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Abstract

Abstract models of proteins have been widely used as a practical means to computationally investigate general properties
of the system. In lattice models any sterically feasible conformation is represented as a self-avoiding walk on a lattice, and
residue types are limited in number. So far, only two- or three-dimensional lattices have been used. The inspection of the
neighborhood of alpha carbons in the core of real proteins reveals that also lattices with higher coordination numbers,
possibly in higher dimensional spaces, can be adopted. In this paper, a new general parametric lattice model for simplified
protein conformations is proposed and investigated. It is shown how the supporting software can be consistently designed
to let algorithms that operate on protein structures be implemented in a lattice-agnostic way. The necessary theoretical
foundations are developed and organically presented, pinpointing the role of the concept of main directions in lattice-
agnostic model handling. Subsequently, the model features across dimensions and lattice types are explored in tests
performed on benchmark protein sequences, using a Python implementation. Simulations give insights on the use of
square and triangular lattices in a range of dimensions. The trend of potential minimum for sequences of different lengths,
varying the lattice dimension, is uncovered. Moreover, an extensive quantitative characterization of the usage of the so-
called ‘‘move types’’ is reported for the first time. The proposed general framework for the development of lattice models is
simple yet complete, and an object-oriented architecture can be proficiently employed for the supporting software, by
designing ad-hoc classes. The proposed framework represents a new general viewpoint that potentially subsumes a
number of solutions previously studied. The adoption of the described model pushes to look at protein structure issues
from a more general and essential perspective, making computational investigations over simplified models more
straightforward as well.
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Introduction

In the wide assortment of reduced models of proteins [1],

minimalist representations have been proposed and widely used in

the last decades as a practical means to computationally investigate

general properties of these polymers [2,3]. In pursuing simplifi-

cation, the number of possible conformations can be reduced by

imposing residues to be located only on vertices of a given lattice.

According to this vision, in the so-called lattice models, any valid (i.e.,

sterically feasible) conformation is represented as a self-avoiding

walk on the lattice [4], with adjacent residues placed on adjacent

vertices. Moreover, the number of residue types can be drastically

restricted, e.g. just setting apart ‘‘hydrophobic’’ and ‘‘polar’’ ones,

as it happens in the HP model, which can be regarded as the

paradigmatic example [5] of protein lattice models. The HP model

was originally proposed on a square two-dimensional lattice and it

has also been exploited to understand the behavior of specific real

proteins, such as chaperonins [6,7].

Generally speaking, lattice models have found application in

multiple aspects of theoretical investigations on proteins: explora-

tion of the conformation space [8], analysis of folding pathways

[9], dynamics and thermodynamics of the folding process [10],

evolutionary issues and origin of long-range interactions [11],

strategies to enforce protein stability [12]. Although the large

majority of lattice models do not encompass a representation of

side chains, they are able to accommodate also this possibility and

in some studies a single residue is modeled with a lattice point for

the alpha carbon along with an adjacent point for the whole side

chain [13,14]. Recently, lattice models have been used to

characterize the placement of termini in native protein structures

[15], and they have found application also in the investigation of

RNA folding [16]. For many applications, the accuracy gap

between all-atom models and lattice models is indeed significant,

and attempts to bridge it have been proposed by projecting the

former onto the latter via optimization methods [17,18].

Despite their simplicity, lattice models actually show protein-like

features [13], indicating that they incorporate the fundamental

physical principles of proteins.

General Lattice Models: How and Why
In the context of the present discussion, the primary structure of

a protein can be represented with a string s whose characters are

taken out of a standard alphabet S that encodes the possible

monomer types. E.g., in the classical HP model we have
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S~f’H ’,’P’g. The symbol si (or s½i�) indicates the type (character)

of the i-th residue.

For the sake of clearness and precision, a lattice L is defined as a

subset of RN , containing vertices (points) that are orderly placed. In

the most regular case, it can be expressed as

L~
XN{1

i~0

aiui Dai[Z

( )
ð1Þ

The set of vectors fu0, . . . uN{1g is a basis for RN that, respect

to the standard basis, can be represented by the basis matrix

BL~ u0 . . . uN{1ð Þ. Any lattice vertex is identified through its

integer coordinates ai,i~0 . . . N{1. Moreover, it is sometimes

useful to explicitly consider also edges in the lattices, i.e., the

unordered couples of vertices that represents ‘‘connections’’. In a

large number of practical applications, a reasonable way to specify

edges makes use of a given threshold for the distance of vertices

that possibly define an edge:

EL~ fv,v’g[L|LD v{v’j j2ƒ
ffiffiffi
k
pn o

ð2Þ

using the ordinary euclidean norm :j j2. The value of
ffiffiffi
k
p

is

generally set to the minimum yielding EL=1. Regardless of the

way edges are specified, two distinct vertices in an edge are said to

be adjacent.

Protein lattice models have been proposed so far on different

lattice types, in two and three dimensions. An extensive formal

treatment of lattices is beyond the scope of this discussion: further

details can be found e.g. in the book by Conway and Sloane [19].

In this paper, a generalization of conformation studies by

employing parametrical regular lattices is proposed, along with

indications on how software support can be provided to this aim.

In this perspective, the lattice type and dimension can be simply

regarded as two parameters in the characterization of the search

space. This approach is motivated by the observation that, in a

lattice model, the neighborhood of each residue placed on a given

vertex corresponds to the set of adjacent vertices, which are

necessarily limited in number. More formally, in a lattice the

coordination number (here indicated with z) is the number of adjacent

vertices for any single vertex (i.e., the cardinality of the so-called

vertex neighborhood), and it depends both on the lattice type and

dimension. Thus, we can accommodate as many other residues

around any given residue as the coordination number of the used

lattice. A viable way to increase this number is just scaling up the

lattice dimension. This has been currently done passing from 2D

to 3D models, but the process can be further extended. A caveat is

mandatory: High dimensional models, although possibly actractive

for several aspects, may lead to conformations with an unnatural

surface/volume ratio, hampering their employment in the study of

solvent interactions, or of multichain systems.

In the core of real proteins, residues are densely packed and

alpha carbons are close to one another. We can quantitatively

characterize such an accommodation, and subsequently we can to

check whether one specific lattice type, with its own coordination

number, is able to correctly describe the neighborhood of an

alpha-carbon (Ca). To this extent, the radial distribution of Cas

can be investigated. By #n(r) we indicate the number of other Cas

included in a sphere of radius r centered on a given Ca. Such an

investigation is significant for residues in the central part of a

globular protein, for r values corresponding to a sphere completely

embedded in the molecule. The symbol S#n(r)T8 denotes the

average #n(r) calculated for Cas around the molecule centroid,

within an upper bound r� (e.g. r� can be taken as 1=2 of the

molecule gyration radius).

Each protein structure has its own actual shape of S#n(r)T8,

but similar patterns for low values of r can be found even across

different structural classes of globular proteins. In the first chart of

Figure 1, four sample molecules from different classes (all-a, all-b,

azb, a=b), identified in PDB as 1MBN, 1GOF, 1BQB, 2FSU are

considered. The shapes of their S#n(r)T8 are very similar up to

7 Å, and then slightly diverge. Choosing other proteins, the

specific shapes may be different, but the overall trends are

analogous. A simple analysis of the reported curves can suggest

how many ‘‘neighbors’’ a Ca may have, depending on the defined

neighborhood is defined. Usually, in studies on the interactions

among residues, it is assumed that the maximum distance for

interacting residues is 8 Å (in any case, less than 10 Å). In fact, it

has been shown that this limit is sufficient to characterize the

hydrophobic behavior of amino acid residues and to accommodate

both the local and non-local interactions [20]. In other specific

studies on contact potentials, cutoff values of 4, 6, 6:4, 6:5, or 7 Å

have been employed [21]. According with the cited results, here

we assume that the neighborhood of a Ca cannot reasonably

extend beyond 9 Å.

In the left chart of Figure 1, the yellow vertical belt indicates the

range of possible values for the upper bound to be used in the

definition of a Ca neighborhood. Thus, any lattice model that is

expected to correctly represent such a neighborhood should have a

coordination number not lower than 3–4 and not higher than 19–

20, as shown by the shaded horizontal belt that visualize such a

rough interval, hereafter called admissible range. Now it is possible to

point out the regular lattice types whose coordination number is

included in the admissible range.

