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ABSTRACT Background: At present, radical total mesorectal excision after neoadjuvant chemoradiotherapy
is crucial for locally advanced rectal cancer. Therefore, the use of histopathological images analysis technol-
ogy to predict the efficacy of neoadjuvant chemoradiotherapy for rectal cancer is of great significance for the
subsequent treatment of patients. Methods: In this study, we propose a new pathological images analysis
method based on multi-instance learning to predict the efficacy of neoadjuvant chemoradiotherapy for
rectal cancer. Specifically, we proposed a gated attention normalization mechanism based on the multilayer
perceptron, which accelerates the convergence of stochastic gradient descent optimization and can speed
up the training process. We also proposed a bilinear attention multi-scale feature fusion mechanism, which
organically fuses the global features of the larger receptive fields and the detailed features of the smaller
receptive fields and alleviates the problem of pathological images context information loss caused by block
sampling. At the same time, we also designed a weighted loss function to alleviate the problem of imbalance
between cancerous instances and normal instances. Results: We evaluated our method on a locally advanced
rectal cancer dataset containing 150 whole slide images. In addition, to verify our method’s generalization
performance, we also tested on two publicly available datasets, Camelyon16 and MSKCC. The results show
that the AUC values of our method on the Camelyon16 and MSKCC datasets reach 0.9337 and 0.9091,
respectively. Conclusion: Our method has outstanding performance and advantages in predicting the efficacy
of neoadjuvant chemoradiotherapy for rectal cancer.

INDEX TERMS Pervasive computing, neoadjuvant chemoradiotherapy, internet of things, pathological
images, rectal cancer.
Clinical and Translational Impact Statement—This study aims to predict the efficacy of neoadjuvant
chemoradiotherapy for rectal cancer to assist clinicians quickly diagnose and formulate personalized
treatment plans for patients.

I. INTRODUCTION
COLORECTAL cancer is the third leading cause of cancer
globally, and rectal cancer accounts for about 30%-35% of

colorectal cancer cases [1], [2]. More than 100,000 people
worldwide are diagnosed with rectal cancer each year,
70% of which are locally advanced rectal cancer (LARC).
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Neoadjuvant chemoradiation (NCRT) and radical surgery are
the best treatments recommended for locally advanced rectal
cancer [3] because preoperative radiotherapy and chemother-
apy can reduce recurrence and improve survival [4]. Many
studies have shown that the response to neoadjuvant therapy
affects the prognosis, especially the pathological complete
response has a good effect on the prognosis [5]–[7]. Approx-
imately 15% to 27% of patients will show a pathological
complete response (PCR) to neoadjuvant chemoradiother-
apy [8], [9]. However, a considerable number of patients will
not respond to neoadjuvant therapy. Based on the resection
specimens, these non-responders can be defined as patients
with no changes in tumor regression after neoadjuvant ther-
apy. These non-responders may benefit little from neoadju-
vant therapy but still have related toxicity. More importantly,
tumor progression may occur in some patients during treat-
ment. Therefore, it is very important to accurately predict
non-response before implementing neoadjuvant therapy to
develop a personalized treatment plan, including avoiding
overtreatment and timely selection of alternative treatments.
In addition, it can also help patients avoid the risks and
uncertain consequences of surgery. However, in addition to
the pathological evaluation after neoadjuvant therapy, there is
currently no reliable method to accurately divide patients into
non-good response (non-GR) groups and good response (GR)
groups. Due to the heterogeneity of tumors [10], accurately
predicting a non-response to neoadjuvant therapy remains
challenging. Therefore, it is of great significance to pre-
dict the efficacy of neoadjuvant chemoradiotherapy for rec-
tal cancer using histopathological images. In this study,
we established a deep learning model based on the patholog-
ical images of patients with locally advanced rectal cancer
to accurately predict the patient’s response to neoadjuvant
chemoradiotherapy so as to assist clinicians in formulating
personalized treatment plans for patients.

