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Click chemistry is perhaps the most powerful synthetic toolbox that can efficiently access
the molecular diversity and unique functions of complex natural products up to now. It
enables the ready synthesis of diverse sets of natural product derivatives either for the
optimization of their drawbacks or for the construction of natural product-like drug
screening libraries. This paper showcases the state-of-the-art development of click
chemistry in natural product modification and summarizes the pharmacological
activities of the active derivatives as well as the mechanism of action. The aim of this
paper is to gain a deep understanding of the fruitful achievements and to provide
perspectives, trends, and directions regarding further research in natural product
medicinal chemistry.
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INTRODUCTION

Natural products (NPs) are secondary metabolites that are produced by the evolutionary
optimization of nature. They usually possess diverse and complex architectures and are endowed
with versatile pharmacological activities, offering an abundant source for therapeutic drug discovery
(Hunter, 2008; Jiménez, 2018) Newman and Cragg, 2020; Rodrigues et al., 2016; Li and Vederas,
2011). Natural product-based drug discovery can date back to the isolation of morphine, the first
pharmacologically active pure natural product which was purified by Friedrich Sertürner more than
200 years ago. From then on, considerable works have been devoted to the synthesis of natural
derivatives (Wang M. et al., 2018; Foley et al., 2020), and/or natural product-like screening libraries
with the aim of therapeutic drug discovery (Huigens et al., 2013; Crane and Gademann, 2016; Ma
et al., 2019; Wilson et al., 2020; Xie et al., 2020). These efforts have led to the discovery of various
important clinical drugs, such as anticancer agents (e.g., taxol and doxorubicin),
immunosuppressants (e.g., cyclosporine and doxorubicin), antimalarial agents (e.g., quinine and
artemisinin) and lipid regulate drugs (e.g., lovastatin and relatives). Even today, natural products still
serve as a fundamental source of diverse biological functions, facilitating the development of
chemical biology and drug discovery.

As natural products are usually complex molecules with various stereo centers, sp3 carbon, and
labile functionalities, the de novo synthesis of natural products or their derivatives always need
complicated synthetic strategies, and accomplished in time-consuming multistep syntheses
with low quantity and a limited number of derivatives. Therefore, chemistries that can be used
for the late-stage functionalization and diversification of natural products are highly desirable,
and should meet the following criteria: 1) reliable, selective, orthogonality to other
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functionalities; 2) modular, broad substrate scope; 3) high
yield; 4) operational simplicity. In 2001, these criteria were
codified by Professor K. Barry Sharpless, who termed such
ideal chemistries as “click chemistry” (Kolb et al., 2001). From
then on, click chemistry reactions, especially the Cu(I)-
catalyzed Huisgen 1,3-dipolar cycloaddition between
alkynes and azides (CuAAC) was quickly recognized as
versatile players in the modification of various molecules,
especially complex natural products, providing enhanced

properties or new functions for chemical biology and drug
discovery (Figure 1).

Despite the success of CuAAC, the search for other click
chemistries has never stopped. Today several elegant click
chemistries have been well developed, such as strain-promoted
azide-alkyne cycloaddition (SPAAC), inverse electron-demanded
Diels-Alder (IEED-DA), and Sulfur (VI) Fluoride Exchange
(SuFEx) chemistry. These chemistries have played a key in
chemical biology and drug discovery, particularly the emerging

FIGURE 1 | i) Representative click chemistries; ii) representative drugs synthesized by CuAAC; iii) number of papers published between 2001 and 2020 that contain
the keywords click chemistry, SPAAC, IED-DA, sulfur fluoride exchange or 1,2,3-triazole according to Scopus; iv) number of compounds per paper, screeningmethods,
disease areas of 137 papers that analyzed in this review.
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SuFEx chemistry, another ideal click reaction proposed by
Professor Sharpless in 2014 (Dong et al., 2014; Barrow et al.,
2019), have already gained wide application in the synthesis of
drug screening libraries (Kitamura et al., 2020; Smedley et al.,
2020), late-stage modification of drugs and natural products (Li S.
et al., 2017; Liu et al., 2018), DNA-encoded library synthesis (Liu
et al., 2019; Xu H. et al., 2019; Zhang et al., 2021), and the
synthesis of 18F radio tracers (Zheng et al., 2021).

Indeed, now that natural products have met with click
chemistry, a new era of natural product-based drug discovery
has come. Previously, several elegant review papers have
summarized the CuAAC reaction in medicinal chemistry,
mainly focused on the synthesis of 1,2,3-trizaoles for various
properties such as anti-cancer (Xu Z. et al., 2019; Liang et al.,
2021), anti-bacterial, etc., (Kacprzak et al., 2016; Rani et al., 2020;
Guo et al., 2021; Kumar et al., 2021; Serafini et al., 2021).
Especially, this review focuses on the late-stage modification of
natural products by using not only the CuAAC reaction but also
other click chemistries such as SPAAC and especially the
emerging SuFEx chemistry (Table 1) (Dong et al., 2014), and
thus encompasses a much wider variety of natural product

derivatives and the corresponding pharmacological activities.
These natural product derivatives are classified according to
their structural features, covering a time span mainly of the
last decade.

The aim of this paper is to showcase the state-of-the-art
development of click chemistry in natural product
modification, thereby gain a deep understanding of the fruitful
achievements, and provide perspectives, trends, and directions
regarding further research in natural product medicinal
chemistry.

CLICK CHEMISTRY-BASED
MODIFICATION OF TERPENOIDS

Terpenoids, also known as isoprenoids, are the largest class of
plant secondary metabolites, representing 60% of the known
natural products. Terpenoids derive from 5-carbon isoprene
and usually have oxygen-containing functionalities. Many
diterpenoids, especially cyclic sesqui-, di- and triterpenoids are
endowed with bewildering structural features such as multiple

TABLE 1 | Typical reaction conditions of click chemistry in this paper.

Click chemistries Conditions Reference

a) azide (1 equiv), alkyne (1–2 equiv), sodium
ascorbate (10 mol%), CuSO4·5H2O (5% mol),
t-BuOH–H2O, room temperature

Bahia et al. (2016); Thomopoulou
et al. (2016); Li et al. (2018)

b) azide (1 equiv), alkyne (1–2 equiv), Cp*RuCl(PPh3)2
(10 mol%), dichloromethane, 50°C

c) azide (1 equiv), DBCO (1 equiv), DMSO, room
temperature

Sinha et al. (2016)

d) phenol (1 equiv), SO2F2 (balloon), Et3N or DIPEA (2
equiv), dichloromethane or DMF, room temperature

Li et al. (2017a); Gao et al. (2018);
Smedley et al. (2019); Smedley et al.
(2020)e) arylfluorsulfate (1 equiv), trimethylsilyloxyl imidate

(1.2 equiv), anhydrous DMF, room temperature
f) amine (1 equiv), SOF4 (balloon), Et3N or DIPEA (2.15
equiv), CH3CN, room temperature
g) iminosulfur oxydifluoride (1 equiv), TMSCF3 (2.2
equiv), KFHF (1 mol%), DMSO, room temperature
h) iminosulfur oxydifluoride (1 equiv), amine (2 equiv),
CH3CN, room temperature
i) iminosulfur oxydifluoride (1 equiv), ArOTBS (1
equiv), DBU (10 mol%), CH3CN, room temperature
j) sulfonimidoyl fluoride (1 equiv), ArOTBS (1 equiv),
DBU (30 mol%), CH3CN, 60°C
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chiral centers, rigid skeleton, diverse functionalities, and the
consequent various promising biological activities. Moreover,
some of the terpenoids are readily available from nature,
thereby can serve as inexhaustible starting materials for the
synthesis of bioactive natural products or natural product-like
drug screening libraries (Xu et al., 2014b). By arching azide or
alkyne at the suitable position of terpenoids, followed by reactions
with various alkyne or azide containing building blocks, a lot of
terpenoid derivatives have been synthesized and evaluated for
various biological activities.

Genipin (Figure 2), an iridoid derived from Gardenia
jasminoides Ellis, has been reported to possess various
biological activities such as anticancer and antioxidant. The
introduction of triazole moiety into genipin has been
demonstrated to generate derivatives with improved
cytotoxicity. For example, C10 genipin-triazole a1 (P-388: IC50

� 2.54 μM; A549: IC50 � 4.53 μM) and a2 (P-388: IC50 � 5.49 μM;
A549, IC50 � 4.81 μM) could exert more potent inhibitory activity
than the parental genipin against tumor cells (P-388: IC50 �
11.12 μM; A549 > 20 μM) (Silalai et al., 2020). Molecular docking
studies have indicated that a2 engaged four hydrogen bonds in
the colchicine binding site of tubulin (Asn-β-258 and the

carbonyl group of genipin (Silalai et al., 2020), Asn-β-249 and
oxygen atom of ether moiety of triazole, Ala-β-250 and the
triazole, and Glu-α-183 and methoxy group of benzylether).

Melampomagnolide B, a sesquiterpene lactone identified from
Magnolia grandiflora, could exert moderate inhibitory activity
against Bel7402, HCT-116, PANC1, A549, and U87 cancer cell
lines (IC50 � 4.93–10.86 μM). Whereas, C13 triazole containing
derivative a3 could exert improved inhibitory activity (IC50 �
0.43–1.54 μM), (Ding et al., 2018), and especially it could exert
submicromolar inhibitory activity against HCT116 cells with IC50

value of 0.43 μM, which is 11.5 times more potent than
melampomagnolide B (IC50 � 4.93 μM). Preliminary
mechanistic studies indicated that a3 could induce apoptosis
and inhibit the proliferation and migration of the tested HCT-
116 cells. Crooks et al. reported that melampomagnolide
B-triazole a4 could exert low micromolar to submicromolar
(GI50 � 0.02–1.86 μM) inhibitory activity against the growth of
a panel of 60 cancer cell lines derived from different organs
including lung, CNS, leukemia, colon, renal, melanoma, ovary,
prostate and breast cancer cells (Janganati et al., 2018), and
especially it could exert nanomolar (EC50 � 0.4–0.7 μm)
inhibitory activity against two clinical AML specimens. In

FIGURE 2 | Representative iridoid-, sesquiterpenoid-, and bisesquiterpenoid-triazole derivatives.
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addition, salt a5, a water-soluble prodrug of a4, could also exert
comparable inhibitory activity as a4 in primary AML cells.
Whereas, the C13 melampomagnolide B-triazole derivatives
generally showed reduced inhibitory activity, with only a6
(GI50: 46 – 76 μM) showed marginal inhibitory activity against
the tested cancer cell lines (A549, MCF-7, SKMEL-28, and
Hs683), implying the a-methylene-c-lactone motif may play a
key role in retaining the potent cytotoxicity (Zaki et al., 2016).

Babu et al. synthesized 20 triazole containing derivatives by
Michael addition of the α-methylene-c-lactone motif of
costunolide and dehydrocostus by sodium azide, followed by
reaction with various terminal alkynes under CuAAC. In vitro
data indicate that costunolide-triazole-coumarin a7 (IC50 �
0.12 μM) could exert more potent cytotoxic activity than the
precursor costunolide (IC50 � 0.56 μM) in MDA-MB-231 cells
(Pavan Kumar et al., 2016). Similarly, indole-triazole-
dehydrocostus-lactone a8 (IC50 � 0.16 μM) could exert more
potent cytotoxic activity than dehydrocostus-lactone (IC50 �
0.56 μM) in MDA-MB-231 cells, while derivative a9 (IC50 �
0.68 μM) showed more potent cytotoxic activity than
dehydrocostus-lactone (IC50 � 4.1 μM) in IMR-32 cells (Pavan
Kumar et al., 2016).