The most popular lattices employed for simplified protein

models since the first works in this area [2,5] are the square lattice in

two dimensions, and the three-dimensional cubic lattice, with

coordination numbers 4 and 6 respectively. An unpleasant feature

of this kind of lattices, known as parity constraint, is that no two

residues can be placed on adjacent vertices if they are separated

along the backbone by an odd number of residues. This limitation

has pushed towards the exploration of different lattice types

[22,23]. Other significant choices are the planar triangular lattice,

and the FCC (Face Centered Cubic) lattice (which can be

considered as a thee-dimensional generalization of the former),

with coordination numbers 6 and 12 respectively. Finally, also the

two-dimensional honeycomb lattice, called also hexagonal, with

coordination number 3 (thus at the very lower boundary of the

admissible range), has been explored [24]; this one is not a Bravais

lattice, and the directions to reach neighbor vertices depend on the

specific vertex we are placed on.

For all the lattice types usually employed so far for simplified

protein models, the coordination number is located in the lower

part of the admissible range. From this standpoint, the FCC lattice

represents the most appropriate choice to model the Ca

neighborhood. In order to keep the basic structure of a square

lattice, to overcome the parity constraint, and to increase the

number of neighbors, studies on extended cubic lattices have been

proposed [14] (obtained choosing the standard basis in Eq. (1), and

k~N in Eq. (2)). Other exploration possibilities may easily come

from the adoption of lattices in generic spatial dimensions, even

beyond the classical planar and three-dimensional cases. In this

work, a uniform handling of residue placement upon lattice

vertices is pursued, and thus the following requirements are stated:

i) all edges must have the same length, ii) all vertices must have the

same coordination number, and iii) all neighbor points must be

General Protein Lattice Models
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reached from any vertex by always moving in directions taken

from the same given set. This last property does not hold for the

planar honeycomb lattice, which cannot be generalized according

to a straightforward, linear course. For this reason and taking into

consideration the previous properties, the proposed generalization

stems from square and triangular lattices. This does not represent

a loss of generality, because the honeycomb model can be plainly

obtained within the planar triangular lattice by imposing an angle

of 120 degrees between any couple of subsequent bonds, and this

constraint can also be added in the case of triangular lattices in

higher dimensions.

The generalization of the square lattice to N dimensions is

trivial, and the dependence of the coordination number from the

dimension can be expressed as z%(N)~2N. This means that, in

the square case, even going up to N~10, the lattice remains in the

admissible range. The generalization of the triangular lattice to N
dimensions is less self-evident. In our treatment, the corresponding

coordination number can be expressed as zD(N)~N2zN , and

the maximum N to fall in the admissible range is 4. These

discussed limits for the coordination numbers can be directly

visualized in the right chart of Figure 1.

In this work it has been developed a computational framework

to deal with the lattice type and dimension in a seamless way, so

that as a protein model is instantiated in the first place, the lattice

specifications must be provided at the same time. One challenging

issue is to organize the framework so that any algorithm that

operates on the model may abstract as much as possible from the

actual lattice details.

In the subsequent ‘‘Methods’’ section the theoretical tools to

support generic lattice models in any dimension are presented, and

it is discussed how algorithms can be accordingly developed,

possibly within a neat object-oriented scheme.

In the ‘‘Results and discussion’’ section, by employing two

classical optimization methods on benchmark sequences, the main

features of the proposed models across lattice types and

dimensions are uncovered, as well as the characterization of

possible simple modifications to the conformations (typically used

in Monte Carlo approaches).

Methods

The generalization of lattice models requires some basic notions

that will be illustrated in the following, starting from the 2D case.

In the first place, it is crucial understanding how to structurally

characterize the lattice model, given its type and dimensions as

model parameters. Later, lattice-agnostic functions to deal with the

model must be developed, as well as methods alike to manipulate

conformations. The computation of the chosen potential function

can thus rely on such generic functions, and possibly more efficient

versions for specific values of the model parameters can be

developed.

Definitions
According to the desired regularity of the employed lattices, the

discussion is focused on square and triangular lattices. All the

edges are imposed to have the same length that, with no loss of

generality, is assumed to be 1. In general, different bases can be

chosen for the same lattice. The basis vectors are often referred to

as primitive vectors. In Figure 2 the two-dimensional square and

triangular lattices are represented, along with the coordinates of

vertices in the chosen basis (which, for the square lattice, is the

ordinary standard one). From a computational standpoint, it is not

always convenient to resort to the standard cartesian coordinates

to locate vertices. On the contrary, the employment of the

definition in Eq. 1 let us use just integer values to this purpose.

A possible proper basis for the two-dimensional triangle lattice is

shown in the second chart of Figure 2, whose corresponding basis

matrix (referred to the standard basis) is

Figure 1. Characterization of the Ca neighborhood in terms of number of other Cas within distance r. In the left chart, the curves
correspond to four sample proteins of different classes, and the admissible range is pointed out; in the right chart, lattices falling in such an interval
can be spotted.
doi:10.1371/journal.pone.0059504.g001
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BD2~ u0 u1ð Þ~
1

1

2

0

ffiffiffi
3
p

2

0BB@
1CCA ð3Þ

In the general case, the set of main directions Dmain contains the

(unit) vectors that, summed to the position vector of a given vertex,

produce the position vectors of all the neighbor vertices. As

previously recalled, Dmaink k corresponds to the coordination number

of the specific lattice. Within computations, the availability of

Dmain values let us check adjacency of two vertices in a

straightforward way.

For the 2D square lattice (see Figure 2), Dmain%2~f+u0,+u1g.
For the 2D triangular lattice, some additional considerations are

needed. It is worth underlining that the position vector

w2 ¼D {u0zu1 corresponds to a neighbor of the origin, and that

in this case DmainD2~f+u0,+u1,+w2g. In both cases, the set of

main directions can be generated by the repeated application of a

rotation to u0. Working in the triangular lattice with the chosen

basis, such a counterclockwise p=3 rotation is expressed by

RD~B{1
D2

1

2
{

ffiffiffi
3
p

2ffiffiffi
3
p

2

1

2

0BB@
1CCABD2~

0 {1

1 1

� �

that notably contains only integer values. Making use of RD, we

have u0~R0
Du0, u1~R1

Du0, w2~R2
Du0, {u0~R3

Du0, and so on.

Thus, an alternative formulation for the set of main directions of

the 2D triangular lattice is the following:

DmainD2~
[5
i~0

Ri
Du0 ð4Þ

Scaling up to 3D and beyond. The extension of the square

lattice up to three or more dimensions is straightforward, as the

chosen basis can trivially be the standard one. The main directions

correspond to + the basis vectors, so in dimension N

Dmain%N~
[N{1

i~0

+ui

( )
ð5Þ

and the coordination number will vary as

z%(N)~ Dmain%Nk k~2N

Again, the triangular case deserves more attention. In 3D, the

2D basis vectors u0 and u1 can be kept, adding 0 as their last

coordinate; the third basis vector u2 can be chosen imposing its

unit length, and the value p=3 to angles du0u1u0u1~du1u2u1u2~du2u0u2u0, i.e.,

u0
:u1~u1

:u2~u2
:u0~1=2. In compliance with this choice,

BD3~
BD2

(0 0)
u2

� �

~

1
1

2

1

2

0

ffiffiffi
3
p

2

ffiffiffi
3
p

6

0 0

ffiffiffi
6
p

3

0BBBBBBB@

1CCCCCCCA
ð6Þ

The lattice generated by such a basis BD3 is the well-known

FCC (Face Centered Cubic). Any further extension up to higher

dimensions can be dealt with in the same way, iteratively building

the basis BDjz1 starting from the known BDj and imposing the

same constraints on length and angles:

BDN~
BDN{1

0
uN{1

� �
with uN{1k k2~1 ð7Þ

and 2uN{1
:uk~1 Vk[½0,N{2�

In the chosen BD3 for FCC, any possible vertex adjacent to the

origin can be either +ui,i[½0 . . . 2� or ui{uj ,i,j[½0, . . . 2�,i=j.

