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During the last decades, many studies reported that male reproductive disorders are
increasing among humans. It is currently acknowledged that these abnormalities can
result from fetal exposure to environmental chemicals that are progressively becoming
more concentrated and widespread in our environment. Among the chemicals present
in the environment (air, water, food, and many consumer products), several can act as
endocrine disrupting compounds (EDCs), thus interfering with the endocrine system.
Phthalates, bisphenol A (BPA), and diethylstilbestrol (DES) have been largely incriminated,
particularly during the fetal and neonatal period, due to their estrogenic and/or anti-
androgenic properties. Indeed, many epidemiological and experimental studies have
highlighted their deleterious impact on fetal and neonatal testis development. As EDCs
can affect many different genomic and non-genomic pathways, the mechanisms underly-
ing the adverse effects of EDC exposure are difficult to elucidate. Using literature data and
results from our laboratory, in the present review, we discuss the role of classical nuclear
receptors (genomic pathway) in the fetal and neonatal testis response to EDC exposure,
particularly to phthalates, BPA, and DES. Among the nuclear receptors, we focused on
some of the most likely candidates, such as peroxisome-proliferator activated receptor
(PPAR), androgen receptor (AR), estrogen receptors (ERα and β), liver X receptors (LXR),
and small heterodimer partner (SHP). First, we describe the expression and potential
functions (based on data from studies using receptor agonists and mouse knockout
models) of these nuclear receptors in the developing testis. Then, for each EDC studied,
we summarize the main evidences indicating that the reprotoxic effect of each EDC
under study is mediated through a specific nuclear receptor(s). We also point-out the
involvement of other receptors and nuclear receptor-independent pathways.
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Introduction

Endocrine Disruptors and Male Reproductive Function
During the last 50 years, the frequency of various male reproductive disorders, such as cryp-
torchidism, hypospadias, testicular cancer, and low sperm count, has progressively increased.
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Many clinical, epidemiological, and experimental studies suggest
that these disorders arise during fetal development (1, 2).

The fetal period is critical for proper testis development.
Indeed, gametogenesis and steroidogenesis, the two major func-
tions of the testis, are set up during this period and their proper
onset is fundamental for the adult reproductive function. For
instance, the number of germ cells formed during fetal life will
strongly affect adult fertility. In mutant mice with pronounced
germ cell loss during fetal life, adult fertility is altered (3, 4).
Similarly, exposure of mouse perinatal testes to gamma rays
decreases the sperm counts at sexual maturity (5). Concerning
steroidogenesis, fetal Leydig cells produce testosterone that is
responsible for the masculinization of the male genital tract and
external genitalia (6, 7). Importantly, androgens must act during
a specific period, called the «masculinization programing win-
dow»that predates genital masculinization. Genital development
in the rat is programed between 15.5 and 18.5 day post-coitum
(dpc). This corresponds to the 13.5–17.5 dpc period in the mouse
and to the 6.5–14 gestational week (GW) time in humans (8). Fetal
androgens are also required for the proper development of adult
Leydig stem cells (9) and for testis descent, which depends also on
Insulin-like 3 (INSL3), another hormone produced by fetal Leydig
cells (10, 11).

It has been hypothesized that male reproductive system abnor-
malities could be related to themassively increased presence in the
environment of natural and synthetic chemicals during the last
decades (1, 12, 13). Among the chemicals present in air, water,
food, and in a variety of consumer products, many can interfere
with the endocrine system and therefore are called endocrine
disrupting compounds (EDCs). EDCs can affect the production,
release, transport, metabolism, binding or elimination of nat-
ural hormones (2). Among the EDCs present in the environ-
ment, phthalates, bisphenol A (BPA), and diethylstilbestrol (DES)
have been chiefly incriminated, particularly during the fetal and
neonatal period due to their estrogenic and/or anti-androgenic
properties (14–17).

A large amount of data shows the effects of EDCs on testis
development. EDCs can act by affecting different tissue-specific
genomic and non-genomic pathways. It is now crucial to identify
which nuclear receptors and downstream signaling pathways are
altered by exposure to DES, BPA, or phthalates in human and
rodent fetal gonads.

In the present study, we highlight the involvement of some
classical nuclear receptors in the response of fetal and neonatal
testes to DES, phthalates, and BPA exposure. We focused par-
ticularly on peroxisome-proliferator activated receptor (PPAR),
androgen receptor (AR), estrogen receptors (ER1 and 2), liver
X receptor (LXR), and small heterodimer partner (SHP) due
to their affinity or involvement in mediating some EDC effects
(Table 1).

