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564Igi mice have knocked-in immunoglobulin (Ig) heavy (H) and light (L) chain genes 
that encode an autoantibody recognizing RNA. Previously, we showed that these mice 
produce pathogenic IgG autoantibodies when activation-induced deaminase (AID) is 
expressed in pre-B and immature B cells but not when it is expressed only in mature 
B cells. AID has two functions; it is necessary for somatic hypermutation (SHM) and 
class switch recombination (CSR). To determine the role of each of these functions in the 
generation of pathogenic autoantibodies, we generated 564Igi mice that carry a mutant 
AID-encoding gene, Aicda (AicdaG23S), which is capable of promoting CSR but not SHM. 
We found that 564Igi AicdaG23S mice secreted class-switched antibodies (Abs) at levels 
approximately equal to 564Igi mice. However, compared to 564Igi mice, 564Igi AicdaG23S 
mice had increased pathogenic IgG Abs and severe systemic lupus erythematosus-like 
disease, including, glomerulonephritis, and early death. We suggest that in 564Igi mice 
SHM by AID changes Ig receptors away from self reactivity, thereby mitigating the pro-
duction of autoantibody, providing a novel mechanism of tolerance.

Keywords: activation-induced cytidine deaminase, somatic hypermutation, class switch recombination, systemic 
lupus erythematosus, autoantibodies, pathogenic antibodies, B cell central tolerance, rna-specific antibodies

inTrODUcTiOn

Various systemic autoimmune diseases exhibit a high frequency of antibodies (Abs) that recognize 
nucleic acid antigens, suggesting that nucleic acids may have properties that promote the breaking 
of B-cell tolerance. Autoantibodies that bind DNA are more commonly studied, but RNA-binding 
Abs are frequent in systemic lupus erythematosus (SLE) patients and, unlike anti-DNA, correlate 
with disease severity (1). In order to understand the mechanisms involved in the production of 
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pathogenic autoantibodies, we produced the 564Igi mouse model 
of SLE; this strain has knocked-in immunoglobulin (Ig) heavy 
(H) and light (L) chain genes that encode an autoantibody that 
recognizes RNA. 564Igi mice have only low-levels of serum anti-
RNA IgM Abs, consistent with the fact that their splenic B cells 
are anergic and apparently tolerized (2). Unexpectedly, however, 
IgG2a/IgG2b anti-RNA Abs are found at high levels in the sera 
of 564Igi mice and IgG Abs that exhibit the 564 idiotypic marker 
(Id+) are found in the glomeruli, resulting in an SLE-like disease 
(2). The production of these anti-RNA Abs is toll-like receptor 7 
(TLR7) and TLR8 dependent (2, 3). As these anti-RNA IgG Abs 
are pathogenic, they resemble those found in SLE patients having 
RNA-specific Abs, indicating that the 564Igi mouse is an excel-
lent model for unraveling the developmental mechanisms that 
give rise to autoantibodies that recognize nucleic acids, thereby 
providing insight into potential new targets for intervention in 
disease progression.

The fact that B cell tolerance is breached in 564Igi mice (2) 
despite the absence of detectable, non-anergic IgM+Id+ B cells in 
the periphery, led to the search for the cells responsible for the 
production of pathogenic Id+ Abs in these mice. If anergic mature 
B cells in vivo are unable to differentiate into antibody-producing 
cells, then some Id+ B cells must be able to evade anergy to pro-
duce the pathogenic Id+ Abs. Thus, there must be a breach in 
central and/or peripheral tolerance.

The bone marrow (BM) is the site where autoreactive, surface 
IgM+ adult origin B cells first encounter and respond to self-anti-
gen by upregulating expression of the recombination-activating 
gene (RAG) and initiating receptor editing (4–8). Activation-
induced cytidine deaminase (Aicda/AID), which is required for 
somatic hypermutation (SHM) and class switch recombination 
(CSR) of Ig genes, is highly expressed in mature germinal center 
(GC) B cells, where it enables the generation of high affinity Abs 
to environmental antigens (9). Our lab and others (10–16) have 
discovered that, in mice and humans, expression of activation-
induced deaminase (AID) can be induced in developing B cells 
resulting in both CSR and SHM. These findings are provocative 
because they suggest possible roles for AID in B cell tolerance and 
B cell-dependent autoimmunity.

The production of IgG autoantibodies in humans is crucial 
for the pathogenesis of SLE (17–20). We previously found that 
AID is necessary for the production of pathogenic antibody in 
564Igi mice (3, 21). Surprisingly, AID activity in mature B cells 
is not sufficient for the production of autoreactive IgG (21). We 
found that Aicda expression and CSR in developing B cells are 
critical for the production of pathogenic IgG autoantibodies in 
these mice (3, 21). Of note, Aicda expression is elevated in pre-B 
and immature BM B cells from 564Igi mice (21).

