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Abstract

Giardia lamblia is a flagellated, unicellular parasite of mammals infecting over one billion people worldwide. Giardia’s two-
stage life cycle includes a motile trophozoite stage that colonizes the host small intestine and an infectious cyst form that
can persist in the environment. Similar to many eukaryotic cells, Giardia contains several complex microtubule arrays that
are involved in motility, chromosome segregation, organelle transport, maintenance of cell shape and transformation
between the two life cycle stages. Giardia trophozoites also possess a unique spiral microtubule array, the ventral disc,
made of approximately 50 parallel microtubules and associated microribbons, as well as a variety of associated proteins. The
ventral disc maintains trophozoite attachment to the host intestinal epithelium. With the help of a combined SEM/
microtome based slice and view method called 3ViewH (Gatan Inc., Pleasanton, CA), we present an entire trophozoite cell
reconstruction and describe the arrangement of the major cytoskeletal elements. To aid in future analyses of disc-mediated
attachment, we used electron-tomography of freeze-substituted, plastic-embedded trophozoites to explore the detailed
architecture of ventral disc microtubules and their associated components. Lastly, we examined the disc microtubule array
in three dimensions in unprecedented detail using cryo-electron tomography combined with internal sub-tomogram
volume averaging of repetitive domains. We discovered details of protein complexes stabilizing microtubules by
attachment to their inner and outer wall. A unique tri-laminar microribbon structure is attached vertically to the disc
microtubules and is connected to neighboring microribbons via crossbridges. This work provides novel insight into the
structure of the ventral disc microtubules, microribbons and associated proteins. Knowledge of the components comprising
these structures and their three-dimensional organization is crucial toward understanding how attachment via the ventral
disc occurs in vivo.
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Introduction

Giardiasis is the most common cause of protozoan intestinal

infection worldwide [1], and has been included in the World

Health Organization (WHO) Neglected Diseases Initiative as one

of a group of diseases of global importance that are linked with

poverty and limit development and socio-economic improvements

[1,2]. Giardia has a two-stage life cycle, and acute giardiasis results

from the ingestion of the cyst form and subsequent colonization

and attachment of the flagellated trophozoite form to the small

intestine via the ventral disc [3]. The emergence of drug resistance

in Giardia isolates [4] highlights the need for further research to

define the mechanisms of giardial virulence and identify novel

anti-giardial compounds.

Beyond canonical axonemes and spindle assemblies, many

parasitic protists have evolved elaborate microtubule-based arrays

that enable specialized functions throughout their complex life

cycles. Each of these arrays have a unique supramolecular

architecture, including the subpellicular microtubule array of

apicomplexans [5] (e.g., the conoid of Toxoplasma [6]) and

trypanosomes [7]. These elaborate structures are composed of

numerous and novel microtubule-associated proteins (MAPs) that

presumably enable the unique structural and dynamic functions of

these microtubule-based arrays. Very few of these specialized

microtubule assemblies have been imaged in three dimensions in

situ, but understanding their organization in detail is critical

toward ascertaining the function of these organelles in mediating

the pathogenesis of the parasites.

The ventral disc of Giardia lamblia constitutes one example of

such a highly regular microtubule-based array that maintains a

strong extracellular attachment to the microvilli in the small

intestine [8] that allows the parasite to colonize and resist

peristaltic flow. The ventral disc is composed of a left-handed

spiral array of parallel microtubules and tightly associated

microribbons (Figure 1D) [9–12] that is surrounded by a fibrillar

structure called the lateral crest (Figure 1A; LC). A region in the

center of the ventral disc spiral that lacks microtubules, but instead

features numerous vesicles, is termed the ‘‘bare area’’ (Figures 1A,

1D) [13]. 32 disc-associated proteins have been identified with a

proteomics approach [14]. They were spatially analyzed in the cell
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by GFP-labeling and found to localize to the ventral disc and the

lateral crest [14]. High-resolution structural details and interaction

properties with ventral disc microtubules remains largely un-

known. Likewise, the molecular mechanism by which the ventral

disc mediates attachment is still unclear. In addition to the ventral

disc, the interphase microtubule cytoskeleton of Giardia (Figure 1)

also includes the median body (a structure of unknown function),

four pairs of flagella, and the funis (not shown).

Attachment and detachment of Giardia trophozoites occurs

within seconds in a series of steps characterized by defined

contacts of the ventral disc region with surfaces. These contacts are

readily visualized by live imaging of trophozoites with total

internal reflection microscopy [15]. Distinct stages of attachment

Figure 1. The complex microtubule cytoskeleton of Giardia reconstructed by 3ViewH and plastic-section tomography. A) Selected
SEM slice (back-scattered electron signal) showing eight flagella [anterior flagella (AFL); caudal flagella (CFL); posterior-lateral flagella (PFL); and
ventral flagella (VFL)], part of the ventral disc (VD: green outline), the bare area (BA), the lateral shield (LS), and lateral crest (LC). B) 3-D model of a
whole-cell reconstruction: ventral disc, nucleus (N), median body (MB), and the four pairs of flagella. C) The side-view of the model shows that the
entire microtubule cytoskeleton is located in the ventral part of the cell. D) 5 nm tomographic slice from a montaged, plastic serial section tomogram
of a portion of the ventral disc. At the most ventral part of the disc, there are parallel microtubules and microribbons. The relationship of the disc to
the helical axis is as indicated: margin-facing (M) or axis-facing (A). The bare area (BA) is also indicated. E) 5 nm tomographic slice showing the
arrangement of four basal bodies and how the microtubules (MT) of the ventral disc originate from dense bands (arrows). F) Model from the
tomographic reconstruction showing the supernumerary microtubules (yellow) are ventral to the ventral disc microtubules (white). Microtubule ends
are classified as either capped (red dots, arrows) or open (green dots). Microribbons are shown in green. One of the anterior flagella (purple)
penetrates the overlap zone. Scale bars in A–C = 2 mm, D–F = 200 nm.
doi:10.1371/journal.pone.0043783.g001
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include trophozoite skimming on the surface followed by the

formation of a seal between the attachment surface and disc via

the lateral crest, then increased contact of the lateral shield region

of the cell body with the surface, and finally increased contact of

the bare area with the surface. During these stages of attachment,

the ventral disc maintains a dome-shaped conformation and only

the lateral crest and bare area region touch the surface [15].

Morpholino-based depletion of the abundant median body protein

(originally found in the median body and therefore named as such)

results in defects in the ventral disc, including a flattened disc

structure and weakened attachment in vitro [16].

In the dynamic environment of the small intestine of the host,

attachment site recognition, flagellar motility, and specific disc

conformations contribute to parasite attachment to the intestinal

microvilli. Flagellar motility has been proposed to create and

maintain a negative pressure differential underneath the ventral

disc [12]. However, more recent work suggests that flagellar

motility is essential for positioning trophozoites, but is not required

to maintain attachment in vitro [15]. The degree to which the disc

substructure changes during attachment remains unknown, but

conformational changes in the overall disc elements (microtubules,

microribbons, etc.) are likely responsible for surface attachment.

Such conformational changes may allow the cell to adhere to flat in

vitro surfaces (i.e., glass) by a suction-type mechanism. In vivo

attachment may include other mechanisms such as the disc

‘‘grasping’’ the intestinal epithelium. Both types of mechanisms

would create a negative pressure differential underneath the disc

[17].

With a limited understanding of ventral disc molecular

composition, 3-D structure, and conformational dynamics during

attachment, we are still in the early stages of defining the

biophysical and molecular mechanisms by which Giardia attaches

to the host. This comprehensive 3-D analysis of the ventral disc

provides a structural model to explore how changes in disc

microtubules and associated structures may enable overall

conformational dynamics of the ventral disc during attachment

and infection. Furthermore, this study underscores how highly

organized microtubule-based arrays can evolve novel cellular

functions in diverse eukaryotic cells. Despite previous work by

Holberton [9], the Giardia ventral disc has never been described in

three dimensions to such detail, and this study will now serve as a

platform for further studies into the cellular functions of the

unknown structures described within the disc.

Results

The type of structural data obtained in this study is comprised of

A) an overview of the microtubule cytoskeleton of the whole

organism (Figures 1A–1C) at ,75 nm resolution, B) the arrange-

ment of the ventral disc microtubules/microribbons using

conventional electron tomography (Figures 1D–1F) at ,5 nm

resolution, and C) unprecedented higher resolution (.3 nm) detail

of microtubule and microribbon organization (Figures 2, 3, 4, 5, 6,

7) using volume-based averaging procedures on tomograms of

frozen-hydrated specimens.