Histopathological images analysis is an important step in
cancer or disease diagnosis. In recent years, the diagnosis of
cancer has been improved by using a deep learning based
histopathological images analysis framework [11]. These
advances have promoted the progress of diagnostic and com-
putational methods for gastrointestinal diseases [12], [13].
However, many issues remain to be addressed in the field,
including the variability of histopathological features across
diseases, limited data, and high resolution of whole slide
images (WSIs), making it difficult for the model to use WSIs
for training directly. To match traditional input sizes for tradi-
tional feed-forward CNNmodels, typicalWSIswould need to
be down-sampled by a factor of ∼ 40×, resulting in the loss
of cellular and structural details, which are critical for predic-
tion. To overcome this bottleneck, state-of-the-art methods
for WSIs analysis adopt a two-stage approach [14]–[21].
First, patches are extracted by using block sampling on high-
resolution WSIs, and the patches are used to train the CNN
model, and the patches are encoded as prediction scores or
low-dimensional feature vectors. Second, learn an aggrega-
tion model to integrate the slice-level information obtained

for the entire slide prediction. Although the two-stage training
method has achieved good results in the field of pathological
images analysis, it still has defects; that is, the parameters in
the feature extraction stage cannot be updated, resulting in
the inability to obtain the specific features of pathological
tissues. Therefore, recently, some researchers proposed an
end-to-end framework to solve this problem [22], [23], but
the end-to-end training method has the problem of very slow
training.

In addition to the above problems, in the study of predicting
the efficacy of neoadjuvant chemoradiotherapy for rectal can-
cer, there are the following limitations and challenges: First
of all, since pathological images are all gigapixel-level data,
the data training process is slow. Secondly, in pathological
images analysis, the pathological images are usually first
divided into slices of the same size, and then each slice is
sent to the model for separate processing, and finally, the
predictions of all patches are aggregated to obtain patient-
level predictions, but this method often leads to the loss
of global information of pathological images. Additionally,
in the pathological image of the tumor, the normal tissue
is much larger than the cancer tissue. After the slice sam-
pling, the number of normal tissue slices is much larger
than the number of cancer tissue slices, which will cause
the problem of imbalance between positive and negative
instances. Finally, the traditional pathological image analysis
methods often require pathologists to manually divide the
decision boundary between tumor and normal tissue, which
is time-consuming and laborious, and greatly increases the
burden on oncologists. Therefore, how to use pathological
images without pixel-level annotation to predict the efficacy
of neoadjuvant chemoradiotherapy for rectal cancer is also
the limitation and challenges faced by this study.

To address these challenges, we propose a new based
on weakly-supervised learning classification framework to
classify rectal cancer histological images inspired by the
previous work [24], [25], which uses multi-scale features.
The experiments revealed that the proposed method could
be directly applied to WSIs classification without delineating
the decision boundary of cancerous tissues, greatly reducing
the labeling burden of pathologists and outperforming the
traditional multi-instance learning (MIL) methods. The main
contributions of this paper are as below:

1) We designed a gated attention weight normalization
mechanism based on themultilayer perceptron by repa-
rameterizing the weight vectors in a gated attention net-
work that decouples the length of those weight vectors
from their direction, thereby speeding up the training
process and the convergence speed of stochastic gradi-
ent descent.

2) We propose a bilinear attention multi-scale feature
fusion mechanism to alleviate the problem of global
information loss. This mechanism makes full use of
the given vision-language information by learning the
bilinear attention distributions of pathological images
and can better integrate the global features provided
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by the larger receptive field patches and the detailed
features provided by the smaller receptive field patches.

3) We designed a weighted loss function to allevi-
ate the problem of instance imbalance by optimiz-
ing the instance-level and bag-level loss functions
simultaneously.

4) Our method directly uses pathological images without
pixel-level annotations for training and has excellent
performance on both the private dataset and the pub-
licly available Camelyon16 and MSKCC datasets.

We applied the proposed method to predict the efficacy
of neoadjuvant chemoradiotherapy for rectal cancer and
proved the outstanding performance of this method. We also
verified the proposed algorithm on the Camelyon16 and
MSKCC public datasets. The experimental results show that
the proposed method performs better than the conventional
method on the weakly labeled dataset without any processing.
The rest of this paper is organized as follows. Section II
briefly reviews related work of the early diagnosis of rectal
cancer and histopathology images analysis. In Section III,
we describe our proposed method in detail. The experiments
and comparison results are given in Section IV, followed by
discussions and conclusions in Section V.

II. RELATED WORKS
Our research is mainly to directly use the pathological tissue
images that do not delineate the decision boundary of can-
cerous tissue to predict the pathological response of neoad-
juvant chemoradiotherapy for rectal cancer. In this section,
we briefly reviewed the latest advances in the prediction of
pathological response of neoadjuvant chemoradiotherapy for
rectal cancer and the related work of deep learning models
for pathological images analysis.