A likely explanation for the requirement for AID activity in 
developing B cells to produce autoantibodies in 564Igi stems from 
examination of mechanisms of central B cell tolerance. During 
B cell development, before B cell maturity, strong cross-linking 
of IgM BCR can signal the induction of tolerance by deletion, 
anergy, or receptor editing mechanisms (22, 23). In contrast, IgG 
BCR cross-linking induces signaling events that lead to B-cell 
activation, proliferation, and differentiation (24, 25). Because 
the signal pathways downstream of surface IgM and IgG differ, 

CSR can alter the post-activation fate of a B cell. We suggest that 
this change in signaling means that CSR from IgM to IgG in 
developing B cells allows self-reactive B cells to evade tolerance 
mechanisms.

It has been shown that self-reactive mature B cells in vitro can 
be activated through dual BCR and endosomal TLR signaling 
(26, 27) and that dual ligation of these receptors can induce AID 
expression and CSR (28). It has also been shown that immature 
B cells in the BM can be activated by similar mechanisms (21, 29). 
Self-nucleic acid, which is abundant in the BM microenviron-
ment (30), would have the potential to bind and stimulate the 
self-reactive BCRs found on the surface of many immature B cells 
(31). Once recognized, this self-antigen could be endocytosed 
and delivered to the endosome (32). In the endosome, TLR7 and 
TLR8, which recognize RNA, could potentially be stimulated by 
this internalized self-antigen (32), leading to the expression of 
Aicda, followed by premature CSR and the production of patho-
genic IgG autoantibodies.

While AID-mediated CSR can facilitate the breaching of 
tolerance, several reports demonstrate that the absence of AID 
increases the production of self-reactive Abs, suggesting that 
AID also contributes to B cell tolerance (33, 34). One potential 
mechanism by which AID can mediate tolerance is through SHM 
of self-reactive Ig genes.

However, since a deficiency of AID results in the production 
of only IgM Abs, the role of AID in the prevention of patho-
genic IgG antibody production remains unknown. In order to 
test this hypothesis, we developed a novel mouse 564Igi model 
with a knock-in mutation (G23S) in the Aicda gene (desig-
nated 564Igi AicdaG23S). This mutation leads to deficient SHM 
activity but has no apparent effect on CSR (35) and, thereby, 
separates the two AID functions. We used this mouse model 
to definitively determine the specific roles of SHM in central 
B cell tolerance.

resUlTs

564igi AicdaG23S and 564igi Mice have 
equivalent numbers of spleen and BM  
B cells
In order to verify that a lack of SHM does not affect B  cell 
development, we stained whole spleen and BM  cell suspen-
sions for B cells at various developmental stages. Here, we show 
that the introduction of anti-RNA antibody-coding Ig genes 
caused a decrease in both BM and splenic B  cells in 564Igi 
mice (Figures 1A–D), confirming previously published results 
(21). Because 564Igi mice express the self-reactive 564 receptor, 
many B cells may be clonally deleted, accounting for the reduc-
tion in splenic and BM B cells. Similarly, 564Igi AicdaG23S mice 
had significantly fewer BM and splenic B cells than AicdaG23S 
controls (Figures 1A–D), likely due to the increase in clonal 
deletion caused by the presence of the 564 knock-in. However, 
there is no difference in the number of splenic or BM B cells 
found in 564Igi and 564Igi AicdaG23S mice (Figures  1A–D). 
Therefore, the lack of SHM does not affect B cell development 
in 564Igi mice.
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FigUre 1 | 564Igi AicdaG23S and 564Igi mice have equal numbers of splenic and bone marrow (BM) B cells. Total BM (a–c) or spleen (D) cell suspensions from the 
indicated mice were stained with fluorescent antibodies and analyzed by flow cytometry to detect B220+ B cell (a,D) B220+ IgM− pre B cells (B) and B220+ IgM+ 
immature B cells (c). Shown is the absolute number of live cells in each animal with the mean shown as a horizontal line. Each point represents an individual animal.
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elevated levels of Aicda are Found in the 
B cells of 564igi and 564igi Aicdag23s Mice
In order to verify expression levels of Aicda in the AicdaG23S and 
564Igi AicdaG23S mice, we performed RT-qPCR on sorted BM 
and splenic B  cells using AID-deficient 564Igi mice as a nega-
tive control (564Igi Aicda−/−). AicdaG23S mice expressed Aicda at 
levels comparable to C57BL/6 mice in both the spleen and BM, 
indicating that the G23S mutation in Aicda alone does not affect 
gene expression (Figure 2A). Splenic and BM B cells in 564Igi 
mice had elevated Aicda expression compared to C57BL/6 mice 
(Figure  2A). Similarly, 564Igi AicdaG23S mice had significantly 
elevated Aicda levels compared to AicdaG23S mice in both the 

spleen and BM (Figure 2A). There was no significant difference 
in Aicda expression between 564Igi and 564Igi AicdaG23S B cells 
in the spleen. However, in the BM, 564Igi AicdaG23S mice had 
significantly more Aicda than 564Igi mice (Figure 2A).

