI-H samples also 
showed statistically significant separation (p-value < 0.01, 
unmatched t-test), however there was substantial over-
lap between the mutational burden distributions of 
MSS and MSI-H samples. One concern was that sam-
ples sequenced at higher depth would show an increase 
in TMB, providing a confounding factor to analyzing 
tumor-only mutational burden. However, comparing the 
number of megabases with sufficient (> 25 read depth 
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Fig. 1  Filtering process to enrich for somatic variants in tumor-only, RNA-seq TCGA samples. a Filtering workflow to enrich for somatic variants. Step 
1: filter based on Q-score and number of supporting reads to reduce sequencing errors appearing as variants. Step 2: remove all variants that are 
present in the population variant database dbSNP. Step 3: remove variants with allelic frequencies between 0.45 and 0.55, and 0.95 and 1. b Number 
of variants at each stage of the filtering process. c Allelic frequency plot for a representative sample with sub-clonal, mosaic variants in yellow 
and potential germline variants in red. d Mutational signature of germline variants derived from the variants filtered out by referencing dbSNP. e 
Mutational burden for all samples (MSS in blue, MSI-H in black, and POLɛ in red) compared to the regression coefficient to the germline (dbSNP) 
signature

Fig. 2  Mutational burden of filtered UCEC samples. a Mutational burden calculated from variants remaining after filtering to reduce the presence 
of germline variants. Significance from t-test had a p-value of < 0.01 for the MSS and MSI-H comparison, and < 0.001 for POLɛ against either MSS or 
MSI-H. b Mutational burden plotted against the number of mega bases of sequencing for each sample
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required by our variant filtering) for each sample to TMB 
showed no significant correlation (Fig. 2b, r = 0.015).

Classification of MSS, MSI‑H, and POLɛ samples based 
on supervised approaches
The mutational signatures for MSS, MSI, and POLɛ 
tumors from COSMIC (Fig. 3a–c), and the germline sig-
nature derived from dbSNP variants were compared to 
tumor-only TCGA samples. TCGA samples with clinical 
information on MSI and POLɛ status were grouped to 
make corresponding MSS, MSI-H, and POLɛ mutational 
signatures from the somatic variants passing through the 
filtering criteria (Fig. 3d–f). Increased frequency of T to 
C (green) changes suggests additional germline variants 
remain after filtering, influencing the signatures of MSS 
and MSI-H more than POLɛ.

Regression of MSS and MSI-H samples against the 
germline signature showed no significant differences 
in the regression coefficients between the two groups 
(Fig.  3g). To test if POLɛ and MSI-H samples could be 

differentiated from MSS cases, we regressed each sam-
ples’ signature against MSI-H and POLɛ COSMIC signa-
tures. MSI-H samples had higher regression coefficients 
than MSS samples against the MSI-H signature, although 
the overlap in the coefficient distribution is high, the 
MSI-H distribution is skewed toward higher correlations 
(Fig. 3h). POLɛ samples showed a stronger separation of 
coefficient values from non-POLɛ samples, likely due to 
the POLɛ signature being less disrupted by contaminat-
ing germline variants and distinct from either MSS or 
MSI-H signatures (Fig.  3i). Next, we tested the perfor-
mance of the MSI-H and POLɛ signatures derived from 
the tumor-only TCGA samples against COSMIC signa-
tures. Training and testing sets were randomly selected 
10 times and used to calculate the recall and specificity. 
The POLɛ signature had strong recall and specificity, 
while MSI-H was moderate, consistant with our previous 
results (Fig. 4).

To quantify the per signature bias during regression 
to RNA samples, we ran 8000 normal GTEx samples 

Fig. 3  Mutational signatures from filtered UCEC variants. a–c COSMIC mutational signatures of MSS (natural aging, signature 5), MSI-H (signature 
6), and POLɛ (signature 10). d–f Filtered UCEC variant derived signatures for MSS, MSI-H, and POLɛ. g MSS and MSI-H samples regressed against the 
germline signature derived from dbSNP variants. h MSS and MSI-H samples regressed against COSMIC MSI-H signature. Significance from t-test, 
p-value < 0.01. POLɛ and non-POLɛ samples regressed against COSMIC POLɛ signature. Significance from t-test, p-value < 0.001)
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through the pipeline. We found that background bias 
for each signature was relatively distinct and consistent 
(Additional file 1: Figure 1). Germline showed the high-
est coefficients, consistent with the idea that a majority of 
the GTEx variants should be germline, familial variants. 
The distributions of background coefficients can be sub-
sequently used to derive statistics on how far samples are 
outliers and are likely to be a particular subtype.

