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Abstract

Motivation: Understanding the underlying biological mechanisms and respective interactions of a disease remains
an elusive, time consuming and costly task. Computational methodologies that propose pathway/mechanism com-
munities and reveal respective relationships can be of great value as they can help expedite the process of identify-
ing how perturbations in a single pathway can affect other pathways.

Results: We present a random-walks-based methodology called PathWalks, where a walker crosses a pathway-to-
pathway network under the guidance of a disease-related map. The latter is a gene network that we construct by
integrating multi-source information regarding a specific disease. The most frequent trajectories highlight commun-
ities of pathways that are expected to be strongly related to the disease under study.
We apply the PathWalks methodology on Alzheimer’s disease and idiopathic pulmonary fibrosis and establish that
it can highlight pathways that are also identified by other pathway analysis tools as well as are backed through
bibliographic references. More importantly, PathWalks produces additional new pathways that are functionally
connected with those already established, giving insight for further experimentation.

Availability and implementation: https://github.com/vagkaratzas/PathWalks.

Contact: georges@cing.ac.cy

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Since its introduction more than a century ago, random walks
(Pearson, 1905) have been successfully applied to a wide range of
sciences including Physics, Chemistry, Biology, Computer Science
and Engineering. With its effective algorithmic layout, easy real-
ization and efficiently produced outcomes, the method is still
deemed a suitable choice for extracting sub-networks of interest in
graph-structures consisting of nodes demonstrating multiple strong
connections. The methodology has known weaknesses, such as
simply recreating the degree distribution of a graph or getting
trapped in highly connected cliques without being able to explore
distant neighborhoods. Moreover, random walks entail a finite

number of steps and in this respect, if additional neighborhoods
are to be explored during the same time period, multiple walkers
have to be simultaneously deployed (Ding and Szeto, 2017; Lu
et al., 2006). To prevent walker entrapment in strongly connected
network regions, restart strategies are used (Chen et al., 2016;
Tong et al., 2006). Such strategies allow a walker to discontinue
its current course and proceed by following up a different node in
the graph. Converging strategies have also been studied, mostly in
the context of computer networks where random walks converge
according to application-induced probability distributions for visit-
ing nodes (Zhong et al., 2008).

The output from methodologies such as the random walk, heavily
depends on the quality of the contained data. In random walks
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specifically, these data can be integrated in a graph. There is a vast
number of online databases offering biological content and an even
greater need of parsing and integrating this information (Baxevanis
and Bateman, 2015; Navarro et al., 2003; Philippi and Köhler, 2006).
The potential knowledge gain could provide researchers the means and
tools to extract results that would benefit the health care system by
enhancing prevention, diagnosis as well as treatment of maladies.

Computational applications, which allow for fast screening and
integration of such biological information, are the prerequisite for
speeding up the process of generating quality results. In this respect,
tools, such as the PREDICT (Gottlieb et al., 2011), integrate drug
information from online databases including DrugBank (Wishart
et al., 2018), OMIM (Amberger et al., 2015) and SIDER (Kuhn
et al., 2016) to suggest new drug-target indications based on sub-
stance similarities. Other models including MutPred (Li et al., 2009)
parse protein sequences and provide insights on the mechanisms of
diseases. Similar software tools are especially needed in the case of
rare diseases as in vivo experiments might not be given the appropri-
ate consideration. The latter could be attributed to the lack of tar-
geted individuals especially if a disease under examination is simply
infrequent.

The integration of biological data from different ‘omes’ (e.g. gen-
ome, transcriptome and proteome) is essential for bioinformatics
applications that yield sophisticated results revolving around path-
way analysis, drug repurposing, interaction networks and disease
associations. Zachariou et al. (2018) examined the importance of
studying disease mechanisms from a multi-omics perspective and
proposed a multi-level network for the Alzheimer’s disease (AD).
This network was formed by integrating multi-source biological in-
formation, such as differentially expressed genes, pathways, single-
nucleotide polymorphisms, drugs and microRNAs. Here, genes act
as intermediaries between the different layers of the proposed net-
work. Through this methodology, clusters of potential key biologic-
al pathways of AD were proposed for further examination.

Community detection algorithms are regularly used to identify
meaningful clusters in a graph and have been successfully proposed
in the context of social networks for more than a decade now
(Clauset et al., 2004; Liakos et al., 2017; Yang and Leskovec,
2012). We have only recently seen the adoption of such techniques
in biological settings. In particular, a benchmarking study
(Rahiminejad et al., 2019) considered the Louvain method (Blondel
et al., 2008) as the best choice in finding protein communities in the
protein–protein interaction (PPI) networks of Human and Yeast.
While addressing the DREAM challenge, Tripathi et al. (2019)
applied their community detection framework in six heterogeneous
biological networks (two human PPI, a pathway signaling, a co-
expression, a cancer and a homology network) in order to extract
core disease communities. More specifically, they showed that over-
lapping community detection algorithms yield better results for dis-
ease module identification, which is justified since a node (e.g. a
gene) can participate in multiple diseases at the same time. Wilson
et al. (2017) applied community detection algorithms in a gene
interaction network and while deploying the Louvain algorithm
they sought to identify communities of up to 10 genes that charac-
terize functional and disease pathways.