Usnic acid is a dibenzofuran secondary metabolite that is
isolated from lichen genera. Usnic acid-triazole-saccharin hybrid
a10 (MIC � 2.5 μM) could exert slightly better inhibitory activity
than clinical drug isoniazid (MIC � 2.9 μM) against
Mycobacterium tuberculosis (Mtb) (Bangalore et al., 2020), but
failed to show any antibacterial activity against Bacillus subtilis,

while hybrid a11 (MIC � 40.9 μM) could exert good antibacterial
activity against Bacillus subtilis. Molecular docking studies
indicated that the usnic acid moiety of a10 could occupy the
active site of Mtb enzyme enoyl reductase (InhA), while the
oxygen of sulfamide in saccharin could engage a hydrogen bond
with GLN100, and the triazole moiety could have π−π stacking
interaction with PHE97. Guo et al. reported that usnic acid-
triazole hybrid a12 could exert selective anti-Toxoplasma gondii
activity with a good selectivity index (IC50 � 261 μM, SI � 1.34),
which is slightly better than the reference drugs sulfadiazine (SI �
1.15), pyrimethamine (SI � 0.89), and spiramycin (SI � 0.72) and
also the parental (+)-usnic acid (SI � 0.96) (Guo et al., 2019).

Gossypol is a natural yellow pigment bi-sesquiterpene that acts
as a plant defense system against insects and fungi. Pyta et al.
reported that gossypol-triazole a13 (MIC � 16 μg/ml) could exert
comparable inhibitory as miconazole against Fusarium
oxysporum (MIC � 16 μg/ml). Mechanistic studies indicated
that a13 might inhibit biosynthesis of ergosterol, thereby
exerting its anti-fungal activity (Pyta et al., 2016).

Artemisinin derivatives with peroxide-containing sesquiterpenoid
lactone structures such as artesunate, arteether, and
dihydroartemisinin are the main chemotherapeutic drugs for
malaria. Beyond their intrinsic antimalarial potential, artemisinin
derivatives, particularly derivatives that are conjugated with another
pharmacophore by triazole could exert promising anticancer activity.
For example, Dehaen et al. reported that C11 artemisinin-triazole b1
(CEM: IC50� 0.92 μM;Hela: IC50� 1.2 μM) could exert more potent
inhibitory activity than b2 (CEM: IC50� 2.7 μM;Hela: IC50� 11 μM)

FIGURE 3 | Representative artemisinin derivatives.
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and b3 (CEM: IC50 � 10 μM; Hela: IC50 � 16 μM) (Figure 3),
indicating the linker between triazole and artemisinin could influence
their potential (Jana et al., 2017).

Binh et al. reported that artemisinin-triazole b4 (IC50:
2.5–4.7 μM) could exert more potent inhibitory activity than
its regio-isomer b5 (IC50: 13.5–19.9 μM) and dihydro
artemisinin (DHA, IC50: 39.9–84.3 μM) against a panel of
cancer cell lines including P388, MCF-7, HL-60, and LU-1
cells, indicating the position of the amide substituent on the
benzene was critical to the potent inhibitory activity (Binh et al.,
2016). Bhakuni et al. reported that b6 could inhibit the growth of
a panel of cancer cell lines (IC50 � 4.06–36.65 μM) by arresting
cell cycle (G2/M phase) and inducing apoptosis in lung and skin
cancer cells (Kapkoti et al., 2018).

Hybridization of dihydroartemisinin with other natural
products or drug molecules is another good strategy to obtain
potential anticancer compounds. Artemisinin-coumarin hybrid
b7, b8, and b9 could only exert moderate cytotoxic activity against
MDA-MB-231, HCT-116, and HT-29 cancer cells under
normoxic conditions (Tian et al., 2016; Yu et al., 2018).
Whereas, under anoxic conditions, hybrid b7 (anoxic, IC50 �
0.05 μM; normoxic, IC50 � 17.7 μM) and b8 (anoxic, IC50 �
0.01 μM; normoxic, IC50 � 1.5 μM) showed 334-fold and 150-fold
more potent than that under normoxic conditions in HT-29 cells,
which is probably associated with the high expression of CA IX
on the membrane of HT-29 cells. While, hybrid b9 showed a
41.38-fold and 20.03-fold higher activity than that under
normoxic conditions in HCT-166 (anoxic, IC50 � 0.43 μM;
normoxic, IC50 � 17.96 μM) and MDA-MB-231 cells (anoxic,
IC50 � 3.62 μM; normoxic, IC50 � 72.5 μM), respectively.
Structure activity relationship (SAR) studies indicated that the
spacer between triazole-artiartemisinin and triazole-coumarin as
well as the substituents on the coumarin were critical to the
selective inhibitory activity. Artemisinin-azidothymidine hybrid
b10 (IC50 � 16.5 μM) could exert more potent antiproliferative
activity than artesunate (IC50 � 78.5 μM) against KB cancer cells
(Tien et al., 2016), indicating the azidothymidine moiety plays a
key role in the increased activity. In addition, SAR studies showed
that hybrids with ester triazole-linker could exert more potent
antiproliferative activity than hybrids with amide triazole-linker.

Oridonin is an ent-kaurene diterpenoid that was initially
isolated from various Isodon species, which was widely used as
home remedy herb medicine in China and Japan. Oridonin-
triazoles generally showed broad-spectrum anticancer
activity. For example, C14 oridonin-triazole C1 (HTC116:
IC50 � 6.89 μM; MCF7: IC50 � 6.81 μM), C2 (HTC116: IC50 �
1.94 μM; MCF7: IC50 � 3.83 μM) (Figure 4) (Shen et al., 2019),
C3 (PC-3: IC50 � 3.1 μM; LNCaP: IC50 � 4.1 μM) could exert
more potent anti-proliferative activities than that of oridonin
(IC50 � 16.28–24.80 μM) (Hou et al., 2019a). In addition, they
could effectively overcome drug resistance and showed weak
cytotoxicity on non-cancer cells. SAR studies indicated that
the phenyl 1,2,3-triazole moiety and the linker between
oridonin and triazole play a key role in improving
antiproliferative activity. Preliminary mechanistic studies
indicated that C3 could arrest cell cycle (G2/M phase) and
induce apoptosis of PC-3 cells. Through the introduction of
azide or alkyne linkers at the C20 hydroxyl group, Liu et al.
synthesized a focused library of Jiyuan oridonin A-triazoles,
in vitro data indicated that all the triazole derivatives could
exert good anti-proliferative activities. Among them, C4 (IC50

� 4.26–8.95 μM) and C5 (IC50 � 2.70–5.04 μM) could exert
broad-spectrum inhibitory activity against a panel of cancer
cell lines including Eca109, EC9706, SMMC7721, and MCF7.
Mechanistic studies indicated that C5 could promote
intracellular ROS level, arrest cell cycle (G2/M phase) and
significantly induce cell apoptosis in the tested MGC-803 cells
(Ke et al., 2018b). Later, the same group reported that C6 (IC50

� 0.6–5.0 μM) could exert potent anti-proliferative activities
on several cancer cell lines (Eca109, EC9706, SMMC7721, and
MCF7) with good selectivity towards normal cells.
Mechanistic studies indicated that C6 could inhibit cell
migration with the Wnt signaling pathway involved, arrest
cell cycle (G1 phase), and induce cell apoptosis in the tested
SMMC-7721 cells (Ke et al., 2018a). Due to the challenge of
the introduction of azide at C1 of oridonin, there are only
limited C1 triazole derivatives have been reported, and
according to the reported data, derivative C7 could exert
submicromolar inhibitory activity on the tested cancer cells
(MCF-7: IC50 � 0.38 μM; MDA-MB-231: IC50 � 0.48 μM)

FIGURE 4 | Representatives oridonin derivatives.
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(Ding et al., 2013), implying the introduction of triazole at C1
of oridonin was tolerated.

Abietane-type diterpenes are a series of tricyclic terpenoids
that possess various biological activities. For example,
dehydroabietic acid and abietic acid are readily available
diterpenoids that can be isolated from disproportionated rosin.
They have been widely used as starting materials for the synthesis
of natural products or natural product-like drug screening
libraries (Xu et al., 2014b; Xu et al., 2017). With the
installation of azide or alkyne functionalities at C14 or C18,
several series of dehydroabietic acid-triazole derivatives were
synthesized. The screening of antiproliferative and antibacterial
activities indicated that D1 could inhibit the growth of several
cancer cell lines (IC50 � 0.7–1.2 μM) (Figure 5) (Hou et al.,
2017a). Mechanistic studies indicated that D1 could induce
apoptosis of MDA-MB-231 cells. In addition, the C18 triazole
derivative D3 (IC50 � 5.90 μM) could exert comparable inhibitory
activity to the reference drug cisplatin against HepG2 cells (IC50 �
6.42 μM) (Li et al., 2019), and derivative D2 could exert
antibacterial activities against both Gram-positive bacteria
(Bacillus subtilis and Staphylococcus aureus) and Gram-
negative bacteria (Escherichia coli and Pseudomonas
fluorescens) strains (MIC � 1.6–3.1 mg/ml) with good drug-
like properties and low cytotoxicity in noncancerous
mammalian cells (Hou et al., 2017b).

Carnosic acid and carnosol are phenolic diterpenes that were
identified from rosemary and mountain desert sage. Carnosic

acid c-lactone-triazole D4 could exert moderate inhibitory
activity on MRC-5 (IC50 � 45.1 μM) and AGS (IC50 �
39.2 μM) cancer cells (Pertino et al., 2015), while C11,
C12 carnosol-bistriazole D6 (MIC � 125 μg/ml) could inhibit
the growth of C. neoformans at the concentration of 250 μg/ml
(Pertino et al., 2015).

Triptolide is an abietane-type diterpene that was identified
from Tripterygium wilfordii Hook.f (TWHF). It has the unique
structural features of three successive epoxides and an
unsaturated α, β-lactone. Due to its various promising
biological activities, considerable work has been devoted to its
total synthesis, structural modification, and targeted delivery with
the aim to reduce its toxicity (Hou et al., 2019b; Xu and Liu, 2019;
Zhang X. et al., 2019). With the introduction of azidomethyl at
C14 of triptolide, Li et al. synthesized a series of C14 triazole
substituted epi-triptolide derivatives D5a, D5b, and D5c (Xu
et al., 2014a). In vitro data indicated that these derivatives
only showed weak cytotoxic activity as compared to triptolide.
However, considering various promising biological activities of
triptolide (Hou et al., 2019b), further evaluation of their biological
activates such as neuroprotective and anti-inflammatory activities
are highly expected.

Isosteviol is a tetracyclic ent-beyerane diterpene that is
endowed with multifarious bioactivities and can be readily
isolated from stevia plant. Diversification of isosteviol by
click chemistry at C19 or C15 could generate derivatives
with potential anticancer activity. Tao et al. reported that

FIGURE 5 | Representative abietane, ent-beyerane, kaurene and labdane diterpene derivatives.
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C15 isosteviol-triazole D7 (IC50 � 2.987 μM) could exert slightly
better inhibitory activity than cisplatin (IC50 � 3.906 μM)
against HCT-116 cells (Liu et al., 2016). Quan et al. reported
that C19 isosteviol-triazole D8 could inhibit the growth of
several cancer cell lines (HCT-116, BEL-7402, and HepG2)
with IC50 values in the range of 5.38–15.91 μM, and that was
1.3- to 4.6-fold more potent than the reference drug 5-
fluorouracil, and 6.3- to 16.8-fold more potent than the

parental isosteviol (Luan et al., 2019). Mechanism studies
indicated that D8 could inhibit colony formation and arrest
cell cycle (S phase) in HCT-116 cells.