Whole cell reconstruction of a Giardia trophozoite
illustrates the highly structured 3-D architecture of the
microtubule cytoskeleton

In addition to the ventral disc, Giardia trophozoites have a

complex three-dimensional microtubule cytoskeleton, including

eight flagella (anterior, caudal, posterior-lateral, and ventral) with

cytoplasmic and membrane-bound regions, the median body, the

funis, and the supernumerary microtubules. Here we have

obtained the first 3-D reconstruction of an entire Giardia lamblia

trophozoite using a new procedure called 3ViewH [18] that has

been developed by Gatan Inc. (Pleasanton, CA). 3ViewH combines

sequential microtome sectioning with scanning electron micros-

copy back-scattered electron imaging of each fresh blockface

(Figure 1). This approach visualizes the 3-D relationships of the

primary cytoskeletal elements of an attached trophozoite

(Figures 1A–1C and Videos S1, S2). The overall dimensions of

the cell in Figure 1 (A–C) are ,10 mm6,18 mm6,7 mm (width,

length, height). The total cell volume is ,550 mm3. All four pairs

of flagella originate from basal bodies that are located between the

nuclei. All of them have cytoplasmic regions of variable lengths

before exiting the cell as membrane-enclosed flagella, measuring

as follows: ventral flagella at 4.6 mm, anterior flagella at 8.6 mm,

posterior-lateral flagella at 9.0 mm, and caudal flagella at 14.8 mm.

One anterior axoneme extends through the overlap zone of the

ventral disc spiral. The bulk of the microtubule cytoskeleton is

associated with the most ventral portion of the cell (Figure 1C),

facing the host intestinal microvilli. The ventral disc is ,8 mm in

diameter and has a dome-shaped conformation that rises ,2 mm

from the surface when the cell is attached with the bare area in

contact with the surface. The ventral disc represents about 2% of

the total cell volume.

Our data of plastic-embedded trophozoites presented here now

provides a tomographic 3-D structural analysis at ,5 nm

resolution (Video S3), improving on previous work by Holberton

[9,10]. The most dominant feature of the ventral disc is the highly

organized array of evenly spaced parallel microtubules (Figures 1D,

2A, 2B), tightly linked to microribbons (Figures 1D, 2A, 2C). The

ventral disc contains ,50 microtubules, each of which can be up

to 20 mm long [11]. The majority of the microtubule-microribbon

complexes originates from a series of dense bands at a region near

the caudal and posterior-lateral basal bodies (Figure 1E) and form

a left-handed spiral (Figure 3A). Microribbons connect to the

dorsal-facing surface of each microtubule and, depending on their

location within the disc, extend between 150-400 nm into the

cytosol (Figure 1F, 2A). The microribbons extend all the way into

the overlap zone, the region where the beginning and end of the

spiral overlaps (Figure 1F and Video S4; [16]). Occasionally, an

array of microtubules called ‘‘supernumerary microtubules’’ [9],

which lack associated microribbons and form a short right-handed

spiral fragment (Figure 1F). Relative to the rotation axis of the

microtubule spiral in the ventral disc, we describe microtubule-

associated densities that are located toward the spiral’s axis as

‘‘axis-facing’’ while structures facing away are called ‘‘margin-

facing’’ (Figure 3A).

Cryo-electron tomography reveals numerous regularly
arranged densities on ventral disc microtubules that
mirror the axial 8 nm repeat of the ab-tubulin dimer

To explore the 3-D structure of the ventral disc in higher detail

and determine the intimate contacts that hold adjacent microtu-

bule-microribbon complexes together, we used cryo-electron

tomography (cryo-ET) on intact, isolated cytoskeletons from

trophozoites. Cryo-ET is the only method that allows 3-D analyses

at molecular detail on such large and complex organelles as an

intact ventral disc. Since whole trophozoites are far too thick

(.5 mm in height) to be imaged directly by cryo-EM (the limit is

about 500 nm), we isolated ventral discs and associated structures.

In the most successful preparations, the ventral disc could be

isolated with the eight basal bodies and flagella still associated and

well preserved (Figure S1A). Once isolated, the ventral discs

appeared flattened (,9 mm in diameter X ,1 mm thick), unlike

the dome-shaped discs imaged in vivo (,8 mm6,2 mm). Co-

Novel Microtubule-Associated Proteins of Giardia
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isolated flagella tended to stay in the same positions as within

intact cells, suggesting that they are kept in place by numerous

molecular connectors between the basal bodies and ventral disc.

On areas near the outer edges of the disc that were thin enough

for cryo-ET, we were able to collect cryo-tomograms to ,2.8 nm

resolution (Figures 2, S1C-S1G). We collected over 40 tomo-

graphic tilt-series from which we chose the best five datasets

(named: Tomo-1—Tomo-5) for subsequent volume averaging

[19,20]. Figure 2A shows an example of a ventral disc cryo-

tomogram (Tomo-1). The missing wedge of data occurs from tilt

limitations of the electron microscope stage (660 degrees instead

of 690 degrees) during tilt-series acquisition and is best visualized

in Fourier space. In real-space reconstructions the most obvious

effect is a non-isotropically resolved 3-D volume where the

resolution along the Z-axis is about 1.56 lower than in the X and

Y direction (Figures 2B, 2C; insets). However, depending on the

orientation of the tilt-axis with respect to the XY-plane, there is

anisotropy in this plane as well. The natural curvature of ventral

disc microtubules allows the collection of data from discs at

different orientations with respect to the tilt-axis (Figures S1C-

S1G) that helps to reduce the missing wedge into a missing cone.

An end-on view of the microtubules and associated microribbon

interface in the tomogram XZ-plane resolves microtubule

protofilaments, microtubule-associated densities and details of

the complex microribbon structure (Figure 2A). The XY-planes in

Figures 2B and 2C cut through the ventral disc as indicated in

Figure 2A (boxes marked B and C). The corresponding power

spectrum within the microtubule range (inset in Figure 2B) reveals

the characteristic 1/8 nm layer line reflections, which reflect the

8 nm ab-tubulin dimer spacing along the microtubule. These

repeats are present on the margin-facing side of the microtubule

(Figures 2B, S1C–S1G). Microtubules do not appear to contain

large, lumenal particle densities (Figure 4C). Power spectra on

slices through the microribbons reveals layer line reflections at a

1/16 nm interval. Hence, the repeating motif of microribbons

along the microtubule axis covers two consecutive ab-tubulin

dimers (Figures 2C, S1C–S1G). In many cases, we could identify

connections between adjacent microribbons, called crossbridges

[9], (Figures 2C, S1F). The lateral spacing between neighboring

microtubule-microribbon complexes varies within the ventral disc.

Those near the outer disc margin are much closer together

(34 nm62 nm) than those further inside (Figures 2B, 2C), which

has an in situ spacing of 61 nm62 nm (Figure 2A; inset).

The ventral disc microtubule array has minus-ends at the
basal bodies and blunt, open plus-ends at the margin

Due to the regular spiral arrangement of microtubules in the

ventral disc, we unambiguously assigned microtubule polarity

using three independent sets of observations in tomograms. First,

in all cases the majority of microtubule-associated densities faced

toward the outer margin, forming a very asymmetric decoration

(Figures 2A, 2B and schematic in Figure 3A), suggesting that all

disc microtubules share the same orientation. Second, our

tomograms showed that the ends of microtubules embedded in

the electron dense bands (Figure 1E) associated with the basal

bodies were always capped (Figure 3B), indicating that these are

minus-ends [21]. These capped ends are very close to each other,

almost touching laterally. The opposite ends of microtubules at the

ventral disc margins are blunt and open-ended (Figure 2C). Third,

and probably the most convincing argument, averaged ventral disc

microtubules viewed end-on, as seen in Figure 3D, revealed the

typical protofilament slew that has been found on helically

averaged kinesin-decorated microtubules on numerous occasions

and which is an unambiguous marker for microtubule polarity

Figure 2. Cryo-electron tomography of the ventral disc. To describe the orientation, the dorsal-ventral (V) line and the axis-facing and margin-
facing (M) sides of the microtubule are labeled. Microtubule polarity is indicated (+). A) 75 nm cryo-tomographic XZ-slice from Tomo-1 showing the
ventral disc, an array of parallel microtubules with microribbons. The power spectrum (inset) shows the regular ,55 nm spacing between
neighboring microtubule-microribbon complexes. The missing wedge, a limitation inherited to tomographic data, is illustrated by the large, black,
wedge-shaped area in the power spectrum. B) 25 nm tomographic XY-slice from box B in panel A. The power spectrum (inset) shows a repetitive unit
every 8 nm. C) 25 nm tomographic XY-slice from box C in panel A. Microribbons have 16 nm repeats (power spectrum, inset). The lateral spacing of
the microribbons (and underlying microtubules) is much closer at the margin of the disc (red lines). Scale bars, 50 nm.
doi:10.1371/journal.pone.0043783.g002
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[22,23]. In summary, these observations are consistent with the

disc microtubules being arranged with the capped minus-ends

located near the basal bodies and the open plus-ends at the margin

of the ventral disc.