In this work, we propose a random walk-based methodology on
a pathway-to-pathway network and we term this as PathWalks.
PathWalks exploits a map that we construct in the form of a syn-
thetic gene network, containing integrated information regarding a
disease of interest, as the latter has been presented in Zachariou
et al. (2018). We create multi-source integrated information maps
regarding AD and idiopathic pulmonary fibrosis (IPF). We use the
produced maps to drive random walks on respective pathway-to-
pathway networks. Our methodology highlights the most frequently
walked candidate pathways and trajectories, identifying pathway
communities that are expected to be strongly related to these dis-
eases. The novelty of our approach lies with the exploitation of
multi-omics disease-related information that helps drive walks on a
functional connectivity network of biological pathways. The ap-
proach ultimately highlights key pathways and their functional com-
munities related to the disease of interest.

2 Materials and methods

2.1 The general concept of PathWalks
Our proposed PathWalks methodology integrates random walks
and shortest paths computations to walk on a pathway-to-pathway
network under the guidance of a synthetic gene network that we
construct by integrating a-priori molecular information related to a
disease (Zachariou et al., 2018). The PathWalks methodology
exploits two main network components related to a disease of inter-
est, which need to be constructed before the execution of the
algorithm.

The first component is the multi-source information map; this is a
synthetic gene-to-gene network, which represents integrated informa-
tion (e.g. gene co-expression, physical interactions and miRNA tar-
gets) from biological databases in the form of weighted connections.
Mathematically, the gene network is represented as a graph (Gg) and
described as Gg ¼ (Vg, Eg), where Vg is the set of nodes (genes) and Eg

is the set of connections among nodes. The walker performs random
walks on the gene network and the visited nodes indicate the walker’s
new destination on the PathWalks’ second component; the functional
connectivity network of biological pathways.

We construct the pathway-to-pathway network [Gp ¼ (Vp, Ep)],
by parsing the biological pathways’ functional connectivity informa-
tion from KEGG (Kanehisa et al., 2017). Pathways that contain genes
already associated with the studied disease, receive higher numeric-
value edge scores (i.e. visitation probability). The walker moves on the
pathway-to-pathway network according to the instructions given by
the map (gene-to-gene network) in order to explore biological path-
way relations regarding the disease under examination.

A sorted list of the most visited pathways is generated after a set
number of iterations. In order for the algorithm to converge, the two
last sorted pathway-visitation lists must have a similarity index
above a selected threshold. Finally, the algorithm highlights the
most frequently visited edges (i.e. pathway-to-pathway connections)
and nodes (pathways), revealing interesting pathway communities,
according to the multi-source map. In this study, we explore two
use-case scenarios from different disease settings; AD as a neurode-
generative disease and IPF as a fibrotic disease. We show a descrip-
tive diagram of the PathWalks methodology in Figure 1.

2.2 Multi-source integrated gene map per disease
The first component needed for the execution of PathWalks is the
gene map. Here, we create gene maps for the PathWalks algorithm

Fig. 1. The PathWalks Concept. We integrate multi-source information regarding a

disease in a gene map. This gene map guides the walker on a functional connectivity

network of biological pathways to identify key pathway communities of the disease
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by integrating biological information as described (Zachariou et al.,
2018). For both AD and IPF maps, we download genes, drugs, bio-
logical pathways and single-nucleotide polymorphisms from
Malacards (Espe, 2018). For the AD map, we further include copy-
number variations’ information from Malacards, which was missing
in the case of IPF. We link drugs of both cases to their gene targets
via the DrugBank database. We then extract additional genetic and
physical interaction information for each disease’s genes through
GeneMANIA’s (Franz et al., 2018) default dataset choices for these
two categories. Finally, we map the genes of each disease to
miRNAs through MirTarBase (Chou et al., 2018). In the AD use
case, we explore additional miRNAs through miRBase (Griffiths-
Jones et al., 2007) and TargetScan (Lewis et al., 2005). Following
the multi-source integration, we generate gene-to-gene networks to
act as guiding maps during the PathWalks execution.

2.3 Pathway-to-pathway reference network
The second component needed for the PathWalks’ execution is the
pathways’ network, on which the walker explores pathway relations
to highlight sub-networks of disease-related molecular mechanisms.
The pathways’ network is an undirected graph of functional connec-
tions that we parse from KEGG’s KGML files. A biological pathway
in KEGG consists of genes and their molecular interactions, reactions
and relations. The nodes in the PathWalks’ pathway-to-pathway net-
work represent biological pathways and an edge connecting two
pathways represents a functional link between them. We assign a
score on each edge according to the following equation:

Edge Weighti ¼ 1þ PSiA þ PSiB;

where PSiA and PSiB are the pathway scores (PSs) (see below) of the
nodes A and B connected with edge i.

The multi-source integration framework combines data across
various sources of information into one network and aggregates
them into a gene-specific score, based both on the gene characteristic
information and on gene–gene integrated inter-relation. We obtain
the PS of each pathway by adding the respective participating genes’
specific scores. These specific scores represent the gene’s observed
relation to the disease of study. We calculate PSs only for the
pathways that we retrieve through Enrichr’s KEGG pathway enrich-
ment analysis (Kuleshov et al., 2016) of the top-100 scored genes of
each disease as selected according to the methodology of Zachariou
et al. (2018).