A. PREDICTION OF PATHOLOGICAL RESPONSE TO
NEOADJUVANT CHEMORADIOTHERAPY IN
RECTAL CANCER
Currently, the research on the pathological response of neoad-
juvant chemoradiotherapy of rectal cancer mainly uses the
radiomic characteristics of rectal cancer and the histological
characteristics of WSIs to predict. Radiomics is a combina-
tion of quantitative images analysis and machine learning
methods, and it is considered a form of AI. Histological
features are quantitative images features that can provide
tumor intensity, shape, size, volume, and texture features.
Different imaging modes (such as MRI, CT, PET, etc.) can
be used as the basis for feature extraction in imaging omics.
All the features extracted from the images are ‘‘radiomics’’,
and those feature sets with the predictive value selected after
feature selection are usually called ‘‘radiomic signature’’.
At present, the basic function of radiomics is to quantitatively
analyze tumor regions of interest through a large number of
radiomics characteristics, which can provide valuable diag-
nostic, prognostic or predictive information. Its purpose is
to explore and use these information resources to develop
diagnostic, predictive, or prognostic imaging omics models

to support personalized clinical decision-making and improve
individualized treatment options [26]–[28]. Histopathology
is the gold standard of clinical tumor diagnosis, directly
related to the development of treatment and the evaluation
of prognosis. Recently, many studies have shown that it is
feasible and effective to use the features of digital patholog-
ical images to predict the treatment response of neoadjuvant
chemoradiotherapy [29], [30]. Therefore, this study is of great
research significance.

B. DEEP LEARNING MODELS FOR WSIs ANALYSIS
At present, deep learning methods have been widely used
to predict the prognosis of various cancers. For example,
some researchers use deep convolutional neural networks
to assess the human tumor microenvironment and directly
predict the prognosis from histopathological images [31].
At the same time, there is also evidence that deep learning
can predict microsatellite instability directly from histology
in gastrointestinal cancer[32]. In addition, some scholars use
deep learning based tissue analysis to predict the progno-
sis of colorectal cancer [33]. In recent years, pathological
image analysis methods based on deep learning mainly rely
on multi-instance learning and weakly supervised learning.
Since only coarse-grained labels are available in patholog-
ical images analysis problems, after down-sampling WSIs
into patches, it is not easy to model the patches with real
labels. We can characterize this problem as an inexact super-
vision problem, so many studies use multi-instance learning
to solve this problem. In the two-class multi-instance learn-
ing, the bag is marked as a positive bag only if it contains
at least one positive instance; otherwise, it is a negative
bag. In pathological images analysis research, the researcher
regards the down-sampled patches as instances and WSIs as
bags. MIL has been successfully applied to the classifica-
tion of histopathological images [16], [25], [34]. Recently,
authors in [14] proposed a MIL-RNN aggregation operator
comprising patch-level training, top-k instance selection, and
RNN-based aggregation for patient-level prediction. In addi-
tion, some researchers use multi-scale convolutional layers
on pre-trained CNNs to capture scale-invariant patterns and
use top-k pools to aggregate feature maps for patient-level
prediction. Also, some researchers [24] proposed a weight
normalization method by reparameterizing the weight vec-
tors in a neural network that decouples the length of those
weight vectors from their direction, thereby accelerating the
convergence speed of stochastic gradient descent. Authors
in [25] proposed a clustering-constrained attention multiple
instance learning method (CLAM) that uses attention-based
learning to automatically identify sub-regions of high diag-
nostic value to classify the whole slide images accurately.
Furthermore, authors in [35] proposed bilinear attention net-
works (BAN) that find bilinear attention distributions to uti-
lize given vision-language information seamlessly. At the
same time, some researchers have also explored the appli-
cation of ensemble learning and transfer learning in medical
research and have achieved outstanding results [36]–[39].
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At present, although these algorithms have achieved good
results in different tasks, they rely too much on the way
pathologists manually divide the decision-making boundary
of pathological tissues [40], [41]. The motivation of our pro-
posed method is to directly learn pathological images without
any pre-processing by introducing attention modules for use
in complex WSIs analysis tasks.