564igi Aicdag23s Mice have normal igg 
antibody Titers
AicdaG23S and 564Igi AicdaG23S mice had circulating class-switched 
Abs at levels equal to C57BL/6 and 564Igi mice, respectively 
(Figure  2B; Figure S1A in Supplementary Material). 564Igi 
Aicda−/− mice lack all IgG isotypes (36) and were used as a nega-
tive control. 564Igi Rag−/− mice lack T cells, and therefore, lack 
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FigUre 2 | B cells from 564Igi AicdaG23S mice expressed more Aicda and similar levels of IgG antibodies than 564Igi mice. (a) Quantitative real-time PCR analysis of 
Aicda expression in B220+ cell sort purified B cells from the spleen and bone marrow. Shown is the mean ± SEM fold increase in Aicda expression over C57BL/6 
from three independent experiments with three mice per experiment. (B) The concentrations of the indicated isotypes were measured by ELISA using a purified 
antibody of the indicated isotype as a standard. The horizontal line represents the geometric mean antibody concentration ± 95% confidence intervals for each 
mouse group. Each data point represents an individual mouse.
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IgG1 isotype, that require T cell help (2), and thus were used as an 
additional control. It should be noted that C57BL/6 mice express 
the IgG2c allele and, therefore, secrete IgG2c Abs instead of IgG2a 
Abs. Because AicdaG23S mice are on the C57BL/6 background, they 
also express the IgG2c allele and secrete IgG2c Abs at comparable 
levels to C57BL/6 mice (Figure S1B in Supplementary Material). 
564Igi mice, on the other hand, were generated by introducing 
the 564 Ig genes into embryonic stem cells derived from 129 mice, 
which express the IgG2a allele. Mice were then bred back onto 
the C57BL/6 background for more than 20 generations, selecting 
for the 129-derived Ig locus containing the 564 knock-in genes 
(2). Therefore, any mice expressing the 564Ig genes will secrete 
IgG2a Abs.

For the IgG2a antibody titers C57BL/6 IgHa mice, which also 
express the IgG2a allele, were used as a control. There may be a 
slight decrease in serum IgG2a antibody concentrations in 564Igi 
AicdaG23S mice compared to 564Igi mice, although this is not 

statistically significant (Figure 2B). Ex vivo, there is also a slight 
decrease in IgG2a CSR in 564Igi AicdaG23S B cells that results in a 
significant decrease in IgG2a antibody secretion ex vivo (Figures 
S2A–C in Supplementary Material). While this may indicate that 
564Igi AicdaG23S B cells switch to IgG2a less efficiently than 564Igi 
mice, there is no difference in CSR to IgG2b or IgG1 (Figure 2B; 
Figures S3 and S4 in Supplementary Material). Therefore, despite 
increased Aicda expression in 564Igi AicdaG23S mice (Figure 2A), 
there is no concomitant increase in general CSR activity, con-
sistent with reports of negative regulation of Aicda both at the 
posttranscriptional and posttranslational levels (37–41).

564igi Aicdag23s Mice have an altered 
Distribution of anti-rna igg isotypes
In 564Igi mice, SLE-like features have been shown to be largely 
mediated by IgG2a and IgG2b anti-RNA Abs that produce 
a characteristic nucleolar staining pattern when used for 
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FigUre 3 | In 564Igi AicdaG23S mice most anti-RNA antibodies (Abs) are IgG2b or IgG1 while in 564Igi mice IgG2a anti-RNA Abs are predominant. (a) HEp-2 
anti-nuclear antibody detection assays were performed with sera from the indicated mice and an anti-mouse IgG Alexa-488-labeled antibody. Shown are 
representative images of C57BL/6J n = 4, 564Igi n = 6, 564Igi AicdaG23S n = 6 samples. (B–e) Serum anti-RNA Abs were measured by ELISA RNA binding and 
detection with isotype-specific for IgG2a (B), IgG2b (c), IgG1 (D), and IgM (e) anti-RNA Abs. The number of mice in each group is shown in the key.
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FigUre 4 | Altered isotype frequencies and reduction of somatic hypermutation in hybridomas derived from 564Igi AicdaG23S mutant mice Hybridomas were 
generated from the spleen and bone marrow (BM) of the indicated mice. Hybridoma culture supernatants were tested for IgG anti-RNA antibody secretion by ELISA. 
(a) The IgH and IgL genes of anti-RNA IgG-producing hybridomas from 564Igi and from 564Igi AicdaG23S mice were cloned and sequenced. Sequences were 
compared to the original 564 immunoglobulin knock-in sequences to identify mutations. The mutation frequency is shown. (B) Igγ and Igκ genes were cloned and 
sequenced from anti-RNA IgG2a-secreting hybridomas generated from 564Igi spleen and BM cells. Shown is the number of mutated and unmutated sequences. 
The number of sequences with mutations in Igγ only, Igκ only, or Igγ and Igκ is also indicated. (c) The percent of hybridomas from (B) with the indicated number of 
mutations in Igγ and Igκ genes is shown. The total number of sequences analyzed for each gene is shown in the center.
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immunostaining of cells [Figure  3A; (2)]. As expected, 564Igi 
and 564Igi AicdaG23S mice had elevated levels of serum anti-RNA 
IgG2a Abs (Figure 3B); however, 564Igi AicdaG23S mice had less 
IgG2a anti-RNA Abs than 564Igi mice (Figure 3B). This decrease 
was not due to an overall reduction in serum IgG2a (Figure 2B). 
On the other hand, serum IgG2b and IgG1 anti-RNA antibody 
titers were elevated in 564Igi AicdaG23S mice (Figures  3C,D). 
The mechanisms for these shifts in autoantibody isotype are 
unclear. The expression of IgG2a and IgG2b anti-RNA Abs are 
still dependent on TLR7/8 expression (Figures 3B,C), as has been 

reported for 564Igi mice (2, 3, 21). This is important as it shows 
that in these mice disease depends on multiple mechanisms and 
expression of the 564 heavy and light chain genes alone is not 
sufficient.

