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Abstract

and lung cancer.

The lung plays a vital role in maintaining homeostasis, as it is responsible for the exchange of oxygen and carbon
dioxide. Pulmonary homeostasis is maintained by a network of tissue-resident cells, including epithelial cells,
endothelial cells and leukocytes. Myeloid cells of the innate immune system and epithelial cells form a critical
barrier in the lung. Recently developed unbiased next generation sequencing (NGS) has revealed cell heterogeneity
in the lung with respect to physiology and pathology and has reshaped our knowledge. New phenotypes and
distinct gene signatures have been identified, and these new findings enhance the diagnosis and treatment of lung
diseases. Here, we present a review of the new NGS findings on myeloid cells in lung development, homeostasis,
and lung diseases, including acute lung injury (ALI), lung fibrosis, chronic obstructive pulmonary disease (COPD),
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Background
The lung is constantly exposed to the external environ-
ment due to its gas exchange function. This exposure
increases the risk of injury from hazardous stimuli in
ambient air, such as pathogenic microbes, noxious
pollutants, and aspirated gastric contents [1]. Compared
with peripheral vasculature, lung vasculature is highly
branched, allowing for highly effective gas exchange [2].
In addition, this highly branched vasculature increases
the possibility of retention of circulating cells, such as
neutrophils and circulating tumor cells (CTCs), making
lung susceptible to systemic infectious or sterile stimulus
[3, 4]. Therefore, lung inflammation and injury are
served as major components of multiorgan dysfunction
syndrome in systemic inflammatory responses. Further-
more, the lung is also the most common site of meta-
static cancer lesions.

Pulmonary homeostasis is maintained by a network of
tissue-resident cells, including epithelial cells, endothelial
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cells, and myeloid leukocytes. Myeloid cells of the innate
immune system form a critical barrier with epithelial
cells in the lung. Under normal conditions, resident
alveolar macrophages play crucial roles in maintaining
the homeostasis of the lung by disposing of inhaled
microbes and particulates and by suppressing the devel-
opment of inappropriate inflammatory and immune
responses [5]. Under an inflammatory state, neutrophils
quickly respond to the cues secreted from resident
macrophages and epithelial cells and are recruited to the
inflammatory site. Neutrophils kill invading pathogens
in phagosomes by liberating cytotoxic proteins, peptides,
and enzymes and activating reactive oxygen species
(ROS). Neutrophils are conventionally regarded as
terminally differentiated cells with little transcriptional
plasticity, as all of their “weapons” are stored in the cells
after maturation [6]. If they do not encounter hazardous
stimuli, neutrophils undergo apoptosis or are cleared by
macrophages, preventing release of their “weapons”.
However, with the development of next generation
sequencing (NGS), including RNA sequencing and high-
content single-cell technologies, a variety of neutrophil
subtypes with high transcriptional plasticity have been
described [7]. These unbiased analyses are rapidly
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changing traditional understandings and showing the
heterogeneity of myeloid cells in all systems.

Here, we present a review on the new NGS findings of
myeloid cells, particularly from single-cell RNA sequen-
cing (scRNA-seq), in lung development, homeostasis,
and lung diseases, including acute lung injury (ALI),
lung fibrosis, chronic obstructive pulmonary disease
(COPD), and lung cancer.

NGS, scRNA-seq, and myeloid cell profiling

In 1977, Sanger and colleagues [8] published a methodo-
logical paper on determining the DNA sequence, providing
a tool for deciphering complete genes. This sequencing
method, also known as Sanger sequencing, is based on spe-
cific chain-terminating inhibitors of DNA polymerase [8, 9]
and was subsequently the most widely used sequencing
method for the next 30 years. Sanger sequencing was able
to obtain the sequence of DNA as long as 1000 bp with
high accuracy. However, this low-throughput sequencing
method was expensive, time consuming and insufficient to
achieve the ultimate goal of deciphering the complicated
biological genome. These weaknesses drove the develop-
ment of high-throughput sequencing: NGS.