Expression and Roles of Nuclear
Receptors in Fetal and Neonatal Testes

Here, we describe the expression profile of these nuclear recep-
tors in the male gonad based on literature and personal data
(Figure 1).

TABLE 1 | Nomenclature and classification of the chosen receptors.

Families Group Member Acronym Name

NR1 C NR1C1 PPARα Peroxisome-proliferator-activated
receptor alpha

NR1C2 PPARβ/δ Peroxisome-proliferator-activated
receptor beta

NR1C3 PPARγ Peroxisome-proliferator-activated
receptor gamma

H NR1H2 LXRβ Liver X receptor beta
NR1H3 LXRα Liver X receptor alpha

NR3 A NR3A1 ERα Estrogen receptor alpha
NR3A2 ERβ Estrogen receptor beta

C NR3C4 AR Androgen receptor

NRO B NR0B2 SHP Small heterodimer partner

From Giguere V, Endocrine review 1999, and the Nuclear Receptor Nomenclature
Committee.

Estrogen Receptors
Estrogen action is mainly mediated through the activation of two
specific estrogen receptors (ER), ERα (ESR1/NR3A1) and ERβ
(ESR2/NR3A2), in target cells (18–21). The expression of these
two receptors in the testis varies according to the species and
developmental stage (Figure 1).

In rat fetal testes, ERβ protein is present in all cell types,
whereas ERα is expressed only in Leydig cells (22). In the mouse,
immunohistochemical studies showed that ERα is expressed in
undifferentiated gonads as early as 10.5 dpc and then is localized
in fetal Leydig cells until birth, while it is absent in germ cells
during the fetal period (23, 24). ERα signaling is functional in the
fetal testis, as ERα knockout leads to an increase in testosterone
production by mouse fetal testes as soon as 13.5 dpc (25). ERβ
is expressed in rat and mouse testis germ cells (Figure 1) from
14.5 dpc (26). In the rat, it is also expressed in Sertoli and Leydig
cells from 16.5 dpc (26–28). In sorted cells frommouse fetal testes,
we detected that ERα mRNA level is higher than that of ERß.
Interestingly, ERα transcripts are mainly detected in germ cells,
but also in interstitial and Sertoli cells (Figure 1). ERβ is mainly
expressed in interstitial cells and to a lower extent in Sertoli and
germ cells (Figure 1).

In humans, ER α and β expression in the testis have
been assessed mainly during the second quarter of pregnancy
(Figure 1). These studies highlighted the presence of two ERß
variants (ERß1 and ERß2) (29, 30) that are expressed (mRNA) in
Sertoli and germ cells and also in some interstitial cells (29, 31,
32). Conversely, ERβ1 protein is specifically detected in Sertoli
and interstitial cells, whereas ERβ2 protein is only detected in
germ cells (32). Concerning ERα expression, some studies did not
detect neither mRNA nor protein expression in human fetal testis
(31–33), while others detected both (29, 34).

Estrogen effects in the testis have been elucidated using genet-
ically modified mice that lack ERα (ERαKO), ERβ (ERβKO)
(35), or both (ERαβKO), or the CYP19/aromatase gene (ArKO)
(36, 37). ERαKO, ERβKO, ERαβKO, and ArKO male mice show
reproductive disorders. ERαKO and ArKO mice are sterile due
to epididymal fluid reabsorption deficiency and spermatogenesis
disorders, respectively (14, 38). Endogenous estrogens also play
an important role during fetal and neonatal testis development
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FIGURE 1 | Localization of the receptors involved in EDCs effects in fetal or neonatal mammalian testes (human and rodents). The mRNA (italic type) or
protein (roman type) expression of the receptors is indicated in each cell type: germ, Sertoli, and interstitial (Leydig and peritubular cells) cells. *Potential localization in
somatic cells.

(25, 39). ERβ knock out induces a 50% increase in the number
of gonocytes observed after birth, due to increased proliferation
and decreased apoptosis (39), but no changes during fetal life.
Conversely, ERα gene deletion does not modify the number
of gonocytes, but increases testosterone production during fetal
life from 13.5 dpc (25). Thus, ERβ is involved in the control of
neonatal gametogenesis, whereas ERα regulates fetal and neonatal
steroidogenesis.

Estrogens play a vital role in the control of human reproduc-
tive functions as well. Studies in patients with ERα or CYP19
inactivating mutations suggest a role of estrogens in human male
fertility (40).