anti-rna igg2a abs in 564igi but not 
564igi Aicdag23s Mice are highly Mutated
We sequenced Ig genes from hybridomas derived from 564Igi 
and 564Igi AicdaG23S mice secreting anti-RNA IgG Abs. Any 
hybridoma supernatant that reacted positively with RNA by 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


TaBle 1 | Rag-mediated receptor editing in 564Igi AicdaG23S cells.

Total igμ sequences Mutated 
sequences

Unmutated 
sequences

Vh replacements

564Igi AicdaG23S 0 26 6
33

564Igi RAG−/− 25 20 0
45

564Igi Aicda−/− 0 16 4
20

B220+ B cells from the indicated mice were sorted by magnetic negative selection. Igμ 
DNA sequences were cloned and sequenced from the bulk population and compared 
to the 564 immunoglobulin knock-in sequence to detect nucleotide exchanges. VH 
replacements were considered any sequence with more than five mutations in the VH 
region.
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ELISA was considered an anti-RNA antibody-secreting hybri-
doma. Only one of the Ig genes from 564Igi AicdaG23S-derived 
hybridomas was found to be mutated (Figure 4A). We suspect 
that this single mutation is most likely due to PCR error during 
gene amplification. These data are consistent with reports that 
AicdaG23S mice lack SHM (35). On the other hand, we found 
that 65% (13/20) of anti-RNA IgG-producing hybridomas from 
564Igi mice had mutations in IgH, IgL, or both (Figures 4A–C). 
IgH genes generally had more mutations per gene than IgL 
(Figure  4C). Analyses at the single cells level from 564Igi on 
a RAG−/− background indicated 50% of the single cells had 
mutations (Table 1). We suggest that the germline-encoded self 
reactivity of the 564Igi knock-in likely induced AID-mediated 
SHM during B cell development, which in turn then introduced 
point mutations. We more closely examined the ability of a small 
number of these Abs to bind RNA and found one example in 
which anti-RNA binding was drastically reduced compared to 
the original 564 antibody (Figure S5 in Supplementary Material). 
This study shows that SHM can result in a tolerance-inducing 
loss of self reactivity of the 564 antibody.

B cells in 564igi AicdaG23S gcs actively 
Undergo csr to igg1
In addition to the decrease in anti-RNA IgG2a Abs in 564Igi 
AicdaG23S compared to 564Igi (Figure 3B), there is a significant 
increase in anti-RNA IgG1 Abs (Figure 3D) of 564Igi AicdaG23S. 
CSR to IgG1 requires T cell help and 564Igi Rag−/− mice, which 
lack T cells, do not secrete IgG1 Abs (Figure 2B). Therefore, anti-
RNA IgG1 Abs in 564Igi AicdaG23S mice are likely to come from 
B cells that have received T cell help in the GC. To examine B cells 
in the GC, we stained for the presence of IgG1+ cells. 564Igi mice 
showed some IgG1+ cells, but few, if any cells that carry are both 
IgG+ and IgM+, which would indicate active CSR (Figure 5A). 
564Igi AicdaG23S mice, on the other hand, do have IgG+/IgM+ cells 
in the GCs (Figure 5A), consistent with the increase in anti-RNA 
IgG1 Abs compared to 564Igi mice (Figure  3D). However, it 
has been shown that pathogenic Abs in 564Igi mice are IgG2a 
Abs that originate from immature B cells in the BM (2), so it is 
unlikely that the anti-RNA IgG1 Abs found in 564Igi AicdaG23S 
mice mediate pathogenesis.

564igi Aicdag23s gcs harbor More 
idiotype+ B cells than 564igi Mice
It has been shown that GCs in AID-deficient mice and humans 
are large with proliferating B cells that do not undergo apoptosis 
(36, 42). It has been speculated that is because in the absence of 
AID; the lack of CSR decreases the amount of DNA damage in 
the cell and thereby reduces apoptosis (42). To determine if SHM 
is important for GC expansion, we examined the GC phenotype 
of 564Igi AicdaG23S mice, that exhibit normal frequencies of CSR. 
We stained splenic GCs for the presence of 564 idiotype+ B cells. 
564Igi AicdaG23S mice have many more idiotype+ B  cells in the 
GC compared to 564Igi mice, similar to the phenotype of 564Igi 
Aicda−/− mice (Figure 5B). This suggests that the lack of SHM, 
not the lack of CSR, may be responsible for the GC hyperplasia 
reported in AID-deficient mice and HIGM2 patients.