NGS can perform millions or even billions of reactions
simultaneously, increasing the efficiency of the process.
This approach has significantly expanded our knowledge
about gene heterogeneity, not only with regard to
sequences of DNA and RNA but also their modifica-
tions, such as methylation [10]. Different NGS platforms
are distinguished by the technologies used in sequen-
cing, including pyrosequencing, sequencing-by-synthesis
technology, and ion semiconductor sequencing [11]. The
principles and advantages of each platform have been
reviewed by Anderson et al. [12] in detail. Common
processes shared by these platforms are DNA library
construction, sequencing in the machine, and output
data analysis. Bioinformatics analysis is used to piece the
fragments together by mapping the individual reads to
the reference genome. NGS directly shows the gene vari-
ants in physiological and pathological states. Combined
with newly developed computational tools and published
databases, such as String and the Kyoto Encyclopedia of
Genes and Genomes (KEGQ), further conclusions can
be drawn from differentially expressed genes, including
prediction of protein-protein interaction and construc-
tion of signaling pathways [13]. In turn, the sequencing
data also enrich the databases, providing guidance for
genetic diseases and clinical diagnostics [14].

Single-cell sequencing (SCS), developed in the last
decade, has emerged as a powerful new set of technolo-
gies in NGS, including single-cell DNA sequencing,
scRNA-seq, and single-cell epigenomic sequencing [15].
Traditional sequencing technologies analyze bulk tissue
samples composed of millions of cells. However, most
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organisms are composed of various cells. These average
expression data have difficultly resolving cell-to-cell
variations and fail to identify rare cells that may play a
crucial role in physiological or pathological progression.
SCS methods provide a way to comprehensively profile
genetic, epigenetic, spatial, and lineage information in
individual cells. Integrating SCS data can construct
holistic representations of the cell state, reveal intrinsic
regulatory networks, uncover cell-cell crosstalk, identify
rare cell types, and predict potential roles of these cells
[16]. With the help of SCS, especially scRNA-seq, and
bioinformatics analysis, myeloid cell heterogeneity and
ontogeny in bone marrow have been revealed, which has
been reviewed by Schultze et al. [17] in detail. These
new findings have encouraged people to rethink the
immune microenvironment in the lung, which consists
of resident leukocytes, local stromal cells, and their
interactions. Even though published reports are not
abundant, several scRNA-seq studies in lung tissue have
identified distinct myeloid cell types and their dynamic
changes during development and pathological processes
[18, 19]. By ligand-receptor mapping, new cell-cell cross-
talk has also been revealed.

In the early stage of the medicine, symptoms were
usually the only clues for directing treatment. With the
development of molecular biotechnology, scientists have
begun to understand the molecular information hidden
behind the symptoms. The emergence of bulk sequen-
cing has provided an unbiased way to detect gene signa-
tures and has promoted the Human Genome Project
(HGP), bringing us into the postgenomics era during the
past several decades. Today, SCS technologies lead med-
ical research towards greater innovation and significant
discoveries. Combined with bioinformatics analysis, we
are able to substantially expand our knowledge in under-
standing cell-cell crosstalk and networking, identifying
new cell phenotypes and subtypes, determining cell
trajectory, and so on (Fig. 1). These findings can provide
us with new insights into the mechanisms of lung
homeostasis and diseases and thus suggest new diagnos-
tic biomarkers and therapeutic targets.