Figure 2. Square and triangular lattices in two dimensions,
along with possible bases. Edges (relative to k~1) are indicated by
dotted segments; the origin is marked in red.
doi:10.1371/journal.pone.0059504.g002
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So the main directions are calculated as

DmainD3~
[2

i~0
+ui,

[
i=j

ui{uj

n o
, and in the general case

DmainDN~
[N{1

i~0

+ui ,
[
i=j

ui{uj

( )
ð8Þ

Accordingly, the coordination number depends on N as

zD(N)~ DmainDNk k~2NzN(N{1)~N2zN, as already shown

in the right section of Figure 1.

Equations (5), and (8) can be plainly used in dedicated software

libraries to compute the main directions for any specified lattice.

Such a set of vectors (as well as the basis matrix) can be

subsequently referred and generically exploited in algorithms of

any type, that operate on the lattice model, regardless of the actual

dimension. For the sake of clarity, the set Dmain can be sorted e.g.

according to a lexicographic order, and kept in a list LD, so that

LD½i� refers to the i-th main direction.

Handling Conformations
By convention, the initial residue of a conformation self-

avoiding walk can always be placed on the lattice origin. The most

natural way to represent a conformation is by means of an ordered

list of l vertex coordinates in the chosen basis. Such a list is

referred to as absolute encoding VABS, and vi (or VABS½i�) indicates its

ith element, i[½0,l{1�. An alternative way is the differential encoding

VDIF½i�, i.e., a sequence of l{1 steps (i.e., vectors in Dmain) such

that VDIF½i�~VABS½iz1�{VABS½i�.
Often, it can be useful checking whether a list of lattice vertices

corresponds to a self-avoiding walk. It is required that both i) any

vertex (but the first) is just one step away from the previous one,

and ii) no clash is present, i.e., no position vector occurs more than

once in the list. The self-avoidance check can be trivially

implemented in a completely general way, given the set of main

directions, because the first condition imposes that every element

in VDIF must be a vector out of Dmain, while the second condition

asks just for equality checks between integer vectors of the same

dimension (in VABS). The computational complexity of the self-

avoidance check procedure, intrinsically quadratic in the list

length, can be made linear by using a hashtable to keep

information on the occupancy state of any vertex in the lattice

portion where the conformation is located [16].

In the literature, by pursuing the specification of a conformation

regardless of its orientation respect to the origin, the relative encoding

VREL has been introduced for 2D and 3D lattices. It corresponds

to an ordered list of l{2 relative move types, and each relative

move type specifies how to actually perform the next step, given

the previous ones. In 2D, it is additionally required to fix the first

move, and usually by convention also the second residue is

constrained to be placed on a given vertex. The move type

corresponds to the specific planar rotation R to transform a given

differential move into the next. Schiemann et al. [25] explicitly

discuss the case of relative moves for the 3D cubic lattice. In higher

dimensions and with triangular lattices, this kind of conformation

representation is not so straightforward and intuitive as in the basic

cases, and for this reason it is not addressed here.

The most elementary operations to handle a configuration

correspond to rigid-body transformations. Working with lattices,

both translations and rotations must carry any source vertex

exactly onto a destination vertex. To this aim, in any dimensions,

permitted translations are expressed by a vector in Zn, and the

absolute encoding of the translated conformation can be plainly

obtained by adding such vector to each element of VABS. On the

contrary, VDIF is translation-insensitive.

Rotations deserve more attention, because even if they are

intuitive and familiar transformations on the plane or in 3D, they

must be adequately generalized in higher spaces. A popular way to

extend the ordinary concept of rigid rotation to the n-dimensional

case makes use of the so-called linear hypothesis, i.e., the assumption

that in Rn, the rigid rotation is performed about an (n{2)-
dimensional subspace. The problem is treated in a concise yet

clear way by Mortari [26]. According to this assumption, it is

possible to calculate rotation matrices Rfijg that transform one

‘‘source’’ main direction LD½i� into another ‘‘destination’’ LD½j�,
about a subspace normal to both. In general, Rfijg not necessarily

maps L onto L, although for square lattices this happens in any

dimension.

Examples of 2D conformations on square and triangular lattices

are depicted in Figure 3. Only H and P residue types are

considered in the models, and the classic HP potential has been

used for the reported values. Moreover, examples of conforma-

tions of the same sequence on 3D lattices are reported in Figure 4.

Distance on the lattice and computation of potential. In

protein lattice models the notion of potential is usually related to

some kind of contact, i.e., placement on adjacent vertices of residues

that are not adjacent on the primary structure [27]. The adjacency

of two lattice vertices, whose coordinates are expressed according

to the basis matrix B, can be checked simply by inspecting if

a{b[Dmain. In any case, the computation of potential requires the

employment of a distance function d over the lattice. Considering

the kind of lattices addressed in this work, for any d and for any

couple of adjacent vertices a, it holds d(a,b)~1. The euclidean

distance can be plainly computed as d2(a,b)~ B(a{b)k k2.

In practical cases, often it may be more convenient adopting a

notion of distance that is simpler to deal with and quicker to

compute than d2. For example, the ‘‘hop distance’’ dHOP(a,b) can

be defined as the minimum number of hops across adjacent lattice

vertices to go from a to b. For square lattices in any dimension

dHOP%(:) corresponds to the classical ‘‘Manhattan distance’’ d1,

and thus it can be computed very quickly.

On triangular lattices, the computation of dHOPD(:) is quick in

the two-dimensional case. Indicating with d the value a{b, and

with d½0�,d½1� its coordinates in the basis indicated in Figure 1, the

hop distance is the sum of the two smaller values among

fDd½0�D,Dd½1�D,Dd½0�zd½1�Dg. Conversely, in higher dimensions it

may need a very significant amount of operations. In general, the

basic idea to compute it can be sketched as follows: The value of

the Manhattan distance d1(a,b) depends on the basis chosen to

express the coordinates for a and b; thus it must be found the

specific basis ~BB, picking N linearly independent unit vectors out of

DmainDN , such that, indicating with ~aa and ~bb the coordinates of a

and b according to ~BB, the corresponding d1(~aa,~bb) would be

minimal.

In practice, to limit the computational effort, it might be sensible

to have recourse to an approximate evaluation of dHOPD that is

indeed exact for the lower values (typically for dHOPƒ3) i.e., those

that are involved in the definition of simplified potentials.

A fundamental component of a lattice model is the correspond-

ing potential function, which associates a conformation with a

measure of its energy. It typically contains contributions from each

possible couple of residues [28], except those corresponding to

adjacent residues along the backbone (in fact, their relative

position is not allowed to change, and such contribution would

always be constant). It is usually expressed in a form like the

following:

General Protein Lattice Models
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U(VABS,s)~
X

ivj{1

Csi ,sj
D(d(vi,vj)) ð9Þ

The factor D(d(vi,vj)) takes into account the inter-residue

distance. As only neighboring residues give a significant contribu-

tion, D=0 only for low values of d . In the classic HP potential,

D(:)~1 only for residues in contact (i.e., with d~1). The

coefficient Csi ,sj
depends on the types of residues i and j. In the

HP model potential, CH,H~{1, and it is 0 in all the other cases,

i.e., it is the number of HH contacts times (21). If all the different

amino acids are explicitly considered in the alphabet S, a popular

choice for such coefficients is the one defined for the MJ potential

[27,29].

Lattice-agnostic Implementation of Lattice Models and
Algorithms

Following an object-oriented approach in developing software

libraries to handle protein lattice models, the structural and

behavioral details of the model can be caught by dedicated classes,

as depicted in Figure 5. A class can be dedicated to lattice models

in general (indicated as Latticemodel), and a derived class

Latticeprot to hold features typical of protein lattice models.

The structure specification is given by both the lattice type

(either ‘‘square’’ or ‘‘triangle’’) and the dimension N. Moreover, a

string with characters out of a known alphabet can be used to

describe the primary structure. This information must be provided

to the class constructor, so that all the supporting structural data

(like the basis matrix B, kept in the attribute basis, and Dmain, in

the list main_dirs), could be computed at initialization time.

Moreover, the conformation VABS can be represented as a list

pos_abs of position vectors of dimension N each, to be allocated

by the constructor. The initial configuration is set up by the class

constructor by choosing, for the position vectors in pos_abs, values

that correspond to a self-avoiding walk, i.e. which satisfy the

conditions previously mentioned. Multiple different build-up

procedures can be provided to this aim, and the one to be used

can be specified through a constructor parameter. In our

implementation, the default choice is a random walk.