Ventral disc microtubule spacing is maintained by some
microtubules ending within the spiral and new
microtubules nucleating on the inner edge of the spiral

In order to maintain the regular spacing of the microtubule

array within the ventral disc, microtubules end within the main

spiral and new microtubules appear at the inner edge of the spiral

that borders the bare area. Our tomographic data shows that

microtubules ending within the spiral have blunt ends and

sometimes the plus-end is found below the main body of the

spiral (Figures 3E–3G; red arrow). Because these microtubules are

not associated with the microtubule-organizing center (dense

bands at basal bodies), they are blunt and open-ended.

Novel molecular details of the microtubule-microribbon
complex

Averaging of identical 2-D projections of repeating elements is a

widely used method in electron microscopy to improve the signal-

Figure 3. Polarity of ventral disc microtubules is unambiguous with minus-ends originating at dense bands or at the inside edge of
the spiral. A) Sketch showing the ventral disc with the dorsal side pointing torward the viewer. Microtubules start with their minus-ends near the
overlap zone and spiral downward to the ventral side, thereby forming a left-handed helix. The repetitive units are on the margin-facing side (RM) of
the microtubules (dotted colored lines). B) A 10 nm plastic-tomographic slice shows capped microtubule ends (blue arrows) at the dense bands,
indicating their minus-ends, while panel C) shows open microtubule ends (red arrows) at the periphery of the disc, typical for plus-ends. D) An end-
on view from a helical reconstruction of a bovine microtubule decorated with kinesin-1 motor domains (K) (for example see [61]); when viewed from
the minus-end, tubulin (T) shows a right-handed slew while globular microtubule-associated proteins (MAPs) such as kinesin motor domains often
bend torward the left (lower panel). The same pattern is visible in the 3-D average of the tomographic reconstruction (upper panel), though with less
clarity due to the missing wedge effects. E) A portion of the model of the plastic-section tomogram from Figure 1D showing a plus-end (red arrow) of
a microtubule that is ending within the spiral and a minus-end (blue arrow) beginning at the inner edge of the spiral. The microribbons (green) of the
inserted microtubules (white) are proximal to the minus-end (blue arrow) of the microtubule. F, G) The upper panels show the plastic-section
tomogram in cross-section with the microribbons modeled in green and microtubules in white. The yellow line shows the line of rotation 90u to make
the views in the lower panels. The microtubule ending within the spiral (red arrow) is slightly below the neighboring microtubules. The microtubule
beginning at the inner edge of the spiral (blue arrow) starts above the neighboring microtubules. Scale bars in B and C = 50 nm; D = 5 nm; E = 50 nm;
F and G = 25 nm. Panel A: adapted with permission from [11].
doi:10.1371/journal.pone.0043783.g003
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to-noise ratio for molecular data analysis in both two and three

dimensions (i.e., single particle reconstruction, 2-D crystallogra-

phy, random conical tilt reconstruction, and helical reconstruction

[24]). However, none of those methods are applicable to large

complex structures where averaging is not an option (i.e.,

organelles). Once a tomogram is completed, it may be possible

to extract sub-volumes of potentially repetitive elements from the

tomogram that may be further averaged for noise reduction. We

have developed such a process in our lab called Particle Estimation

for Electron Tomography, or PEET [19,20]. With this software,

we averaged a total of 7,719 individual sub-volumes from five

different tomograms recorded on four different isolated ventral

discs (Figure S1B). Each sub-volume was chosen based on a 16 nm

repeat along the microtubule-microribbon axis (Figures S2A, S2B).

We only selected sub-volumes from areas of the ventral disc that

were neither part of the overlap zone nor near the very periphery

of the disc. The final grand average (Figure 4 and Videos S5, S6)

included 4,700 sub-volumes and resolved details to ,2.8 nm

resolution (50% Fourier-shell correlation criterion: Figure S2C).

The averaged microtubule-microribbon 3-D map can be visual-

ized in several ways. The distribution of internal densities within

the 3-D map is best shown as contoured gray-levels on different

slices through the map at various levels and orientations (Figures 4,

6B–6C, 7A–7C and Videos S5, S6). The full extent of the 3-D

map, however, is best represented with an isosurface illustration

showing the entire volume at one particular density threshold

value that can be varied, but is typically chosen so that it presents

most (90–95%) of the densities but without including too much

unrelated noise (Figures 5, 6A, 7D and Video S7). A summary of

the densities found in the grand average is listed in Table 1.

Figure 4 shows single XY-slices of 0.776 nm thickness parallel to

the microtubule plane descending from dorsal to ventral. Figure 4A

cuts through the microribbon and reveals the 16 nm repeat. Faint

signals for lateral crossbridges (CB) are seen at 16 nm intervals at

the margin-facing (M) sheet. The axis-facing (A) sheet reveals three

distinct axial density intervals over a total length of 16 nm.

(Figure 4A). Figure 4B cuts through the dorsal edge of the

microtubule, indicating the left-handed pseudo-helical pitch of a

13-protofilament microtubule. The 4 nm tubulin monomer repeat

is visible in the microtubule wall, although at 2.8 nm resolution we

cannot distinguish a-tubulin from b-tubulin, which are structurally

very similar. The dorsal ends of the side-arms (SA) are evident,

forming an 8 nm repeat, following the axial ab-tubulin dimer

repeat. A plane through the center of the microtubule reveals the

Figure 4. Grand average of the ventral disc microtubule-microribbon complex. Selected 0.776 nm XY-slices from the grand average (inset
shows the location of each slice of the grand average). A) Microribbons are made of three sheets; axis-facing (A), inner sheet (I), and margin-facing
(M). The overall microribbon structure shows a distinct 16 nm repeat over two successive ab-tubulin dimers. Crossbridges (CB) are best visible on the
margin-facing sheet but most likely contact the axis-facing sheet on the other side. B) Slice through the dorsal-facing microtubule wall near the
microribbon attachment point showing the a- and b-tubulin densities and the regions of the side-arms (SA) forming an axial 8 nm repeat. The white
line shows the characteristic pseudo-helix of neighboring protofilaments (PF6–9), which are composed of a- and b-tubulin subunits at a 4 nm
spacing. C) The lumen (L) of the microtubule is empty. The associated side-arms are connected laterally (arrow). D) A slice through the most ventral
microtubule-associated densities (gMAP1, gMAP2, and P) reveals the position of the microtubule seam—the offset is between gMAP1 and the paddle
(P), but there is no offset between gMAP2 and gMAP1. Scale bar = 5 nm.
doi:10.1371/journal.pone.0043783.g004

Novel Microtubule-Associated Proteins of Giardia

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e43783



mostly empty lumen (Figure 4C: L) and large side-arm densities

(Figure 4C; SA) on the margin-facing side that maintain the axial

8 nm repeat and appear connected sideward along the microtu-

bule axis (Figure 4C; arrow). Finally, Figure 4D slices through the

ventral portion of the microtubule, revealing densities for two

giardial microtubule-associated proteins (Figure 4D; gMAP1 and

gMAP2), a distinct portion of the side-arm, which we call the

‘‘paddle’’ (Figure 4D; P), and the location of the microtubule seam.

The microtubule lattice seam reproducibly locates to the
same position in all ventral disc tomograms

In our 3-D map we were able to precisely locate the microtubule

lattice seam (Figure 4D). This is quite remarkable as usually the

seam cannot be located at this resolution due to the strong

structural similarities between a- and b-tubulin. However, due to

the repetitive nature of MAPs that mark the exact position of the

ab-tubulin dimers with respect to each other, the seam can be

visualized (e.g. see [25]). The microtubule lattice seam is a

characteristic feature of most microtubules found in vivo and, in

particular, those composed of 12-, 13-, or 14-protofilaments. It

marks the one lateral interaction between protofilaments where

the B-lattice (lateral a-a or b-b interaction between adjacent

protofilaments) is replaced by an A-lattice (a-b interaction) [26];

reviewed in [27]. Resolution of the microtubule seam in the

averaged densities required the same microtubule orientation over

different cells at the site of the microtubule seam. The lateral

stagger of the left protofilament is 4.9 nm rather than 0.9 nm

found in a B-lattice. This 4.9 nm lateral step between gMAPs

unambiguously marks an A-lattice interaction and hence the

location of the tubulin lattice seam [28].