Cell diversity in lung development

Development of the lung into its specialized structure and
cell types is highly regulated by tissue-specific growth factors,
cytokines, transcription factors, and interaction with the
immune compartment [20, 21]. The immune system in the
lung consists of leukocytes migrating from hematopoietic
sites and lung stromal cells. Proper immune component
development is essential for homeostasis, and dysregulation
of immune function may lead to disease, such as tissue
inflammation, fibrosis, or cancer [22]. Studies with scRNA-
seq analysis have provided us with paradigm changing
insights into the dynamic alterations in cell diversity during
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Fig. 1 Overview of current common SCS approaches and analyses. 1. scRNA-seq: By capturing transcripts and generating sequencing libraries for
individual cells, scRNA-seq assesses biological properties of cell populations at unprecedented resolution. Several platforms are available, including
Drop-seq, Smart-seq2, MARS-seq, and 10X Genomics. 2. sScDNA-seq & methylation: Also known as single-cell genomic sequencing, whole
genomic DNA from individual cells is captured, amplified, and sequenced. scDNA-seq can provide information on copy numbers and single
nucleotide variants (SNVs). 3. scATAC-seq: A single-cell assay for transposase-accessible chromatin sequencing, provides a way to understand the
regulatory landscape of the genome. 4. scCHIP-seq: Single-cell chromatin immunoprecipitation sequencing reveals the epigenetic heterogeneity
in individual cells. 5. Single-cell immune profiling: A comprehensive approach to simultaneously examine the cellular context of the adaptive
immune response and immune repertoires of T and B cells on a cell-by-cell basis. This approach can reveal insights into T and B cell variable (V),
diversity (D), and joining (J) genes, known as V(D)J recombination, and immune cell profiling. 6. Spatial transcriptomics: An array containing
capture probes is employed to bind RNA from tissue sections, and cDNA is then synthesized, followed by preparation of sequence libraries. The
libraries are then sequenced, providing information on what genes are expressed, the changing quantities, and where the cells derive from. 7.
Cell surface protein + SCS: This approach simultaneously measures both gene and cell surface protein expression in the same cell. As shown in
the right panel of the figure, by applying bioinformatics tools and computational analysis, this SCS technology can reveal complex and rare cell
populations, uncover regulatory relationships between genes, track the trajectories of distinct cell lineages in development, and many
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lung development. Cohen et al. [18] profiled the immune
and nonimmune lung cells by scRNA-seq, showing that cell
composition varies widely along major timepoints in lung
development, from the 12.5-day embryonic lung to postnatal
7 days. In the early embryo timepoint (E12.5), over 50% of
immune cells are macrophages, while monocytes are the
dominant cell type in the canalicular stage of lung develop-
ment (E16.5). Later, all major immune cell populations are
present in late pregnancy. On the postnatal 7th day, the
lymphoid cell compartment, B cells and T cells, make up of
32% of the CD45" population. These findings show the
dynamic changes in cell components during development,
which provide guidance for further studies on cellular
dynamics, differentiation and maturation of the lung.

The alveolar macrophage (AM) is a self-maintaining
tissue-specific cell type in lung tissue. Previous studies
have shown that AMs originate from fetal liver embry-
onic precursors [23]. This theory has been confirmed by
the slingshot trajectory analysis of scRNA-seq data of
mouse lung, which showed that macrophages in the late
embryonic phase and postnatal time form a continuous
transcriptional spectrum with E16.5 monocytes [24, 25].
However, these AMs are mature macrophages in alveo-
lae. As characterized by highly expressed peroxisome
proliferator activated receptor gamma (PPARy), AM
gene signatures, including fatty acid binding protein 4
(FABP4), lipoprotein lipase (LPL), C-type lectin domain
family 7 member A (CLEC7A), and integrin alpha X
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(ITGaX), are only observed in postnatal mice. SCRNA-seq
data from mice show that not all of the macrophages that
appear during lung development turn into AMs [18]. In
early pregnancy, macrophages express high levels of chemo-
kine (C-X3-C motif) receptor 1 (CX3CR1) and complement
genes, including complement component 1 q subcompo-
nents alpha and beta (Clqa, ClqpB). However, this type of
macrophage is diminished in the later canalicular stage with-
out differentiating into a mature AM. It is postulated that
this type of macrophage might be involved in the mecha-
nisms of some spontaneous pulmonary illnesses, although
the actual effect of these macrophages is still unclear.
Transcriptomic advances at the single-cell level have
revealed the presence of early, intermediate, and late
myeloid cell precursors and their dynamic process of
differentiation and maturation [21, 26, 27], while the
transcriptional regulation of lung immune cells during
development is still lacking. Regulatory network analysis
in future studies would contribute to a better under-
standing of the physiological processes in the lung.