Androgen Receptors
Androgen actions are mediated through the AR (Figure 1).
Androgen andAR roles in themasculinization ofmale genitals are
well known. ARmutations cause androgen insensitivity syndrome
(AIS), possibly themost frequently described hormone insensitiv-
ity syndrome. The most serious AIS phenotype is testicular femi-
nization (Tfm) where genetic males are females in appearance. In
adult life, androgen action on seminiferous tubules is essential for
normal spermatogenesis and fertility and most evidences suggest
that this effect is mediated by Sertoli cells (41). In adult testis, AR
is expressed in Sertoli cells in almost all species tested, but also in
peritubular cells, Leydig cells, and spermatids (42).

In the mouse, AR mRNA and protein are expressed in germ
cells during fetal life (43), when gonocytes are the main testis cell
type physiologically controlled by endogenous androgens. Leydig
cells are largely independent of endogenous androgens during
fetal development. On the other hand, peritubular myoid and
Sertoli cells seem to become androgen-dependent mainly in the
latest part of fetal development (44). However, during late fetal life,
androgen positive effect on Sertoli cell proliferation is probably
indirect because AR is expressed in Sertoli cells only after birth
(45). In human fetal testis, AR is expressed in peritubular and
Leydig cells, but not in germ or Sertoli cells (46) (Figure 1).

Few studies exist on androgen and AR functions in fetal testis.
Nevertheless, alterations of testis functions resulting from expo-
sure to anti-androgenic EDCs during fetal testis development
suggest a key role for androgens and AR during this period. AR
knock out (and thus decreased fetal androgen signaling) in mice
leads to a reduction of intratesticular testosterone level and of the
number of adult Leydig stem cell by 40% at birth to adulthood
(9). Similarly, the analysis of a mouse model in which AR was
selectively invalidated in Leydig cells from fetal life onward and
of patients with complete AIS showed that androgen autocrine
action is essential for Leydig cell maturation and function (47).
Finally, increased prenatal exposure to androgens alters the devel-
opment and function of Leydig cells at a time when androgen
production is paramount for male development (48). Similarly, in
male lambs exposed prenatally to an excess of testosterone, the
number of Sertoli cells is increased and this effect could explain
the testicular dysfunction observed in adult rams (49).

Concerning androgen role in germ cells, AR deficiency results
in increased gonocyte numbers during fetal life due to higher pro-
liferative activity in Tfm mice. Conversely, gonocyte proliferation
is decreased by the addition of DES in fetal testis organotypic
cultures (43).

Peroxisome-Proliferator Activated Receptors
The PPAR family includes three members: PPARα (NR1C1),
PPARβ/δ (NR1C2), and PPARγ (NR1C3). They are mostly
involved in lipid and cholesterol metabolism and in fatty acid
synthesis (50). They are also present in the female and male
reproductive organs (51).

In adult rat testis, the three PPAR members are located in the
interstitial space and in the seminiferous cords (52) (Figure 1).
PPARβ/δ is the most expressed isoform in the testis, followed
by PPARα. Although PPARγ protein is barely detectable (52),
PPARγ mRNAexpressionwas detectedmostly in Sertoli cells (53),
but also in spermatocytes (54) and in fetal germ cells (55). In
mouse fetal testes, PPARα is mainly expressed in interstitial cells,
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but also in Sertoli and germ cells. PPARγ is mostly expressed in
Sertoli cells and then in interstitial and germ cells (personal data
Figure 1). PPARγ expression is higher in testicular cancer cells
than in normal cells (56).

For human fetal testes, we developed a novel flow cytometric
cell sorting approach based on the staining of M2A, a trans-
membrane antigen that is expressed in 90–95% of germ cells
during the first trimester of pregnancy. The M2A-positive cell
fraction expresses only germ cell markers, whereas the M2A-
negative fraction expresses exclusively somatic cell markers. We
have shown that PPARγ mRNA is expressed only in M2A-positive
cells (55) (Figure 1).

Concerning PPAR implication in the reproductive function,
PPARα deletion in mice did not have any effect on their viability
and fertility (57). Furthermore, gestational exposure to a PPARα
agonist did not reduce fetal testicular testosterone production
(58). However, PPARα and PPARβ/δ have been recently iden-
tified as regulators of Sertoli cell metabolism (59). As PPARγ
knockout mice die at 10 dpc (60), its effect on the reproductive
functions could not be tested. The results of microarray analyses
suggest that PPARγ could play an important role in regulating
the expression of key lipid metabolic genes in Sertoli cells during
postnatal development (61).