Ventral disc microtubules feature giardial microtubule
inner proteins (gMIPs) as well as giardial microtubule-
associated proteins (gMAPs)

Isosurface representations of the grand average (Figure 5A; axial

view and Figure 5B; lateral views and Figure 6A; cutaway view

and Video S7) provide an overall view of the 3-D arrangement of

Figure 5. Isosurface representation of the grand average. A)
View along the microtubule axis torward the plus-end. Each protofil-
ament is numbered clockwise, starting with 1 at the location of the
seam (see Figure 4D). Microribbons consist of three parallel sheets: axis-
facing sheet, inner sheet, and margin-facing sheet. The crossbridges are
visible on the margin-facing sheet. The axis-facing sheet is connected to
the side rail, a fibrous structure attached to protofilament 6, via the
bridge. There are several giardial microtubule inner proteins (gMIPs)
associated with the inner wall of the microtubule on protofilaments 5,
7, and 8 (gMIP5, gMIP7, and gMIP8). There are also giardial microtubule-
associated proteins (gMAPs) attached to the outer wall at protofila-
ments 1, 2, and 3 (gMAP1, gMAP2, and gMAP3). The side-arms (SA) span
protofilaments 9–12 and are associated with the paddle (P), which is
connected to protofilament 13. B) Axis-facing (left) and margin-facing
(right) views. The axis-facing side has 2 ‘‘naked’’ protofilaments (PF4 and
PF5). All three gMAPs (gMAP1, gMAP2, gMAP3) are visible as well as
part of the paddle (P). The side rail (SR) on protofilament 6 is connected
to the axis-facing sheet of the microribbon via the bridge (B). On the
margin-facing side, gMAP1 is barely visible behind the paddle. The side-
arm covers the rest of the microtubule. The crossbridges (CB) are
evident on the margin-facing sheet (M) of the microribbon. Scale
bars = 5 nm.
doi:10.1371/journal.pone.0043783.g005

Figure 6. MIPs on the microtubule inner side of the grand
average. A) Isosurface representation of the inner microtubule wall
and associated gMIPs. While gMIP5 and gMIP7 appear regularly every
8 nm, according to the ab-tubulin dimer repeat, gMIP8 clearly exhibits a
16 nm repeat that reaches over two consecutive dimers along
protofilament 8. Panels B and C show vertical 0.776 nm slices through
the volume in A, cutting through protofilament 7 (B) and protofilament
8 (C), respectively. Scale bars = 10 nm.
doi:10.1371/journal.pone.0043783.g006
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the microtubule-microribbon complex and associated proteins.

The microtubule is composed of 13 protofilaments, numbered in a

clockwise direction from the seam (Figure 5A). Unless otherwise

noted, in all subsequent figures, the structure will be shown with

the margin-facing side of the microtubule to the right, the ventral-

facing side down, and the microtubule minus-end torward the

viewer. Each structure of the grand average is color-coded

throughout all figures.

Apart from the microribbons, ventral disc microtubules show

multiple protruding densities that represent novel associated

proteinaceous complexes, mostly bound to the outer microtubule

wall, but some densities are also attached to the inner microtubule

Figure 7. Microribbons of the ventral disc are composed of three parallel sheets. A) The bridge (B) connects the axis-facing sheet (A) to the
side rail (SR). In addition, there is a complex array of proteins connecting the side-arm (SA) to the margin-facing sheet (M). The inner sheet (I) of the
microribbon is partially associated with the margin-facing sheet. B) Lateral connections between the three sheets are evident (arrowheads). C) The
axis-facing sheet has a distinct 16 nm repeat of 3 domains, one of which sticks out and is likely the attachment site of the crossbridges (CB) from the
neighboring microribbon. D) A faint 5 nm repeat is evident along the dorsal-ventral line of the axis-facing sheet. E) The grand average isosurface has
been inserted back into the original data, where each segment of the model has been rotated and shifted according to the parameters derived from
the average. Dotted red lines have been drawn to indicate that the crossbridges on the margin-facing side likely connect to the 16 nm protrusions on
the axis-facing side of the microribbon. Scale bars A–D, schematic = 5 nm, E = 25 nm.
doi:10.1371/journal.pone.0043783.g007

Table 1. List of separate structures found in the 3-D map.

Structure Symbol Repeat Location

Protofilament PF(1–13) 4 nm Forms a 13-protofilament microtubule

Axis-facing sheet A 3 domains in 16 nm Microribbon, attaches to P7 at base

Inner sheet I 16 nm Microribbon, attaches to P8 at base

Margin-facing sheet M 16 nm Microribbon, attaches to P9 at base

Crossbridge CB 16 nm Connects A to M of adjacent microribbons

Side rail SR Fibrous (continuous) Completely along outer surface of PF6

Bridge B 16 nm Connects SR to A

Side-arm SA 8 nm Spans PF9-PF12

Paddle P 8 nm PF13 (with PF1, location of seam)

Giardial microtubule-associated protein 1 gMAP1 8 nm PF1 (with PF13, location of seam)

Giardial microtubule-associated protein 2 gMAP2 8 nm PF2

Giardial microtubule-associated protein 3 gMAP3 8 nm PF3

Giardial microtubule inner protein 5 gMIP5 8 nm PF5

Giardial microtubule inner protein 7 gMIP7 8 nm PF7

Giardial microtubule inner protein 8 gMIP8 3 domains in 8 nm PF8

The averaging procedure was based on a 16 nm long repetitive volume along the microtubule axis that comprised two consecutive tubulin dimers. A single tubulin
monomer is 4 nm, a single ab-tubulin dimer is 8 nm, and two ab-tubulin dimers are 16 nm.
doi:10.1371/journal.pone.0043783.t001
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wall. The inner microtubule densities are located on protofila-

ments PF5, PF7, and PF8. Here we have named them giardial

microtubule inner protein (gMIPs: gMIP5, gMIP7, and gMIP8)

corresponding to the protofilament number to which each is

attached (Figures 5A, 6, S3A–S3E). While gMIP5 (Figures 5A,

S3A, S3E) has an 8 nm repeat relative to the protofilament and is

globular, it seems to span the entire distance between PF4 and PF6

and could be attached to PF4 and PF6 as well (Figure 6A). The

density for gMIP7 (Figures 5A, 6A, S3B, S3D, S3E) has a

columnar shape that extends into the lumen of the microtubule

and presumably binds between the a- and b- subunits, repeating

every 8 nm. Interestingly, gMIP8 (Figures 5, 6A, 6C, S3C, S3D)

consists of three smaller globular domains and repeats every

16 nm (Figure 6A, 6C). There may be a link between gMIP7 and

gMIP8 (Figures 5A, S3D).

Ventral disc microtubules also have several giardial microtu-

bule-associated protein complexes (gMAPs: gMAP1, gMAP2, and

gMAP3) corresponding to densities found on the outside of the

microtubule wall at PF1, PF2, and PF3, respectively. While the

inner densities may correspond to a single polypeptide, the outer

densities appear to be large complex assemblies of multiple

proteins. However, for simplicity we still name them gMAPs,

knowing that a gMAP marked here as a single unit may indeed be

composed of multiple protein domains. In our grand average all

three gMAPs appear to repeat axially every 8 nm. All gMAPs are

mostly globular (Figures 5A, 5B, S3A–S3C, S3I) and are found on

the ventral-facing side of the microtubule—nearest the plasma

membrane.

The axis-facing side of ventral disc microtubules is essentially

bare, lacking any detectable microtubule-associated proteins on

PF4 and PF5, with PF4 being the only protofilament with no

detectable associated proteins (either gMAP or gMIP) (Figure 5A).

The margin-facing side of the microtubules are decorated by large,

complex, repeating densities, called side-arms [9] that are

composed of an as-yet-unknown assembly of proteins. The full

extent of these side-arms (SA) span PF9–PF12 with an additional

structure, the paddle (P), attached to PF13 (Figures 5, S3F–S3M).