scRNA-seq reveals specific phenotypes of myeloid cells in
the lung

NGS approaches have largely enhanced our understanding
of lung cell biology. Emerging data, mostly derived from
scRNA-seq, support that resident tissue macrophages
(RTMs) are a fully recognized heterogeneous population of
immune cells exhibiting tissue-specific phenotypes and
functions [28]. In the murine lung, AMs are the major
population in alveolar spaces, while a minor population of
interstitial macrophages (IMs) reside within the lung paren-
chyma. Transcriptome analysis identified that AMs highly
express keratin 79 (KRT79), keratin 19 (KRT19), and
carbonic anhydrase 4 (CAR4) compared with expression in
other types of macrophages [29]. Human AMs, however,
exhibit poor antigen presentation function due to the lack
of expression of costimulatory molecules, such as CD86
[30]. In addition, murine AMs show decreased phagocytic
activity compared with that of lung IMs [31] and express
low levels of CD11b, which is related to integrin activity
[32]. These data enhanced our understanding of the pheno-
typical and functional diversity in AMs.

Using scRNA-seq analysis, Chakarov et al. [33] identified
two independent populations of IMs in mouse lungs that
exhibited distinct gene expression profiles, Lyvel®MHCII-
MCX3CR1™ IM and Lyvel™MHCII'CX3CR1" IM. Both of
these IM populations are involved in lung immune re-
sponses. Lyvel° MHCIIMCX3CR1™ IMs are mostly found
surrounding nerves and have a higher antigen presentation
function, whereas Lyvel"MHCII'®CX3CR1 IMs are often
closely associated with blood vessels across tissues, affecting
wound and tissue repair. Evidence shows that, similar to
the RTMs, these two subtypes of IM are from two separate
lineages arising from tissue-recruited monocytes [33, 34].
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Massively parallel scRNA-seq (MARS-seq) analysis of ba-
sophils from mouse lung and peripheral blood showed that
lung basophils, compared with blood basophils, present a
unique gene signature, including the expression of interleu-
kin 6 (IL-6), interleukin 13 (IL-13), chemokine (C-X-C
motif) ligand 2 (CXCL2), tumor necrosis factor (TNF) and
chemokine (C-C motif) ligand 4 (CCL4) [18]. These pheno-
typic changes in specific gene signatures in lung basophils
represent functional shifting. AMs from lung basophil-
depleted mice shared some genes with immature macro-
phages and showed deficiency in anti-inflammatory ability
and phagocytic properties, suggesting that the changes in
the basophil gene signature are important to the differenti-
ation and phagocytic properties of macrophages through
basophil-macrophage interaction [18, 35].

Canonical neutrophil transcriptional markers include
matrix metallopeptidase 8 (MMP-8), matrix metallopeptidase
9 (MMP-9), S100 calcium binding protein A8 (S100A8), and
S100 calcium binding protein A9 (S100A9) [21, 36, 37].
scRNA-seq revealed that pulmonary neutrophils display high
expression of the Retnlg gene [18], encoding resistin-like
gamma, which has been found in the nasal respiratory epi-
thelium [38] and bone marrow [39]. Interestingly, Retnlg is
detected at low levels in granulocytes in peripheral blood
[39]. Studies on the function of Retnlg are lacking. Since
Retnlg is usually found in the extracellular region or secreted
in plasma [40], it is speculated that it may potentially pro-
mote chemotaxis of myeloid cells [41]. Although the function
of Retnlg in neutrophils is still unclear, high expression of
Retnlg in pulmonary neutrophils may suggest a role for these
neutrophils in further inducing myeloid cells into the lung,
which may contribute to amplified innate immune cell infil-
tration in the lung in response to inflammation.