564igi Aicdag23s Females give Birth to Few 
Females
We have previously showed that 564Igi females give birth to lit-
ters with high male to female ratios, a phenotype that is largely 
alleviated if the dams are heterozygous for the 564 IgH and IgL 
knock-in genes (43). Furthermore, the purified original IgG2b 
564 hybridoma antibody damages developing embryos when 
injected into pregnant dams, resulting in litters with similarly 
skewed male:female ratios (43). There have been several reports 
showing complications during pregnancy in SLE patients (44, 
45), as well as an increased incidence of cognitive disorders 
in the offspring born to SLE patients (46–50). In addition, the 
selective loss of female fetuses in animal models of SLE is due to 
damage by passage into the fetuses of maternal anti-nucleic acid 
autoantibodies that cross react with CNS N-methyl-d-aspartate 
receptors, which are more highly expressed in female fetal brains 
(51–53).

Approximately 35% of circulating anti-RNA IgG2a Abs 
in 564Igi mice have the original 564 H and L chain knock-in 
sequences (Figure 4B). We suggest that these circulating 564 Abs 
in 564Igi females may mediate fetal loss. 564Igi AicdaG23S mice lack 
SHM and, therefore, likely have significantly higher titers of the 
original 564 Abs, as supported by the serum anti-RNA antibody 
analyses (Figure 3) and the sequence analysis of anti-RNA IgG 
Abs (Figure 4A). Consistent with this hypothesis, 564Igi AicdaG23S 
females yield litters with elevated male:female ratios compared 
to 564Igi mice, regardless of the genotype of the male partner 
(Figure  6A, blue and orange), consistent with fetal loss due to 
maternal anti-nucleotide antibody. However, 564Igi AicdaG23S 
females that are heterozygous for the G23S mutation (564Igi 
AicdaG23S/+), produce litters with male:female ratios approximately 
equal to 564Igi females (Figure 6A, purple). These data further 
point to the pathogenicity of anti-RNA Abs and suggest that SHM 
is a mechanism that prevents the production of autoantibodies that 
are pathogenic to both the adult and in the developing embryo.

564igi Aicdag23s Mice suffer from More 
severe sle-like Disease than 564igi Mice
Systemic lupus erythematosus pathogenesis in 564Igi mice 
has been shown to be mediated by neutrophil activation 
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FigUre 5 | in 564Igi AicdaG23S mice germinal center (GC) B cells actively undergo CSR to IgG1. Spleen samples from the indicated mice were frozen in OCT 
medium, sectioned, and stained with the indicated antibodies. (a) Spleen sections were stained wit anti-CD4, anti-IgM, and anti-IgG1. Shown is a representative 
GC from each mouse. A total of three mice were analyzed for each strain. (B) Spleen sections were stained with anti-564 idiotype, anti-CD4, anti-IgM, and 
MOMA-1. The marginal zone and GC are labeled. Shown is a representative GC from each mouse. A total of two mice were analyzed for each strain.

8

McDonald et al. SHM is Crucial for Tolerance

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1094

stimulated by antigen:antibody immunocomplexes (54). 
564Igi mice have expanded neutrophil populations and an 
increase in IFN-I production (54). However, the increase 
in IFN-I is not the result of increased IFN-I secretion from 
individual neutrophils, but an increase in the total number of 
neutrophils secreting IFN-I (54). 564Igi AicdaG23S mice have 
even larger neutrophil populations in the BM than 564Igi mice 
(Figure 7A).

As they age 564Igi mice also suffer from glomerulonephritis 
as they age, mediated by immune complex deposition in the 
renal glomeruli (2). Decreased kidney function is associated 
with an increase in serum creatinine concentrations. In order 
to test the degree of tissue damage in 564Igi AicdaG23S mice, we 

measured serum creatinine concentrations as mice aged. 564Igi 
AicdaG23S mice have elevated serum creatinine concentrations 
compared to 564Igi mice and the difference increases as mice 
age (Figure 7B). This suggests that 564Igi AicdaG23S mice likely 
suffer from more severe kidney damage when compared to 
564Igi mice.

To directly assess immune complex-mediated kidney damage, 
we stained kidney sections for the presence of 564 idiotype+ IgG 
immune complexes. 564Igi mice have many IgG2a/IgG2b immune 
complexes in the renal glomeruli, but few of these are idiotype+ 
(Figure 7C), likely due to the high level of SHM in anti-RNA IgG 
Abs (Figure 4). On the other hand, 564Igi AicdaG23S mice, on the 
other hand, have many idiotype+ IgG2b but no IgG2a immune 
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complexes in renal glomeruli (Figure 7C), consistent with serum 
anti-RNA antibody analyses (Figures 3B,C). Ultimately, 564Igi 
AicdaG23S mice suffer from more severe glomerulonephritis than 
564Igi mice (Figure 7D). The glomeruli of 564Igi AicdaG23S mice 
showed an increase in mesangial cell proliferation (Figure 7D, 
arrow heads), matrix formation (Figure  7D, arrows/dark pink 
staining), and infiltration of inflammatory cells when compared 
to 564Igi mice. Young, 4-month-old 564Igi AicdaG23S mice 
develop skin lesions not seen in 564Igi mice even when old 
(Figure 7E). 564Igi AicdaG23S mice eventually succumb to disease 
more quickly than 564Igi mice (Figure 7F). Taken together, these 
results indicate that in the 564Igi AicdaG23S model of SLE, SHM is 
not required for disease and suggest that the lack of SHM actually 
accelerates pathogenesis.