2.4 Pathways’ community detection by accumulating

guided tours
Following the construction of the gene map and the pathways’ net-
work, we initiate the execution of our proposed algorithm (Fig. 1).
At the beginning of the execution, a random gene and a random
pathway starting nodes are selected, one for each of the two net-
works respectively (gene–gene and pathway–pathway). During every
iteration, the walker performs a series of steps on the gene-map level
and the result assists the walker in deciding its next destination on
the pathways’ level. On the genes’ network, the walker moves based
on a simple random walk methodology, with a random restart every
50 iterations. In more detail, a random number n is generated in
each iteration based on a Cauchy distribution, which indicates the
number of steps the walker has to complete on the genes’ level. The
walker traverses higher-weighted edges with higher probability via
Monte Carlo sampling. The restart parameter prevents the walker
from staying trapped inside neighborhoods of high-degree connect-
ivity or bouncing between neighbors with high edge-weight values.
Including the starting gene node, the maximum number of genes
that can participate in a path in a single iteration is nþ1, in the case
where no nodes were visited more than once. The traversed gene
nodes indicate the next destination of the random walker on the
pathways’ level.

Every pathway receives a þ 1 score for each of the selected genes
that is included in, normalized by dividing with each pathway’s total
number of genes. Through a second Monte Carlo sampling, the next

pathway is chosen based on the normalized candidate pathways’
scores. Then, the walker travels the shortest path between the cur-
rent and the chosen pathway node. In case of multiple shortest paths
with the same score, a random one is selected among the options. If
no pathways were found containing any of the traversed genes, a
new random pathway is sampled and the walker travels there via
the shortest path. All of the pathway nodes and all the edges partici-
pating in the selected shortest path receive a þ 1 on their final score.
The resulting list of the top-ranked pathways highlights key molecu-
lar mechanisms, according to the genetic map of the disease of inter-
est, while the sorted edge-list result is used for the discovery of
pathway communities based on functional relations. The results of
the PathWalks algorithm tend to favor nodes with high betweenness
score, due to the shortest path usage while pathway-traversing. In
order to highlight the most important pathways, we pay special at-
tention to the mostly walked pathways that are not necessarily
favored by the network’s topology.

PathWalks convergence criterion is based on the similarity index
between the current and the last-sorted list (every a set number
steps, 100 in our use cases) of the most visited pathways. If the simi-
larity index between two pathway lists is above a defined threshold,
then the walker is allowed to finish the execution. We call this
threshold, converging factor of the algorithm. To avoid any random
high-similarity result that might occur mid-execution, the variance
of the last 10 similarity comparisons is calculated; if the variance is
below a certain low threshold (e.g. 0.003), while at the same time
the similarity index exceeds the converging factor (e.g. 95% similar-
ity), the execution finishes. The stricter the converging factor and
variance thresholds are, the longer the algorithm requires to con-
verge but the resulting pathway communities are less noisy and
more related to the disease-related map that guided the walker on
the pathway network.

Lastly, the algorithm carries out a Louvain clustering on the re-
weighted pathways’ network (i.e. ranked output edge-list) based on
igraph’s cluster_louvain function and outputs a text file showing the
pathway clusters. We developed the PathWalks software package in
R (Ihaka and Gentleman, 1996) and used CRAN’s igraph package
(Csardi and Nepusz, 2006) for handling network activity. We show
the pseudocode for the PathWalks algorithm in Figure 2. We also
plotted network figures (gene, pathway and results) using the
Cytoscape tool (Smoot et al., 2011) and provide them as
Supplementary Figures and corresponding Cytoscape files in github
(https://tinyurl.com/r3psehc).

Fig. 2. PathWalks Algorithm: outline of input, output and computational steps
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3 Results

In this study, we have chosen AD and IPF as our use cases as both
are incurable illnesses with sufficient available omics data online.
Since these diseases differ significantly in terms of molecular path-
ology and affected tissues, they furnish a unique opportunity to test
PathWalks in two distinct biological subsystems. Furthermore, they
are both complex diseases, with AD specifically being a general
term including various phenotypes/subphenotypes corresponding to
different molecular pathways.

3.1 Pathwalks execution
We run the PathWalks algorithm iteratively until the desired con-
verging similarity and variance output is achieved (see the Materials
and methods section 2.4 for more details). For the execution of our
two use cases, we set a converging factor of 0.95 and a converging
variance of 0.003 (arbitrary values based on a number of initial tri-
als). The similarity indexes and the respective variances are calcu-
lated every 100 steps. The algorithm executed 46 800 iterations in
the use case of AD and 32 800 in IPF. A faster convergence was
achieved for IPF compared to AD (�2/3 iterations) due to the
smaller size of the guiding gene map (�1/3 connections).

The diagrams of the values of the converging similarity metrics
during the execution of PathWalks for the two use-case scenarios
are depicted in Figure 3. We use two metrics to manage the algo-
rithm’s convergence: (i) the similarity index, which is calculated
every 100 iterations and measures the ordered pathways’ similarity
with their previous state and (ii) the variance of these similarity indi-
ces, using a sliding window covering at each calculation the 10 last
similarity indices. The converging factor and variance designate the
exit-thresholds for the two metrics. The combined effect of the con-
verging factor and converging variance impact both the stability and
the quality of our results.