Kaurenoic acid (KA) is a kaurene diterpene that can be isolated
from the fruits of X. aethiopica. Oliveira et al. reported that C19
kaurenoic acid-triazole D9 could exert moderate antimalarial
activity (IC50 � 53 μM) (De Santos et al., 2016), together with
good selectivity (selective index (SI) � 774).

FIGURE 6 | Representative triterpene derivatives.
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Both andrographolide and (E)-labda are labdane diterpenes.
Andrographolide is one of the principal biological active
compounds of andrographis paniculate, a traditional herb
medicine widely used in China and India for the treatment of
multiple diseases such as inflammation and cancer. Chinthala
et al. reported that andrographolide triazole derivative D10 could
exert selective inhibitory activity against K562 cancer cells with
IC50 values of 8 μM.(Chinthala et al., 2016). In silico docking
studies indicated that D10 could bind with transient receptor
potential vanilloid 1 (RPV1). (E)-labda is isolated from fresh
rhizomes of Curcuma amada. Somappa et al. reported that
labdane triazole derivatives D11a (IC50 � 0.75 μM) and D11b
(IC50 � 0.77 μM) could exert excellent pancreatic lipase (PL)
inhibitory activity, slightly better than the reference drug orlistat
(IC50 � 0.8 μM) (Jalaja et al., 2018).

Triterpenes represent an important class of natural terpenoids
that are composed of three terpene units. They are endowed with
the abilities to balance hormones, blood pressure, circulation, and
digestion, and they also have been documented with anti-viral
and anti-inflammatory activities.

Celastrol is a pentacyclic nortriterpene that is isolated from the
root of Tripterygium wilfordii and/or Triptergium regelii. SAR
studies indicated that its quinone methide moiety plays a key role
in exerting various promising biological activities, thereby its
structural modification was mainly conducted at C28 carboxyl
group (Hou et al., 2020). For example, Zhang et al. reported that
the C28 celastrol-triazole E1 could exert submicromolar anti-
proliferative effect against AGS (IC50 � 0.97 μM), HCT-116 (IC50

� 0.78 μM) and BEL-7402 (IC50 � 0.63 μM) cancer cell lines
(Figure 6) (Zhang H.-J. et al., 2018).

Asiatic acid (AA) is a pentacyclic triterpenoid that was
identified from the tropical herb medicine Centella asiatica. It
has been reported to possess various biological activities such as
antiinflammation, antidiabetics, and antitumor. Huang et al.
reported that AA-triazole E2 could bind to NF-κB (KD �
0.36 μM) and exert low micromolar inhibitory activity against
TNF-α-induced NF-κB activation (IC50 � 0.14 μM) (Huang et al.,
2019). Molecular docking studies indicated that E2 could fit well
in the active site of NF-κB. The fluorine of benzene could form
one hydrogen-bonding interaction with DNA chain (DA6), while
the benzene could engage π−π interactions with PHE307 (Huang
et al., 2019). Notably, 1,2,3-triazole as a hydrogen acceptor could
establish four hydrogen bonds with amino hydrogen of LYS272
and DA5, indicating that the triazole moiety was crucial for the
improved potency of E2. C-2 and C-3 hydroxy groups of AA
could form two hydrogen bonds with the DNA backbone P�O of
DG2. Also, C-23 hydroxy of AA formed two hydrogen bonds
with LYS249. Moreover, the pentacyclic skeleton of AA moiety
was surrounded by LYS241, PRO243, SER246, ASN247, LYS249,
ASP271, and LYS272 via the hydrophobic interaction. Further,
mechanistic studies indicated that E2 could inhibit NF-κB DNA
binding, nuclear translocation, and IκBα phosphorylation. In
vitro data showed that E2 could inhibit the growth of A549
cells (IC50 � 2.67 μM) by at least partial inhibition of the activity
of NF-κB, as well as cell apoptosis and migration.

Maslinic acid is a pentacyclic triterpenoid that is isolated from
pomace olive (Olea europea L.). It is reported that the

introduction of triazole into maslinic acid could promote its
anti-inflammatory activity (Chouaïb et al., 2016). For the mono
triazole derivatives, the triazole 1’,4’-regioisomers have more
potent anti-inflammatory activity than the 1’,5’-regioisomers,
for example, E3 (IL-1β production � 21%; 100 μM) is more
potent than E4 (IL-1β production � 61%; 100 μM). Regarding
the bistriazole derivatives, bis-3,28-disubstituted triazoles were
more potent than the bis-2,28-disubstituted triazoles, with
derivative E5 showed the highest inhibitory activity (IL-1β
production � 34%; 100 μM). While 2,3,28-trisubstituted
hybrids were the most potent series of all the triazole
derivatives. Among them, E6 showed the highest potency (IL-
1β production � 23%; 30 μM). These data indicated that both the
number and the position of the triazole were critical to the
promising anti-inflammatory activity.

Hederagenin is an oleane-type pentacyclic triterpenoid that
can be isolated in large quantities from Sapindus saponaria L.
Hederagenin-triazole derivatives could not only exert anti-cancer
activity but also have anti-leishmanial activity. For example,
Barbosa et al. reported that E7 (IC50 � 2 μM, SI � 22.5) could
inhibit the growth of Leishmania infantum with a higher
selectivity index as compared to the commercial drug
potassium antimonyl tartrate trihydrate (IC50 � 80 μM, SI �
0.1) (Rodríguez-Hernández et al., 2016a), highlighting its
potential in anti-leishmanial drug development. Later, the
same group reported E8, in which two triazoles were installed
at C3 and C28, respectively, could also inhibit the growth of
intracellular amastigote forms of Leishmania infantum with a
good selectivity index (IC50 � 5.6 μM, SI � 178) (Rodríguez-
Hernández et al., 2017). C28 Hederagenin-triazole derivatives
containing ester linkers are generally showed more potent
cytotoxic activities than those that containing amide linkers
(Rodríguez-Hernández et al., 2016b). In vitro antiproliferative
activity data indicated that E9a (IC50 � 3.2–4.0 μM), E9b (IC50 �
3.1–4.0 μM), and E9c (IC50 � 3.2–4.1 μM) could exert potent
inhibitory activity against a panel of human cancer cell lines
including 518A2, A2780, A549, HT-29, MCF-7, and 8505C, and
are at least eight times more potent than the parental
hederagenin, while E9d could exert selective inhibitory activity
against HT-29 cells (IC50 � 1.6 μM) with low toxicity in normal
NIH 3T3 cells.

Oleanolic acid is a natural pentacyclic triterpenoid related to
betulinic acid. It is widely distributed in many medicinal herbs in
the form of free acid or saponin glycosides. Derivative E10, a C28
triazole derivative (Wei et al., 2015), in which the triazole moiety
was installed by an ester linker, could exert potent
antiproliferative activities against A375-S2 (IC50 � 4.97 μM)
and HT1080 (IC50 � 3.51 μM) cancer cells. Meanwhile, its C3
saponin triazole relative, C28 hederacolchiside-triazole E11 (IC50

� 0.54–2.66 μM) could exert more potent inhibitory activity than
5-fluorouracil (IC50 � 8.45–69.07 μM) against a panel of cancer
cell lines including PC3, HT29, HepG2, A549, HL60, and U937
(Li et al., 2018). Mechanistic studies indicated that E11 could
arrest cell cycle (G1/S) and induce apoptosis of HepG2 cells.

Betulinic acid is a pentacyclic lupane-type triterpenoid that is
isolated from the stem bark of Platanus orientalis and many other
plants such as the birch trees Ziziphus spp., Syzygium spp.,
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Paeonia spp., etc. So far, several series of C3, C28, and C30
betulinic acid-triazole derivatives have been synthesized and
evaluated for various biological activities. Chakraborty et al.
reported that C3 betulinic acid-triazolide E12 (IC50 � 14.9 μM)
could exert more potent inhibitory activity than betulinic acid
and 5-fluorouracil in HT-29 cells (Chakraborty et al., 2015).
Mechanistic studies indicated that E12 could induce apoptosis
of cancer cells. Biophysical data showed that E12 could act as a
DNA minor groove binder. Sangwan et al. reported that C28
betulinic acid triazole derivative E14 could exert promising
inhibitory activity in a panel of cancer cell lines (HL-60: IC50

� 7 μM; MiaPaCa2: IC50 � 5 μM; PC-3: IC50 � 7 μM; and A549:
IC50 � 7 μM) (Khan et al., 2016). Mechanistic studies indicated
that E14 could block cell cycle at the G1 phase, induce mild cell
apoptosis via both intrinsic and extrinsic pathways in HL-60 cells.
Lipeeva et al. reported that C28 betulonic acid-furocoumarin
oreoselone hybrid E15 could significantly reduce histamine-
induced paw edema (edema index: 24.5%) to a level that was
comparable to the nonsteroidal anti-inflammatory drug
indomethacin (edema index: 22.4%) (Lipeeva et al., 2020). Shi

et al. reported that C30 betulinic acid-triazole derivative E13 (IC50

� 1.3 μM) could exert more potent antiproliferative than betulinic
acid (IC50 � 11.5 μM) in HL-60 cells (leukaemia) (Shi et al., 2015).
Kiem et al. reported that C28 botulin-triazole-AZT hybrid E16
could exert promising antiproliferative activity against both KB
(IC50 � 0.38 μM) and HepG2 (IC50 � 1.32 μM) cancer cells (Anh
et al., 2017). Clearly, hybrid E16 showed much more potent
inhibitory activity than AZT (IC50 > 400 μM for both cell lines),
implying the added value of merging betulin and AZT into a
single hybrid.

Myrrhanone C is a natural bicyclic triterpene that is isolated
from the gum resin of Commiphora mukul. By modification of C2
methene and C3 keto, Uppuluri et al. synthesized 27 myrrhanone
C-triazoles (Poornima et al., 2015). In vitro data indicated that
E17 could selectively inhibit the growth of DU-145 (IC50 �
13.8 μM) and HepG2 (IC50 � 9.332 μM) cancer cells, while
E18 (IC50 � 6.16–9.59 μM) could exert pan inhibitory activity
against a panel of cancer cell lines (A549, Hela, MCF-7, DU-145,
and HepG2). Both of them were more potent than the precursor
myrrhanone C (IC50 � 12.02–26.61 μM). Mechanistic studies

FIGURE 7 | Representative alkaloid derivatives.
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indicated that E18 could arrest cell cycle (G2/M phase) and
induce cell apoptosis.

CLICK CHEMISTRY-BASED
MODIFICATION OF ALKALOIDS

Alkaloids are a series of nitrogen-containing compounds of plant
origin, they usually possess various pronounced physiological
effects on humans and other animals, such as morphine, quinine,
strychnine, nicotine, and ephedrine.