The model behavior can be encoded in methods. Among them

it is worth recalling the hop distance (the dHOP(:) discussed before,

possibly specified as class method) and the potential (to be

computed upon the configuration, thus specified as instance

method). It is particularly important underlining that in principle

all the methods must be implemented in a lattice-agnostic way, i.e.,

without exploiting properties that hold only for specific lattice

types or dimensions. This can be done by leveraging the structural

attributes set up at the class instance initialization. Algorithm 1

(Table 1) shows a clear example: a Python simplistic method to

obtain the HP potential. Calculations are carried out on position

vectors, and so the dimension does not require to be explicitly

considered. Here, the Numpy library [30] is used and imported as

np; position vectors are implemented via Numpy arrays; the

function np.dot() performs the standard vector inner product. The

code can also abstract the lattice type: At line 11 (commented out),

the check on the distance of two H vertices is performed just

applying the definition of euclidean distance on the coordinates

values, that unfortunately holds only for square lattices. Instead,

such a check could be carried out as specified in line 12, by

exploiting the current main directions. Of course, several kinds of

improvements can be applied to improve the effectiveness of the

function implementation.

For performance reasons, in special cases (i.e., for particular

types and/or dimensions) it could be sensible to substitute the

generic definition of a method with one specific efficient

implementation that applies only in such cases. To this aim,

depending on the programming language, different coding

solutions can be found. In Python and other scripting languages,

it could be up to the class constructor at initialization time to bind

the generic method name to an additional method that holds the

specific implementation.

A general plot() method in the Latticeprot class may represent a

convenient way to visualize a conformation. Its implementation

must inspect the structural model parameters in the class instance,

and accordingly draw the graphical representation (typical

examples of outcomes of this method are depicted in Figures 3

and 4). In case of lattices in dimension greater than 3, a

representation of the projection of the conformation onto the 3D

Figure 3. Two conformations of the same sequence (HI4) in the
2D square and triangular lattices. The HP potential is 216 for the
former, and 231 for the latter.
doi:10.1371/journal.pone.0059504.g003
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space may be used, as shown in Figure 6: only three axes amongst

all are considered, possibly after a rotation of the whole structure.

The application of different folding algorithms to a given

protein model can be directly supported in the Latticeprot class by

recurring to the behavioral strategy pattern (see [31], page 315). The

actual algorithm can be implemented in a separate dedicated

‘‘Optimizer’’ class whose instances hold all the required optimi-

zation parameters, to be provided at the object initialization. Each

specific optimizer can be associated to a single protein model

instance at a time, and the optimizer must be coded abstracting

from the lattice characteristics: Simply, it just has to get references

to the basic data structures and methods of the object it is linked

to. The folding process can then be triggered by invoking a

standard method on the protein model, namely foldit(), and this

will (possibly) in turn call the corresponding procedure within the

currently bound optimizer (if any). This approach allows us

seamlessly apply different optimizators to the same protein model

at different times, as well as use exactly the same optimization

method on different models.

General moves on general lattices. Monte Carlo sampling

methods have been extensively employed upon heteropolymer

lattice models. Such approaches modify a conformation by

applying moves out of a well-defined move set. Each particular move

transforms a conformation into another admissible one [2,32–34],

which cannot be superposed to the former (symmetries are not

considered as moves). It has been widely experimented that the

effectiveness of a specific Monte Carlo approach strictly depends

on the used move set [35]. One of the earliest move sets was

Figure 4. Two conformations of the same sequence (HI4) in the 3D square and triangular lattices. The potential is 227 for the former,
and 260 for the latter.
doi:10.1371/journal.pone.0059504.g004

Figure 5. The features of generic lattice models are captured by related classes. Here an UML diagram shows the classes whose methods
must be able to deal with any lattice type and dimension.
doi:10.1371/journal.pone.0059504.g005
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proposed by Verdier and Stockmayer [36], and it contains only

two moves that operate upon a single residue, namely the single

residue end move and the corner move. Such approach was further

developed by Hilhorst and Deutch [37], who also introduced the

two-residue crankshaft move. These three move types have been used

together e.g. by Gurler et al. [38]. Following Thachuk et al. [39],

here they are collectively called VSHD set. Dealing with

multidimensional models, VSHD moves have to be accordingly

generalized.

The single residue end move can be described in a general

way as the placement of an end residue onto a free vertex that is

one step away from its adjacent residue, and its implementation is

trivial.

The corner move (also known as kink-jump move) can be re-

formulated as the placement of a target residue onto a free vertex

that is one step away from both its two adjacent residues. This

definition can be used (and coherently implemented) for any type

of lattice in any dimension.

Similarly, although it was originally conceived for square/cubic

lattices, the definition of the two-residue crankshaft move can

be generalized as follows: Given four successive residues rp, t0, t1,

and rs on vertices vp, v0, v1, and vs, place t0 and t1 in two free

vertices v 0
’ ( =v0) and v 1’ ( =v1) such that all the pairs (vp, ),

( , ), and ( ,vs) contain adjacent vertices.

The generalized VSHD moves just described can be viewed as

local ones, as their application affects only residues in the very

neighborhood of the target residue(s). On the contrary, the use of

global moves (sometimes called also long-range moves [40]) generates

more distant conformations. For the sake of completeness, it must

be recalled that in specific studies some authors [41] have

proposed moves based on breaking and reforming the chain. As

they are applied for special purposes, the discussion will be focused

on the generalization of global moves that keep the chain

connected.

The slithering snake move (a.k.a. reptation, see [32], sect.

4.7.2) looks first for a free position adjacent to a target end, and

such terminus is moved onto it. The other residues are all shifted

by one position along the backbone path. This move, although it

keeps most of the overall position arrangement, may completely

disrupt the adjacency pattern of residues of different types, thus

deeply impacting on the global potential. This definition can be

taken as valid for any lattice type and dimension.

The pivot move (a.k.a. wiggle, see [32], sect. 4.7.2 or [2])

represents an effective way to drive a potentially radical change in

the conformation, and it has been used in plenty of simulation

works on bi- and three-dimensional lattices [2,34,40]. In practice,

one residue rpivot on vertex vpivot is chosen as ‘‘pivot’’, and one

Table 1. Algorithm 1. The HP potential can be easily obtained
in a general way.

1: def potential(self):

2: l = len(self.pos_abs)

3: partial_pot = 0

4: for i in xrange(l 2 2):

5: if not self.res_string[i] = = ‘H’:

6: continue

7: j = i + 2

8: while j , l:

9: if self.res_string[j] = = ‘H’:

10: vectdist~self :pos abs½j�{self:pos abs½i�
11: # if np.dot(vectdist,vectdist) = = 1: # valid only for square lattices

12: if any( (vectdist = = v).all() for v in self.main_dirs): #general
formulation

13: partial_pot + = CHH # CHH is 21

14: j + = i

15: return partial_pot

It makes use of both the configuration positions and the main directions for the
specific lattice.
doi:10.1371/journal.pone.0059504.t001

Figure 6. 3D projections of a 5D configuration for sequence HI
9/2, in a triangular lattice. The corresponding potential is 231. Both
images come from an orthogonal projection and in the second, to
uncover the superposed vertices, a preliminary slight rotation in the 5D
space has been applied.
doi:10.1371/journal.pone.0059504.g006
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branch departing from it, either the forward or the backward one,

is wholly rotated around vpivot to a new position. Let LrB
and LvB

respectively indicate the lists of residues and absolute positions of

the chosen branch, so that LrB
½0� and LvB

½0� would correspond to

the residue/vertex adjacent to rpivot and vpivot, and so on. The

rotation can be specified by indicating what lattice vertex vf , both

free and adjacent to rpivot, LrB
½0� should be moved to. For the

implementation of the pivot move in the general case, multidi-

mensional rotations are required. The specific rotation matrix R to

apply can be computed from vectors LvB
½0�{vpivot and vf {vpivot.

Even if vf is properly chosen, the corresponding pivot move could

be unfeasible because R would map some residues onto positions

that are either already occupied by the opposite branch (i.e. a clash

occurs), or do not actually correspond to lattice vertices (in this

case the elements of R are not all integers). Anyway, the

application of a pivot move in any case requires a significant

computational effort [42], hampering its extensive employment in

Monte Carlo methods.