DiscUssiOn

During development self-reactive B  cells with surface IgM can 
be driven into apoptosis or anergy by ligation with self-antigen 
(22). However, cells that share the same developmental stage 
and the same specificity but have IgG rather than IgM receptors 
are activated by antigenic ligation and, therefore, escape toler-
ance (24, 25). Therefore, because the consequences of ligation 

of antibody and antigen vary with the isotype of the antibody, 
AID, by enabling CSR, can enable a self-reactive B cell to escape 
deletion.

Previously, we showed that production of IgG autoantibody 
in the 564Igi model of SLE requires expression of activation-
induced deaminase in early-developing B cells (3, 21). This is not 
likely to be unique to 564Igi mice as AID is expressed in normal 
developing B cells in several strains (12). Other reports indicate 
that SHM can generate autoantibodies (55–57), but it is not yet 
known if this SHM contributes to the generation of pathogenic 
autoantibody. Nevertheless, AID through CSR or SHM, can 
generate autoantibody. Further, prior attempts to demonstrate 
directly that AID-dependent SHM is crucial for the development 
of pathogenic autoantibody have been hampered by the utiliza-
tion of knockout mice in which both SHM and CSR are lost (58). 
Thus, it is no doubt true that SHM can generate high affinity anti-
DNA autoantibodies, but care must be taken to not confuse “high 
affinity” autoantibody with “pathogenic” autoantibody. By the 
latter, we mean antibody that has been shown to induce pathology 
when transferred to otherwise normal mice. Also, because the 
DNA-specific TLR9 acts as a negative regulator of autoantibody 
production (59–62), it is unlikely that DNA as antigen drives 
autoimmunity. In fact in the absence of TLR9, MRL/lpr mice 
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FigUre 7 | 564Igi AicdaG23S mice survive poorly compared to 564Igi mice. (a) Bone marrow cell suspensions were stained with anti-CD11b and anti-Ly6G to detect 
the presence of neutrophils. The absolute number of neutrophils in from the indicated mice is shown. Each data point represents an individual animal, aged 
3–6 months. The mean number of neutrophils is shown with a horizontal line. 564Igi vs 564G23S p < 0.02. (B) Serum creatinine concentrations were analyzed by 
ELISA. Shown is the concentration in the indicated mice at various ages. Each data point represents an individual animal. The mean concentration is shown as a 
horizontal line. 564Igi vs 564G23S p < 0.03. (c) Immunostaining of kidney samples from 564Igi and 564Igi AicdaG23S mice. IgG2a and IgG2b immune complexes are 
shown in red and 564 idiotype+ immune complexes are shown in green. Co-staining is seen in yellow. Shown are representative images from two mice per group. 
(D) H and E staining of kidney samples from the indicated mice. The age of each mouse is shown below the image. These are representative images of n = 3 mice 
for C57BL/6J, n = 5 mice for 564Igi and n = 5 mice for 564Igi AicdaG23S. (e) Skin lesions typical of 4-month-old 564Igi AicdaG23S mice. Note the loss of hair on the 
head and the graying of the hair on the body. (F) Kaplan–Meier curve showing the percent survival over time of the indicated mouse strains. The number of mice 
monitored for each strain is shown in the key. Statistical analysis is based on the log rank test; *p < 0.05.
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make no anti-DNA antibodies, yet there is no mitigation of their 
severe glomerulonephritis; suggesting that mouse lupus does not 
require anti-DNA antibodies (59).

Several groups have shown that AID can contribute to the 
loss of self reactivity in mice and humans (16, 33, 34, 63, 64, 65). 
Furthermore, a recent interesting report by Goodnow’s group 
showed that in humans in vivo SHM of germ line genes encod-
ing an autoantibody results in loss of self reactivity (66). These 
studies did not address whether AID-dependent tolerance 
actually provides protection against pathogenic antibody. Nor 
did they show directly that AID-dependent SHM was required. 

The studies reported here address these issues directly and 
AID-dependent SHM is crucial for a B cell tolerance mecha-
nism to limit the secretion of autoantibodies and to prevent 
the progression of SLE. Yet, at the same time, AID-dependent 
CSR is required for the production of these pathogenic IgG 
autoantibodies.

Given this ability to affect the production of autoantibodies, 
multiple studies have used knockout strategies to address the role 
of AID in systemic autoimmunity. In MRL/lpr mice, however, the 
absence of AID results in the production of protective IgM Abs 
and amelioration of autoimmune disease (67). Thus, the relative 
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contribution of SHM and CSR to the generation of autoantibod-
ies in SLE-like disease is unclear.