Matrine is a quinolizidine alkaloid that is isolated from the
root of Sophora flavescens Ait (also known as Kushen), which is a
traditional Chinese herb medicine that has been used for the
treatment of liver diseases for thousands of years. Zhao et al.
reported that matrine-triazol-chalcone hybrids could inhibit the
growth of a panel of cancer cells (Figure 7) (Zhao et al., 2015).
Among them, F1 (IC50 � 5.01–7.31 μM) could exert broad-
spectrum anticancer activities against a panel of cancer cell
lines (A549, Bel-7402, Hela and MCF-7). Notably, F1 is more
potent than the combination of matrine and chalcone (IC50 >
50 μM), and also 5-fluotouracil (IC50 � 8.93–40.38 μM). SAR
studies indicated that the α, β-unsaturated ketone moiety and the
triazole together might play a key in determining the promoted
inhibitory activity. Further studies indicated that F1 could induce
apoptosis in A549 cells, and suppress tumor growth in A549-
xenografted nude mouse model (10 mg/kg) with no apparent
cytotoxicity.

Homoharringtonine and homoerythrina are naturally
occurring alkaloids that are isolated from genus Cephalotaxus.
Their derivatives have been reported to exert various biological
activities, and especially anticancer activity. Li et al. reported that
homoerythrina-triazole F2 (IC50 � 1.89–4.19 μM) could exert
more potent inhibitory activity than rucaparib (IC50 �
4.91–13.51 μM) and harringtonine (IC50: 10.55–11.71 μM) in
A549, HCT-116, and MCF-7 cancer cells (Li et al., 2020a).
Mechanistic studies indicated that F2 could arrest cell cycle at
the S phase, prevent the biosynthesis of PAR, and induce
apoptosis in A549 cells. The same group also reported
thaterythrian-triazole F3 (IC50 � 0.23–1.13 μM) could exert
more potent inhibitory activity than rucaparib (IC50 �
2.58–13.82 μM) in a panel of cancer cell lines (A549, OVCAR-
3, HepG2, A375, and SW-620) (Li et al., 2020b). Mechanistic
studies indicated that F3 could also prevent the biosynthesis of
PAR, and induce apoptosis in A549 cells.

Quinine is one of the most abundant natural cinchona
alkaloids, and also is the mainstay of antimalarial drugs. With
the introduction of azide at C9, C2’ and C6’ of quinine,
Boratyński et al. synthesized a focused library of triazole
containing chinchona alkaloids (F4a, F4b, F5, and F6)
(Boratyński et al., 2018). In vitro data indicated that nearly all
the derivatives could exert moderated antiproliferative activities.
Among them, F4a (IC50 � 0.53 μM) showed the highest potential
in MC-4-11 cells, while, F4b (IC50 � 1.2 μM) showed the highest
potential in HT-29 cells.

The conjugation of small molecules with ferrocene, a unit that
showed tunable redox characteristics, can usually generate new

molecules with unexpected properties. Pešić et al. reported that
ferrocene-quinine conjugate F8 (IC50 � 2.34–2.13 μm) could not
only inhibit the growth of drug-sensitive NCI-H460 cancer cells,
but also multi-drug resistant (MDR) NCI-H460/R cancer cells
(Podolski-Renić et al., 2017). Mechanistic studies indicated that
F8 could increase ROS production and induce mitochondrial
damage in MDR cancer cells, highlighting the importance of the
ferrocene moiety. Panda et al. reported that F7 (IC50 � 27 nM)
could exert more potent in vitro antimalarial activity than quinine
(IC50 � 58 nM) against P. falciparum strain 3D7 (Faidallah et al.,
2016), and the reason is probably due to the introduction of the
hydrophobic alkyl chain at C9, thereby increasing the penetration
ability of the parental scaffold. Sahu et al. reported that
C19 quinine-triazole derivative F9 could exert potent
antimalarial (P. falciparum, IC50 � 0.25 μM) and
antileishmanial activities (L. donavani, IC50 � 1.78 μM) with
no apparent adverse effects (Sahu et al., 2019). The structural
toxicological activity relationship studies indicated that the
introduction of the triazole moiety to quinine would result in
decreased toxicity.

20(S)-Camptothecin is a potent DNA topoisomerase I
inhibitor that isolated from Camptotheca acuminata in 1966.
With the installation of alkyne at C10 of homocamptothecin,
followed by reactions with various azides under CuAAC, Xu et al.
synthesized a series of C10 homocamptothecin-triazole
derivatives. Among them, derivative F10 (IC50 � 30 nM) could
exert more potent inhibitory than 20(S)-camptothecin (IC50 �
170 nM) against A549 cancer cells in a Topo I-dependent manner
(Xu et al., 2016). Mechanistic studies indicated that F10 could
arrest cell cycle at the G2 and S phases.

Colchicine is a well-known antimitotic agent that is isolated
from Colchicum autumnale. By utilization of the fast and efficient
CuAAC derivatization strategy, Schmalz et al. synthesized
C7 colchicine-triazole F11, which (IC50 � 3.5–5.52 nM) could
exert more potent inhibitory activity than colchicine (IC50 �
13.2–20.4 nM) in a panel of cancer cell lines (THP-1, Jurkat, Hela,
A549 and MES1) (Thomopoulou et al., 2016). In addition, one of
the derivative F12 could not only distort the microtubule
morphology but also exert a significant centrosome-
declustering effect on MDA-MB-231 cells and H1975 cells.

Berberine is an isoquinoline alkaloid that is isolated from
various Berberis plants. Berberine-triazoles could not only exert
anticancer activity but also exhibit antimalarial activity. Sun et al.
reported that F13 could inhibit the growth of SW-1990 (IC50 �
22.2 μM) and SMMC-7721 (IC50 � 14.9 μM) cancer cells (Jin
et al., 2014). Nath et al. reported that berberine-triazole F14 (IC50

� 0.142 μM) could exert antimalarial activity against P.
falciparum (3D7) strain with no apparent cytotoxicity in
human PC-3 cells (IC50 > 200 μg/ml) (Batra et al., 2018).

Hybridization of two different natural products by CuAAC is
an efficient strategy to generate novel functional compounds. For
example, cytisine-triazole-camphor F15 could exert antiviral
activity against influenza virus A/Puerto Rico/8/34 (H1N1)
with low toxicity and good selectivity index (IC50 � 8 μM,
CC50 � 168 μM, SI � 20) (Artyushin et al., 2019). Notably, its
selectivity index is higher than that of the reference drug
rimantadine (IC50 � 67 μM, CC50 � 335 μM, SI � 5).
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Theophylline, a naturally occurring purine base, is a
bronchodilator drug that is used for the treatment of various
respiratory diseases such as chronic pulmonary obstructive
disease and asthma. Murugulla et al. reported that
theophylline-triazole F16 could exert potent cytotoxicity on a
panel of cancer cells with IC50 values in the range of 1.2–2.3 μM
(Ruddarraju et al., 2017). In silico docking results indicated that
F16 might bind to human epidermal growth factor receptor 2
(EGFR II). Triazole-tethered theophylline-nucleoside hybrid
F17 could inhibit the growth of A549, HT-29, MCF-7 and
A375 cancer cells (IC50 � 1.89–4.89 μm) (Ruddarraju et al.,
2016), while hybrid F18 could exert potent antibacterial
activities against both Gram-positive (Staphylococcus aureus,
Bacillus cereus) and Gram-negative (Escherichia coli and
Pseudomonas aeruginosa) bacterial strains with MIC values
(MIC � 0.03125–0.125 μg/ml), which are comparable to or
more potent than that of the clinical drug ciprofloxacin
(MIC � 0.0156–0.0625 μg/ml).

CLICK CHEMISTRY-BASED
MODIFICATION OF PHENYLPROPANOIDS

Phenylpropanoids, also known as cinnamic acids, are a series of
secondary metabolites that are synthesized by plants from
phenylalanine and tyrosine. It mainly includes flavonoids,
chalcones, isoflavonoids, lignols, coumarins, stilbenes, aurones,
catechin, and phenolic acids.

Flavones are a series of privileged polyphenolic natural
products that possess broad-spectrum pharmacological
activities. Their synthetic derivatives have been reported to
have antitumor, antioxidant, anti-inflammatory, and antiviral
activities, etc. Some flavones such as luteolin are under clinical
trials for the treatment of cancer (Maggioni et al., 2015), implying
the potential of flavones or their derivatives in innovative drug
discovery.

Through the introduction of alkyne functionality at various
positions of flavonoids, and the concurrent click chemistry,
several series of flavonoid derivatives have been synthesized,

though they usually showed moderate biological activities.
Patel et al. reported that hesperetin-triazole hybrids G1 (IC50

� 14.9–56.8 μM) could exert potent antioxidant activity in DPPH
(IC50 � 30.6 μM) and ABTS+ (IC50 � 9.1 μM) assays (Figure 8)
(Mistry et al., 2017), and moderate inhibitory activity against a
panel of cancer cell lines (CaSki, HeLa and SKOV-3) with low
toxicity (Madin-Darby canine kidney (MDCK), IC50 �
290.9 μM). Yang et al. reported that chrysin-triazole hybrids
G2 (IC50 � 1.02–7.30 μM) could exert more potent inhibitory
activity than the parental chrysin (IC50 � 16.30–73.02 μM) in
several cancer cell lines (BEL-7402, HepG-2, SGC-9701) (Luan
et al., 2020). Rao et al. reported that the flavone/imidazole-triazole
derivative G3 could exert moderate antiproliferative activity
against MCF-7 cancer cells (IC50 � 17.9 μM) (Rao et al.,
2018). Chen et al. reported that apigenin-triazole G4 could
exert inhibitory activity against SKOV-3 cells (IC50 � 10 μM)
(Qi et al., 2018). Mechanistic studies indicated that G4 could
promote the level of cellular reactive oxygen species (ROS) and
reduce the mitochondrial membrane potential, thereby inducing
the apoptosis of SKOV-3 cells. It could also modulate the
expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated
X protein (Bax). Sangwan et al. reported that bavachinin-triazole
G5 (IC50 � 30.5–36.3 μM) could exert comparable
antiproliferative activity to bavachinin against a panel of
cancer cell lines including A549, HCT-116, PC-3, and MCF-7
(Gupta et al., 2018). Mechanistic studies indicated that G5 could
induce apoptotic cell death via PARP cleavage and loss of MMP,
and it could also inhibit cell migration and colony formation in
A549 cells. Baicalein is isolated from Scutellaria baicalensis. Niue
et al. reported that baicalein-triazole G6 could prevent respiratory
tract infection by respiratory syncytial viruses (RSV) via the
suppression of oxidative damage (Zhang C. et al., 2019).

Chalcones, also known as chalconoids, are a series of natural
polyphenols. Structurally, they are α, β-unsaturated ketones,
consisting of two aromatic rings conjugated by an α,
β-unsaturated carbonyl system. Chalcones and their derivatives
possess various biological functions such as anticancer, anti-
inflammatory and antiviral activities, etc. Thus, hybridization
of chalcone scaffold with another pharmacophore by click

FIGURE 8 | Representative flavone derivatives.
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chemistry may generate derivatives with valuable therapeutic
functions.

Lal et al. reported that chalcone-triazole hybrid H1 could exert
inhibitory activity against MIA-Pa-Ca-2, MCF-7, HepG2, and
A549 cancer cell lines with IC50 values in the range of 4–11 μM
(Figure 9) (Yadav et al., 2017). Mechanistic studies indicated that
H1 could arrest cell cycle (G2/S phase) and induce apoptosis of
MIA-Pa-Ca-2 cells by reducing mitochondrial potential and
activating PARP-1 and caspase-3.