III. METHODS
A. ATTENTION-BASED WEIGHT NORMALIZATION MIL
Compared with inputting a series of individually labeled
instances, under the MIL framework, the input is a series of
labeled ‘‘bags’’, and each ‘‘bag’’ includes many instances,
and these instances have permutation invariance. In multi-
ple instance learning, the images are described as a ‘‘bag’’:
X = {x1, . . . , xN}, each xi is a feature vector extracted
from the corresponding i-th region in the images (instance),
and N is the number of regions (instance) where the
images are segmented. Take two-classification as an example.
A bag contains multiple instances. If all instances are
marked negative, the bag is negative; otherwise, the bag
is positive. The current state-of-the-art attention-based MIL
method [42] uses a permutation invariant aggregation oper-
ator called ‘‘Attention-based MIL pooling’’. Encode each
instance xi as a low-dimensional embedding through CNN,
then use the attention mechanism to assign attention scores
to each low-dimensional embedding (instance), and use their
weighted average to generate bag-level prediction z. Let
H = {h1, . . . , hK} be a bag containing K low-dimensional
embeddings, and then the bag-level prediction is defined as
follows:

z =
K∑
k=1

akhk (1)

where ak is defined as follows:

ak =
exp

{
wT
(
tanh

(
VhTk

)
� sigm

(
UhTk

))}
K∑
j=1

exp
{
wT
(
tanh

(
VhTj

)
� sigm

(
UhTj

))} (2)

where w ∈ RL×1, V ∈ RL×M and U ∈ RL×M are trainable
parameters. Attention-based MIL pooling is trainable and
allows the network to identify discriminative instances. Since
our problem only contains slide-level labels, using the atten-
tion mechanism in the MIL pooling will help achieve better
results. Although the mil pool based on attention can help
us find examples closely related to diagnosis, this method
has a clear disadvantage. That is, it does not consider the
optimization of attention weight.

Gated attention weight normalization mechanism. We pro-
pose to normalize the attention weight by weight normal-
ization [24] and use the multi-layer perceptron to calculate
the attention score that accelerates the convergence of the
stochastic gradient descent optimization and alleviates the
problem of ‘‘vanishing gradient’’. Specifically, we decom-
pose U ∈ RL×M and V ∈ RL×M into a parameter vector

m and a parameter scalar g:

U =
gu
‖ mu ‖

mu, V =
gv
‖ mv ‖

mv (3)

In summary, we can get:

ak =
exp

{
wT (Mk � Nk)

}∑K
j=1 exp

{
wT
(
Mj � Nj

)} (4)

Among these:

Mi = tanh
(

gv
‖ mv ‖

mvhTi

)
,

Ni = sigm
(

gu
‖ mu ‖

muhTi

)
(5)

During training, m and g were updated, respectively. The
experiments indicated that the proposed Gated attention
weight normalization mechanism is superior to the traditional
attention-based MIL method. The normalization mechanism
of gated attention weight is shown in Fig. 1.

FIGURE 1. Overview of MLP-based attention gating weight normalization.
Among them, Ug, Uv, and Vg, Vv represent network parameters. N, L, D,
and K respectively represent the number of patches included in each
slide, the input feature dimension, the hidden layer dimension, and the
number of classes.

B. BILINEAR ATTENTION MULTI-SCALE FEATURE FUSION
To alleviate the problem of contextual information loss
caused by single-scale sampling, we propose a bilinear atten-
tion multi-scale feature fusion mechanism. Firstly, we extract
20× and 5×magnification patches from pathological images
by sliding window strategy. Then, the attention matrix of
WSIs under the different field of view sampling is obtained
through feature extraction and attention mechanism. Finally,
we get the final WSIs attention matrix by bilinear transfor-
mation. The bilinear transformation follows the following
formula:

M = Msmall ∗ A ∗ Mbig + b (6)

Among these,Msmall is the attention matrix corresponding
to the small field of view patches,Mbig is the attention matrix
corresponding to the big field of view patches,A is the weight,
b is the bias. Attention-based bilinear multi-scale feature
fusion mechanism can effectively improve the classification
performance of pathological images.
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FIGURE 2. Overview of our model. Patches extracted from each
magnification of the WSIs are used for feature extractor separately. The
trained feature extractors are used to compute embeddings of patches.
The bilinear attention multi-scale feature fusion mechanism is used to
connect WSIs embeddings of different scales to obtain the input of the
final classifier.