Identification of mutational signatures using 
an unsupervised approach
To expand the capabilities of the pipeline to potentially 
identify rare tumor subtypes we added the mutation-
alPatterns R package from bioconductor, a previously 
described, unsupervised approach  [12]. Mutational sig-
natures identified by mutationalPatterns looked com-
parable to the cosmic signatures used in the supervised 
approach (Additional file 1: Figure 2). Identified signa-
ture 3 corresponds to MSS samples, cosmic signature 
5; identified signature 1 corresponds to MSI-H, cosmic 
signature 6; and identified signature 5 corresponds to 
POLɛ, cosmic signature 10. A majority of samples were 
explained by the five major signatures identified, and 

most showing strong correlation to only one signature 
(Additional file 1: Figure 3).

Characterizing enriched somatic variants
We quantified the fraction of true somatic events in our 
population of enriched somatic variants from RNA-seq 
by comparing to the patient’s corresponding TCGA 
somatic variant list that was identified from a tumor-
normal DNA-seq pair. The fraction of true somatic 
events in our RNA-seq variant lists correlated posi-
tively with the total number of somatic variants identi-
fied from DNA-seq (Additional file 1: Figure 4A).

Another complication with using RNA-seq is the 
presence of RNA editing events. To calculate the effect 
of RNA editing in our dataset, we downloaded a com-
prehensive list of known RNA editing events. The 
fraction of our enriched variants as the result of RNA 
editing was low, with 90% of samples having less than 
1%, and 100% of samples having less than 4%, of vari-
ants identified in the RNA editing database (Additional 
file 1: Figure 4B).

Fig. 4  Performance of signatures from filtered UCEC variants against COSMIC signatures. Randomized testing groups were generated ten times to 
evaluate performance of the filtering process on the ability to classify tumor type. a The recall of MSI-H samples at different regression coefficient 
thresholds. b The specificity for MSI-H samples. c The recall of POLɛ samples. d The specificity for POLɛ samples
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Validation using colorectal TCGA samples
We next wanted to test the performance with signatures 
generated from the uterine data and applied to a similar 
dataset of colorectal (CRC) samples from TCGA. The 
mutational frequencies for each trinucleotide change 
of MSS, MSI-H, and POLɛ uterine samples were used 
to generate a de-novo signature from the tumor-only, 
mRNA sequencing data. Generated signatures were then 
regressed against the mutational frequencies for 521 

colorectal tumors, of which 208, had MSS, MSI-H, and 
POLɛ subtype annotated. The regression coefficients for 
samples of each subtype were elevated for comparisons 
against the corresponding de-novo signatures (Fig. 5a–c). 
The de-novo signatures were able to distinguish between 
MSS and MSI-H more effectively, and POLɛ just as effec-
tively, compared to regression against the COSMIC sig-
natures (Fig. 5d–f). Taken together, tumor subtype is able 
to be effectively called when using signatures accounting 

Fig. 5  Performance of mutational signatures derived from UCEC tumor-only, RNA-seq on COAD samples. a–c Boxplots of COAD sample regression 
coefficients against MSS (natural aging), MSI-H, and POLɛ signatures derived from UCEC samples. d–f ROC plots of MSS, MSI-H, and POLɛ 
classification using the regression coefficients from signatures derived from UCEC samples
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for the method specific biases encountered from using 
the RNA of samples lacking a paired normal.