Kamal et al. reported that triazole-chalcone hybrids H2 could
exert low micromolar inhibitory activity against Hela, DU145,
HepG2, and A549 cancer cells with IC50 values in the range of
1.5–7.7 μM (Hussaini et al., 2016). SAR studies indicated that
the α, β-unsaturated ketone of the chalcone skeleton was critical
to the potent cytotoxicity, as the replacement of the α,
β-unsaturated ketone moiety would result in significant loss
of cytotoxicity.

Kumar et al. reported that chalcone-triazole hybrid H3 could
inhibit the growth of MCF-7, DU-145, and 1MR-32 cancer cells
with IC50 values in the range of 17.1–29.9 μM (Chinthala et al.,
2015), in silico docking studies indicated that H3 might bind to
DNA topoisomerase IIα. While hybrid H4 could exert
α-glucosidase inhibitory activity (IC50 � 67.77 μM), in silico
docking studies indicated that H4 has a similar binding
pattern to the known antidiabetic drug acarbose with
α-glucosidase (Chinthala et al., 2015). Notably, the 1,2,3-
triazole ring might serve as a hydrogen bond acceptor to form
two hydrogen bonds with Arg526, and it might also have π−π
stacking interaction with Trp406.

Liu et al. reported that hybrid H5 (IC50 � 5.47–11.56 μM) and
H6 (IC50 � 1.53–2.73 μM) could exert low micromolar
antiproliferative activity against SK-N-SH, HepG-2, and MGC-
803 cancer cells (Fu et al., 2016). Notably, H6 could exert more
potent inhibitory activity than 5-fluorouracil (IC50 �

FIGURE 9 | Representative chalcone derivatives.
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7.22–10.32 μM). Mechanistic studies indicated that H6 could
arrest cell cycle (G1 phase) and induce apoptosis of SK-N-SH
cancer cells.

Subhashini et al. reported that triazole chalcone hybrids H7
could exert submicromolar inhibitory activity against the growth
of MCF-7 (IC50 � 0.02 μM) and MDA-MB-231 (IC50 � 0.31 μM)

FIGURE 10 | Representative coumarins derivatives.
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with low toxicity in non-tumorigenic MCF-10a epithelial cells
(IC50 � 139.29 μM) (Gurrapu et al., 2020).

Kumar et al. reported that tetrahydro-β-carboline-chalcone
derivative H8 (IC50 � 21.99 μM) could inhibit the growth of
MDA-MB-231 cells (Sharma et al., 2020), being three times more
potent than the reference drug tamocifen (IC50 � 75 μM), while
H9 (IC50 � 10.33 μM) could inhibit the growth of MCF-3 cells
and was five times more potent than tamoxifen. Molecular
docking results indicated that they could fit well into the ERα
ligand binding domain. The analysis of the H9- ERα complex
indicated that both direct and water-mediated hydrogen bond
interactions of triazole and tetrahydro-β-carboline with residues
(e.g., Leu346, Thr347, and Asp351) crucial to estrogenic
inhibitory activity might play a key role in exerting the potent
activity (Sharma et al., 2020).

Jalapathi et al. reported that bis-triazole-chalcone hybrid H10
could exert comparable antibacterial activity to the reference drug
gentamicin sulphate against several Gram-positive (Micrococcus
luteus, methicillin-resistant Staphylococcus aureus, Bacillus
subtilis, and Bacillus cereus) and Gram-negative (Pseudomonas
aeruginosa, Klebsiella pneumoniae, Escherichia coli, and Proteus
vulgaris) bacterial strains at concentrations of 75 and 100 μ/ml
(Sunitha et al., 2020).

Agarwal et al. reported that derivative H11 (IC50 � 2.74 μg/ml)
could exert potent antiplasmodial activity against the erythrocytic
stages of P. falciparum (3D7 strain) with no apparent cytotoxicity
(Huh-7 cells, CC50 > 100 mg/ml) (Kant et al., 2016), while bi-
triazole hybrid H12 (MIC � 6.25–12.5 μg/ml) could exert
comparable antibacterial activity to ciprofloxacin (MIC �
6.25 μg/ml for all the tested strains) against a panel of bacterial
strains (S. aureus, E. faecalis, E. coli, P. aeruginosa, S. boydii, and K.
pneumoniae) with low cytotoxicity (Huh-7 cells, CC50 > 100 mg/
ml) (Kant et al., 2016), and H13 (MIC � 6.25–12.5 μg/ml) could
exert potent antifungal activity with low cytotoxicity (Huh-7 cells,
CC50 > 100 mg/ml) (Kant et al., 2016).

By merging chloroquine (CQ) pharmacophore and chalcone
by a triazole linker, Kumar et al. synthesized a potent hybrid
derivative H14, which showed potent in vitro antiplasmodial
activity against Plasmodium falciparum (CQR W2 strain,
IC50 � 114.1 nM) with low cytotoxicity (Hela cells, IC50 �
36.5 μM; SI � 311) (Kumar et al., 2017). Further, with the
trapping of the α, β-unsaturated ketone functionality of the
hybrid by hydrazine hydrate, followed by acetylation with acetic
acid, they have synthesized N-acetylpyrazoline derivative H15,
which showed increased activity against Plasmodium
falciparum (CQR W2 strain, IC50 � 53.7 nM) and an
excellent selectivity index (Hela cells, IC50 � 42.7 μM; SI �
795), indicating the α, β-unsaturated ketone functionality was
not critical for antiplasmodial activity.

Hayallah et al. reported that chalcone-triazole-isatin hybrid
H16 could exert potent and selective COX-2 inhibitory activity
(COX-1, IC50 � 13.3 μM; COX-2, IC50 � 0.037 μM; SI � 359.46) as
well as good 15-LOX inhibitory activity (IC50 � 1.95 μM) (Boshra
et al., 2020). SAR studies indicated that the isatin moiety would
play a key in exerting the potent COX-2 inhibitory activity. In
vitro anti-inflammatory activity studies indicated that H16 has
comparable efficiency as celecoxib at a 3 h interval test.

Lal et al. synthesized a series of dehydroacetic acid chalcone-
triazole hybrids, in which the A ring was replaced by dehydroacetic
acid (DHA) (Lal et al., 2018). In vitro antibacterial and antifungal
data indicated that H17a could exert more potent antibacterial
activity in both Gram-positive (Staphylococcus epidermidis,
MIC � 0.006 μM/ml; Bacillus subtilis, MIC � 0.0030 μM/ml)
and Gram-negative (Escherichia coli, MIC � 0.003 μM/ml;
Pseudomonas aeruginosa, MIC � 0.006 μM/ml) bacterial strains
than the reference drug ciprofloxacin (MIC � 0.0047 μM/ml for
all the tested strains), while derivative H17b (Aspergillus niger,
MIC � 0.0068 μM/ml; Candida albicans, MIC � 0.0034 μM/ml)
could exert more potent antifungal activity than the reference drug
fluconazole (Aspergillus niger, MIC � 0.0102 μM/ml; Candida
albicans, MIC � 0.0051 μM/ml).

Coumarins are privileged natural products that possess a
fascinating array of biological activities. Their synthetic
derivatives have also been reported to exert various
pharmacological activities such as anticancer, anti-
inflammatory, antibacterial, and antifungal activities, etc.

Raić-Malić et al. reported that C4 coumarin-triazole I1 could
exert submicromolar inhibitory activity against HepG2 cells (IC50

� 0.9 μM) with low toxicity (normal fibroblasts WI38, IC50 �
45.33 μM, SI � 50) (Figure 10) (Kraljević et al., 2016).
Mechanistic studies indicated that I1 could inhibit 5-
lipoxygenase (5-LO), disturb intracellular acid ceramidase
(ASAH) activity, thereby perturbing sphingolipid signaling,
while I2 could exert high selectivity antibacterial activity
against Enterococcus species (MIC � 16 μg/ml). Moreover, it
could also inhibit the growth of clinically derived vancomycin-
resistant Enterococcus faecium (MIC � 64 μg/ml), whereas the
reference antibiotics ceftazidime (CAZ) and ciprofloxacin (CIP)
were inactive (MIC >256 μg/ml) (Kraljević et al., 2016). The same
group further reported C4 modified derivative I3 could exert
potent antioxidant activity (DPPH assay), and moderate
cytotoxic activity against Hela, CaCo-2, and K562 cancer cells
(IC50 � 9.7–41.6 μM) (Bistrović et al., 2017).

Guo et al. reported that the ether tethered triazole-coumarin I4
could potently inhibit the growth of MDA-MB-231 cells under
hypoxia conditions (IC50,hypoxia � 0.03 μM; IC50,normoxia � 1.34;
SIhypoxia/normoxia � 46.31) (An et al., 2018), and it was 20 times and
156 times more potent than that of doxorubicin (IC50 � 0.6 μM)
and cisplatin (IC50 � 4.68 μM), respectively, whereas the parental
4-hydroxycoumarin was inactive at the concentration of 100 μM.

Liu et al. reported that C4 coumarin derivative I5 could inhibit
the growth of PC-3, MGC-803, and MCF-7 cancer cells (IC50 �
4.96–36.84 μM), and that was comparable to or more potent than
that of 5-fluorouracil (IC50 � 7.01–27.07 μM) (Duan et al., 2013).

Magolan et al. reported that C7 coumarin derivative I6a could
inhibit the growth of pancreatic cancer cell lines including MIA
PaCa-1, Capan-1, and PANC-1 (IC50 � 8.5–29 μM). A subtle
change of the position of the trifluoromethyl from meta-to para-
position (I6b) led to the inactivity of the compound against
Capan-1 and PANC-1 cells (IC50 > 100 μM), but slightly
increased cytotoxic activity against MIA PaCa-1 cells (IC50 �
9.6 μM), implying the trifluoromethyl may play a key role in
exerting the selective inhibitory activity against MIA PaCa-1 cells
(Farley et al., 2016).

Frontiers in Chemistry | www.frontiersin.org November 2021 | Volume 9 | Article 77497715

Zhang et al. Click Chemistry and Natural Products

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Zhang et al. reported that C7 modified hybrid I7 (PC-3, IC50 �
0.34 μM; MGC803, IC50 � 0.13 μM) could exert more potent
inhibitory activity than colchicine (PC-3, IC50 � 0.59 μM;
MGC803, IC50 � 0.27 μM) against PC3 and MGC803 cancer
cells (Fu et al., 2019). Mechanistic studies indicated that I7 could
arrest cell cycle (G2/M phase), inhibit colony formation, and
promote apoptosis of the tested MGC803 cells by regulating Bcl-2
and DR5. In addition, I7 (1 μM) could inhibit tubulin
polymerization by interacting with the colchicine binding site.

By using the SPAAC click chemistry of cyclooctyne (DBCO)
and azide-coumarin, Paira et al. synthesized I8a and its regio-
isomer I8b with the aim of theranostic application (Sinha et al.,
2016). In vitro data indicated that both I8a and I8b could exhibit
maximum quantum yields and good uptake by MCF-7 cells,
implying their potential for cancer diagnosis. Moreover, they
could inhibit the growth of Hela (IC50 � 17.5 μM) and MCF-7
(IC50 � 9.83 μM) cancer cells with good selectivity.

Xanthotoxin is a furanocoumarin identified from the
traditional Egyptian medicinal plant Ammi majus L. Quan
et al. reported that xanthotoxin-triazole I9 could exert potent
antiproliferative activity against AGS cells (IC50 � 7.5 μM) with
low toxicity (normal L02 cell, IC50 > 100 μM) (Shen et al., 2017),
and that it was more potent than the parental xanthotoxin (IC50 >
100 μM) and the reference drug 5-fluorouracil (IC50 � 29.6 μM).