C. NETWORK FRAMEWORK
We follow the feature extraction and classification process
shown in Fig. 2. In this study, we use the Otsu binarization
algorithm to separate tissue regions, and use the residual
neural network (ResNet18) [43] as feature extractors, then
use the method proposed in this study to aggregate the patch-
level predictions into slide-level predictions. Since the tumor
area is much smaller than the normal tissue area, the number
of positive and negative instances is seriously unbalanced,
which leads to the wrong division of instances in the model.
Therefore, in the instance classification stage, we introduce
dual focal loss [44] to alleviate this problem. The loss func-
tion of the classification network is defined as follows:

Lslide = w1Lbag + w2L1instance + w3L2instance (7)

where Lbag means cross entropy loss, L1instance means cross
entropy loss and L2instance means dual focal loss. We use the
weighted loss function as the objective function of network
optimization to obtain better performance.

IV. EXPERIMENT AND RESULTS
A. DATA DESCRIPTION
We demonstrated our method and compared it with the stan-
dard method several times. Our locally advanced rectal can-
cer (LARC) dataset consists of 150 high-resolution WSIs
from Yunnan cancer hospital. At present, the most commonly
used clinical pathology evaluation criteria include TNM
staging, histological subtype classification, tumor regression
grade, pathological morphology, etc. In this study, the tumor
regression grade was used as the qualitative standard for
the treatment response of rectal cancer after neoadjuvant
chemoradiotherapy. The data were first stained by H&E
and then labeled by pathologists according to the regression
grading system (TRG) of the American Joint Commission
on Cancer (AJCC). There are four TRG groups: TRG 0,

no residual tumor cells; TRG 1, single or small tumor rem-
nant; TRG 2, part of the cancer tissue remains; TRG 3,
a large number of cancer cells remain. Then, according to
the AJCC TRG system, the treatment response is divided
into two groups: good response (GR, TRG 0-1) and non-good
response (non-GR, TRG 2-3). That is, in the model training
stage, we use the pathological image of rectal cancer as the
original data, extract the histopathological features such as
the intensity, shape, and texture features of the tumor, and use
the treatment response after neoadjuvant chemoradiotherapy
as a label to establish a deep learning model. Then, the model
can be used to predict the patient’s response to neoadjuvant
chemoradiotherapy accurately. We divided the training set,
validation dataset, and test dataset with the ratio of 60%-20%-
20%. The specific data are shown in Table 1.

TABLE 1. The LARC dataset distribution.

We also reported the performance of our model on the pub-
licly available Camelyon16 [11] andMSKCC [14] breast can-
cer metastasis detection datasets. The Camelyon16 dataset
contains 399 WSIs, including 270 for training and 129 for
testing. The MSKCC dataset contains 130 WSIs, including
100 for training and 30 for testing. We extracted two groups
of pathological patches with an area of more than 10%
from each WSIs according to 20× and 5× magnification for
standby. In the Camelyon16 and MSKCC datasets, although
the tumor area has complete pixel-level annotations on each
slide, to verify the effectiveness of our weakly supervised
model, we ignore pixel-level annotations during training and
only consider slide-level labels. The specific data are shown
in Table 2 and Table 3.

TABLE 2. The Camelyon16 dataset distribution.

TABLE 3. The MSKCC dataset distribution.

B. RESULTS
In this section, we briefly introduce the evaluation results
of our proposed algorithm. For a comprehensive evaluation,
we employed two standard metrics for evaluating classifica-
tion quality: area under the receiver operating characteristic
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FIGURE 3. Ablation experiment on LARC dataset, among them, GAWN
represents the gated attention weight normalization mechanism, BiFF
represents the bilinear attention multi-scale feature fusion mechanism,
and WL represents the weighted loss function.

TABLE 4. Results on LARC dataset.

FIGURE 4. The training and validation error for LARC using different
network parameterizations. Where np and wn represent normal
parameters and weight normalization parameters, respectively. The red
dot is the early stop.

curve (AUC) and accuracy. We carefully conducted abla-
tion experiments and observed positive results. The ablation
experiment aims to explore the role of the gated attention
weight normalization mechanism based on the multilayer
perceptron, the multi-scale feature fusion method based on
bilinear attention, and the weighted loss function in improv-
ing the performance of pathological images classification.
We first conducted experiments on the prediction dataset of

FIGURE 5. Ablation experiment on Camelyon16 dataset, among them,
GAWN represents the gated attention weight normalization mechanism,
BiFF represents the bilinear attention multi-scale feature fusion
mechanism, and WL represents the weighted loss function.