Liver X Receptors
The liver X receptors LXRα (NR1H3) and LXRβ (NR1H2)
belong to a subclass of nuclear receptors that form obligate het-
erodimers with retinoid X receptors (RXRs) and that are activated
upon binding of their ligands (oxysterols) (62). They are mainly
involved in the regulation of cholesterol and fatty acid homeosta-
sis, but also in glucose homeostasis, immunity, skin development,
and brain functions (63).

In the mouse, quantitative PCR analysis has shown that LXRα
is expressed in Leydig cells, LXRβ in Sertoli cells, and both in germ
cells (64) (Figure 1). In human fetal testes, we demonstrated, using
our cell sorting approach, that LXRα mRNA is expressed both in
M2A-negative and in M2A-positive cells (55) (Figure 1).

Recently, their physiological role in the regulation of male
reproductive functions has been elucidated using LXRα and
LXRβ single and double knockout mouse models (64). Mice in
which LXRα or LRXβ has been invalidated show reduced fertility
throughout life, whereas double knockout mice show reduced
fertility at 5months which progresses to complete sterility by
the age of 9months (65). Moreover, LXRs seem to have distinct
roles in sustaining spermatogenesis (66, 67). Indeed, germ cell
apoptosis is increased in 3.5-month-old LXRα-deficient mice,
whereas the number of proliferating germ cells is reduced in
LXRβ-deficient mice compared to wild type animals. Therefore,
deregulation of one of the LXR pathways can be easily related
to the disruption of the fine equilibrium between germ cell
proliferation and apoptosis, leading to alterations of the repro-
ductive function. For instance, a recent study has reported a
positive correlation between reduced number of germ cells and
decreased LXR mRNA level in testis biopsies of patients with
various degrees of azoospermia (68). Furthermore, in 2.5-month-
old LRXα-deficient mice, testosterone production is significantly
lower than inwild type controls and the level of 3β-hydroxysteroid

dehydrogenase isomerase mRNA (an enzyme that plays a crucial
role in the biosynthesis of hormonal steroids) is significantly
reduced in these mice (65, 66).

Small Heterodimer Partner
Small heterodimer partner (SHP/NR0B2) is a member of the
nuclear receptor superfamily and is classified as an “orphan”
receptor, because its ligand has not been identified yet. This
receptor is mainly known for its role in liver and in the control
of bile acid homeostasis (69, 70).

Small heterodimer partner expression in the testis is very
low (62). In a study performed with purified cells (using laser
microdissection), SHP mRNA was mostly expressed in interstitial
cells of adult mouse testis. SHP is also transiently expressed in
the tubular cells of seminiferous tubules during early postnatal
development and its expression declines as the mice reach sexual
maturity (71, 72) (Figure 1). Interestingly, SHP is not detectable
in human fetal testes (55).

Small heterodimer partner deletion in mice results in higher
testosterone production due to enhanced expression of steroido-
genic genes, such as steroidogenic acute regulatory protein (StAR)
and CYP11A1 (71). SHP knockout mice also show earlier dif-
ferentiation of germ cells compared with control littermates, as
suggested by the number of tubules with elongated spermatids.

The retinoic acid (RA) metabolic pathway is affected by SHP
knock out as indicated by the altered expression of several RA
receptor (RAR) target genes in these mice. Among them, Stra8, a
key gene in meiotic initiation (73, 74), is up-regulated, possibly as
a result of the increased RA expression in the testes of NR0B2−/−

mice (71).

Endocrine Disruptors and Male
Reproductive Functions: Involvement of
Nuclear Receptors

Diethylstilbestrol
Diethylstilbestrol and Male Reproductive Function
The so-called “estrogen hypothesis,” which was first proposed
20 years ago, suggests that the growing incidence of male repro-
ductive abnormalities in humans could be related to increased
estrogen exposure (75). Over the years, this hypothesis has been
supported by a large number of epidemiological and experimental
studies.

Diethylstilbestrol is a synthetic estrogen and a recognized
EDC. Between 1945 and 1971, DES was administered to preg-
nant women to prevent miscarriage or premature delivery. This
was associated with an increased incidence of reproductive tract
abnormalities in their male and female offspring (75). Specifically,
several studies have reported alterations in sperm quality and
higher incidence of genital malformations, cryptorchidism, and
testicular cancer than in untreated populations (76, 77). DES
seems to have a negative effect on sperm count when administered
at high dose during the first semester of pregnancy (78).

Similarly, experimental studies support the estrogen hypothesis
(14), in utero, rodents exposed to DES during development have
abnormal testicular histology and altered adult male fertility (14,
79). Also, in utero exposure toDES of 9 and 10 dpc rat embryos can
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TABLE 2 | Involvement of nuclear receptors in EDCs effects in human and mouse testes.