Emerging data showed a novel neutrophil population in
the lung that is able to reverse migrate from the inflamed loci
to circulation termed reverse migration neutrophils [42, 43].
Reverse migration neutrophils with the phenotype CXCR1'"
YICAMI™®" [44] differ from CXCR1™"ICAMI'" neutro-
phils in the blood and CXCR1*ICAM1"" neutrophils in
tissue [45]. The mechanism underlying neutrophil reverse
migration from the lung remains unclear. It is speculated
that the lung modulates neutrophil phenotype to promote
neutrophil clearance, including the mechanism of neutrophil
homing to bone marrow via reverse migration [43].

Myeloid cell transcriptional alterations in acute lung
injury

Acute lung injury (ALI) and its more severe form acute
respiratory distress syndrome (ARDS) are heterogeneous
syndromes with diverse sets of etiologies and outcomes.
Distinct alterations in macrophages and neutrophils in
ALI have been reported in recent decades. The different
roles of AM subtypes, M1 and M2, in the development
and resolution of ALI have been well accepted since
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1986 [46, 47]. In general, M1 AMs play an important role
in promoting acute lung inflammation and subsequent
lung injury by releasing various proinflammatory media-
tors and inducing expression of factors mediating neutro-
phil recruitment into the lungs. In contrast, M2 AMs are
considered an anti-inflammatory force involved in dimin-
ishing lung inflammation and resolution of ALI [48].

Next-generation RNA sequencing provides an un-
biased way to reveal new regulatory mechanisms of
lung inflammation by showing dynamic changes in the
transcriptome. Halstead et al. [49] established an influenza
A virus infection mouse model and explored transcript
alterations in AMs by RNA sequencing. The results show
that granulocyte-macrophage colony-stimulating factor
(GM-CSF) derived from epithelial cells redirects AMs from
an “M1-like” state to a more “M2-like” activation state.
Secretion of GM-CSF from epithelial cells is decreased in
response to cell damage by pathogen-associated molecule
patterns (PAMPs) or damage-associated molecule patterns
(DAMPs), and the decrease in GM-CSF secretion results in
a decrease in M2 AMs.

Delayed neutrophil apoptosis has been regarded as one
of the mechanisms that induces a persistent inflammatory
response [50]. However, RNA sequencing from the mouse
Yersinia pestis infection model shows that in inflammatory
lesions of pneumonic plague, neutrophil survival depends
on not only the apoptosis mechanism but also the type III
secretion system effector YopM [51].

Data from NGS not only confirm the upregulation of
cytokine- and chemokine-related genes in response to
lipopolysaccharides (LPS) [52], but also reveal alterations
in genes related to other pathological signaling pathways.
In the ventilator-induced lung injury animal model,
RNA sequencing of lung tissue showed that activation of
the mechanistic target of rapamycin pathway and Janus
kinase-signal transducer and activator of transcription
(JAK/STAT) signaling were implicated in early inflam-
mation, while the hypoxia inducible factor-1 (HIF-1) and
nuclear factor kB (NF-kB) signaling pathways were acti-
vated in the late stage, which might be related to subse-
quent fibrosis [53]. Owing to the unbiased sequencing
method, some undefined genes have been found to be
related to ALI occurrence. Kangelaris et al. [54] compared
whole blood RNA from sepsis patients with or without
ARDS. The results showed that haptoglobin (HP) and resis-
tin (RETN) were significantly upregulated in the ARDS
patients, while hydroxycarboxylic acid receptor 3 (HCAR3),
retinol binding protein 7 (RBP7), and membrane metallo-
endopeptidase (MME) were decreased. These findings pro-
vide new study targets to illuminate the occurrence of ALI
in future research.