FIGURE 6. Ablation experiment on MSKCC dataset, among them, GAWN
represents the gated attention weight normalization mechanism, BiFF
represents the bilinear attention multi-scale feature fusion mechanism,
and WL represents the weighted loss function.

TABLE 5. Results on Camelyon16 dataset.

neoadjuvant chemoradiotherapy for rectal cancer collected
from Yunnan Cancer Hospital. Beyond that, to verify the
generalization ability of the model, we compare the proposed
algorithm with CLAM [25], MIL-CE [22], MIL-RNN [14],
DSMIL [45] four state-of-the-art algorithms are evaluated on
Camelyon16 and MSKCC datasets. We reimplemented all
the previous methods based on the literature and open source
code. The backbone of the CNN used in our proposed model
is ResNet18 [43].
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TABLE 6. Results on MSKCC dataset.

FIGURE 7. The training and validation error for Camelyon16 using
different network parameterizations. Where np and wn represent normal
parameters and weight normalization parameters, respectively. The red
dot is the early stop.

FIGURE 8. The training and validation error for MSKCC using different
network parameterizations. Where np and wn represent normal
parameters and weight normalization parameters, respectively. The red
dot is the early stop.

On the LARC dataset, we only use 90 pathological images
as training data to obtain a 0.7589 AUC score on the test data
set, achieving performance comparable to that of patholo-
gists. Fig. 3 and Table 4 shows the performance of our method
on the LARCdataset. It can be seen fromFig. 4 that ourmodel
is easier to learn the best parameters than the traditional
model, and the number of iterations is significantly reduced,
which proves the effectiveness of our gated attention weight
normalization mechanism.

On the Camelyon16 and MSKCC datasets, by training
only the slide-level labels, the AUC scores of our method
on the test dataset reached 0.9337 and 0.9091, respectively.
Among the other three models, DSMIL and MIL-RNN have
the best performance, with AUC scores of 0.9225 and 0.8846,
respectively.

In contrast, our performance is quite competitive.
Fig. 5 and Fig. 6 show the results of the ablation study
of our algorithm on the two datasets of Camelyon16 and
MSKCC.We observe that our method can accurately identify
patches with tumor areas and give them higher attention
weights (see Table 5 and Table 6). Compared with traditional
attention-based multi-instance learning methods, our method
accelerates the convergence of stochastic gradient descent
optimization (see Fig. 7 and Fig. 8). Experiments show that
our method is more advanced than other algorithms and has
excellent performance on both private and publicly available
datasets.

V. DISCUSSIONS AND CONCLUSION
In this study, to simulate the actual diagnosis process of
pathologists and provide personalized treatment plans for
patients with rectal cancer, we propose a new classifica-
tion framework for weakly-supervised pathological images.
The framework only uses patient-level labels to predict the
response to neoadjuvant chemoradiotherapy for rectal cancer,
without the need for pathologists tomanually outline the deci-
sion boundary between cancerous tissues and normal tissues,
which greatly reduces the burden of labeling for pathologists.

In addition, it can be seen from the result figures of the
ablation experiment that each method we propose can effec-
tively improve the performance of the model. Among them,
the gated attention weight normalization mechanism speeds
up the training process and effectively alleviates the prob-
lem of gradient diffusion. The bilinear attention multi-scale
feature fusion mechanism can better integrate pathological
image features, which can effectively alleviate the problem
of global information loss caused by block sampling of
WSIs. Finally, because the cancerous area in the pathological
images is much larger than the normal area, it is easy to
cause the imbalance of positive and negative instances after
block sampling, and the weighted loss function just alleviates
this problem. Experimental results show that our algorithm
is superior to other weakly supervised learning algorithms
on the private dataset and publicly available Camelyon16
and MSKCC datasets. Therefore, the method we propose is
an effective method to predict the efficacy of neoadjuvant
chemoradiotherapy for rectal cancer using histopathological
images, and also has an excellent performance in breast can-
cer metastasis detection. In the future, we will further explore
the feasibility of our method in other cancer prognosis studies
and apply this technology to the clinic to assist clinicians in
rapid diagnosis.
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