Receptors potentially
involved in EDC response

Testicular alterations

Leydig cells Germ cells

Testosterone Secretion Number Plurinuclei

DES ERs, NROB2, LXRs nd nd

Phthalates PPARs, LXRs

BPA ERs nd nd

Blue arrows: mouse, red arrows: human.
nd: not determined; æ: “decrease”; ä: “increase”; à: “no effect”.
*In mouse, the effects of phthalates on steroidogenesis vary with the developmental stages and experimental conditions.

advance testicular development, alter the differentiation of gono-
cytes and Sertoli cells, and cause fetal Leydig cell hyperplasia from
16 dpc onward (33, 80–82). In the same way, in vitro incubation
of rat fetal testes with DES reduces testosterone production and
the number of gonocytes by inhibiting proliferation and increas-
ing apoptosis (83, 84). Likewise, in a mouse fetal testis organ
culture system, DES exposure reduces testosterone production
(25). In utero exposure to DES also alters mouse testis develop-
ment by decreasing testosterone levels in testes and reducing the
expression of StAR (85) (Table 2).

Surprisingly (relative to the epidemiological data), testosterone
secretion by cultured human fetal testes is barely affected by DES
exposure, while a strong effect is observed inmouse testes (33, 55)
(Table 2).

DES and Nuclear Receptors
DES and ERs
Diethylstilbestrol exerts its anti-androgen effects mainly through
classical ER signaling, particularly via ERα (25, 86). In an organ
culture system of mouse fetal testes, the reduction in testosterone
production observed following DES exposure in wild type testes
does not occur in ERα-deficient mice (25). Similarly, INSL3 gene
expression and testis descent are not affected by in utero exposure
to DES in ERαKO mice, whereas ERβ invalidation does not
protect from DES effect (86).

DES and ARs and PPARs
To our knowledge, there is no data showing the direct involvement
of AR or PPARs in DES testis effects. However, an indirect action
of DES cannot be excluded in relation with the reduction of
testosterone secretion observed in vitro in rodent testes incubated
with DES (14).

DES and LXRs
Some studies have linked estrogens and LXRs in breast and in
mouse adipose tissue (87, 88). In the testis, LXRs could partially
interfere with DES effects. Daily treatment with DES from day 1
to day 5 after birth induces an important increase in cell apoptosis
in LXR-deficient mice at day 10 compared to wild type animals.
Likewise, LXRs modify the neonatal effects of DES on the expres-
sion of Leydig and Sertoli cell markers (67). However, whether

LXRs have a protective effect against or contribute to DES effects
remains unclear.

DES and SHP
Treatment with DES promotes SHP mRNA accumulation in the
testes of wild type SHP male mice (NR0B2+/+) at postnatal day
10 (P10). Moreover, neonatal DES exposure induces apoptosis,
in P10 NR0B2+/+ mice, without any effect on cell proliferation.
Conversely, DES does not have any effect on apoptosis in the testes
of NR0B2L−/L− males, suggesting that SHP inactivation protects
against DES effects. This seems to be germ cell-specific because
DES treatment drastically decreases intratesticular testosterone
in both NR0B2L−/L− and NR0B2L−/L− males (89). Interestingly,
SHP, mediating the deleterious effects of DES in mice, is not
detectable in human fetal testes, and incubationwithDESdoes not
modify testosterone production by human fetal testes in culture
(90). SHP absence in human fetal testes could be an additional
explanation for their lack of sensitivity to DES.

Phthalates
Phthalates and Male Reproductive Function
Phthalates (phthalic acid esters) are industrial chemicals com-
monly found in many consumer products, such as soaps, sham-
poos, cosmetics, and hairsprays. They are also used in flexible
plastics, such as food and beverage packaging, children’s toys, and
biomedical equipment (91). Phthalates are not covalently bound
to plastic products and therefore may leak out. Di-2-ethylhexyl
phthalate (DEHP) is the most produced phthalate. In the gut,
liver, and blood, DEHP is rapidly hydrolyzed by esterases into
its monoester metabolite mono-2-ethylhexyl phthalate (MEHP),
considered to be the active metabolite and a recognized active
testicular toxicant (55, 92–95), although DEHP, the parental com-
pound, is also suspected to affect steroidogenesis (93).