In the BXD2 model of autoimmunity a dominant negative 
mutant of Aicda was introduced as a transgene, mitigating the 
disease (68). However, although the intent was to block only the 
SHM functions of AID, the mutation compromised class switch-
ing and, as a result, the study did not address the original ques-
tion. In Aicda−/− BALB/c mice, organ-specific but not systemic 
autoimmunity develops in older animals (69). In MRL/lpr mice 
with deletion of Aicda there was a significant increase in autore-
active IgM Abs against various antigens, a decrease in IgG Abs 
to these antigens and a mitigation of disease. Passive transfer of 
IgM Abs to dsDNA from these mice to otherwise unmanipulated 
MRL/lpr mice provided protection (70).

Studies in humans agree with the animal model work as they 
do not provide evidence that the absence of Aicda is sufficient 
to cause systemic autoimmune disease. While AID-deficient 
humans with hyper-IgM have an increased risk of autoim-
mune and inflammatory disorders such as diabetes mellitus, 
polyarthritis, autoimmune hepatitis, hemolytic anemia, immune 
thrombocytopenia, Crohn’s disease, and chronic uveitis, there is 
no clear documentation of SLE in these patients (71).

Manifestations of SLE, including glomerulonephritis, are 
mainly mediated by IgG2a anti-RNA Abs that are produced by 
B cells that develop in the BM of 564Igi mice (2). Here, we show 
that in 564Igi AicdaG23S mice disease is also mediated by IgG2a/
IgG2b Abs. These Ig subclasses bind the activating Fc receptors, 
FcγRIV (IgG2a and IgG2b); FcγRI (IgG2a only) with high affinity 
(72). IgG1, on the other hand, binds only the Fc receptor FcγRIII 
(73) with low affinity. Thus, all activating mouse FcγRs (FcγRI, 
FcγRIII, and FcγRIV) bind to IgG2a and IgG2b, whereas FcγRIII 
is the only activating FcγR that binds IgG1 and FcγRI is the only 
activating FcγR that binds IgG3. The production of IgG1 requires 
T cell help and is, therefore, only produced by mature B cells in 
the GC. Therefore, the most pathogenic Abs in 564Igi AicdaG23S 
mice are likely to be IgG2a/IgG2b Abs produced by developing 
B cells. Because IgG1 does not bind activating FcR we believe that 
it does not contribute to the pathology.

FcγRIIb, the inhibitory Fc receptor, induces pro-apoptotic 
signals in mature B cells, acting as a peripheral tolerance mecha-
nism. However, co-ligation of FcγRIIb and the BCR by a high 
affinity antigen–antibody complex may bypass apoptotic signals 
and initiate positive selection of those cells in the GC (74). In 
the BM of 564Igi and 564Igi AicdaG23S mice, the presence of self-
reactive Abs likely induces Aicda expression, as described above. 
In 564Igi mice, AID-mediated SHM may decrease the affinity of 
the BCR for antigen. In combination with FcγRIIb engagement 
by IgG2a Abs produced by BM B cells, many self-reactive cells 
likely undergo apoptosis. However, in 564Igi AicdaG23S mice, the 
lack of SHM causes a higher affinity of the BCR for antigen, which 
in combination with FcγRIIb engagement induces a stimulatory 
signal to further increase autoantibody production.

Previous reports have shown that the AicdaG23S mutation 
results in increased bacterial load in the small intestine of naïve 
mice (35). In addition, the AicdaG23S mutation decreases survival 
of mice orally challenged with cholera toxin and increases 
the bacterial load of mesenteric lymph nodes of mice fed  

Y. enterocolitica, correlating SHM with the capacity to protect the 
mucosa (35). To avoid the impact of an altered microbiome on 
our experiments, the mice were placed on oral Uniprim, which 
contains sulfadiazine and trimethoprim. However, the effect of 
microbial load on the survival of naïve AicdaG23S mice has not 
been examined. We did not see evidence of disease in AicdaG23S 
mice that did not carry 564 H and L chain gene knock-ins.

It has been shown that antibody constant regions can also 
impact antibody pathogenicity (75). This suggests that the fine 
affinities of the IgG2a/IgG2b/IgG1 anti-RNA Abs may vary 
slightly due to differences in the constant regions and affect the 
pathogenesis of SLE in 564Igi and 564Igi AicdaG23S mice. The 
receptors in 564Igi AicdaG23S mice may have a higher affinity 
for RNA in vivo, which causes the B cell to become activated, to 
migrate to the GC and to undergo CSR to IgG1 with T cell help. 
In 564Igi mice, on the other hand, the introduction of nucleotide 
exchanges in anti-RNA receptors may alter antibody affinity 
and/or specificity for antigen in vivo, promoting the selection of 
IgG2a+ cells in a T cell-independent manner. These mutated Abs 
may be less pathogenic in vivo compared to the original Abs in 
564Igi AicdaG23S mice, allowing 564Igi mice to survive longer. This 
hypothesis is supported by the fact that circulating maternal Abs 
in 564Igi females seem to be less pathogenic than those in 564Igi 
AicdaG23S females (Figure 6).