More specifically, the converging factor sets the acceptable level
of pathway lists’ similarity of 100 iterations apart and the converg-
ing variance is responsible for preventing the algorithm from exiting
due to randomly exceeding the selected convergence factor.
Figures 3A and C (‘similarity index’ versus ‘100 s of iterations’) de-
pict for both AD and IPF, plateaus due to the algorithm’s conver-
gence. At the same time, the respective converging-variance values
shown in Figures 3B and D, decrease. In both use-cases after a small
number of iterations, the produced pathway lists consistently in-
clude a number of key (top-ranked) pathways. In IPF, the plateau is
reached faster than in AD since the IPF gene map is smaller, hence,
less pathways are targeted more often.

The quality of the results should be attributed in both the highly
as well as the moderately ranked pathways. Regarding the moderate-
ly ranked pathways, the respective lists converge when the similarity
index has reached the plateau and the similarity variance is reason-
ably small (i.e. values around 0.005 as seen in Figures 3B and D, with
IPF having more fluctuation in its values). Thus, the combination of
convergence factor and variance influences both quality and stability
of our results. A trade-off exists here: on one hand, a low-converging
factor and a high converging-variance achieves fast but only stable
calculations regarding the top-ranked pathways. On the other, a com-
bination of high-converging factor and low converging-variance
yields a lengthier execution but offers highly stable and qualitative
results across the list of pathways, the re-weighted network and the
formed communities.

Following the convergence of PathWalks, we obtain the ranked
pathways, the edge-list of the re-weighted network of pathways
according to the frequency of the walker’s trajectories and the
formed pathway clusters in text format. Tables 1–4 present the top-
10% ranked pathways and top-10 ranked edge results, while
Supplementary Table S1–Tables 1-6 contain, respectively, the
ranked pathway, edge-list and cluster entries for the two diseases.

3.2 Comparisons and validation
In this section, we compare our PathWalks results with other
approaches regarding pathway analysis for AD and IPF. Our goal is
to discover which pathways are commonly highlighted among

various methods, as a baseline validation approach for the outcomes
of our approach and designate entries exclusively highlighted by
PathWalks.

PathWalks implements shortest path traversing on the biological
pathways’ network level. Due to the network’s topology and the
assigned edge weights, certain pathway nodes are consistently high-
lighted in the results. We perform a PathWalks execution with
random biological pathway selection at each iteration (without
gene-map guidance) to identify these topology-favored nodes that
are not necessarily highlighted due to their association with each
use-case disease. For this random-PathWalks experiment, we use
our functional connectivity network of biological pathways and as-
sign edge weights equal to the number of common genes between
two pathways. We show the top-10% of the topology-favored nodes
in Table 5 and provide the respective total lists of ranked pathways,
re-weighted network and formed clusters in the Supplementary Table
S1-Tables 7-9. We first compare the top-10% ranked pathway lists
among the respective IPF and AD PathWalks and the random-
PathWalks experiments to identify which pathways are re-ranked due
to direct association with the biological map and which mostly due to
the topology. We then compare the top-10% PathWalks results (31
pathways) with the respective top-31 significant results from other
pathway analysis tools to evaluate our results.

Figures 4 and 5 show Venn diagrams of the top-10% topology-
favored pathways with the respective results from AD and IPF.

Fig. 3. Converging variables’ plots for the AD and IPF cases. We calculate converg-

ing similarities every 100 steps and their respective variances for every 10 last obser-

vations. (A) Converging similarity index values’ plot of AD. (B) Converging

similarity index variance plots of AD. (C) Converging similarity index values’ plot

of IPF. (D) Converging similarity index variance plots of IPF
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PathWalks brings 19 pathways to the top of the results of AD and
25 of IPF due to the integrated biological information rather than
due to the topology. ‘Serotonergic synapse’ and ‘Notch signaling’
pathways are the first two entries highlighted directly by AD’s gene
map. ‘Cytokine–cytokine receptor interaction’, ‘TGF-beta signaling’
and ‘Chemokine signaling’ pathways are the top-3 IPF related
results with direct biological connection to the disease.
Nevertheless, we do not necessarily consider topology-favored nodes
as true-negative entries. Topology-favored nodes either contain
functional connections with multiple biological pathways (high-de-
gree value) or connect distinct functional sub-networks (high

betweenness value). Therefore, perturbations in the functional con-
nectivity network potentially affect these nodes indirectly. However,
we observe that several of the topology-favored pathways decrease in
rank for non-relevant diseases. For example, the ‘Oxidative phosphor-
ylation’ pathway is ranked second in the random-PathWalks example
and ninth in the AD use case, but only 162nd in the use case of IPF. All
top-31 pathway lists of PathWalks, GeneTrail3, Enrichr, EnrichNet
and random PathWalks can be found in Supplementary Table S2.