Epidemiological studies in humans did not clearly prove the
association between masculinization defects and phthalate expo-
sure during fetal life (96, 97). Conversely, experimental studies in
rats have shown that phthalates (di-butyl phthalate, DBP) admin-
istered during fetal life in vivo reduce testosterone production
(98) (Table 2). This effect could be due to a decrease in Leydig
stem/progenitor cells (9).
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Surprisingly, MEHP does not affect in vitro testosterone pro-
duction in human fetal testis explants (94). This was surprising
because phthalates are considered to be anti-androgenic com-
pounds based on their in vivo inhibitory action on testosterone
production in the rat (7, 16, 99, 100). The recent observations
that DBP decreases the steroidogenic activity of rat fetal testes, but
not of human fetal testes, grafted into a mouse or rat host (101–
103) definitively confirm that phthalates are not anti-androgenic
compounds for human fetal testis (Table 2).

Phthalates also impair gonocyte development in the rat (104,
105) and increase gonocyte apoptosis in vitro in rat (93) andmouse
fetal testes (95). Using an organotypic culture system, we demon-
strated thatMEHP also induces germ cell apoptosis in human fetal
testes (94) after only 3 days of culture and at doses (10−5M) in the
range of human exposure. In vitro,MEHP induces the appearance
of multinucleated gonocytes (MNGs) in mouse and rat, but not
in human fetal testis explants. However, exposure of human fetal
testis xenografts to 100–500mg/kg of DBP significant increases
MNG content compared with untreated control (101).

Phthalates and Nuclear Receptors
Phthalates and PPARs
Peroxisome-proliferator activated receptor activation has been
widely linked to the adverse effects of exposure to phthalates
in adult mice (106). PPAR role in phthalate toxicity was first
demonstrated in the liver (107).

Several studies using reporter genes for the different PPARs
showed that phthalates can directly activate PPARs, particularly
PPARα and PPARγ (53, 108).

In vitro transactivation assays demonstrated that MEHP can
activate human and rodent PPARα and PPARγ (109). However, in
PPARα knockout mice, the deleterious effects of DEHP exposure
on male genitals were only partially blocked, suggesting that some
of the toxicological effects of phthalate esters are mediated also by
other nuclear receptors (57, 110).

A large risk assessment study demonstrated PPAR involve-
ment in di-isobutyl phthalate (DiBP) toxic effects in the testis
(111). Particularly, DEHP or DiBP treatment between 7 and
21 dpc induces an increase in PPARα gene expression and PPARγ
protein expression in Leydig cells of fetal rat testes (112, 113).
Moreover, DEHP induces apoptosis in adult rat testes via PPARγ
and the ERK1/2 pathway (114). We demonstrated that MEHP
(55, 94, 95) and PPARα or PPARγ agonists (unpublished data)
have similar apoptotic effects in mouse and human fetal germ
cells.

Phthalates and ERs
Phthalate actions in the developing testis seem independent of ER
signaling. A study performed in our laboratory showed that the
effects of phthalates on steroidogenesis vary with the developmen-
tal stage. Conversely, the strong deleterious effect of phthalates
on germ cells is present during the active phases of gonocyte
development and thus is unaffected by the steroidogenic sta-
tus. Moreover, phthalate effects were comparable in testes from
ERαKOor ERβKOmice andwild type controls (95). Interestingly,
it has been suggested that the onset of dysgenesis in fetal rat testes
exposed to phthalates may be mediated by estradiol (115).

Phthalates and ARs
Studies performed in our laboratory have shown that after MEHP
treatment, (MNGs are similarly increased in testes from AR-
deficient mice (Tfm) and wild type controls. Furthermore, incu-
bation with MEHP for 3 days reduces the number of gonocytes by
∼40–50% in cultured 18.5 dpc testes from both wild type and Tfm
mice. These results demonstrate that MEHP reduces the number
of germ cells independently of the AR pathways (95).

Phthalates and LXRs
LXRs have also been related to the deleterious effect of exposure to
environmental pollutants, particularly phthalates, during fetal life.
Exposure of human fetal testis to MEHP during the first trimester
of pregnancy leads to up-regulation of LXRα mRNA expression
specifically in testis somatic cells, but not in germ cells (55). This
effect is associated with increased transcription of Sterol Response
Element Binding Protein 1c (SREBP1c) and downstream effectors
involved in cholesterol and lipid synthesis and lipid accumulation
in somatic cells. Somatic cells support the testis architecture that
is essential for maintaining germ cell development. Therefore, the
MEHP-induced modulation of LXRα expression specifically in
these cells could lead to a deregulation of cell interactions, ulti-
mately increasing germ cell apoptosis and reducing their number
(94, 116).