Since NGS detects the sequences in an unbiased way,
NGS also enhances our knowledge about noncoding RNAs,
such as long noncoding RNA (IncRNA), microRNA
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(miRNA) and circular RNA (circRNA), which were consid-
ered useless products of RNA splicing errors [55]. Recently,
noncoding RNAs were found to be involved in the regula-
tion of many vital physiological and pathological processes
[56]. Using NGS, Ye et al. [57] found ten circRNAs that
were differentially expressed between rats with ALI induced
by smoke inhalation and the control group, providing an
important basis for research and future studies of circRNAs
in ALL

By employing NGS technology, it has been found that
the gene expression and the enriched pathways were
significantly changed in ALI However, the results sig-
nificantly differed, and there is still no conclusion about
what main factors play crucial roles in the process of
ALIL This might be due to the heterogeneity of risk fac-
tors and etiologies, in addition to cell heterogeneity.
With the development of scRNA-seq technology, further
studies will reveal the determinant factors and the cell
networking mechanisms underlying the progression of
ALL

Myeloid cell transcriptional alterations in chronic lung
disease

Lung fibrosis is often a late stage process in many lung
diseases, such as those caused by toxicity and infection.
In a prevailing theory, lung fibrosis occurs due to fibro-
blast proliferation after an initial insult to the alveolar
epithelium and subsequent proinflammatory response
[58]. Fibroblasts invade the epithelial layer to plug
wounds. However, in some cases, fibroblasts fail to
undergo apoptosis and continue to generate stiff tissue,
resulting in irreversible alveolar collapse. The mecha-
nisms of lung fibrosis are not fully elucidated but are
believed to be a result of the interaction of many factors.
Using NGS approaches, genetic studies on pulmonary
fibrosis have made great progress, most of which have
led to the discovery of mutations in genes related to
telomere homeostasis [59]. Whole-lung transcriptome
profiling showed dysregulated canonical pathways in the
fibrosis mouse model, including the pathways for bac-
teria/virus recognition, inflammation, leukocyte extrava-
sation, and ROS production [60]. By using scRNA-seq,
Peyser et al. [61] found that early events in lung fibrosis
might not involve significant changes in fibroblast num-
ber, while the numbers of macrophages, dendritic cells
(DCs), and proliferating myeloid cells are increased.
These increased cells may be involved in fibrosis patho-
genesis. Distinct monocyte and macrophage subtypes
have been found in the development of fibrosis [62, 63].
Reyfman et al. [64] performed scRNA-seq on lung tissue
obtained from eight transplant donors and their eight
counterpart recipients with pulmonary fibrosis. The data
revealed that AM genes originating from the lungs of
patients with fibrosis were enriched in “exocytosis”,
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“secretion”, “regulation of cell migration” and “extracellular
matrix organization”. By using scRNA-seq on a bleomycin-
induced lung fibrosis mouse model, Aran et al. [63] identi-
fied a profibrotic macrophage subpopulation expressing the
specific markers CX3CR1 and SiglecF, which localized at
the sites of fibrotic scarring where Pdgfra” and Pdgfrb*
fibroblasts accumulated. This finding suggests an important
role of the macrophage subpopulation in the regulation of
fibroblasts. Regarding the source of the profibrotic macro-
phages, the study showed that the macrophages partially
shared a gene expression profile with both alveolar and
interstitial macrophages, suggesting a transitional state of
resident lung macrophages that is initiated following injury.
Not only macrophages but also distinct monocytes, charac-
terized by Ceacaml™Msr1*Ly6C F4/80 Macl™ and termed
segregated-nucleus-containing atypical monocytes (SatMs),
were also found in the bleomycin-induced fibrosis mouse
model, suggesting a role for these cells in the progression of
fibrosis. Notably, the differentiation of SatMs was dependent
on CCAAT/enhancer binding protein p (C/EBPp), which
usually plays a crucial role in the maturation and differenti-
ation of granulocytes [37]. These results indicate that target-
ing myeloid cells is a potential novel strategy for the
prevention and therapy of lung fibrosis.