Local moves are an effective means to explore the neighbor-

hood of a given conformation, but in optimization problems like

Figure 7. Examples of a pull move in 2D square (drawings on the left) and triangular (drawings on the right) lattices. The notation to
indicate the involved elements is described in the text. The target residue is depicted in red, and the residues that undergo a displacement are
colored. In the resulting configurations, the chain portion affected by the move is indicated in blue.
doi:10.1371/journal.pone.0059504.g007

Table 2. Benchmark sequences used in tests.

ID Sequence Len #H Notes

HI 1 HPH2PH4PH3P2HPHPHPHPHPHPHP8H 48 24 Harvard Instance [52]

HI 2 H4PHPH5PHPHPHP6HPHPHPHPHPH 48 24 Harvard Instance

HI 3 PHPHPH6PHPHPHPHPHPHPHPHPHPHPHPHP 48 24 Harvard Instance

HI 4 PHPHPHPHPHPHPH5PHPHPHPHP4HPHPHP 48 24 Harvard Instance

HI 5 PHPHPH4PH4PHPHPHPHPHPHP6HPH2PH 48 24 Harvard Instance

HI 6 HPHPHPHPHPHPHP7HPHPHPHPH6PH 48 24 Harvard Instance

HI 7 PHP4HPHPHPH4PHPHPHPHPHPHPHPH 48 24 Harvard Instance

HI 8 PHPHPH4PHP6HPHPHPHPHPHPHPHP 48 24 Harvard Instance

HI 9 PHPHP4HPHPHPHPH6PHPHPHPHPHPH3P4H 48 24 Harvard Instance

HI 10 PHP6HPHPHPHPHPHPHPHPH7PH 48 24 Harvard Instance

HI 9/2 PHPHP4HPHPHPHPH6P 24 12 First half of H 9

F 90 PHPHP4HPH6PHPHPHPH5PHPHPH4PHP4HPHPHPHPHPH PHPHP4HPHP 90 50 Seq. F 90_1 in [54]

S 1 H4PH6PHPH8PHPH10PHP5HPH8PHPHP3H8PH6PH7PHPH9P HPH7PHPH7PH4 135 100 Seq. S 1 - ditto

S 4 H8PHPH3PH5PH6PHPHPHPHPHPH7PHPHPH6PHPHPHP 164 100 Seq. S 4 - ditto

R 1 P8HPHPHPHPHPHPHPHP4H6PHP5HPHP 200 100 Seq. R 1 - ditto

Characteristics of the benchmark sequences used in the experimentation. The subscripts in sequence characters indicate the number of repetitions for each of them.
doi:10.1371/journal.pone.0059504.t002
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protein folding it is very difficult to edge away from local minima

by their application in a random way. On the contrary, the pivot

move may provide very significant conformation changes, but the

more compact the conformation is, the more often the move

comes to be unfeasible. A good tradeoff has been found with pull

moves, originally introduced for square lattices [43], but also

generalized to honeycomb [23] and 3D triangular lattices [44].

They exhibit the semi-local property, i.e., although in the worst case a

Figure 8. Increasing the lattice dimension, the chain growth algorithm finds protein configurations with progressively lower
minimum potential. This holds for both lattice types (square on the left, triangle on the right).
doi:10.1371/journal.pone.0059504.g008

Figure 9. Experimental evaluation (by CgOptimizer) of the trend of minimum potential vs. dimension for different sequences on
square lattices. In the legend, for each sequence, both length and number of H residues are specified.
doi:10.1371/journal.pone.0059504.g009
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pull move may relocate a large number of elements, on average

only a few residues are involved (as witnessed also in experiments

on FCC lattices by Jiang et al. [45]).

The description of the generalized pull move can make use of

a notation similar to that already used for the pivot move. Figure 7

shows the application of a pull move on 2D square and triangular

lattices and, despite its simpleness, can be useful to identify the

involved elements.

One residue rtarget on vertex vtarget is initially selected, as well as

one branch departing from it, either the forward or the backward

one (it is the branch to be ‘‘pulled’’). LrB
and LvB

indicate

respectively the lists of residues and absolute positions of the

chosen branch, so that LrB
½0� and LvB

½0� would correspond to the

residue/vertex adjacent to rtarget and vtarget, and so on. The

symbol psteps corresponds to the lowest number of steps the chain

can be pulled in the given lattice type; it is topology-dependent,

and its value is 2 for square lattices, and 1 for triangular ones.

The move can be specified by indicating what particular lattice

vertex vf , that is free, adjacent to rtarget, and psteps away from

LrB
½0�, LrB

½0� should be moved to. For the move to be feasible,

there must exist a path from LrB
½0� to vf with psteps{1 free

internal vertices. Once LrB
½0� has been placed onto vf , the branch

must be pulled. Starting from LrB
½1� until the current residue does

not need to be moved (or the list is finished), one residue LrB
½i� at a

time is inspected and, in case it is not already adjacent to the

previous one in the branch (i.e., LrB
½i{1�), it is ‘‘pulled’’ back psteps

to become adjacent. Other graphical explanations of particular

Figure 10. Average runtime for the chain growth algorithm. It is recorded for increasing dimension and for square (left) and triangle (right)
lattices.
doi:10.1371/journal.pone.0059504.g010

Figure 11. Comparison of the chain growth algorithm outcomes for square and triangle lattices, referring to the corresponding
coordination numbers. The tests have been carried out over the HI sequences; the minimum potential value is shown on the left, and the runtime
on the right.
doi:10.1371/journal.pone.0059504.g011
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Figure 12. Number of sessions of simulated annealing that lead to a solution improvement. Results for both square and triangular
lattices are reported.
doi:10.1371/journal.pone.0059504.g012
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instances of this procedure are reported in previous works (among

the others, [16,39,43,44]).

From a software architecture standpoint, moves can correspond

to methods of the Latticemodel class, and they operate on the

configuration of any class instance. Also in this case, their code can

be written in a lattice-agnostic way because the previous

generalized definitions of moves are expressed in terms of

adjacency and distances that, as already discussed, can be

checked/calculated taking the lattice specifications as parameters.

In Figure 4 only one method to perform a move is shown (namely,

move_pullmove()). Moreover, at the class level it is convenient to

envisage general move management methods, e.g., make_ran-

dom_move(), along with setter/getter methods for parameters that

determine the management strategies.

Software
The described approach in dealing with general lattice models

has been applied in an actual implementation in Python. Such a

language has been chosen because it allows a quick and handy

manipulation of the code, thus encouraging experimentations.

In investigations, performance was not the prime interest,

basically because the main focus was on generic lattice modeling

issues, and not on new efficient optimization methods. In any case,

in the last years it has been shown that Python is also suitablefor

challenging scientific computing [46], and for Bioinformatics

problems as well [47]. The use of the numerical library Numpy

[30], mainly for managing the representations of lattice vertices

and configurations via arrays (not primitively supported by

Python), let us obtain a reasonable performance level. Perfor-

mance improvements can be obtained with more efficient

Figure 13. Average runtime for the simulated annealing optimization. It is recorded for the benchmark sequences for square (left) and
triangular (right) lattices.
doi:10.1371/journal.pone.0059504.g013

Figure 14. Minimum values for the potential, as found in the tests with simulated annealing for square (left chart) and triangular
(right chart) lattices.
doi:10.1371/journal.pone.0059504.g014
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compiled languages. The described software organization is

suitable to be easily coded in any object-oriented language, such

as C++.

All the tests presented in this paper have been run on an

ordinary Mac notebook, with Mac OS ver. 10.6.8 on an Intel

Core 2 Duo 2.4 GHz (but all the implementations are sequential

ones), 2Gb RAM. Python ver. 2.6 and Numpy 1.6.2 have been

used.

Results and Discussion

The proposed general model has been defined first, and then its

software implementation has been designed according to an

object-oriented organization. Moreover, it has been stressed the

need of a lattice-agnostic approach in shaping algorithms that

operate on model instances. The primary result can be identified

in the availability of a handy tool to explore the conformation

space of lattice proteins, where the lattice model can be easily

specified in a parametric way. At this point, it is crucial to better

understand how the lattice type and the dimension affect the

outcomes of the employed algorithms (also in terms of runtime),

and how our tool can be used to get insights on specific models, or

on comparisons among different ones. Some direct experiences

with different kinds of optimization techniques are reported, in

order to understand how the generalized algorithms, previously

known in the literature only for basic cases, actually behave across

the different models. Again, the main interest is not in developing

new and better folding algorithms, but instead in investigating

benefits and limitations of the whole tool as a means to explore the

configuration space.