In sum, in the 564Igi mice, the loss of SHM results in more 
severe autoimmunity and early death, suggesting that AID can 
mitigate autoantibody production by altering antibody specificity.

eXPeriMenTal PrOceDUres

Mice
All experiments with mice were performed in accordance with 
the regulations of and with the approval off the Tufts/TMC 
IACUC (protocol B2015-41). Creation of the 564Igi mice was 
previously described (2). 564Igi mice have knocked-in H and L 
chain genes of the 564 hybridoma derived from an (SWRxNZB)
F1, mouse, a known model of SLE. The H chain of 564 has three 
nucleotide replacements, none in the CDRs, compared to the 
germ line of SWR (76). The 564 L chain gene has two nucleotide 
replacements, in the CDR2 when compared to 45–21.1 (76, 77). 
All 564Igi mice are homozygous for the 564 IgH and IgL alleles 
unless otherwise indicated. Aicda−/− and AicdaG23S mice were 
obtained from Dr. T. Honjo (Kyoto University, Japan). C57BL/6, 
C57BL/6 IgHa, and Rag2−/− mice were purchased from Jackson 
Laboratories. All mice were genotyped by Transnetyx Inc. 
Experiments were performed with male and female mice unless 
otherwise indicated. All mice in this study were maintained on a 
diet that included Uniprim®, a combination of sulfadiazine and 
trimethoprim, to prevent an expansion of microflora in the small 
intestine as seen in untreated mice expressing the G23S mutant 
form of AID (35).

qrT-Pcr
RNA was isolated from cells by TRIzol incubation (Life 
Technologies 15596) followed by chloroform extraction. All 
RT-qPCR experiments were performed using two fourfold serial 
dilutions of RNA and iScript Reverse Transcription Supermix for 
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RT-qPCR from Bio-Rad (170-8841). Triplicate cDNA samples 
were used for the amplification of Actb and Aicda using com-
mercially available FAM primer probes (Life Technologies) and 
a Bio-Rad IQ5 quantitative PCR system. Gene expression was 
normalized to Actb expression based on a standard curve.

cloning and sequencing
Sequencing was performed as previously described (21). 
Briefly, single CD138+ cell or a population of B220+ cells were 
sorted by flow cytometry. RNA was isolated and converted into 
cDNA using the SuperScript III First Strand Synthesis System 
(ThermoFisher 18080051) or TRIZOL reagent followed by the 
iScript cDNA Synthesis Kit (BioRad 170-8890), for single cells 
and cell populations, respectively. Ig genes were then amplified, 
cloned, and expressed as described (21).

elisas
Total Isotype/Anti-RNA
ELISAs were performed as previously described (21).

Serum Creatinine
Serum creatinine concentrations were determined using a com-
mercially available kit from Abcam (ab65340) following the 
manufacturer’s protocol.

hybridomas
Spleen- or BM-derived mouse cells were fused with the 
P3X63Ag8.653 mouse myeloma cell line (78). Cells were grown in 
96-well culture plates in media to select for the growth of success-
fully fused cells (15% FCS, 10% hypoxanthine and 10% azaserine 
RPMI complete media). After 2  weeks, culture supernatants 
from healthy hybridomas were collected and tested for antibody 
production by ELISA and cells were collected for cloning and 
sequencing.

Flow cytometry
Cells were stained for flow cytometry according to standard pro-
cedures. Single cell suspensions were diluted to 1 × 106 cells/mL 
in FACS staining buffer (1% heat-inactivated rabbit serum/0.1% 
NaN3/1× DPBS with Ca++ Mg++). Cells were centrifuged and 
resuspended in 50 µL of fluorescent Abs (Southern Biotech and 
Biolegend) diluted to 1 µg/mL in FACS staining buffer. Samples 
were washed in 2 mL FACS staining buffer and resuspended in 
500 µL FACS staining buffer for analysis. Propidium iodide was 
added to a final concentration of 10 ng/mL just prior to analysis 
on a FACScalibur flow cytometer (BD Biosciences) to assess cell 
viability.

hep-2
Anti-nuclear Abs were detected by HEp-2 staining according to 
the manufacturer’s protocol (MBL Bion ANK-120).

immunofluorescence and light 
Microscopy
Fresh kidney or spleen samples for immunofluorescence stud-
ies were frozen in OCT medium. 4 µm sections were cut on a 

cryostat and mounted on a glass slide. The sections were air dried 
for 1 h, rehydrated in PBS, and incubated with anti-IgG2a/IgG2b/
IgG1/IgM, anti-CD4, anti-MOMA, and anti-idiotype Abs for 1 h 
at room temperature. The sections were rinsed again in PBS, 
mounted in Fluoromount (Southern Biotech), and examined 
and photographed with a Leica fluorescence microscope. For 
light microscopy studies, fresh kidneys were fixed in 10% buff-
ered formalin and embedded in paraffin. 5 µm paraffin sections 
were stained with periodic acid-Schiff and evaluated by light 
microscopy.

statistical analysis
The p values were calculated using one-way ANOVA for all 
analyses, followed by the Tukey multiple comparison test unless 
otherwise indicated (Prism GraphPad Software). For all figures 
*p < 0.05, **p < 0.01, and ***p < 0.001.

eThics sTaTeMenT

All experiments with mice were performed in accordance with 
the regulations of and with the approval of the Tufts/TMC IACUC 
(protocol B2012-41).
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