To evaluate our findings, we compare our PathWalks results
with those derived from pathway analysis tools including
GeneTrail3 (Backes et al., 2007), Enrichr and EnrichNet. We feed as
input to these tools the gene nodes of each map. Subsequently, we
establish common highlighted pathway entries between PathWalks
and the tools in discussion. This exercise partially helps validate our
PathWalks-derived results and constitutes a common pathway ana-
lysis technique. For example, Glaab et al. (2012) have successfully
used the intersection of the results of the enrichment analysis tools
SAM-GS (Dinu et al., 2007) and GAGE (Luo et al., 2009) while test-
ing for the confidence of their EnrichNet tool’s pathway analysis
results. PathWalks also exclusively highlights several biological
pathways not necessarily favored by the topology. Furthermore, the
key value-added of PathWalks compared to prior pathway analysis
approaches is that it yields functional connections among pathways
as well as proposes pathway clusters. In Figures 6 and 7, we provide
the Venn diagrams of the top-10% highlighted pathways from each
tool, for AD and IPF, respectively.

In the AD use case, 15 terms are ranked exclusively in
PathWalks, 6 of which are favored by the network’s topology. The
remaining nine top-ranked candidates, some of which are

Table 1. The top-10% ranked pathways (31/319) that are visited in

the use case of AD

Rank Pathway name Score

1 Calcium-signaling pathway 20 739

2 Alzheimer’s disease 17 842

3 Apoptosis 16 673

4 MAPK-signaling pathway 8046

5 Serotonergic synapse 4295

6 Pathways in cancer 3978

7 Dopaminergic synapse 3263

8 Metabolic pathways 3211

9 Oxidative phosphorylation 2535

10 Notch-signaling pathway 2220

11 Cocaine addiction 2092

12 Cholesterol metabolism 1635

13 Apoptosis-multiple species 1617

14 Axon guidance 1414

15 Wnt-signaling pathway 1354

16 Bile secretion 1278

17 Cytokine–cytokine receptor interaction 1263

18 TNF-signaling pathway 1166

19 Salivary secretion 1164

20 Prion diseases 1077

21 Neurotrophin-signaling pathway 1075

22 Amyotrophic lateral sclerosis 1066

23 Circadian entrainment 1056

24 Thyroid hormone synthesis 1051

25 Insulin-signaling pathway 1013

26 cAMP-signaling pathway 996

27 Fat digestion and absorption 979

28 Influenza A 966

29 Parkinson disease 951

30 Pancreatic secretion 928

31 Oxytocin-signaling pathway 922

Note: The score denotes the times a pathway participated in the shortest

path that was traversed by the random walker.

Table 2. The top-10 ranked edges walked in the use case of AD

Rank Pathway name 1 Pathway name 2 Edge weight

1 Alzheimer’s disease Calcium-signaling pathway 11 233

2 Alzheimer’s disease Apoptosis 8829

3 Calcium-signaling pathway Serotonergic synapse 3850

4 Calcium-signaling pathway Dopaminergic synapse 2898

5 Oxidative phosphorylation Alzheimer’s disease 2430

6 Oxidative phosphorylation Metabolic pathways 2341

7 MAPK-signaling pathway Calcium-signaling pathway 2271

8 Pathways in cancer Calcium-signaling pathway 2112

9 Dopaminergic synapse Cocaine addiction 1956

10 Pathways in cancer Notch-signaling pathway 1883

Note: The edge weight denotes the number of times an edge was accessed

by the random walker.

Table 3. The top-10% ranked pathways (31/319) that are visited in

the use case of IPF

Rank Pathway name Score

1 MAPK-signaling pathway 19 325

2 Toll-like receptor-signaling pathway 6517

3 Cytokine–cytokine receptor interaction 5569

4 Pathways in cancer 3826

5 TGF-beta signaling pathway 2889

6 Chemokine-signaling pathway 2095

7 PI3K-Akt-signaling pathway 1974

8 AGE-RAGE-signaling pathway in diabetic complications 1974

9 Malaria 1903

10 TNF-signaling pathway 1900

11 Endocytosis 1692

12 Apoptosis 1508

13 NF-kappa B-signaling pathway 1471

14 African trypanosomiasis 1466

15 Rheumatoid arthritis 1451

16 Melanoma 1442

17 Chagas disease (American trypanosomiasis) 1298

18 Pertussis 1260

19 Gap junction 1209

20 IL-17-signaling pathway 1194

21 Hippo-signaling pathway 1137

22 Calcium-signaling pathway 1096

23 Apelin-signaling pathway 1060

24 Epithelial cell signaling in Helicobacter pylori infection 1012

25 Fluid shear stress and atherosclerosis 978

26 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 953

27 Osteoclast differentiation 949

28 Inflammatory bowel disease 949

29 Gastric cancer 944

30 EGFR tyrosine kinase inhibitor resistance 938

31 Adherens junction 931

Note: The score denotes the times a pathway participated in the shortest

path that was traversed by the random walker.
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interestingly ranked very low in a random-PathWalks execution
(Supplementary Table S1-Table 7), include pathways, such as
‘Serotonergic synapse’, ‘Cholesterol metabolism’, ‘Bile secretion’
and ‘Axon guidance’. In the IPF use case, the top-9 terms are exclu-
sively produced by PathWalks, seven of which are not favored by
the topology including ‘Endocytosis’, ‘Gap junction’, ‘Hippo signal-
ing’ and ‘Apelin signaling’ pathways.