Shults et al. reported that reoselone-triazole I10 could inhibit
the growth of CEM-13, U-937, and MT-4 cancer cells with IC50

values in the range of 8–10 μM (Lipeeva et al., 2015). Molecular
docking studies indicated that I10 might bind to the active site of
phosphodiesterase (PDE-4B) and showed good interactions with
amino acid residues of PDE4B. Both the aryl-substituted triazole
and the dihydrofurocoumarin were involved in the π−π stacking
interaction with Phe446 (Lipeeva et al., 2015). Notably, the
triazole ring of I10 might involve in the binding with sulfurs
of Met347 and Met431 by forming π−sulfur interactions.
Bahulayan et al. reported that some coumarin-containing
macrocyclic derivatives, like I11, could also exert inhibitory
activity against cancer cells (Raj and Bahulayan, 2017).

Dharavath et al. reported that I12 (IC50 � 1.29 μM) could exert
comparable antioxidant activity to ascorbic acid (IC50 � 1.46 μM)
in DPPH assays (Dharavath et al., 2020). In vitro anti-
inflammatory data indicated that I12 (IC50 � 15.90 μM/ml)
could exert more potent activity than the reference drug
diclofenac (IC50 � 17.52 μM) in heat-induced hemolytic assays.
The antibacterial activity evaluation results indicated that I12
could inhibit the growth of the tested Gram-positive
(Staphylococcus aureus and Bacillus subtilis) and Gram-
negative (Escherichia coli and Klebsiella pneumonia) bacterial
strains at the concentrations of 10 or 20 μg/ml. Moreover, I12
could also exert antifungal activity against three fungal strains
(Aspergillus niger, Aspergillus favus, and Fusariumoxy sporum) at
the concentration of 50 μg/ml, and it was comparable to the
reference drug clotrimazole.

Awasthi et al. reported that coumarin-triazole I13 could exert
potent antimalarial activity against P. falciparum 3D7 strain (IC50

� 0.763 μg/ml) with low cytotoxicity (human hepatoma cell
(huh7), CC50 > 100 μg/ml) (Yadav et al., 2018). Mechanistic
studies using Escherichia coli DNA gyrase, indicated that I13

might disrupt the catalytic activity of DNA enzyme gyrase,
thereby switching off its supercoiling activity.

Sagar et al. reported that triazole-N-glycoside-coumarin I14
could exert low micromolar (IC50 � 10.97 μM) selective
inhibitory activity against breast MCF-7 cancer cells (Kumari
et al., 2019). Mechanistic studies indicated that I14 could promote
the level of cellular reactive oxygen species (ROS), thereby
inducing the generation of toxic products in MCF-7 cancer cells.

Kalkhambkar et al. reported that derivative I15 (MIC � 1 μg/
ml) could exert comparable antibacterial activity to the reference
drug ciprofloxacin (MIC � 1 μg/ml) in the tested Gram-positive
(Staphylococcus aureus) and the Gram-negative (Pseudomonas
aeruginosa) bacterial strains (Savanur et al., 2018), while I16
could exert comparable antifungal activity to itraconazole against
Candida albicans and Aspirgillus niger strains with MIC values of
1 μg/ml.

Kulkarni et al. reported that coumarin-2-
mercaptobenzimidazole hybrid I17 (MIC � 3.8 μM) and I18
(MIC � 3.8 μM) could exert more potent antibacterial activity
than the reference drugs pyrazinamide (MIC � 25.2 μM),
streptomycin (MIC � 10.7 μM), and ciprofloxacin (MIC �
9.4 μM) against M. tuberculosis (H37Rv) (Anand et al., 2016).

Shults et al. reported that I19 (S. aureus 209p, MIC � 0.16 μM;
S. aureus C-18, MIC � 0.65 μM) could exert 6- and 10-fold more
potent antibacterial activity than the reference drug ceftriaxone
(S. aureus 209p, MIC � 0.97 μM; S. aureus C-18, MIC � 6.5 μM)
against Staphylococcus aureus 209p and C-18 bacterial strains
(Lipeeva et al., 2019), while I20 (MIC � 0.21 μM) could exert a 5-
fold more potent antibacterial activity than ceftriaxone (MIC �
1.03 μM) against Staphylococcus aureus “Viotko” bacterial strain.

Bedi et al. reported that coumarin-isatin I21 could exert
promising antiproliferative activity against THP-1, COLO-205,
and HCT-116 cancer cells (IC50 � 0.73–3.45 μM) by inhibiting
the polymerization of the tubulin (IC50 = 1.06 μM) (Singh et al.,
2017). The same group also reported that coumarin-curcuminoid
hybrid I22 could exert promising antiproliferative activity against
THP-1, COLO-205, and HCT-116 cancer cells (IC50 �
0.82–4.68 μM) by inhibiting the polymerization of the tubulin
(IC50 = 1.55 μM) (Singh et al., 2016).

For a long time, the great potential of coumarin-triazole
hybrids in anti-Alzheimer’s disease drug discovery has been
well demonstrated by the target-based screening of
acetylcholinesterase (AChE) (Saeedi et al., 2017; Rastegari
et al., 2019), butyrylcholinesterase (BuChE) (Park et al., 2016),
and β-secretase (BACE1) inhibitors (Iraji et al., 2017). For
example, Saeedi et al. reported that I23 could exert selective
AChE inhibitory activity (AChE, IC50 � 1.8 μM; BuChE, IC50 >
100 μM) (Rastegari et al., 2019). And also, it could exert a
neuroprotective effect against H2O2-induced cell death of
PC12 neurons. Park et al. reported that decursinol-lipoic acid-
triazole hybrid I24 (AChE, IC50 > 350 μM; BuChE, IC50 �
5.89 μM) could exert selective BuChE inhibitory activity (Park
et al., 2016), and that it is more potent than that of galantamine
(BuChE, IC50 � 9.4 μM). SAR studies indicated that its selectivity
(AchE/BuChE) might result from neither decursinol nor triazole,
but the hybrid derivative I24. β-Secretase (BACE1), a
transmembrane aspartic protease, is an attractive target for the
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development of AD therapeutic drugs as it is critical in trigging
the amyloidogenic pathway. Miri et al. reported that
iminochromene-triazole I25 (Iraji et al., 2017), a non-peptidic
β-secretase (BACE1) inhibitor, could exert promising BACE1
inhibitory activity (IC50 � 2.2 μM) with no apparent cytotoxicity.
Notably, it could exert a 10-fold more potent neuro protective
effect (IC50 � 7.9 μM) than the reference caffeic acid (IC50 �
75.8 μM) in Aβ induced toxicity in pC12 neurons. Foroumadi
et al. synthesized a dual AChE (IC50 � 3.4 μM) and BuChE (IC50

� 1.1 μM) inhibitor I26 (Moradi et al., 2018), which could also
exert promising protective effective in H2O2-induced cell death of
PC12 neurons. With the aim of discovering a multi-target-
directed ligand for neurodegenerative disease, Rampa et al.
synthesized I27 (Montanari et al., 2016), a dual FAAH/BuChE
inhibitor, which could exert well-balanced nanomolar inhibitory
activities (rFAAH, IC50 � 27.9 nM; hBuChE, IC50 � 42.7 nM;
hAChE, IC50 � 922 nM). Considering that indirectly enhancing
endocannabinoid signaling by FAAH inhibitors might be
preventing or slowing the progression of neurodegenerative
disorders such as Alzheimer’s disease, I27 may be a valuable
candidate for AD treatment.

Podophyllotoxin is a natural lignin that is isolated from the
roots of Podophyllum hexandrum. Podophyllotoxin and its
derivatives could exert antiproliferative activity by inhibiting
tubulin polymerization, while epipodophyllotoxins and its
derivatives could inhibit topoisomerase II. So far, some
podophyllotoxin-/epipodophyllotoxin-derived therapeutic
agents such as teniposide and etoposide have already entered
into clinical use for the treatment of cancer. Diversification of

podophyllotoxin by click chemistry has been reported to generate
derivatives with increasing inhibitory activity whereas reducing
toxicity. For example, 4α-podophyllotoxin-triazole J1 could exert
broad-spectrum inhibitory activity against a panel of cancer cell
lines (A549, PC-3, MCF-7, U251, SKBR-3, and LNCaP) with IC50

values in the range of 19.6–42.9 nM (Figure 11). Moreover, it
could effectively overcome drug resistance, and showed weak
cytotoxicity in non-cancer cells. Preliminary mechanistic studies
implied that J1 could interact with microtubule, arrest cell cycle
(G2/M phase) and induce cell apoptosis in PC-3 cells (Hou et al.,
2019c). Kamal et al. reported that epipodophyllotoxin-triazole J2
(IC50 � 0.70–4.11 μM) could exert potent inhibitory activity
against a panel of cancer cell lines (A549, MCF-7, DU-145,
Hela, HepG2, and HT-29) with weak cytotoxic activity in
normal NIH/3T3 cells (IC50 � 89.04 μM) (Reddy et al., 2018).
Mechanistic studies indicated that J2 could inhibit topoisomerase
II, arrest cell cycle (G2/M phase), and effectively induce apoptosis
of the tested DU-145 cells. Hui et al. reported that
podophyllotoxin-triazole-coumarin hybrid J3 (IC50 �
4.9–17.5 μM) could exert more potent inhibitory activity than
the etoposide (IC50 � 10.5–25.6 μM) in a panel of cancer cell lines
including A549, HepG2, HeLa, and LoVo (Hao et al., 2019).
Mechanistic studies indicated that J3 could bind to CT DNA,
disrupt microtubules, arrest cell cycle (G1 phase) and inhibit
Topo-II β.

Podophyllotoxin-triazole-sugar hybrids also possess
promising inhibitory activity against various cancer cells. For
example, Jiang et al. reported that hybrid J4, which bearing a
perbutylated α-D-(+)-galactosyl residue could exert promising

FIGURE 11 | Representative podophyllotoxin derivatives.
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inhibitory activity against a panel of cancer cell lines (A-549,
HL-60, MCF-7, SMMC-7721, and SW480) with IC50 values in
the range of 0.49–6.70 μM, (Zi et al., 2015), which is more
potent than or comparable to the reference drugs etoposide and
cisplatin. SAR studies indicated that the spacer between triazole
and sugar residue, as well as a 4’- hydroxyl group of
podophyllotoxin scaffold that might play a key role in
exerting the potent activity. Derivative J5, which bearing a
1,6-β-D-di-glucose residue could exert potent inhibitory
activity against the tested HL-60, SMMC-7721, A549, MCF-
7, and SW480 cancer cells with IC50 values in the range of
0.67–7.41 μM (Zi et al., 2017). Hu et al. reported that bis-
triazole-tethered bis-epipodophyllotoxin-glucose J6 (IC50 �
0.43–3.50 μM) could exert more potent inhibitory activity
than cisplatin (IC50 � 1.67–10.85 μM) in several cancer cell
lines including HL-60, SMMC-7721, A549, MCF-7 and SW480
with low toxicity (normal BEAS-2B cells, IC50 � 15.38 μM; SI �
4.4–35.8) (Zi et al., 2018).

Ferulic acid is an abundant phenolic phytochemical found in
plant cell walls. Abid et al. reported that ferulic acid-triazole K1
could exert selective inhibitory activity against carbonic
anhydrase IX (CA IX) (IC50 � 24 nM) (Figure 12) (Aneja
et al., 2020). Further studies indicated that K1 could inhibit
colony formation and cell migration, downregulate CA IX

expression, decrease epithelial to mesenchymal transition
(EMT), and induce apoptosis in HepG2 cancer cells.