COPD is a common outcome of chronic lung inflamma-
tion, characterized by reduced lung function. With regard to
the infiltrating myeloid cells, there are two main phenotypes
of COPD, neutrophil-associated COPD and eosinophil-
associated COPD [65]. Neutrophilic inflammation is the
most common inflammatory phenotype in COPD, which is
mainly activated by proinflammatory mediators and DAMPs
released by epithelial cells and resident macrophages under
stimuli [66]. Recruited neutrophils subsequently release
proteases, induce airway damage, and activate adaptive
immune Thl and Thl7 cells [66, 67]. For eosinophil-
associated COPD, patients usually show a higher risk of
severe exacerbations [68]. NGS data have now shown a
greater diversity of COPD. Genome-wide association studies
(GWAS) on COPD patients have identified several COPD-
associated genome variants, suggesting that COPD is a
disease with genetic predisposition and altered immunity
[69, 70]. By analyzing large-airway epithelium, alveolar
macrophages, and peripheral blood samples from COPD
patients by RNA-seq, Morrow et al. [71] observed a signifi-
cant overlap in genes from large-airway epithelium and
macrophage for smoking and airway disease phenotypes,
including cytochrome P450 family 1 subfamily B member 1
(CYP1B1) and aryl-hydrocarbon receptor repressor
(AHRR). CYP1BI1 is involved in oxidative metabolism,
while AHRR mediates dioxin toxicity due to its DNA
binding effect. These results highlight the shared tissue-
specific signatures of lung disease and damage. Furthermore,
RNA-seq profiling revealed some significantly associated
emphysema genes, including asparaginase-like 1 (ASRGL1),
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latrophilin 2 (LPHN2), and endothelin receptor type B
(EDNRB) [72]. Of note, most studies employed nasal and
bronchial brushing samples from COPD patients, and thus,
the samples were a mix of multi-cell populations, which
should include epithelial cells, alveolar macrophages, infil-
trated neutrophils and many others. Studies using mixed-
cell samples may reveal genes for COPD susceptibility and
identify biomarkers for diagnosis and prediction; however,
these studies fail to elucidate the roles of different cells in
the process of COPD.

Myeloid cell heterogeneity in lung cancer
Tumor heterogeneity is a significant cause of the poor
therapeutic effects of chemotherapy and radiotherapy.
SCS technology provides a better approach to studying
tumor microenvironments and heterogeneity. Immune
cells show distinct gene signatures in tumor patients in
high or low risk groups in terms of overall survival [73].
In addition, intratumoral immune cell densities, includ-
ing dentric cells (DCs), neutrophils, macrophages and
CDS8" T cells, were associated with molecular alterations
in lung adenocarcinoma patients, underlying the interac-
tions between tumor cells and their microenvironment
[74]. The heterogeneity of both tumor cells and immune
cells have potential impacts on the efficacy of immuno-
therapy, especially for optimal personalized immuno-
therapy [75-77]. Studies show that peripheral blood
immune cells are altered in lung cancer patients [78].
Zilionis et al. [19] compared tumor-infiltrating myeloid
cells and peripheral blood immune cells of the same pa-
tients by scRNA-seq, and the data showed only partial
overlap in the states of the two groups, suggesting that
immune populations can be reprogrammed by the
tumor microenvironment [79]. Considering that tumor
microenvironments are varied, several studies have ana-
lyzed the tumor-infiltrating populations in nonsmall cell
lung cancer (NSCLC) by scRNA-seq. The studies revealed
distinct phenotypes of neutrophils, monocytes, and mac-
rophages in patients and mouse models [19, 76, 80, 81].
Neutrophils have been regarded as a kind of terminally
differentiated cell and thus have been assumed to have
less heterogeneity. However, scRNA-seq revealed the
transcriptional plasticity of neutrophils, which express
significant phenotypes in NSCLC [82]. These phenotypes
play both protumoral and antitumoral roles [83, 84].
The distinct phenotypes could be the result of the devel-
opment of specific progenitor cells or reprogramming of
the tumor microenvironment. In bone marrow, Zhu
et al. [36] found that Lin"CD117 Ly6a/e” cells were a
distinct neutrophil progenitor population with protu-
moral activity. In the lung, neutrophils that highly
express sialic acid binding Ig-like lectin F (SiglecF) have
been found in mice with tumors and exhibit several pro-
tumor functions [85], while SiglecFlow cells are found in
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tumor-free lungs. SiglecF™&" neutrophils overexpressed
colony stimulating factor 1 (CSF1), leukotriene C4
synthase (LTCA4S), runt related transcription factor 1
(RUNX1), secreted phosphoprotein 1 (SPP1), vascular
endothelial growth factor A (VEGFA), and X-box bind-
ing protein 1 (XBP1) transcripts [19]. These molecules
have been previously found in tumor cells and have been
identified as playing protumoral roles [86-88]. A new
study showed that CCL3, cystatin B (CSTB), cathepsin B
(CTSB), and interleukin-1 receptor-associated kinase 2
(IRAK2), molecules that are involved in the inflamma-
tory response of neutrophils, are specifically found in
neutrophils from mice with tumors [19]. To our know-
ledge, these transcripts may not be able to promote cell
proliferation and/or differentiation. However, they are
potentially involved in the development of the immune
microenvironment and provide an increased probability
for tumor immune escape.