Validating pathway analysis methodologies is an invariably chal-
lenging task since ground truths and gold standards are often un-
available. Yu et al. (2017) discuss these difficulties and present a
model, which can evaluate a pathway analysis methodology based
on the consistency of its results on smaller subsets of a main gene

expression dataset. However, such an approach can only be fol-
lowed when parsing gene expression datasets. In our case that
entails gathering of multi-omics data from various sources, we

Table 4. The top-10 ranked edges walked in the use case of IPF

Rank Pathway name 1 Pathway name 2 Edge weight

1 MAPK-signaling pathway Toll-like receptor-signaling pathway 2918

2 Pathways in cancer Cytokine–cytokine receptor interaction 2539

3 Pathways in cancer MAPK-signaling pathway 1976

4 Toll-like receptor-signaling pathway Malaria 1550

5 MAPK-signaling pathway AGE-RAGE-signaling pathway in diabetic complications 1521

6 MAPK-signaling pathway TNF-signaling pathway 1463

7 MAPK-signaling pathway TGF-beta-signaling pathway 1316

8 Toll-like receptor-signaling pathway African trypanosomiasis 1285

9 MAPK-signaling pathway Melanoma 1266

10 Cytokine–cytokine receptor interaction Toll-like receptor-signaling pathway 1252

Note: The edge weight denotes the number of times an edge was accessed by the random walker.

Table 5. The top-10% ranked pathways (31/319) that are visited in a

random-PathWalks execution

Rank Pathway name Score

1 Metabolic pathways 1 135 390

2 Oxidative phosphorylation 907 950

3 PI3K-Akt-signaling pathway 684 541

4 Non-alcoholic fatty liver disease 523 109

5 MAPK-signaling pathway 472 571

6 Pathways in cancer 457 037

7 Calcium-signaling pathway 342 037

8 Apoptosis 301 799

9 Thermogenesis 171 517

10 cAMP-signaling pathway 161 076

11 Alzheimer’s disease 158 931

12 Focal adhesion 112 460

13 Influenza A 108 816

14 Toll-like receptor-signaling pathway 104 478

15 Wnt-signaling pathway 92 442

16 Regulation of actin cytoskeleton 88 624

17 Human papillomavirus infection 87 482

18 Retrograde endocannabinoid signaling 66 385

19 Pancreatic secretion 62 218

20 Dopaminergic synapse 61 069

21 Antigen processing and presentation 60 265

22 Colorectal cancer 57 818

23 Epstein–Barr virus infection 54 034

24 Glutamatergic synapse 49 419

25 JAK-STAT-signaling pathway 47 463

26 Human T-cell leukemia virus 1 infection 47 009

27 Phospholipase D-signaling pathway 46 703

28 Viral carcinogenesis 46 195

29 RNA transport 44 420

30 Citrate cycle (TCA cycle) 44 015

31 Herpes simplex virus 1 infection 43 873

Note: The pathways’ network initial edge weights denote the number of

common genes between two pathways.

Fig. 4. Venn diagram between the top-10% AD PathWalks and random PathWalks

(no gene map) results. In the intersection, we observe the respective ranks of the 12

common pathways for each execution while on the left list, we depict the 19 path-

ways highlighted by PathWalks due to their direct association with the integrated

AD gene map

Fig. 5. Venn diagram between the top-10% IPF PathWalks and random PathWalks

(no gene map) results. In the intersection, we observe the respective ranks of the 6

common pathways for each execution while on the left list, we depict the 25 path-

ways highlighted by PathWalks due to their direct association with the integrated

IPF gene map
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choose to validate our PathWalks results by comparing them with
the results from other tools, similar to Glaab’s approach (Glaab
et al., 2012). Furthermore, we identify corroborating bibliographic
evidence to further ascertain the effectiveness of PathWalks mecha-
nisms in AD and IPF. Without doubt, there is no single best ap-
proach in pathway analysis or in validating its results. Although
common indications provided by several tools offer a baseline for
validating results, one should keep in mind that every individual
tool contributes its own incremental value-added through its own
unique produced outcome(s).

4 Discussion

Our methodology combines random walks and network-based inte-
gration to detect key disease-related pathway clusters in the use
cases of AD and IPF. In AD, the two most visited pathways are
‘Calcium signaling pathway’ (ranked seventh in random PathWalks)

and as expected, the ‘Alzheimer disease’ pathway (ranked 11th in
random PathWalks), which includes a set of known components
and interactions related to the AD pathology.

The ‘Calcium signaling pathway’ has the strongest connection to
the ‘Alzheimer disease’ pathway based on the most walked edges of
the pathways network. Calcium plays a major role in the normal
function of the cells. Deregulation of calcium signaling has been
implicated in many neurodegenerative diseases including AD
(Mattson and Chan, 2003; Supnet and Bezprozvanny, 2010; Woods
and Padmanabhan, 2012). Alteration in calcium homeostasis has
been found to lead to elevated levels of resting calcium in AD animal
models (Alzheimer’s Association Calcium Hypothesis Workgroup,
2017). Calcium overload has also been correlated with disrupted
neuronal structure and function (Kuchibhotla et al., 2008). Recent
efforts investigate the calcium dysregulation in order to find add-
itional pathogenic mechanisms and new treatment methods for AD
(Alvarez et al., 2020; Dave and Jha, 2020; Galla et al., 2020).
Several therapeutic drugs that currently target plasma Ca2þ chan-
nels have received good efficacy on in vitro and in vivo AD models.
A number of such drugs either have been already approved by the
Food and Drug Administration for AD treatment or are in clinical
trials (Tong et al., 2018).