Two different classical approaches for the implementation of

two different SpecificOptimizers (developed according to the

pattern in Figure 5) have been considered: chain growth and simulated

annealing. The former builds up the solution step by step, while the

latter applies successive modifications to an initial conformation.

In both cases, the classic HP potential has been chosen. The

advantage of using these different algorithms in the present

discussion is twofold: on one hand the main characteristics of the

models can be uncovered, and on the other hand the flexibility of

the model software implementation can be practically assessed.

Details on the benchmark sequences used in the experiments are

reported in Table 2.

Insights from Build-up Methods
Chain-growth algorithms represent a group of simple yet significant

methods for protein folding in a lattice model [48]. Regardless of

their specific details, all of them progressively build up the

complete conformation by subsequent additions of chain chunks,

and each chunk is placed in a way to minimize the potential of the

protein aggregate built so far. At each step, an exhaustive

exploration of possible placements is done for the next m residues

(so m is named the look-ahead parameter), and the first p of them,

pƒm, are used to build the next aggregate. Although alternative

stochastic choices might be sensible [48], in the implementation

presented here (called CgOptimizer) the target chunk conforma-

tion is always selected out of those that yield the current minimal

potential, and this last choice takes into account only the chunks

placed more closely to the current aggregate. According to the

experiments, this strategy provides nearly-optimum conformations

in a limited number of runs. Beyond the case of the chosen

algorithm, the chain growth principle has been successfully applied

also in other popular swarm intelligence methods to find ground

conformations, e.g., in ant colony optimization (ACO), but only in

two- and three-dimensional cases [40,49,50]. Moreover PERM

[51], one of the most effective folding algorithms in the HP model,

can be regarded as a particular form of Monte Carlo chain-

growth.

It is worth noticing that the implementation of chain growth

algorithms can be easily made lattice-agnostic by generically

referring to the elements in main_dirs for the construction of the

possible chunks to be added. Moreover, the correct definition of

the potential to be used is directly available through the ordinary

potential() method provided by the class Latticeprot.

Although CgOptimizer does not guarantee to find the optimal

solution, it can obtain a decent lower bound just by running it a

few times (at least for ordinary sequences). This procedure can be

applied over different protein sequences, on different lattice types,

and across multiple dimensions (reasonably only within the

admissible range as defined in the first section). Results of this

kind are shown in Figure 8. The benchmark sequences are the ten

so-called ‘‘Harvard Instances’’ (HI), widely used for testing of

folding algorithms since 1995 [52]. In the experiment, each test

consists of ten optimization runs, executed on each sequence on

both lattice types, on dimensions from 2 up to 10 for square

lattices, and from 2 up to 5 for triangular lattices. Both the m and p

parameters have been set to 3. In the charts of Figure 7 the

minimum values for the potential are shown, and each line

connects the values for the same sequence at increasing

dimensions.

The most evident feature is the decrease of the minimum

potential for increasing dimensions, as sensibly expected. Keeping

the same sequence, such a decrease becomes less pronounced at

higher dimensions, and its trend looks to come to a sort of

saturation. This phenomenon is not very manifest in the triangular

case, because the lack of the parity constraint allows better

Table 3. Potentials found: SA vs. CG (square lattices).

Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 Dim 7

HI 9/2 42.9 10.0 0.0 0.0 0.0 8.3

HI 4 6.7 0.0 0.0 6.7 26.2 215.2

F90 1 3.2 25.5 24.6 215.5 218.7 227.3

S 1 24.1 212.0 213.7 220.2 228.4 231.1

S 4 0.0 211.3 216.6 227.8 225.0 228.7

R 1 28.5 224.8 234.0 231.9 230.4 242.5

Comparison of minimum potentials obtained with simulated annealing and
chain growth optimizers, run on square lattices. The reported values (%)
correspond to the relative variation of s.a. respect to c.g.
doi:10.1371/journal.pone.0059504.t003

Table 4. Potentials found: SA vs. CG (triangular lattices).

Dim 2 Dim3 Dim 4 Dim 5

HI 9/2 28.6 3.8 0.0 0.0

HI 4 6.5 4.8 5.0 9.1

F90 1 0.0 21.4 22.0 4.4

S 1 22.8 28.2 27.0 25.3

Relative variation of minimum potentials obtained with simulated annealing
respect to the corresponding values from chain growth optimizers, in the case
of triangular lattices.
doi:10.1371/journal.pone.0059504.t004
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accommodations of H residues, moving forward the beginning of

saturation.

It is obvious that the theoretical trends in Figure 8 must be

nonincreasing monotonic. Somehow surprisingly, in the square

case for several sequences CgOptimizer has not been able to find

better (or even equal) solutions than those found for lower

dimensions. About this point, it must be noticed that i) on each

test, because of long durations in the most demanding cases, the

number of runs is necessarily limited and likely not sufficient to

effectively sample the conformation space in higher dimensions,

and ii) the look-ahead parameter m has been set to 3 to avoid

excessive runtimes at high dimensions, but this hampers an

effective handling of long ‘‘all-P’’ subsequences.

The trend of minimum potential versus dimension deserves

additional discussion. Beyond the simple experiment described so

far, in order to empirically investigate the dependence on sequence

length and characteristics, the chain growth optimization has been

applied to multiple, heterogeneous sequences and the results are

summarized in Figure 9. Usually longer sequences hit deeper

minima and, the lower the minimum, the higher the dimension

the trend saturation tends to occur. Actually, important factors are

the number of H residues and the H/P ratio. The last three

Table 5. Characterization of the application of moves (square lattices).

Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 Dim 7

h s h s h s h s h s h s

Sl. snake HI 9/2 99 10 100 9 100 5 100 4 100 5 100 4

HI 4 98 12 100 8 100 6 100 2 100 4 100 4

F90 1 100 8 100 8 100 4 100 3 100 3 100 4

S 1 89 10 93 6 96 4 100 2 100 3 100 2

S 4 95 8 99 3 100 3 100 2 100 1 100 2

R 1 100 10 100 6 100 3 100 3 100 3 100 1

Pivot HI 9/2 59 4 73 3 81 4 87 5 92 13 92 11

HI 4 49 7 59 5 68 7 73 7 81 11 86 14

F90 1 40 8 44 4 52 4 66 11 71 9 78 11

S 1 34 4 43 7 48 7 62 11 69 13 75 17

S 4 34 7 44 9 51 10 67 14 69 18 83 23

R 1 35 5 47 11 62 19 71 20 81 22 87 25

End HI 9/2 80 0 96 0 100 1 100 0 100 1 100 0

HI 4 80 0 96 1 100 0 100 0 100 0 100 0

F90 1 88 0 99 0 100 0 100 0 100 0 100 0

S 1 63 5 95 8 96 6 100 7 100 5 100 5

S 4 66 5 98 3 100 4 100 3 100 3 100 3

R 1 95 0 100 0 100 0 100 0 100 0 100 0

Kinkjump HI 9/2 23 10 31 1 39 4 44 3 46 5 50 5

HI 4 16 5 28 4 35 5 38 6 44 10 47 8

F90 1 14 4 23 6 33 8 38 8 41 10 46 10

S 1 11 5 22 8 29 9 35 9 39 11 41 11

S 4 14 13 24 10 33 12 41 11 42 14 47 9

R 1 16 5 29 9 38 11 43 10 45 12 48 9

Crankshaft HI 9/2 14 0 47 6 62 11 73 9 77 11 82 16

HI 4 11 0 41 12 61 12 68 19 76 19 80 18

F90 1 8 2 34 10 52 22 64 22 68 26 77 23

S 1 7 3 34 14 51 24 63 29 70 29 74 29

S 4 8 4 34 17 52 23 68 31 70 29 77 29

R 1 10 4 39 16 60 26 68 30 73 24 78 28

Pull HI 9/2 44 77 92 81 100 74 100 78 100 65 100 64

HI 4 38 75 82 69 98 70 100 66 100 56 100 56

F90 1 32 78 75 73 96 62 100 57 100 53 100 52

S 1 26 73 75 57 95 51 100 41 100 39 100 35

S 4 30 62 75 58 96 48 100 38 100 35 100 35

R 1 34 77 82 57 99 41 100 37 100 38 100 36

The outcome of the application of different types of moves depends both on the sequence and on the lattice dimension/type. Here, for the case of square lattices, are
reported the hit ratio h and the improvement fraction s (both in %, with no decimals) for different sequences, in increasing length order.
doi:10.1371/journal.pone.0059504.t005
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sequences in Figure 9 have different lengths but the same number

of Hs, and the lower curve corresponds to the one with the highest

H/P ratio.