Phthalates and SHP
To our knowledge, there is no data on SHP involvement in phtha-
late testis effects. However, LXRs can be modulated by SHP (89),
thus suggesting a potential complex mechanism of EDC effect
through several nuclear receptors.

Bisphenol A
Bisphenol A and Male Reproductive Function
Bisphenol A [BPA, 2,2-Bis (4-hydroxyphenol) propane] is one of
the most studied EDCs. BPA was first synthesized by Dianin in
1891 and its estrogenic activity was discovered in 1936 (117). It
is, therefore, one of the oldest synthetic compounds known for
its endocrine activity, although DES was preferred because of its
stronger estrogenic activity.

Bisphenol A is widely used as a monomer for the industrial
production by polymerization of polycarbonate plastics (72%)
that are used in a variety of common products (optical, media,
automotive, electrical and electronics, housewares and appliances,
construction, medical, packaging...). BPA is also used (21%) as an
essential component of epoxy resins that are mainly employed to
coat the inner surface of food and beverage metallic cans (118).
Lastly, BPA is used as anti-oxidant or inhibitor of polymeriza-
tion in some plasticizers, polyvinyl chloride, and in thermal cash
register paper (119).

BisphenolA can leach into the content of food containers made
of polycarbonate plastic or coated with epoxy resins and then
be ingested. This is the main source of human contamination,
although its ubiquitous distribution leads also to contamination
from dermal exposure through the skin, especially from thermal
paper, and from inhalation of household dusts.

Growing evidence from research on laboratory animals,
wildlife, and humans supports the view that BPA has an endocrine
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disrupting effect and adversely affects male reproductive function
(100, 120).

In humans,most studies reported the association betweenmas-
culinization defects and BPA exposure during fetal life. In China,
sons of workers who were occupationally exposed to BPA dur-
ing pregnancy showed shorter anogenital distance (AGD) (121).
In the general Korean population, BPA level in the plasma of
newborn boys with hypospadias was seven times higher than
in newborns without hypospadias, and the difference was sta-
tistically significant (122). Lastly, although no BPA increase was
first detected in newborn boys with undescended testes in France
(123), recent data from this group showed a negative correlation
between the cord blood concentrations of BPA and Insulin like 3
(INSL3) (124).

The in vivo effects of BPA on fetal Leydig cell function in
rodents are not clear. Some studies reported an inhibitory effect
of BPA on plasma testosterone at birth (125) or on the AGD
in male pups (126), but others did not (127–130). Recently,
using an in vitro organotypic culture system, we analyzed the
testosterone production of mouse, rat, and human fetal testes in
response to various doses of BPA. At high doses, BPA reduces
testosterone production in all three species. However, only human
fetal testes are sensitive to lower doses (10−8M). Furthermore,
BPA treatment reduces INSL3 mRNA level in human testes
(by more than 20%), but not in rat and mouse testes (17, 90)
(Table 2). This might explain the difficulty to observe a mas-
culinization defect associated with BPA exposure in rodents
(above).

Very few studies have investigated in detail BPA effects on fetal
germ cells. Exposure in utero to low BPA concentrations by daily
oral administration to pregnant female rats induces a decrease in
litter size and in sperm number and motility in the adult progeny.
It is important to note that these effects are maintained in the
subsequent generations (F2, F3), suggesting a reprograming of
germ cells by (genetic/epigenetic) mechanisms that persists well
beyond the initial exposure (131). A potential explanation is that
BPA exposure could affect DNA methylation of imprinted genes
in fetal mouse germ cells (132).

BPA and Nuclear Receptors
BPA and ERs
Using in vitro bioassays based on competitive binding to nuclear
receptors, reporter gene expression, and cell proliferation assess-
ment, it has been shown that BPA efficiently activates both ERs
(133).

Bisphenol A binds to ERα and ERß, but its affinity for these
receptors is weak (∼1000-fold lower than estradiol) (134). This
low affinity and the non-detectable expression of ERα in human
fetal testes (32, 33, 135) suggest that ERα is not involved in BPA
effect in humans. This is probably true also for the mouse species
because the negative effect of BPA on mouse testis steroidogenesis
is maintained after ERα invalidation (90).

BPA and ARs
In reporter cell lines, BPA or its halogenated derivatives inhibit
ARs (136). Using in vitro bioassays, BPA has been described as a
full human AR antagonist and a weak human AR agonist (133).

BPA and PPARs
In in vitro bioassays, BPA, and the halogenated forms used in
flame retardants, such as tetrabromobisphenol A (TBBPA) and
tetrachlorobisphenol A (TCBPA), bind to PPARγ (137, 138). The
toxicity of those pollutants in the testis and the direct implication
of PPARs still need to be demonstrated.