The ‘Apoptosis’ pathway is directly linked to the ‘Alzheimer dis-
ease’ pathway and ranked third. The ‘Alzheimer disease’ pathway is
also indirectly linked, through the ‘Calcium signaling pathway’, via
frequently traversed edges to other high-rank pathways, such as the
‘Serotonergic synapse’, ‘Dopaminergic Synapse’ and ‘MAPK signal-
ing’. ‘MAPK signaling pathway’ is ranked fourth in AD. The persist-
ent activation of mitogen-activated protein kinases (MAPKs) is
thought to play a key role in neurodegeneration, including AD,
through mediating hyper-phosphorylation of neuronal proteins,
eventually causing neuronal death (Fadaka et al., 2017).

The ‘Serotonergic synapse’ pathway is distinctly produced by
PathWalks and ranked fifth. The serotonergic system has an important
role in memory, cognitive process and learning. Moreover, it has been
found to be impaired in AD, where extensive serotonergic denervation
is observed (Butzlaff and Ponimaskin, 2016). Serotonergic markers,
specifically 5-HT receptors, are affected by AD-associated neurodegen-
eration. Recent studies suggest the examination of all markers and
related signaling pathways of the serotonergic system in order to dis-
cover novel treatment and methods for AD (Lennon et al., 2019).

The ‘Dopaminergic synapse’ pathway is ranked seventh by
PathWalks (22nd by GeneTrail3, 21st by Enrichr and 20th by ran-
dom PathWalks). A deficit in the dopaminergic system has also been
observed in AD, with the loss of that dopaminergic neurons in the
ventral tegmental area during the early (pre-plaque) stages of AD
(Nobili et al., 2017). Furthermore, the dopaminergic system has
been intensively studied as a key neurotransmitter involved with
emotion and cognition (Nardone et al., 2014). New findings on the
relation of dopamine neurons in AD start to emerge as well (Krashia
et al., 2019; Pan et al., 2019). Both dopaminergic and serotonergic
can be associated to AD through the calcium pathway. For example,
a T-type calcium channel enhancer (known as SAK3) was shown to
boost serotonin and dopamine in the hippocampus of both naive
and amyloid precursor protein knock-in mice (Wang et al., 2018).

We also observe highly ranked edges connecting ‘Metabolism’ to
‘Alzheimer disease’ pathways, through the ‘Oxidative phosphoryl-
ation’. Both the hypometabolism and oxidative stress have been
implicated as key contributors in initiation and progression for the
synapse vulnerability in AD (Mosconi et al., 2008).

‘Pathways in Cancer’ is also associated with AD and connects to
the ‘Calcium signaling pathway’. Interestingly certain types of can-
cers, such as lung cancer, have been found to be anti-correlated with
the occurrence of neurodegenerative diseases, such as AD, although
both types of diseases are associated to aging (Sánchez-Valle et al.,
2017).

Moreover, we identify ‘Cholesterol metabolism’ (rank 12) and
‘Bile secretion’ (rank 16) as uniquely produced pathways by our
PathWalks analysis. Cholesterol is particularly important in the
brain since it is a major component of cell membranes, and conse-
quently, altered cholesterol metabolism may contribute to AD

Fig. 6. Venn diagram among the top-31 results from PathWalks and the respective

significant pathways produced by other pathway analysis tools for the use case of

AD. We note that, EnrichNet returned only 29 significant pathway results. In the

intersection among all four tools, we observe the respective pathway ranks. On the

left, we show the 15 exclusive pathways highlighted by PathWalks in its top-31

results

Fig. 7. Venn diagram among the top-31 results from PathWalks and the respective

significant pathways of other pathway analysis tools for the use case of IPF. We

note that, EnrichNet returned only 21 significant pathway results. In the intersection

among all four tools, we observe the respective pathway ranks. On the left, we show

the nine exclusive pathways highlighted by PathWalks in its top-31 results
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development (Gamba et al., 2019). Bile acids are the end-products
of cholesterol metabolism produced by human and gut microbiome
co-metabolism and appear to play a role in the central nervous sys-
tem. Recent studies suggest that microbiota influence pathological
features of AD including amyloid-b deposition and neuroinflamma-
tion. These efforts urge additional research into the role that choles-
terol and bile acid pathways play in AD pathology (Chang et al.,
2017; MahmoudianDehkordi et al., 2019; Nho et al., 2019).

The PathWalks exclusively highlighted pathway ‘cAMP signal-
ing’ and the pathway ‘Oxytocin signaling’ (common among
PathWalks, GeneTrail3 and Enrichr), are not yet associated with
AD. We suggest that further research should be pursued regarding
these pathways to potentially discover novel perturbed mechanisms
of AD.

In the use case of IPF, we identify the ‘MAPK signaling path-
way’ to be top-ranked, based on the walker’s visitation frequency.
‘MAPK signaling pathway’ has received high betweenness and de-
gree scores, but is linked to other highlighted pathways of IPF
and hence might be a key intermediate functional node in the
pathogenesis of IPF. In a relevant study (Antoniou et al., 2010), a
significant overexpression in the Braf oncogene, a key gene in the
MAPK pathway, was observed in IPF versus a control group. In
another study (Yoshida et al., 2002), three MAP kinases (ERK,
JNK and p38 MAPK) were suggested to be involved in the regula-
tion of lung inflammation and injury in IPF. Additionally, we
have suggested in our previous computational drug repurposing
study on IPF (Karatzas et al., 2017) that the MAPK-signaling
pathway plays a key role in the transition of early stage IPF to-
ward a more advanced stage.