Eugenol is the principal active component of clove oil. Eugenol-
triazoles possess several biological activities such as anticancer and
anti-parasitic activities. Morjani et al. reported that eugenol-
triazole K2 could exert broad-spectrum antiproliferative activity
against a panel of cancer cell lines including HT1080, A549, MCF-
7, and MDA-MB-231 with IC50 values in the range of
15.31–23.51 μM (Taia et al., 2020). Teixeira et al. reported that
eugenol-triazole K3 could not only exert extracellular
leishmanicidal activities (IC50 � 7.4 μM) (Teixeira et al., 2018),
but also intracellular leishmanicidal activities against leishmania
parasites inside peritoneal macrophages (IC50 � 1.6 μM) without
interfering with the viability of macrophages (IC50� 211.9 μM; SI �
132.5). Notably, it was more potent than clinical drugs glucantime
and pentamidine. De Souza et al. reported that dihydroeugenol-
triazole K4 (IC50 � 42.8 μM) could exert comparable trypanocidal
activity to the reference drug benznidazole against the epimastigote
forms of Trypanosoma cruzi (T. cruzi., Y strain) with low toxicity
(Souza et al., 2020). In vivo data showed that K4 (100mg/kg, p. o.)
could reduce more than 50% of the parasitemia in T. cruzi
infected mice.

Bergenin, a dihydroisocoumarin, has been reported to have
various biological activities such as anti-HIV, neuroprotective,

FIGURE 12 | Representative phenylpropanoids K1-K14.
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and anticancer activities (Bajracharya, 2015). Babu et al. reported
that derivative K5 could inhibit the growth of A549 (IC50 �
1.86 μM) and HeLa (IC50 � 1.33 μM) cells (Pavan Kumar et al.,
2019), and that was comparable to doxorubicin. Mechanistic
studies indicated K5 could arrest cell cycle (G2/M phase) and
induce apoptosis in Hela cells. Moreover, it could inhibit the
polymerization of tubulin and disrupt the balance of intracellular
tubulin-microtubule. Yang et al. reported that K6 (IC50 �
6.2–17.6 μM) could exert more potent inhibitory activity than
the parental bergenin against EC9706, B16 and MGC803 cancer
cells (Yang et al., 2015). In addition, it (IC50 � 6.2 μM) could exert
comparable inhibitory activity to 5-fluorouridine (IC50 � 6.3 μM)
in EC9706 cancer cells.

Arctigenin is a lignan that is isolated from the dry ripe fruit of
Arctium lappa. Quan et al. reported that arctigenin-triazole K7
could exert more potent and selective anti-Toxoplasma gondii
activity (Toxoplasma gondii, IC50 � 17.1 μM; Hela, IC50 �
600 μM; SI � 35.09) than both of the lead arctigenin
(Toxoplasma gondii, IC50 � 586.4 μM; Hela, IC50 � 572.7 μM;
SI � 0.98) than the reference drug spiramycin (Toxoplasma
gondii, IC50 � 262.2 μM; Hela, IC50 � 189.0 μM; SI �
0.72).(Zhang H.-b. et al., 2018). By using sulfur (VI) exchange
chemistry, Zhang et al. synthesized derivatives K8 and K9 (Zhang
S. et al., 2019), and preliminary in vitro data indicated that these
compounds could exert good anti-inflammatory activity.

Babu et al. reported that dibenzoclooctene type natural
product gomisin B-triazole K10 could exert broad-spectrum

antiproliferative activity against a panel of cancer cell lines
including A549, DU-145, MDA-MB-231, PANC1, IMR32, and
SIHA cells (IC50 � 0.24–12.8 μM). Particularly, it could exert
submicromolar inhibitory activity against SIAH cells (IC50 �
0.24 μM), (Poornima et al., 2017), and it was more potent
than that of the parental Gomisin B (IC50 � 51.2–66.8 μM).
Mechanistic studies indicated that it could stall cell cycle (G2/
M phase) and promote tubulin polymerization in the tested
HeLa cells.

Machilin G is a natural lignan that is isolated from Magnolia
denudate. Replacement of the tetrahydrofuran ring of machilin
with 1,2,3-triazole, the resulting mimic K11 (IC50 � 1.1 μM) could
exert 8-fold more potent inhibitory activity than the
recommended drug pentamidine (IC50 � 8.9 μM) against
promastigote form of L. amazonensis (Cassamale et al., 2016).
Moreover, it (NIH/3T3, IC50 � 768.5 μM; SI � 698.6) showed a
higher selectivity index than that of pentamidine (NIH/3T3, IC50

� 78.7 μM; SI � 8.8), while derivative K12 could exert selective
inhibitory activity against Trypanosoma cruzi trypomastigotes
with an IC50 value of 28.6 μM and SI value of 29.6.

Pterostilbene is a bioactive natural stilbenoid that is isolated
from blueberries and Pterocarpus marsupium heartwood.
Structurally, it is very similar to resveratrol, a healthy
benefiting compound that is rich in red wine. Diversification
of pterostilbene by CuAAC could generate derivatives with
improved antibacterial activity. For example, derivative K13
could exert potent antibacterial activity against methicillin-

FIGURE 13 | Representative steroids derivatives.
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resistant Staphylococcus aureus (MRSA) with an MIC value of
1.2–2.4 μg/ml and a minimum bactericidal concentration (MBC)
of 19.5–39 μg/ml, (Tang et al., 2019), while the MIC value of
pterostilbene is 41–161.5 μg/ml. Mechanistic studies indicated
that it could inhibit DNA polymerase, but not the bacterial cell
membrane and cell wall.

Combretastatin A-4 (CA-4) is a stilbenoid phenolic natural
product that is isolated from the African willow tree, Combretum
caffrum (Shan et al., 2011). It can exert potent reversible
inhibitory activity in the polymerization of tubulin. Structural
modifications of CA-4 have yielded several novel CA-4
derivatives with potent tubulin inhibitory activity. Taking
advantage of the powerful sulfur (IV) fluoride exchange
(SuFEX) click chemistry, Wu et al. synthesized the fluorine
sulfonate CA-4 K14 (IC50 � 8.9 μM), which could exert 70-
fold more potent inhibitory activity than the parental CA-4
against drug in HT-29 cells (IC50 � 8.9 μM) (Liu et al., 2018).

CLICK CHEMISTRY-BASED
MODIFICATION OF STEROIDS

Steroids are series of naturally occurring compounds that are
ubiquitously distributed in animals, plants and fungi, etc. They
can act as signaling molecules or as key components of cell
membranes. Derivatization of steroids by click chemistry can
quickly generate novel molecules with new functions for drug
discovery.

Dehydroepiandrosterone is a unique active substance found in
sweet potato and yam. Dehydroepiandrosterone derivatives
containing triazole at the C3 and/or C16 could exert
antiproliferative effects. By molecular hybridization of
dehydroepiandrosterone and isatin, Liu et al. synthesized
hybrid L1 (Figure 13) (Yu et al., 2016), which could exert
comparable inhibitory activity (IC50 � 4.06 μM) to the
reference drug 5-fluorouracil (IC50 � 3.26 μM) in SH-SY5Y
cancer cells. Mechanistic studies indicated that L1 could
potently inhibit LSD1 (C50 � 3.18 μM), decrease mitochondrial
membrane potential, arrest cell cycle (G2/M phase), and induce
cell apoptosis. Notably, L1 is the first steroid-based lysine-specific
demethylase (LSD1) inactivator. Quan et al. reported that
C16 dehydroepiandrosterone-triazole L2 could inhibit the
growth of HepG-2 (IC50 � 9.18 μM) and MCF-7 (IC50 �
9.18 μM) cancer cells by arresting cell cycle (G2 phase) and
inducing cell apoptosis (Huang X. et al., 2018). Mernyák et al.
reported that C16 α-estrone-triazole L3 (IC50 � 2.6–6.5 μM)
could exert broad-spectrum antiproliferative activities against a
panel of cancer cell lines including HeLa, MCF-7, A431, A2780,
T47D (expressing androgen, progesterone and estrogen
receptors), MDA-MB-231 (expressing HER2 and estrogen
receptor) and triple-negative MDA-MB-361 (Mernyák et al.,
2015), and it was comparable to or better than the reference
drug cisplatin (IC50 � 1.3–19.1 μM). Mechanistic studies
indicated that L3 could induce apoptosis by the intrinsic pathway.

Sarsasapogenin is one of the active ingredients that is isolated
from Rhizoma anemarrhenae. Song et al. reported that
sarsasapogenin-triazole L4 could inhibit the aggregation of

Aβ1-42 (IC50 � 5.84 μM) (Wang W. et al., 2018). Moreover,
in vitro data indicated that L4 could exert moderate
neuroprotective effects against H2O2-induced neurotoxicity in
SH-SY5Y cells. Further in vivo studies showed that L4
(17.5 mg/kg, p. o.) could significantly ameliorate cognitive
impairments in behavioral tests, and it was comparable to or
better than the reference drug cisplatin.

Diosgenin, is a steroidal sapogenin that isolated from
Dioscorea deltoidei. Structurally, it is similar to cholesterol and
other steroids. Ara et al. reported that diosgenin-triazole hybrids
L5a (IC50 � 5.54–10.33 μM), L5b (IC50 � 5.77–8.67 μM) and L5c
(IC50 � 6.33–9.44 μM), bearing simple phenyl moiety at the C4’ of
the triazole moiety, could inhibit the growth of A549, HCT-116,
HT-29, and HBL-100 cancer cell lines (Masood-ur-Rahman et al.,
2017).

Sedlák et al. reported the triazole tethered estradiol dimers L6
(IC50 � 0.49–3.65 μM) could exert potent inhibitory activity in a
panel of cancer cell lines including A549, HeLa, HCT116, K562,
K562-Tax (Paclitaxel resistant), CCRF-CEM (childhood T acute
lymphoblastic leukemia), U2OS, and HCT116p53/(null p53
gene) by inhibiting tubulin polymerization (Jurášek et al., 2018).

Taking advantage of the emerging SuFEx click chemistry,
several steroid derivatives such as fluorosulfate L7 (Liu et al.,
2018), iminosulfur oxydifluoride L8 (Li S. et al., 2017),
bis(trifluoromethyl)sulfur oxyimine L9 (Smedley et al., 2019),
sulfurofluoridoimidate L10 (Li S. et al., 2017), sulfonimidoyl
fluoride L11 and sulfonimidate L12 have been synthesized by
using SO2F2 or its sister gas SOF4 as key reagents in the presence
of tertiary amine additives (e.g., TEA, DIPEA, DBU) (Li S. et al.,
2017; Gao et al., 2018; Smedley et al., 2019). Among them, the
fluorosulfate version of fulvestrant L7 (IC50 � 4.8–5.5 nM) could
exert more potent inhibitory activity than fulvestrant (IC50 �
7.7–14.8 nM). Notably, its inhibitory activity was ER– dependent
(MCF7, IC50 � 5.5 nM; ER– MCF7, IC50 > 10,000 nM). The
biological activities of the other SuFEx click chemistry steroid
derivatives are yet to report.