Traditionally, two types of DCs are found in mice.
Ly6c"€"Cer2"CX3CR1™ monocytes, which can extravasate
into tissues and give rise to macrophages and DCs, and
Ly6c®"Cer2 CX3CR1™" monocytes, which remain in the
vasculature [79]. These two types correspond to the classical
subsets in humans, CD14" monocytes and CD14"CD16"
monocytes. In addition, a study using scRNA-seq reported
that a subtype of “neutrophil-like” monocyte that expresses
a set of neutrophil-associated genes was found in human
blood [89]. A recent report further showed that monocytes
expressing S100A8, S100A9, and colony stimulating factor 3
receptor (CSF3R) were found in both human and mouse
lung cancer tissue [19]. Whether the “neutrophil-like”
monocytes are protumoral or antitumoral remains unclear.

Tumor-infiltrating macrophages from human lung
cancer biopsy showed distinct expression of chemokines,
including the neutrophil chemoattractant CXCL5 and
the T cell recruiting chemokine CXCL9 [19]. These che-
mokines may serve as migration cues for other immune
cells, resulting in cell population diversity in the tumor
microenvironment. Moreover, monocyte-to-M2 differen-
tiation was found to be a prevalent trajectory in tumor
progression [80].

In summary, studies with scRNA-seq have identified
new phenotypes and gene signatures related to tumor
processes and have explored the diversity of myeloid
cells in the tumor microenvironment. Tumor therapies
that target immune cells have shown clinical benefits, in-
dicating that immune cells are key regulators of cancer
growth [90]. Further studies in this area will provide us
with new means of diagnosis and treatment.

Conclusions

The pulmonary immune environment is an intricate net-
work composed of various interacting cell types. NGS
technology has revealed myeloid cell heterogeneity and
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identified specific cell phenotypes in the lung during
development, homeostasis, and diseases. NGS has also
explored biomarkers for the diagnosis and prediction of
lung disease prognosis. However, identification of the
main regulatory factors and reprogramming mechanisms
of immune cells in lung development and diseases is still
limited. With the advance of high-throughput sequen-
cing, future studies will be able to map a more detailed
portrait of gene expression and regulatory networks in
the lung.

SCS techniques, represented by single-cell DNA se-
quencing, scRNA-seq, and single-cell epigenomic se-
quencing, provide us with a broad range of cellular
parameters, including DNA and RNA sequences, DNA
methylation, and chromatin accessibility. Today, SCS
technology is being quickly developed. For example,
recent efforts have pioneered methods to record spatial
information. The majority of current studies are focused
on measurements of a single modality. The combinator-
ially barcoded profiling technology makes it possible to
combine multimodal technologies. With the help of inte-
grative computational methods, it will be possible to
build a comprehensive molecular view of cells and tissue
states based on the substantial information derived from
SCS. NGS will, no doubt, be largely beneficial in finding
new targets for the diagnosis and treatment of lung
diseases.
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