Side-arms repeat axially every 8 nm and are connected to adjacent

side-arms laterally where they attach to the microtubule wall at

PF10 (Figures S3G, S3M). The side-arm structure changes

continuously with corresponding changes in the pseudo-helix of

the microtubule wall. Specifically, a region of the side-arms is

attached to the outer wall of the microtubule from PF9–PF12

continuously (Figures S3J–S3M) and other parts extend about

10 nm from the outer surface of the microtubule wall (Figures

S3F–S3I).

Microribbons are tri-laminar and are connected laterally
by flexible crossbridges

Microribbons have three distinct but closely apposed sheets.

The axis-facing sheet attaches to the side rail (SR), a fibrous

density covering PF6, every 16 nm via the bridge (B: in Figures 5,

7A, S3B) and is directly attached to PF7 at its base (Figure 5A).

The axis-facing sheet shows a distinct 16 nm lateral repeat along

its entire height (Figures 5, 7B, 7C), which appears to be composed

of three major domains. The inner sheet attaches to PF8

(Figure 5A) and appears to be connected to both outer sheets

(Figure 7B). The margin-facing sheet is attached to the inner sheet,

the side-arms, and PF9 at its base (Figure 5A). There is a repetitive

structural motif that reaches over two axial tubulin dimers, which

is evident on both the axis-facing and margin-facing sheets

(Figures 2C, 4A, 7A–7D, S1C–S1G). Hence, there is an apparent

mismatch between the sheet structure and individual tubulin

dimers. The axially repeating densities of the inner- and margin-

facing sheets are less pronounced (Figure 4A). In addition to the

16 nm axial repeat there is a faint dorsal-ventral striation with a

repeat of approximately 5 nm (Figure 7D), also shown by

Holberton [10].

Microribbons near the edge of the ventral disc typically extend

100 nm into the cell body and are connected laterally by

crossbridges, which are found ,10 nm dorsal to the microtu-

bule-microribbon interface every 16 nm (Figures 2C, 7C, S1F).

Figure 7E shows the crossbridges of the margin-facing sheet of one

microribbon have a trajectory that extends to the domain that

sticks out the farthest on the axis-facing sheet of the neighboring

microribbon.

Discussion

Here we report on a detailed 3-D analysis of the ventral disc of

Giardia trophozoites, which serves three general scientific aspects

that are potentially very relevant for future studies that will go

beyond the sole description of a unique biological organelle. First,

it provides a basis for a thorough identification of the various

components that we found here. It will help enhance our

knowledge on the complex issues regarding microtubule dynamics

and hyper-stabilization by associated factors, and possibly discover

novel molecular mechanisms for microtubule-associated complex-

es. Secondly, further insight into the function of the ventral disc

will connect molecular structural detail with the physical

properties of microvilli attachment of Giardia during host infection.

And lastly, a detailed characterization of the components involved

in this organelle that has no equivalent in any metazoan organism

might lead to Giardia-specific drug targets that can be applied very

selectively with high therapeutic efficiency and least possible side

effects for patients.

Whole-cell 3-D data at intermediate resolution reveals
the detailed cytoskeletal architecture of the trophozoite

Figures 1A–1C show the results of a novel 3-D imaging

approach, 3ViewH ([18], Gatan, Inc. Pleasanton, CA), that

combines microtomy on plastic-embedded, intact Giardia tropho-

zoites with scanning electron microscopy (SEM), where the

exposed surface after each microtome section is imaged and

mounted into a 3-D volume with a resolution of ,75 nm in all

three dimensions. This has allowed us to map out the microtubule

cytoskeleton in a wild type trophozoite, confirming reports about

flagella placement [29] previously visualized by light microscopy.

We also gain a sense of the overall shape of the ventral disc with

respect to the overall cellular architecture (Figure 1).

Greatly improved spatial 3-D resolution (,5 nm) is achieved for

large volumes by stacking and aligning tomograms from consec-

utive sections of plastic-embedded cells (Figures 1D–1F). However,

the technique is time-intensive and despite the stacking of three

montaged tomograms, it still reveals a much smaller field of view

and volume (,11 mm3) than that of an entire disc (,54 mm3). In

the reconstruction presented in Figures 1D–1F we looked at the

part of the disc that encloses the beginning of the microtubule

helix, part of the overlap zone, and the area between the two

nuclei that houses the basal bodies. We can see that the parallel

array of microtubules originate from dense bands associated with

the caudal and posterior-lateral basal bodies (Figure 1E). Closer

investigations of the microtubule ends in these tomograms show

that the ends found in the dense bands (microtubule organizing

centers) are capped (Figure 3B) while the other ends are open

(Figure 3C). These features are reliable indicators for the

microtubule polarity in the ventral disc.
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Throughout the majority of the disc, the neighboring microtu-

bule-microribbon complexes maintain a constant lateral spacing

(Figures 2A, S1C–S1G), reminiscent of the subpellicular microtu-

bule array of Trypanosoma brucei [30], which has microtubules

inserted within the array at varying intervals. As microtubules end

within the ventral disc spiral, new microtubules are added at the

inner edge near the bare area of the spiral. When these

microtubules are inserted at the inner edge, the microribbons

are formed proximal (Figures 3E–3G; blue arrow) to the

microtubule minus-end at some distance distal to the capped ends

(Figures 3E–3G; red arrow). However, to fully understand how the

spacing within the spiral is maintained, large area tomography or

dual-beam tomography would be needed.

The presence of giardial microtubule inner proteins
(gMIPs) in the ventral disc may add to the hyperstability
of the disc microtubule array and the connection to the
sheets

We localized several giardial microtubule associated proteins

(gMAPs) that are associated with the outer wall of the microtubule,

and giardial microtubule inner proteins (gMIPs) that are associated

with the inner wall of microtubules. Typically MAPs can both

regulate the stability as well as the dynamics of microtubules.

While known MAPs associate with the outer wall of diverse

microtubules, MAPs found on the microtubule inner surface, or

MIPs, have only been described in axonemal and subpellicular

microtubules [5,19,31–33], and are distinct from microtubule

luminal particles found in cytoplasmic and nuclear microtubules

[34,35]. Luminal particles are large enough to be directly visible in

cryo-tomograms without the need for averaging techniques, unlike

gMIPs, which are not obvious in the cryo-tomograms presented

here. Luminal particles are not present in ventral disc microtu-

bules of Giardia (Figures 2A, 2B, 3C, S1C–S1G).

There are no reports yet of MIPs found in cytoplasmic or

nuclear microtubules. While in most cases the identity of MIPs

remains unclear, Sui and Downing [32] identified a likely MIP

candidate, tektin, a filamentous MIP found in the A-tubule of sea

urchin axonemes. Unlike tektin, none of the gMIPs we found seem

to be filamentous in nature, but feature distinct globular domains.

Instead they more closely resemble MIP1 and MIP2 from the A-

tubule and MIP3 found in the B-tubule of both Chlamydomonas and

sea urchin axonemes [19,33]. In particular, gMIP8, with three

globular domains over a 16 nm repeat (Figure 6A, 6C) is similar to

Chlamydomonas and sea urchin MIP3 [33]. Subpellicular microtu-

bules of apicomplexan Plasmodium parasites contain a MIP that

follows the axial 8 nm tubulin repeat [5]. MIPs seem predominant

in microtubules that require added stability such as microtubules

exposed to extreme bending forces as in flagellar axonemes [36]

and hyperstable subpellicular microtubule arrays in apicomplexan

parasites [5]. The position of the gMIPs on the inner wall of the

microtubule at the microtubule-microribbon interface (PF5, PF7,

PF8) may indicate a higher need for stabilization in this region,

possibly supporting the association of the microribbons.

FRAP experiments with disc proteins [14] support the idea that

the ventral disc is a hyperstable organelle. Since ventral disc

microtubules also have MIPs, they may experience strain and/or

other forces, suggesting that they may move or bend substantially

during substrate attachment. In fact, the bending of the spiral

during ventral disc assembly may require the presence of MIPs to

stabilize the microtubules in a curved conformation and help

maintain that curvature during the trophozoite’s life cycle.

Giardial microtubule-associated proteins (gMAPs) of
unknown composition form a dense coat around the
ventral disc microtubules

A large number of proteins and complexes associate with

ventral disc microtubules and form a dense proteinacous coat, in

particular on their margin-facing surface. It has been noted that

many antibodies directed against tubulin in the ventral disc do not

reach their epitope [14,37]. Our data from the averaged ventral

disc microtubules make it clear why this is the case; only two (PF4

and PF5) of the 13 protofilaments are not covered by gMAPs

(Figure 5). Apart from the microribbons, the largest complexes are

the very dominant side-arms (Figures 4B, 4C, 5). These were first

described by Holberton [10] on tannic acid stained thin-sections.