The second highest ranked pathway in IPF, directly connected to
the ‘MAPK signaling’ is the ‘Toll-like receptor signaling’ pathway.
Recent Toll-like receptor studies related to IPF suggest promising
genes as therapeutic targets. TLR7, TLR9 and TLR2 mRNA expres-
sions were found to be significantly increased in IPF compared to
control subjects, even though TLR9 protein expression was lower in
IPF than controls (Samara et al., 2012). TLR9 has also been shown
to drive the fibrosis progression in IPF in another study (Hogaboam
et al., 2012). A TLR3 polymorphism, namely TLR3 L412F, has also
been linked to a more aggressive and profibrotic disease phenotype
in IPF (O’Dwyer et al., 2013). In a regulatory network, an edge
would be directed from the ‘Toll-like receptor signaling pathway’ to-
ward the MAPK one, as TLR signaling leads to the activation of
MAPKs in mammals through the sequential recruitment of the
adapter molecule MyD88 and the serine-threonine kinase IRAK
(Hemmi et al., 2002). In turn, the activated MAPKs (ERKs, JNKs
and p38 proteins) regulate cellular mechanisms associated with
inflammatory responses as well as cell proliferation and survival
(Li et al., 2010) and so MAPKs are key components in the pathogen-
esis of IPF.

‘Cytokine-cytokine receptor interaction’ is the third ranked path-
way, which has also been suggested by our previous study (Karatzas
et al., 2017) to play a key role in all stages of the IPF disease. The
important role of cytokines as therapeutic targets in IPF has also
been emphasized (Coker and Laurent, 1998). Bouros et al. (2017)
recently proposed the tumor necrosis factor-like cytokine 1A
(TL1A), as a novel fibrogenic factor. Specifically, they found upre-
gulated mRNA and protein levels of TL1A in subepithelial lung
myofibroblasts that were treated either with pro-inflammatory fac-
tors or bronchoalveolar lavage fluid from IPF patients.

‘Pathways in cancer’ is the next pathway result in rank. IPF is
known to have many similar alterations and behaviors to cancer
biology (Vancheri et al., 2010). The second and third most traversed
edges link the ‘Cytokine–cytokine receptor interaction’ pathway to
the ‘Pathways in cancer’, which is then linked to the ‘MAPK signal-
ing’ pathway. Yong and colleagues presented information about
p38 MAPK being a key player in cellular processes that are related
to inflammation and cancer. p38 MAPK can activate both anti-
inflammatory and pro-inflammatory cytokines. p38 MAPK inhibi-
tors have been tested as potential therapeutic drugs against
inflammatory diseases and cancer but with numerous side effects
(Yong et al., 2009).

The fifth ranked pathway ‘TGF-beta signaling’ is also known to
be linked not only with IPF but with fibrotic diseases in general
(Rosenbloom et al., 2017) and it is one of the key drivers in fibro-
genesis (Meng et al., 2016). The sixth ranked pathway ‘Chemokine
signaling’ has been also shown to contribute to the pathogenesis of
interstitial lung diseases including IPF via mechanisms, such as the
regulation of vascular modeling and the mediation of the traffic of
bone marrow derived progenitor cells to the lungs (Mehrad and
Strieter, 2010).

A number of PathWalks results for IPF are neither highlighted
by the benchmark tools we explore in our analysis nor by the ran-
dom (no-map) PathWalks execution. The pathway of ‘Endocytosis’,
which is directly connected to ‘Cytokine–cytokine receptor inter-
action’, is ranked 11th, but there is little evidence in bibliography
associating this pathway with IPF. Specifically, Hsu et al. (2011)
show that IPF and Systemic Sclerosis-Pulmonary Fibrosis share
enriched functional groups regarding genes involved in caveolin-
mediated endocytosis. Caveolins are a family of plasma membrane
proteins, which form caves that are involved in receptor-
independent endocytosis (Williams and Lisanti, 2004). In another
study, Shi and Sottile (2008) suggest a possibility that IPF patients
may have perturbations in extracellular matrix endocytosis due to
caveolin-1 turnover of the fibronectin matrix.

Similarly, the ‘Apelin signaling’ pathway, which is directly con-
nected to ‘MAPK signaling’, ranked 23rd and was uniquely pro-
duced by PathWalks. Apelin is an endogenous ligand that binds to
the G-protein-coupled receptor, is expressed in multiple tissues and
organ systems and is implicated in various physiological processes
(Tatemoto et al., 1998). There is no bibliographic evidence directly
associating this pathway with IPF. Hence, both ‘Apelin signaling’
and ‘Endocytosis’ pathways should be further explored for potential
contribution to the fibrogenesis of IPF patients.

Without a doubt, a limitation in pathway analysis is the fact that
there is often no ground truth to validate the identified pathways
apart from comparing results with those derived with other tools,
looking into the literature and carrying out wet lab experiments.
Nevertheless, PathWalks has yielded promising results for AD and
IPF as the pathway-to-pathway network and the gene map signifi-
cantly assist with their biological information.
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