CLICK CHEMISTRY-BASED
MODIFICATION OF XANTHONES AND
QUINONES
Xanthones is a series of bioactive substance that can be readily
obtained from plants and/or microorganisms. The key structural
feature of these compounds is a biphenyl pyranone containing a
planar three-ring system. Yu et al. reported that M1 could exert
inhibitory activity against A549 cells (IC50 � 32.4 μM) (Wu et al.,
2019). Western blotting data indicated that M1 could significantly
upregulate protein levels of caspase 3, Bax, c-JunN-terminal kinase,
and also p53 in A549 cells (Figure 14). Zhang et al. reported that
gambogic acid-triazole M2 (IC50 � 0.31–3.79 μM) could exert
sustained cytotoxicity against a panel of cancer cell lines (U2OS,
HepG2, A549, and HCT116) and two drug resistant cancer cell
lines (Taxol-resistant or cisplatin-resistant A549 cells) with
improved aqueous solubility and permeability (Li X. et al.,
2017). Notably, it could exert in vivo antitumor activity in
A549-transplanted mice models.
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Quinone is a privileged pharmacophore that presents in many
bioactive natural products, such as mitomycin, saintopin, and
doxorubicin. Its various promising biological activities might
attribute to i) its ability to generate ROS, which usually leads to the
damage of DNA, and ii) its ability to electrophilic arylation of critical
cellular nucleophiles. Thus, the derivatization of quinone by using click
chemistry would quickly generate molecules with desirable functions.

Lawsone is a natural bioactive quinone that is isolated from
genus Lawsonia. Alves et al. reported that Lawsone-glycosyl
triazole M3 could exert promising inhibitory against SKBR-3
cells (IC50 � 0.78 μM) with good selectivity index (normal HGF
cell, IC50 � 17.65 μM, SI � 22.6) (Ottoni et al., 2020). It is more
potent than lawsone (IC50 > 50 μM), which could be ascribed to
the introduction of the peracetylated D-glucose to the hybrid M3,
thereby generating a more favorable lipophilic–hydrophilic
balance and being absorbed by tumor cells more easily.

Naphthoquinone-triazole hybrid M4 could exert inhibitory
activity against DU-145, Hela, A549, and MCF-7 cancer cell lines
(IC50 � 8.02–26.12 μM), (Prasad et al., 2018), and that was
comparable to the reference drug tamoxifen (IC50 �
10.87–18.63 μM). Mechanistic studies implied that M4 could
arrest cell cycle (G0/G1 phase) and induce apoptosis in MCF-
7 cancer cells. While, naphthoquinone-triazole M5 (IC50 �
6.8–10.4 μM) could exert broad-spectrum inhibitory activity
against HT-29, MOLT-4, and MCF-7 cancer cell lines

(Gholampour et al., 2019), and could arrest cell cycle (G0/G1
phase) in the tested MCF-7 cells.

Anthraquinone has the structural core of anthracycline. Meng
et al. reported that anthraquinone-triazole derivative M6 (IC50 �
0.6 μM) could exert more potent inhibitory against xanthine
oxidase_ a well-known target for the treatment of
hyperuricemia and gout, than the reference allopurinol (IC50 �
9.8 μM) (Zhang et al., 2017). SAR studies revealed that the
benzaldehyde moiety might play a more important role than
the anthraquinone moiety in its inhibitory potency.

The 1,4-furanaphthoquinone-triazole hybrid M7 (IC50:
81.81–99.56 μM) and its regioisomer 1,2-furanaphthoquinone-
triazole hybrid M8 (IC50: 23.04–41.10 μM) could only exhibit
moderate inhibitory activity against MDA-MB-231 and CaCo-2
cancer cells (Costa et al., 2018), whereas 1,2-furanaphthoquinone-
triazole M9 (IC50: 0.74–1.77 μM) could exert superior cytotoxic
activity against HCT-116 and MCF-7 cancer cells (Chipoline et al.,
2018), and the seleniumversion hybridM10 (IC50: 0.07–0.29 μM)and
M11 (IC50: 0.07–0.38 μM) showed high activity against HL-60, PC3,
HCT-116, SF295, OVCAR-8, andMDA-MB-435 cancer cell lines (da
Cruz et al., 2016). Mechanistic studies revealed that their apoptosis
effect was associated with ROS production. The 1,2-naphthoquinone-
triazole M12 (IC50 � 0.41–1.59mM) bearing an pyran fragment also
showed good inhibitory potency against PC3, HL-60, SF-295, HCT-
116 and MDA-MB-435 cancer cells (Bahia et al., 2016).

FIGURE 14 | Representative xanthone and quinone derivatives.
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CLICK CHEMISTRY-BASED
MODIFICATION OF MACROCYCLIC
NATURAL PRODUCTS
Peptidic macrocyclic histone deacetylases inhibitors (HDACi)
contain diverse cap groups that are capable of producing the
optimal interactions with amino acid residues that surround the
entrance of the HDAC active site, thereby modulating the
biological activities of these HDACis. Although they usually

could exert nanomolar inhibitory activity against HDACs,
their further clinical development has been hindered greatly
due to the difficulty in the synthesis of cyclic peptide
frameworks for SAR studies. With the aim to solve these
drawbacks, Oyelere et al. chose 14-membered macrolide
clarithromycin to mimic the peptidic framework of
macrocyclic HDACis’. The results indicated that macrolide is a
good mimic of the peptide framework. For example, hybrids N1,
N2, and N3, could exert moderate HDAC-6 inhibitory activity

FIGURE 15 | Representative macrocyclic derivatives.
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with IC50 values of 3.76, 2.85, and 6.99 μM (Figure 15) (Tapadar
et al., 2015), respectively. Hybrid N1 (IC50 � 0.86 μM) and N2
(IC50 � 0.69 μM), both bearing a zinc chelating hydroxamate
moiety, could exert potent antiproliferative activity against MCF-
7 cancer cells, while hybrid N2, which contains a para zinc
chelating hydroxamate moiety, could exert potent anti-
inflammatory activity (NF-κB inhibition, IC50 � 47.2 nM).

Due to the complex structure of rapamycin, CuAAC appears
to be the best strategy for the generation of novel rapamycin
derivatives. For example, C42 rapamycin-triazole N4 (IC50 �
6.05–25.88 μM) could exert more potent inhibitory against
H1299, MGC-803, H460, and Caski cancer cells than that of
rapamycin (IC50 � 18.74–35.13 μM) (Xie et al., 2016).
Mechanism studies indicated that N4 could cause the
change of cell morphological, and induce apoptosis of the
tested Caski cells. Moreover, it could inhibit the mTOR
signaling by downregulating mTOR phosphorylation and its
downstream key proteins, P70S6K1 and S6. Thus, N4 may
have the potential to serve as a new mTOR inhibitor.
C28 rapamycin-triazole N5 (IC50 � 12.8–14.8 μM) could
also exert more potent inhibitory against A549, 769-P,
ECA-109, and Caski cancer cells than rapamycin (IC50 �
12.3–24.5 μM) (Huang Q. et al., 2018). Mechanistic studies
indicated that N5 could inhibit the mTOR signaling by
downregulating mTOR phosphorylation and its downstream
key proteins such as P70S6K1 and 4EBP1.

Spiramycin is a natural antibiotic that is produced by
Streptomyces ambofaciens. Spiramycin-triazole-
N-acetylsaccharide N6 could exert potent antibacterial activity
against a panel of bacterial strains (B. subtilis, M. luteus, S.
epidermidis, and S. pneumoniae) with MIC values in the range
of 1–4 μg/ml (Klich et al., 2016). Salinomycin-triazole hybrid N7
could exert low micromolar inhibitory against Hela (IC50 �
0.29 μM) and Caco2 (IC50 � 0.44 μM) cancer cells (Shi et al.,
2016), and the dimer N8 could exert submicromolar inhibitory
activity against MCF-7 cancer cells (IC50 � 0.60 μM) (Huang
et al., 2017). Notably, both of them were more potent than that of
parental salinomycin (IC50 � 0.32–12.99 μM).

CONCLUSION REMARKS AND FUTURE
PERSPECTIVES

As natural products are usually complex molecules with little
modification space and some of them even contain labile
functionalities, the structural modification of natural products
with the aim to optimize their drawbacks or the construction of
natural product-like drug screening libraries are the most
fascinating challenges in organic synthesis. Therefore, the
development of synthetic toolboxes that facilitates efficient
access to the molecular diversity and unique functions of
natural products is highly desirable. One such, perhaps the
most successful toolbox is click chemistry, which enables the
ready synthesis of a diverse set of natural product derivatives,
especially the 1,2,3-triazole derivatives of terpenoids, alkaloids,
steroids etc., in a highly efficient manner. Beyond the
optimization of the original biological activity and the

improvement of kinetics and drug-like properties, many of
these derivatives have been endowed with new functions, and
thereby could serve as an inexhaustible source for discoveries in
drug development. In addition, click chemistry, especially the
CuAAC reaction, have also been widely used in the synthesis of
homodimers or heterodimers of natural products even in the
presence of labile functionalities, mainly due to their high
orthogonality reaction properties as compared to other
chemistries such as the synthesis of amides and esters.
Nevertheless, to fully utilize the power of click chemistry in
natural product-based drug discovery, there remain several
issues and new directions for future research in the area.

1) One of the most important merits of click chemistry is
modular synthesis, which can quickly generate diverse
libraries of large numbers of new compounds. However, as
we can see from Figure 1, there are usually only a limited
number of click chemistry derivatives that have been
synthesized and screened for their functions. Thus, it
would be impossible to probe the desired chemical space to
generate ideal hit compounds. The reason is probably that
most of the click chemistry building blocks are commercially
unavailable and must be prepared. Fortunately, a 2019 paper
reported a perfect solution for the synthesis of various azides
by using fluorosulfuryl azide as an efficient diazo transfer
reagent (Meng et al., 2019). In the future, the rational design
and synthesis of modular natural product building blocks with
functionalities that can react with other click chemistry
building blocks in large numbers would be a useful strategy
to probe the large chemical space.

2) As we can see from Figure 1, about 68% of click chemistry
natural product derivatives have only been selected for anti-
cancer activity, and thus their other functions are missing. In
the future, it is important to be aware of the selection of the
multiple functions of the natural product click chemistry
derivatives against different phenotypes or targets.

3) As most of the natural product-triazole derivatives were
screened by phenotypic screening (91%, Figure 1),
therefore, their exact molecular targets are ambiguous. In
the future, the rational design of target-based selection
systems for natural product click chemistry libraries will be
an important research area.

4) Beyond CuAAC click chemistry, which generates 1,2,3-
triazole derivatives, some other emerging click chemistries
like SuFEX chemistry have already shown their power in the
generation of valuable hit molecules, and thus also could be
used in natural product modification in the future.

5) Notably, another powerful hit screening technology DNA-
encoded library (DEL), and especially the natural product
DNA-encoded library (nDEL), have already shown their
power in the screening of some challenge protein targets
(Ma et al., 2019; Xie et al., 2020). So, if we can connect
natural products with DNA-encoded libraries and diversify
them by click chemistry, we could quickly generate a huge
natural product derivative library with unprecedented
skeleton diversity. In addition, as DEL selection is affinity-
based screening, the exert molecular target of the identified hit
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compounds are clearly after they have been deconvoluted
from the screened DEL library.

6) Because most of the natural product click chemistry derivatives
were only tested in in vitro assays, their metabolic,
pharmacodynamic, and toxicity profiles should be carefully
studied in the future. For example, a recent paper reported that
1H-1,2,3-triazole containing anticancer chemotherapeutic
might potentially lead to cardiotoxicity by the impairment
of mitochondria (Stephenson et al., 2020).
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