Holberton found that the side-arms were always located on the

margin-facing side of the microtubule, an observation confirmed

from our cryo-tomograms. We extend those observations by

noting that the side-arms form a multi-protein complex that

reaches laterally over at least four adjacent protofilaments

(Figure 5A; PF9–PF12) and that may have different interaction

sites on each of the four protofilament surfaces.

To date, proteomics helped to identify over 30 disc-associated

proteins [14,38–46] but this data provides few indications on the

precise location of these proteins. Disc-associated proteins were

initially termed ‘‘giardins’’, with three separate gene families of

giardins localizing to the ventral disc: three annexins, or a-giardins

[38–41]; three striated fiber (SF)–assembling homologs, including

b-giardin [42,43], d-giardin, SALP-1 [46]; and one novel protein,

c-giardin [44]. Nevertheless, the exact composition of the various

microtubule-associated protein complexes observed here (micro-

ribbons, crossbridges, side-arms, paddles, etc.) and how each

structural element contributes to the overall conformational

dynamics of the ventral disc during attachment remains unclear.

Hence, our detailed structural analysis does provide a starting

point for developing models regarding the molecular mechanisms

of attachment and provides a map where individual components

may be filled in upon identification and localization by various

methods.

Microribbons are unique, stable microtubule-associated
structures with an unknown function in disc
conformational dynamics

Microribbons are trilaminar structures that extend in the dorsal

direction from the ventral disc microtubules into the cytoplasm.

The microribbons connect laterally via flexible crossbridges. They

are comprised of several homologs of striated fiber (SF) assemblins,

including b-giardin, d-giardin, and SALP-1 [46]. Non-contractile

SF-assemblins are the major component of striated microtubule-

associated fibers (SMAFs) in flagellated green algae [47].

Microribbon-associated proteins are likely assembled into the

ventral disc prior to cell division and do not appear to be dynamic

or frequently exchanged. None of them have been shown to

recover from photo-bleaching [14]. As with the functioning of

SMAFs in the basal body apparatus of Chlamydomonas [47], it is

likely that the microribbons provide an overall rigidity to the

ventral disc.

Previously, the most extensive structural studies on micro-

ribbons were conducted by Holberton [9–11] who described

crossbridges that occur axially at regular intervals of 15 nm [10].

We are certain that this 15 nm repeat most likely constitutes the

same repeat our data shows to be 16 nm, actually matching the

repeat of two consecutive ab-tubulin dimers. There are two

observations that argue against a 15 nm periodicity with a

mismatch to the underlying microtubule periodicity. First, power
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spectra of ventral disc microribbon areas show a clear 16 nm layer

line and, second, volume averaging produces the crossbridges at

regular intervals. A mismatch would eliminate their densities

through the averaging process. Holberton’s ultrastructural data

was collected from negative stained samples, which are prone to

shrinkage effects, whereas our data was collected from micro-

ribbons in a frozen-hydrated state, representing the most near-to-

native structure [48,49]. Holberton also described a 4 nm periodic

structure on the dorsal-ventral line of both axis-facing and margin-

facing sheets [10]. We find a faint repeat in the dorsal-ventral

direction of ,5 nm. This difference may also come from the

different specimen preparation methods or calibration errors.

Crossbridges likely maintain lateral spacing and
contribute to the overall ventral disc conformation

The lateral spacing between adjacent microtubule-microribbon

complexes is much narrower at the very margin of the ventral disc

(compare Figures 2B and 2C, lower left corner of panel with upper

right corner of panel). In both cases crossbridges can be seen,

albeit of different lengths. Hence, the variations in lateral spacings

may be mediated by contractible crossbridges that involves them

in the overall conformational dynamics of the ventral disc during

attachment to the host. The entire ventral disc has been proposed

to generate a negative pressure differential via its domed shape

wherein the outer rim of the disc, or even the entire disc, contracts

or relaxes [15]. This is believed to represent a contracted state

relevant for intestinal attachment either working directly to

generate suction-based forces for attachment [17], or via a

grabbing or clutching mechanism [50].

The domed shape of the ventral disc is necessary to form proper

surface contacts and maintain attachment and is mediated in part

by the median body protein. Depletion of median body protein

results in flattened discs lacking the overlap zone [16]. Cross-

bridges are also important for maintaining the dome shaped

nature of the ventral disc. As the number of broken crossbridges

increases, the distinctive dome is disrupted [11]. In our isolated

cytoskeletons, the dome-shape has been lost and crossbridges are

often hard to identify (Figures S1C–S1G). Crossbridges are

particularly visible when they are shortened in areas where the

lateral microtubule-microribbon spacing is narrow (Figure 2C). In

general, crossbridges seem to be somewhat flexible in these

preparations, explaining why they are smeared out in the grand

average.

Conclusions

Unlike for in vitro studies that are typically carried out on a few,

isolated components, an intact cell or large organelle such as the

ventral disc in Giardia combines numerous structures in a largely

unknown 3-D arrangement. Some structures like microtubules are

easily recognized based solely on shape or cellular location; others

can only be identified with specific labels. It will take substantial

effort to correlate the data available from fluorescence light-

microscopy labeling of specific disc-associated proteins [14] with

the electron microscopy structures presented here. One way of

correlating the known and novel disc-associated proteins with the

microtubule-associated ventral disc structures will be by using

clonable high-electron dense labels such as metallothionein

[51,52] or metal-clustering peptides [53]. From our study, it is

evident that identifying the specific proteins and proteinaceous

complexes in the context of an intact cell or large and complex

cellular organelle will continue to be a serious challenge in the

future, even in a highly ordered structure such as the Giardia

ventral disc. Nonetheless, this analysis provides a structural

foundation for further proteomic studies into Giardia-specific

protein complexes that later might provide a target for specific

anti-Giardia drugs and therapies. Drugs affecting ventral disc

structure, disc biogenesis, or disc conformational dynamics may

directly or indirectly decrease trophozoite attachment in the host,

and thus limit the initiation or extent of infection.

Materials and Methods

All electron microscopy reagents were purchased from EMS

(Hatfield, PA) unless otherwise noted.

Cell culture
Wild type Giardia lamblia trophozoite cells (strain WBC6) were

grown in modified TYI-S-33 media at 37uC [54]. Cultures were

grown in 16 ml plastic screw-cap tubes to maintain an anaerobic

environment.

Serial block face scanning electron microscopy
Cells were plated on carbon-coated sapphire discs (Rudolf

Brügger SA, Minuso Switzerland) in a homemade anaerobic

chamber and allowed to attach for one hour. Cells were processed

as described in [55], but modified as follows. Cells were first fixed

with 2% gluteraldehyde in 0.05 M sodium cacodylate buffer for

30 minutes at room temperature and then rinsed 36with buffer.

A second fix of 2% OsO4, 0.8% K3Fe(CN)6 in buffer was added

for 1 hour on ice and then rinsed 36 with buffer. A third fix of

0.15% tannic acid in buffer was added for 15 minutes at room

temperature and rinsed 56 in buffer. A fourth fix of 2% OsO4 in

buffer was added for 30 minutes and then rinsed 36 in dH2O.

The sample was then dehydrated into acetone (25%, 50%, 75%,

90%, 95%, 36100%, 5 minutes each) and flat-embedded in hard

Epon over 3 days. 50% HF acid was used to dissolve away the

Teflon-coated glass slides used in flat embedding. Blocks were then

trimmed and placed into a Quanta 600 environmental scanning

electron microscope (FEI-Company Inc., Eindhoven, The Nether-

lands) operating at 2.5 kV and 0.25 torr. The microscope was

equipped with a diamond knife microtome (Gatan 3ViewH; Gatan

Inc. Pleasanton, CA [18]). Serial 70 nm sections were cut and the

block-face was imaged with backscatter detection. XY resolution is

estimated at 75 nm. The stack of images was processed using

Digital Micrograph (Gatan Inc., Pleasanton, CA), converted to

MRC format, filtered, and modeled using IMOD [56].