The analysis of runtime (Figure 10) is not particularly surprising,

because the curves correspond to the temporal computational

complexity for the algorithm. Specifically, it is O(
l

p
:(z{1)m), with

l as the sequence length, m and p the chain growth parameters,

and z the lattice coordination number which in turn depends

linearly on the dimension in the square case, and quadratically in

the triangular one. To make Figure 10 more comprehensible,

logarithmic scales have been used in the charts.

A more objective comparison between results obtained for

square and triangular lattices can be carried out focusing on the

coordination number of the models. In fact, it would be interesting

to check how in the general case models behave as the

neighborhood varies. This can be done looking at Figure 11,

which basically shows the same data of the previous charts

organized in two single diagrams according to the corresponding

values of the coordination number. Regarding the minimum

potential, it becomes evident that the triangular lattice, due to

looser topological constraints, is able to accommodate more

hydrophobic residues around an H vertex respect to a square

lattice with the same neighborhood value. Moreover, for the

length of HI sequences, the potential looks to saturate within the

admissible range in the square case, but not for triangular lattices.

Regarding runtime (right chart in Figure 11), their values are very

similar for both lattice types, and their trend over dimension is

almost the same. For our implementation, triangular lattices are

dealt with slightly more efficiently than the corresponding square

ones. Finally, no significant difference in behavior can be noticed

across the HI sequences. In the next tests, just HI 4 and the first

half of H 9 (indicated as HI 9/2) are taken out of them as

representative samples.

Insights on Manipulation of Conformations
The examples seen so far do not consider the modification of

conformations. To test also this aspect, an algorithm that makes

use of moves must be taken as reference. Several Monte Carlo

procedures have been developed for folding in the HP model, such

as e.g. Evolutionary Monte Carlo [33], Monte Carlo Replica

Exchange [39], and genetic algorithms [44]. Quantum annealing

has been used for this purpose as well [53]. Moreover, some of the

most effective folding algorithms recently designed employ moves

in local optimizations within a larger hybrid approach [54].

One of the simplest Monte Carlo methods to find reasonable

potential minima is the simulated annealing heuristic. Although its

original formulation has shown to be scarcely effective in the

exploration of protein conformation space (an early significant

example for specific protein models is reported by Brower et al.

[55]), particular versions have been employed also recently with

good results on classical HP models on 2D square lattices [56] and

3D cubic lattices as well [57]. A simple implementation of

simulated annealing will be taken as reference, to show issues in

using move sets across different dimensions and lattice types.

In simulated annealing, the basic run (or session) is controlled

along with the decreasing of a ‘‘temperature’’ parameter T from a

value T0 down to a final Tf . Starting from an initial conformation,

at each temperature value a given number of steps nsT is

performed. Each step consists of the application of a move to

obtain a neighbor conformation, which may represent a better

solution and may be possibly accepted as the current one. The

acceptance is decided in the so-called Metropolis check, that

depends on both the found potential difference

DU~Unext{Ucurrent and the current value of T : If DUv0 it is

always accepted, otherwise it is accepted only with a probability

given by the ‘‘Boltzmann’’ factor e
{ DU

kBT (usually kB is taken as 1).

The session outcome is the best conformation encountered

throughout the whole procedure.

In addition to this general scheme, the used implementation in a

class named SaSimpleOptimizer is characterized by the following

details: i) an exponentially decreasing cooling schedule is chosen

(i.e., Tjz1~aTj with 0vav1); ii) as long as a session has been

able to improve the solution (i.e., it has been fruitful), a successive

one is performed, starting with the previous best conformation; iii)

the initial conformation for the first session is a simple linear

accommodation of the residues; iv) during the first half of the

temperature range for the first session, referring to the generic

formulation in eq. 9 the used potential holds Csi ,sj
exactly as in the

HP potential, and D(d(vi,vj))~1=d2(vi,vj)
2. This choice is aimed

at getting faster towards a globular conformation; v) no heuristic

has been used in selecting the specific next move to apply (as it

often happens in the most effective variants of simulated

annealing). It has been shown in the literature [54] that properly

modified fitness functions, as in iv) above, can dramatically

improve the effectiveness of local searches.

The implementation of simulated annealing, as well as any

other Monte Carlo algorithm that makes use of configuration

modifications, is automatically lattice-agnostic because, in perform-

ing moves, it simply exploits methods that have been already

written in a generic way as integral members of the class

Latticemodel (see Figure 5). Multiple configurations for the same

molecule can be kept in different copies of pos_abs.

The presented tests have been performed on a benchmark that

include the sequences used for Figure 8, characterized by different

lengths. For triangular lattices the last two sequences have been

excluded, because of the excessively long runtime. For the same

reason, each test on each sequence has been run only ten times, for

both lattice types.

The values used for the simulated annealing parameters are the

following, using the notation introduced above: T0~12, Tf ~0:2,

a~0:8, nsT~80, and kB~1. They have been chosen to produce a

good solution in the basic case of a 2D square lattice in no more

than two sessions. As the configuration space gets wider,

reasonably an increasingly larger number of restarts should be

needed. In this context, across different dimensions and lattice

types, the number of fruitful sessions can give us a rough idea of

the effort required by the Monte Carlo procedure (relative to the

basic case) to single out a solution.

The used move set contain all the types discussed in this paper,

implemented according to their general definitions. The random

attempts to use move types obey a distribution with the following

values of try rate t for all the move types: Slithering snake t~5%,

Pivot t~10%, End t~5%, Kinkjump t~15%, Crankshaft

t~15%, Pull t~50%. In particular, the value for the try rate of

the pull move has been selected following the discussion reported

by Thachuk et al. [39] (they use the symbol r to indicate it).

A first point around the test outcomes is the evaluation of the

average number of fruitful sessions SNSf T; such results are

reported in the charts of Figure 12. Informally, the value of this

metric should grow as the sampling space widens out, and this may

happen either increasing the sequence length, or the lattice

coordination number z. Figure 12 clearly shows that, regardless of

dimension and lattice type, the longer the sequence, the larger

SNSf T, in accordance with our observation. Moreover, keeping

the same sequence and increasing the dimension, SNSf T increases

as well. Also for Comparing square and triangular lattices, the
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number of required restarts is similar when the lattice coordination

number is the same.

Although SNSf T can quantify the effort in locating the solution,

this metric does not reflect the overall computational weight of the

procedure, because a single session usually asks for more

operations as the sequence length and the dimension increases.

An account of the average runtime for square and triangular

lattices is presented in the charts of Figure 13. Although simulated

annealing scales sufficiently well with dimension, its application

beyond the admissible range (as defined in the first section) and

with longer sequences becomes unpractical.

In order to assess the ability of our Monte Carlo procedure to

find good optimal solutions, minimum potentials obtained by

simulated annealing (see Figure 14) can be compared with those

found by chain growth, that may be kept as decent approximations

of the actual minima. Just after a quick look at the first chart of

Figure 14 and Figure 9, it becomes evident at higher dimensions

that the tests with simulated annealing provided worse approxi-

mations, and also the curves for each sequence in the square

lattices are not monotonic decreasing. This aspect can be

quantified by means of the relative variation of the value from

simulated annealing respect to the corresponding one from chain

growth, calculated as (PSA{PCG)=PCG and reported in Tables 3

and 4. Somehow unexpectedly, for short sequences at the lower

dimensions, simulated annealing behaves better than chain growth

(upper left corner of the tables). On the contrary, as the sampling

space gets wider (lower right corner), the solutions are in percent

less and less accurate. Simulated annealing reveals its weakness in

locating optima in these conditions, at least using the same

parameters that turned to be effective for more limited explora-

tions. In any case, a better effectiveness is experienced on

triangular lattices.