Discussion
The difficulty in reducing the ratio between germline and 
somatic variants for the purpose of determining tumor 
subtype from mutational signature initially resulted in 
MSS and MSI-H subtypes being nearly indistinguishable. 
Filtering of variants using quality scores, databases, and 
allelic frequency greatly reduced the number of germline 
variants, but there was still significant germline con-
tamination in the mutational signatures of subtypes with 
low tumor mutation burden. Additionally, the similarity 
between MSS and MSI-H signatures further convoluted 
distinguishing between the two subtypes. The increased 
mutation burden of POLɛ tumors, resulting in a higher 
ratio of somatic to contaminating germline, and the 
mutational signature being distinct from germline, MSS, 
or MSI-H signatures combined to allow for POLɛ status 
to be called from the mutational signature.

Further improving the method by using uterine sam-
ples to generate mutational signatures for MSS, MSI-H, 
and POLɛ subtypes increased the ability to distinguish 
between MSS and MSI-H tumors in colorectal samples, 
while maintaining the performance of POLɛ tumors. 
The improvement coming from using the generated sig-
natures may be the result of intrinsically modeling in 
germline contamination and biases specific to mRNA 
sequencing. Future directions could include clustering 
MSS or MSI-H signatures and regressing against sub-sig-
natures within the subtypes, which may become increas-
ingly important as the number of tumor types analyzed 
increases.

The ability to call MSS, MSI-H, and POLɛ status from 
tumor-only samples would simplify the testing pro-
cess. Often paired normal samples are not taken with 
the tumor, or are normal tissue adjacent to the tumor 
and may confound results by contain some percentage 
of tumor cells or lack the amount of sample to generate 
quality data. Although we acknowledge the tradeoff of 
being unable to fully remove germline variant contami-
nation from the tumor mutational burden and signa-
tures, we believe being able to classify tumors from one 
standalone sample, and the cost and logistical benefits 
that accompany that, are worth continued development. 
Additionally, the effect of complicating factors such as 
RNA editing seem to negligible.

Another novel advantage our approach has is the use 
of RNA sequencing data to identify the variants used 
to calculate mutational burden and generate the signa-
ture. The concept of tumor mutational burden is that 
more mutations in the DNA will lead to abnormal pro-
teins being expressed on the cell surface, which would 

allow the patient’s immune system to distinguish the 
tumor as non-self. Variants from RNA sequencing are 
only those that are expressed from genes, giving a more 
biologically relevant calculation of tumor mutational 
burden. Additionally, RNA sequencing gives informa-
tion on gene expression, alternative splicing, and gene 
fusions that is not present from DNA based methods. 
Altogether, our approach provides another facet of 
information from an already useful technique.

Correct identification of tumor subtype as MSS, 
MSI-H, or POLɛ can lead to important patient treat-
ment decisions, improving the quality of care offered. 
As medicine moves towards a more individualized 
approach, a higher focus is placed on characterizing the 
tumor and personalizing the treatment. POLɛ tumors 
are such a case, as previously mentioned, a higher 
tumor mutational burden leads to tumor cells present-
ing abnormal proteins. These tumors often compen-
sate by over expressing PD-L1 to disguise the tumor 
from the immune system. Subsequently, these tumors 
are good candidates for combination treatment with 
PD-L1 inhibitors, allowing the immune system to target 
the tumor in addition to other treatments. Developing 
easier and more accessible methods to properly classify 
tumors are therefore important to the advancement of 
patient care.

Conclusions
Mutational burden and signatures of POLɛ are easily 
identifiable from RNA-seq, tumor only samples. We can 
call POLɛ samples using mutational burden and/or muta-
tional signatures using linear regression or unassisted 
learning.
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Additional file 1: Fig S1: Background regression coefficients of COSMIC 
signatures in UCEC samples. Histogram of UCEC regression coefficients 
against (A) a germline signature derived from dbSNP variants, (B) natural 
aging signature (COSMIC signature 5), (C) MSI-H signature (COSMIC 
signature 6), and (D) POLɛ signature (COSMIC signature 10). Figure S2: 
Unsupervised mutational signatures. The mutational frequencies of all 
five unsupervised signatures identified from UCEC samples and output 
by mutationalPatterns R package. Figure S3: Sample correlations to 
unsupervised identified signatures. Sample mutational frequencies were 
correlated to the top five signatures output by the unsupervised method. 
The samples are color coded (y-axis bars) based on the clinical annotation 
of the tumor in regares to MSI and POLɛ status.
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