Room temperature tomography
Cells were plated onto carbon-coated sapphire discs (reviewed

in [57]) as previously described and high pressure frozen using a

BalTec HPM-010 (Leica, Vienna, Austria). The vitrified cells on

discs were freeze-substituted in 4% OsO4 and 1% uranyl acetate

in acetone and warmed from 290uC to room temperature. Discs

were then embedded in Epon/Araldite and 300 nm sections were

generated. 10 nm colloidal gold (Ted Pella, Redding, CA) was

added for fiducial markers. Dual-axis serial section montaged

tomograms were acquired with a Tecnai TF30 300 kV FEG (FEI-

Company, Hillsboro, OR, and Eindhoven, The Netherlands)

transmission electron microscope using SerialEM [58] from 660u
with 1u increments. R-weighted back projection tomograms were

computed using IMOD [56]. Portions of the model were

generated using IMOD and Shape [59].

Cytoskeletal preparation
Cytoskeletons were isolated using a procedure modified from

[11]. Cells grown in 16 ml screw-cap culture tubes were rinsed

with 37uC PHEM buffer (60 mM PIPES, 25 mM HEPES,
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10 mM EGTA, 2 mM MgCl2) to remove unattached and dead

cells. 2 ml of fresh PHEM buffer with 2% triton-X-100 was added

to the cells and transferred to an Eppendorf tube. Cytoskeletons

were vortexed on low for 30 minutes, water bath sonicated for

1 minute and then checked in the light microscope. The vortex/

sonication procedure was repeated until the cytoskeletons were

adequately extracted. They were then rinsed 36 with PHEM

buffer. A 4 ml drop of cytoskeletal prep was adsorbed onto a holey

carbon grid (Quantifoil, Jena, Germany) and 1 ml of 10 nm

colloidal gold was pipetted into the drop. The grids were hand-

blotted and plunge-frozen into liquid ethane. Grids were

maintained at LN2 temperatures until visualized by cryo-electron

microscopy.

Cryo-tomography
Grids with vitreous cytoskeletons were imaged using a Tecnai

TF30. Images were obtained through a Tridiem Gatan Imaging

Filter (Gatan Inc., Pleasanton, CA) operating with a slit width of

20 eV onto the Ultracam, a 4K lens-coupled CCD camera (Gatan

Inc., Pleasanton, CA). Cryo-tilt-series were acquired using the

automated tilt-series acquisition software, SerialEM [58]. A typical

tilt-series spanned 120u, with 2u tilting increments and a pixel size

of 0.776 nm. Defocus was either 26 mm or 24 mm. Tomograms

were calculated with R-weighted back projection using IMOD

[56], the contrast transfer function (CTF) was corrected [60] and

the gold erased. A total of ,40 tomograms were generated.

3-D volume averaging
We used our program, PEET (Particle Estimation for Electron

Tomography; [19,20]), to average 16 nm intervals along the axial

length of the ventral disc microtubules. Five tomograms from four

ventral discs were selected based on overall tomogram quality.

Sub-volumes were selected by placing a model point every 16 nm

at the microtubule/microribbon interface. We used PEET to

remove duplicate particles and apply missing wedge compensa-

tion. We chose a single sub-volume from a tomogram as an initial

reference and then averaged all of the tomograms together. For

analysis, we calculated FSC curves to estimate resolution using the

50% criterion and used IMOD [56] to visualize the averages and

3-D models. To test for reference bias, we computed 5 different

grand averages by using a sub-volume from each tomogram as a

reference. In all cases, the grand averages were virtually identical.

Supporting Information

Figure S1 Cryo-electron tomography of ventral discs. A)

Isolated cytoskeleton with the ventral disc (VD) and all eight

flagella (AFL, CFL, PFL, VFL) present. Areas suitable for cryo-

tomography are over the hole in the carbon (box). B) A schematic

representation of the ventral disc showing the location of each

tomogram used in this study (1–5). Adapted with permission from

[11]. C–G) Tomographic slices from each of the tilt-series used to

generate the grand average (C, Tomo-1; D, Tomo-2; E, Tomo-3;

F, Tomo-4; G, Tomo-5). The left panel is a 25 nm slice through

the microtubules and the right panel is a 50 nm slice through the

microribbons. Each tomogram is shown with its original

orientation with the tilt-axis vertical. In all cases, the 8 nm repeat

on the microtubule is obvious (arrow in F, left panel), but the

crossbridges between adjacent microribbons are only sometimes

seen clearly (arrow in F, right panel). Plus-end and margin

directions are indicated. Scale bars in A = 2 mm, C–G = 100 nm.

(TIF)

Figure S2 Sub-volume averaging. A, B) Subvolumes were

chosen every 16 nm along the axis of the microtubule at the

microtubule/microribbon interface. C) Fourier-shell correlation of

each individual tomogram average (Tomo-1—Tomo-5) and the

grand average. Each number in parentheses shows the number of

subvolumes used to calculate the Fourier-shell correlation. The

grand average has a resolution of ,28 Å.

(TIF)

Figure S3 Giardial Microtubule Inner Proteins (gMIPs)
and Giardial Microtubule-Associated Proteins (gMAPs)
are key features of ventral disc microtubules. A) gMIP5

(magenta) has an 8 nm repeat and is found on the inside surface of

protofilament 5 (PF5), spanning the distance between PF4 and

PF6. gMAP3 (red) occurs every 8 nm on PF3. B) gMIP7 (purple) is

attached to PF7 every 8 nm. Part of the bridge (B; green) is

attached to the outside surface of PF7. gMAP2 (orange) occurs

every 8 nm and is attached to PF2. C) gMIP8 (blue) is attached to

PF8 and has a 16 nm repeat of three globular domains (2 are

shown in this slice). gMAP1 (yellow) is found every 8 nm and is

attached to PF1. D) In the XY orientation, it is clear that gMIP8

has a 16 nm repeat consisting of three different densities. There is

a possible lateral connection between gMIP7 and gMIP8

(arrowhead). E) Two of the three gMIPs are shown. gMIP5

(magenta) has an 8 nm repeat and is found on the inside surface of

PF5. gMIP7 (purple) has an 8 nm repeat and is found on PF7. F)

Side-arms follow an 8 nm repeat. Near the top of the side-arm, a

portion is attached to PF9. G) The side-arm is attached to PF10

and has lateral connections between neighboring side-arms

(arrow). H) Side-arms are attached to PF12. I) A portion of the

side-arm has been differentiated as the paddle (brown). The seam

of the microtubule is located between gMAP1 and the paddle

(arrowhead). J–M) YZ-slices showing how the side-arms (SA)

follow the helix of the microtubule. (J) Side-arms attach to the

microtubule at PF10 and (K) PF12. The paddle attaches to PF13.

(L) The beginning of the cross-bridges where they are attached to

the marginal-facing sheet. (M) The same linker as in G between

adjacent side-arms (arrow). Scale bars, 5 nm.

(TIF)

Video S1 Whole-cell reconstruction of an attached
Giardia intestinalis trophozoite using 3ViewH. Each slice

was obtained using a microtome inside a scanning electron

microscope. After each section was removed, a backscatter-signal

scanning electron micrograph was recorded [18]. IMOD [56] was

used to model important features of the cytoskeleton and

attachment sites. Each slice is 70 nm. The majority of organelles

are visible with this method: Plasma membrane (grey), median

body (orange), nuclei (brown), ventral disc (green), anterior flagella

(purple), caudal flagella (cyan), posterior-lateral flagella (blue), and

ventral flagella (magenta). Near the ventral portion of the cell,

important components of attachment are seen (bare area, lateral

crest, lateral shield). Scale bar, 2 mm.

(MOV)

Video S2 Whole-cell reconstruction model showing
relationships between cytoskeletal elements. The Video

starts with the raw data, then transitions into the modeled data

created by IMOD [56]. The ventral portion of the cell contains

most of the cytoskeletal elements—the ventral disc (VD), median

body (MB), and 4 pairs of flagella (anterior flagella, AFL; caudal

flagella, CFL; posterior-lateral flagella, PFL; ventral flagella, VFL)

as well as the two nuclei (N). The bulk of the cytoskeletal elements

are at the ventral portion of the cell—the attachment site to the

host microvili. Scale bar, 2 mm.

(MOV)
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Video S3 Tomographic reconstruction of 3 serial-mon-
taged sections of a Giardia trophozoite. Each slice is 3 nm

in the Z-plane. The transition zone between sections looks like a

jump. Anterior flagella, AFL (purple); caudal flagella, CFL (cyan);

posterior-lateral flagella, PFL (blue); ventral disc microtubules, MT

(white); microribbons, MR (green); dense bands, DB; supernumer-

ary microtubules, SMT (yellow). Margin-facing and axis-facing

sides are shown for orientation. This volume is about ,11 mm3 of

the entire disc, which has a volume of ,54 mm3. Scale bar, 500 nm.