The facet that likely deserves more attention is the character-

ization of the usage of moves. In particular, for the different cases

it is relevant understanding whether a random application of a

move of a given type exhibits the same success probability, and

how the moves that lead to an improvement of the solution are

distributed among all the move types. To this aim, the following

metrics can be used:

hit rate h i.e., the number of move applications that could be

actually done over the total number of tried random move

applications

improvement fraction si.e., the portion of all effective move

applications that belongs to a given move type (an effective move is

one that determined an improvement of the current solution).

The values of h and s for our tests are reported in Tables 5 and

6. The slithering snake move in practice can always be feasibly

applied for dimensions higher than 3, and its application is quite

effective, considering that it is chosen only in the 5% of the move

tries and that it holds a s[½1,10�. This move type is more effective

at lower dimensions, and for square lattices.

Table 6. Characterization of the application of moves (triangular lattices).

Dim 2 Dim 3 Dim 4 Dim 5

h s h s h s h s

Sl. snake HI 9/2 98 6 100 3 100 2 100 2

HI 4 90 5 100 2 100 4 100 3

F90 1 99 3 100 2 100 2 100 1

S 1 67 2 100 2 100 1 100 1

Pivot HI 9/2 61 6 70 11 78 15 83 12

HI 4 53 14 57 11 62 11 70 12

F90 1 48 11 49 11 60 10 62 12

S 1 38 13 43 9 48 10 53 10

End HI 9/2 94 0 100 0 100 0 100 0

HI 4 86 0 100 0 100 0 100 0

F90 1 96 0 100 0 100 0 100 0

S 1 68 5 98 4 100 5 100 3

Kinkjump HI 9/2 38 6 71 8 82 6 88 9

HI 4 32 6 64 8 78 9 85 9

F90 1 34 6 61 8 74 8 82 10

S 1 26 7 52 10 71 12 76 12

Crankshaft HI 9/2 29 14 79 9 94 14 97 15

HI 4 25 9 72 14 90 15 96 10

F90 1 27 9 66 10 89 17 94 16

S 1 21 8 60 12 83 14 92 14

Pull HI 9/2 70 67 96 69 100 63 100 62

HI 4 66 66 93 65 99 62 100 66

F90 1 67 71 90 68 99 63 100 61

S 1 58 65 86 63 96 58 99 60

Here are reported the hit ratio h and the improvement fraction s for different sequences in increasing length order on triangular lattices in dimensions from 2 to 5.
doi:10.1371/journal.pone.0059504.t006
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The pivot move increases its h as the dimension increases, but

usually decreases towards longer sequences. Its effectiveness varies

considerably, but most of the times svt~10%.

The application of the end move is feasible almost all the times,

but shows a very poor effectiveness.

The kinkjump and crankshaft moves increase their h along with

the lattice dimension. Crankshaft shows a better improvement

fraction than kinkjump at higher dimensions.

Finally, the pull move (with t~50%) turns to be the most

favorable type. It is very effective, and h hits 100% in higher

dimensions. The value of s in one case reaches 81% (substantially

larger than t), but usually decreases as dimension increases. In

general, in triangular lattices s shows lower variations.

Conclusions
So far, studies on simplified protein structures based on lattice

models have directly targeted only a few specific lattice models.

This paper has shown that it is possible to exploit a parametrical

description of the underlying lattice, specifying its type and

dimension. As a consequence, investigations can be conducted

across different lattices simply by varying the proper parameters.

Observing the neighborhood of alpha carbons in the core of real

proteins, it can be easily noted that it is sensible making use of

lattices whose dimension is larger than three. The proposed

parametric models can automatically accommodate this possibil-

ity.

The theoretical tools for the proposed lattice models have been

developed, shown and organized in the first part of the paper,

indicating also how the basic concepts can be exploited in

developing the supporting software. To this aim, the classical HP

model has been considered. Moreover, an object-oriented

architecture has been proposed for generic protein lattice models

in any dimension, and a seamless hooking scheme for different

optimizers has been suggested and implemented. The systematic

adoption of such a software framework would make more

meaningful and fair the comparison among different optimization

methods.

The adoption of parametric models asks for lattice-agnostic

implementations of all the algorithms that operate upon them.

This issue has been explicitly addressed for the most important

cases (e.g. for the calculation of the HP potential), suggesting to

embed the basic functionalities directly in the protein model class.

It has been necessary to provide general definitions for the move

types proposed so far in the literature to modify protein

configurations in Monte Carlo methods.

Experimentations with the proposed models have been carried

out by means of a Python implementation, using sequences out of

well established benchmarks widely studied in the literature. To

point out the main features of the protein models varying lattice

type and dimension, two simple yet significant classic optimization

methods have been taken as references: Chain growth, and

simulation annealing. It has been possible to experimentally

uncover the trends of the minimum HP potential with increasing

dimension for sequences of different lengths. Moreover, for the

first time it has been shown a quantitative characterization of the

employment and the effectiveness of move types usage in different

lattice types and dimensions.

The shown theoretical and empirical results can be regarded as

first steps in the investigation of multidimensional protein models

and related algorithms. Some intrinsic geometrical features may

restrict the application field of high-dimensional models. E.g., we

can notice that in the N-dimensional continous space, the

hypersphere surface/volume ratio is N=R, which can rapidly

become very different from the ‘‘natural’’ 3=R value as N

increases. Moreover, it is unclear whether multidimensional

models may provide hints on the dynamic properties of protein

systems. Further research is needed to ascertain the possible

limitations of the general models.

It must be underlined that the simple optimizers used in the

paper do not guarantee to find exact minima; for traditional

models, the works by Backofen et al. [58,59], based on constraint

programming and a specific form of memo-ization, represent the

reference approach but it reasonably would require an overall

generalization in order to be applied to every possible case.

Another example of non-trivial generalization to be carried out is

the formulation of effective bounding functions in branch and

bound algorithms for HP models [60,61].

The proposed framework can be considered a novel general

viewpoint in the study of protein lattice models, that subsumes

several specific solutions proposed so far. The need to look at

problems from a more general perspective may stimulate the

reasoning on simplified models to better catch the basic

characteristics of protein conformations and their manipulation.
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10. Mélin R, Li H, Wingreen NS, Tang C (1998) Designability, thermodynamic

stability, and dynamics in protein folding: a lattice model study. Journal of

Chemical Physics 110: 1252–1262.

11. Noivirt-Brik O, Unger R, Horovitz A (2009) Analysing the origin of long-range

interactions in proteins using lattice models. BMC Structural Biology 9: 4.

12. Noivirt-Brik O, Horovitz A, Unger R (2009) Trade-off between positive and

negative design of protein stability: From lattice models to real proteins. PLoS

Computational Biology 5: e1000592.

13. Klimov D, Thirumalai D (2001) Multiple protein folding nuclei and the

transition state ensemble in two-state proteins. Proteins: Structure, Function, and

Bioinformatics 43: 465–475.

14. Heun V (2003) Approximate protein folding in the HP side chain model on

extended cubic lattices. Discrete Applied Mathematics 127: 163–177.

15. Jacob E, Unger R (2007) A tale of two tails: why are terminal residues of proteins

exposed? Bioinformatics 23: e225–e230.

16. Gillespie J, Mayne M, Jiang M (2009) RNA folding on the 3D triangular lattice.

BMC Bioinformatics 10: 369.

17. Koehl P, Delarue M (1998) Building protein lattice models using self-consistent

mean field theory. The Journal of Chemical Physics 108: 9540–9549.

General Protein Lattice Models

PLOS ONE | www.plosone.org 18 March 2013 | Volume 8 | Issue 3 | e59504



18. Mann M, Saunders R, Smith C, Backofen R, Deane CM (2012) Producing high-

accuracy lattice models from protein atomic coordinates including side chains.
Advances in Bioinformatics 2012: 6.

19. Conway J, Sloane NJA (1999) Sphere Packings, Lattices and Groups. Springer-

Verlag, 3 edition.
20. Gromiha M, Selvaraj S (2004) Inter-residue interactions in protein folding and

stability. Progress in Biophysics and Molecular Biology 86: 235–277.
21. Bahar I, Jernigan R (1997) Inter-residue potentials in globular proteins and the

dominance of highly specific hydrophilic interactions at close separation. Journal

of Molecular Biology 266: 195–214.
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