(MOV)

Video S4 Model of tomographic reconstruction of a
Giardia trophozoite. The model was generated using IMOD

[56]. The movie starts with the viewer looking torward the ventral

surface of the cell. Major cytoskeletal components are present:

anterior flagella, AFL (purple); caudal flagella, CFL (cyan);

posterior-lateral flagella, PFL (blue); ventral flagella, VFL (magenta);

supernumerary microtubules, SMT (yellow); microribbons, MR

(green); microtubules, MT (white); open ends are green spheres;

closed (capped) ends are red spheres. The overlap zone and dorsal-

ventral line are indicated. The movie ends with the viewer looking

torward the dorsal surface of the cell. Scale bar, 500 nm.

(MOV)

Video S5 Grand average of 4700 subvolumes by the
16 nm axial repeat at the microtubule/microribbon
interface (XY-plane). Each step is 0.776 nm. The grand

average generated by the software PEET [19,20] shows the

structures associated with ventral disc microtubules. Orientation

markers are shown. The movie starts from the most ventral portion

of the grand average, goes through the microtubule, the transition

zone to the microribbon, through the microribbon, then reverses

with labeled features: Axis-facing sheet, A; inner sheet, I; margin-

facing sheet, M; crossbridge; side rail; bridge; side-arms, SA; paddle;

protofilaments are marked (1–13); giardial microtubule inner

proteins (gMIP5, gMIP7, gMIP); and giardial microtubule-

associated proteins (gMAP1, gMAP2, gMAP3). Scale bar, 5 nm.

(MOV)

Video S6 Grand average of 4,700 subvolumes by the
16 nm axial repeat at the microtubule/microribbon
interface (YZ-plane). Each step is 0.776 nm. The grand

average generated by the software PEET [19,20] shows the

structures associated with ventral disc microtubules. Orientation

markers are shown. The movie travels from the axis-facing side,

through the lumen of the microtubule, to the margin-facing side.

On reverse, the structures are labeled: side-arms, SA; crossbridges,

CB; paddle, P; margin-facing sheet, M; inner sheet, I; axis-facing

sheet, A; protofilaments are marked (1–13); bridge; giardial

microtubule inner proteins (gMIP5, gMIP7, gMIP8); and giardial

microtubule-associated proteins (gMIP1, gMIP2, gMIP3). Scale

bar, 5 nm.

(MOV)

Video S7 Isosurface representation of the grand aver-
age. Orientation markers are shown. The isosurface, generated by

IMOD [56], is rotated in various directions to point out the

structures associated with ventral disc microtubules. The seam is

also shown. Protofilaments are numbered (1–13); bridge, B; side

rail, SR; axis-facing sheet, A; inner sheet, I; margin-facing sheet,

M; crossbridges, CB; side-arms, SA. Scale bar, 5 nm.

(MOV)
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29. Nohynková E, Tumová P, Kulda J (2006) Cell division of Giardia intestinalis:
flagellar developmental cycle involves transformation and exchange of flagella

between mastigonts of a diplomonad cell. Eukaryotic cell 5: 753–761.
30. Sherwin T, Gull K (1989) Visualization of detyrosination along single

microtubules reveals novel mechanisms of assembly during cytoskeletal

duplication in trypanosomes. Cell 57: 211–221.
31. Hoops HJ, Witman GB (1983) Outer doublet heterogeneity reveals structural

polarity related to beat direction in Chlamydomonas flagella. The Journal of cell
biology 97: 902–908.

32. Sui H, Downing KH (2006) Molecular architecture of axonemal microtubule

doublets revealed by cryo-electron tomography. Nature 442: 475–478.
33. Nicastro D, Fu X, Heuser T, Tso A, Porter ME, et al. (2011) Cryo-electron

tomography reveals conserved features of doublet microtubules in flagella.
Proceedings of the National Academy of Sciences of the United States of

America 108: E845–53.
34. Garvalov BK, Zuber B, Bouchet-Marquis C, Kudryashev M, Gruska M, et al.

(2006) Luminal particles within cellular microtubules. The Journal of cell biology

174: 759–765.
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Characterisation of alpha-1 giardin: an immunodominant Giardia lamblia

annexin with glycosaminoglycan-binding activity. International journal for
parasitology 33: 1341–1351.

40. Bauer B, Engelbrecht S, Bakker-Grunwald T, Scholze H (1999) Functional

identification of alpha 1-giardin as an annexin of Giardia lamblia. FEMS
microbiology letters 173: 147–153.

41. Peattie DA (1990) The giardins of Giardia lamblia: genes and proteins with
promise. Parasitology today (Personal ed) 6: 52–56.

42. Crossley R, Holberton DV (1983) Selective extraction with Sarkosyl and
repolymerization in vitro of cytoskeleton proteins from Giardia. Journal of cell

science 62: 419–438.

43. Crossley R, Holberton DV (1983) Characterization of proteins from the
cytoskeleton of Giardia lamblia. Journal of cell science 59: 81–103.

44. Nohria A, Alonso RA, Peattie DA (1992) Identification and characterization of

gamma-giardin and the gamma-giardin gene from Giardia lamblia. Molecular

and biochemical parasitology 56: 27–37.

45. Davids BJ, Williams S, Lauwaet T, Palanca T, Gillin FD (2008) Giardia lamblia

aurora kinase: a regulator of mitosis in a binucleate parasite. International

journal for parasitology 38: 353–369.

46. Palm D, Weiland M, McArthur AG, Winiecka-Krusnell J, Cipriano MJ, et al.

(2005) Developmental changes in the adhesive disk during Giardia differenti-

ation. Molecular and biochemical parasitology 141: 199–207.

47. Lechtreck K-F, Rostmann J, Grunow A (2002) Analysis of Chlamydomonas SF-

assemblin by GFP tagging and expression of antisense constructs. Journal of cell

science 115: 1511–1522.

48. Taylor KA, Glaeser RM (1974) Electron diffraction of frozen, hydrated protein

crystals. Science (New York, NY) 186: 1036–1037.

49. Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, et al. (1988) Cryo-

electron microscopy of vitrified specimens. Quarterly reviews of biophysics 21:

129–228.

50. Mueller JC, Jones AL, Brandborg LL (1974) Scanning electron microscope

observations in human giardiasis. Johari O, editor Chicago: IIT Research

Institute.

51. Bouchet-Marquis C, Pagratis M, Kirmse R, Hoenger A (2012) Metallothionein

as a clonable high-density marker for cryo-electron microscopy. Journal of

structural biology 177: 119–127.

52. Mercogliano CP, DeRosier DJ (2006) Gold nanocluster formation using

metallothionein: mass spectrometry and electron microscopy. Journal of

molecular biology 355: 211–223.

53. Slocik JM, Stone MO, Naik RR (2005) Synthesis of gold nanoparticles using

multifunctional peptides. Small (Weinheim an der Bergstrasse, Germany) 1:

1048–1052.

54. Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium

supplemented with bile. Transactions of the Royal Society of Tropical Medicine

and Hygiene 77: 487–488.

55. West JB, Fu Z, Deerinck TJ, Mackey MR, Obayashi JT, et al. (2010) Structure-

function studies of blood and air capillaries in chicken lung using 3D electron

microscopy. Respiratory physiology & neurobiology 170: 202–209.

56. Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of

three-dimensional image data using IMOD. Journal of structural biology 116:

71–76.

57. McDonald K, Schwarz H, Müller-Reichert T, Webb R, Buser C, et al. (2010)

‘‘Tips and tricks’’ for high-pressure freezing of model systems. Methods in cell

biology 96: 671–693.

58. Mastronarde DN (2005) Automated electron microscope tomography using

robust prediction of specimen movements. Journal of structural biology 152: 36–

51.

59. Sandberg K, Mastronarde DN, Beylkin G (2003) A fast reconstruction algorithm

for electron microscope tomography. Journal of structural biology 144: 61–72.

60. Xiong Q, Morphew MK, Schwartz CL, Hoenger AH, Mastronarde DN (2009)

CTF determination and correction for low dose tomographic tilt series. Journal

of structural biology 168: 378–387.

61. Hoenger A, Thormählen M, Diaz-Avalos R, Doerhoefer M, Goldie KN, et al.

(2000) A new look at the microtubule binding patterns of dimeric kinesins.

Journal of molecular biology 297: 1087–1103.

Novel Microtubule-Associated Proteins of Giardia

PLOS ONE | www.plosone.org 14 September 2012 | Volume 7 | Issue 9 | e43783