To our knowledge, there are no data showing PPAR involve-
ment in BPA testicular effects. Conversely, PPARγ activation has
been associated with BPA-induced adipogenesis (139).

BPA and LXRs
LXRs have never been incriminated in the mediation of the
toxicological effects of BPA exposure in the testis. However, in
mouse 3T3-L1 adipocyte cells, very lowBPAdoses (1 pM) increase
lipid accumulation. This effect is correlated with up-regulation
of SREBP1c mRNA, a gene that is directly regulated by LXRs,
and also of downstream effectors involved in lipid synthesis and
homeostasis (140). In vivo, rat exposed to BPA during fetal and
neonatal life display adipocyte hypertrophy in the perigonadal
adipose tissue at 21 dpp and increased SREBP1c expression (141).
Moreover, analysis of the hepatic transcriptome of adultmalemice
exposed to various doses of BPA (5–5000 µg/kg/day in the food)
for 28 days showed that low doses of BPA directly increase LXRs
and SREBP1c expression and alter fatty acid biosynthesis (142). As
LXRs appear to be involved in the regulation of both steroidoge-
nesis and spermatogenesis, it is crucial to further investigate their
potential role in the effects onmale reproductive functions of BPA
exposure during fetal and neonatal life.

BPA and SHP
To our knowledge, no data is available on SHP involvement in BPA
testicular effects.

Involvement of Other Receptors and Other
Pathways

Based on their reprotoxic effects, most EDCs were thought to
have pro-estrogenic or anti-androgenic effects via ERs and ARs
(1, 143–145). However, evidences based on transgenic models,
genomic analyses, and in vitro binding bioassays highlighted
the involvement of additional or alternative pathways. This may
account for the effects observed at much lower concentrations
and for the non-monotonic dose-response often observed with
EDCs (146, 147).

Some studies highlighted the involvement of the glucocorticoid
and mineralocorticoid receptors (MRs) in the mechanisms of
action of phthalates. Indeed, prepubertal exposure toDBP inhibits
testosterone production through a glucocorticoid-mediated path-
way (148). Moreover, in utero exposure to DEHP results in
decreased MR mRNA and protein expression in adult intersti-
tial Leydig cells and reduced mRNA expression of MR-regulated
genes (149).

Themolecular basis of BPA deleterious effects is poorly known,
and currently the effects of low BPA doses are the focus of major
discussions. Although ERα and ERβ are considered to be themain
BPA targets, several other cellular targets have been proposed.
Specifically, BPA could be a ligand of estrogen-related receptor
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gamma (ERRγ) (150) and of G protein-coupled estrogen receptor
(GPER) (151). Moreover, low BPA concentrations trigger effects
via G-protein coupled receptor 30 (GPR30) (152, 153).

Bisphenol A binds to the orphan nuclear receptor ERRγ at
nanomolar concentrations with high specificity (154), and BPA
positively regulates the transcriptional activity of human ERRγ.
Moreover, these in vitro effects of BPA on ERRγ have been
observed also in vivo during zebrafish development (154). Inter-
estingly, ERRγ has higher affinity for BPA than for DES. The
mechanism of action of BPA may be complex and it could also
antagonize the binding of an unknown ERRγ ligand, thus main-
taining the receptor in a constitutively active form (155).

BothGPR30 and ERRγ are expressed inmouse and human fetal
testes. Using sorted cells from mouse 13.5 dpc testes, we observed
that ERRγ is mainly expressed in interstitial cells and GPR30 in
germ cells at the same level as ERβ (data not shown, Figure 1).

Other endocrine receptors, such as glucocorticoid receptor,
thyroid receptor, and aryl hydro-carbon receptor (AhR), are also
possible BPA targets, although their in vivo relevance is still
debated (156).

Diethylstilbestrol has been considered for years as the paradigm
of environmental EDCs with estrogen-like activity. Indeed, DES
acts through ERs. However, recent studies suggest that LXRα and
LXRβ not only are important for testis physiology, but could also
exert a protective effect against estrogen-like endocrine disrup-
tors (67).

New Perspectives

Historically, the concept of EDCs arose from observations in wild
fauna. During the last decades, it has become obvious, based on
the analysis of the effects of a limited number of compounds,
that some chemicals, to which the general population might be
exposed, can negatively affect also human health, particularly
by targeting the reproductive function and testis development.
We suggest that the huge number of different signaling path-
ways required for gametogenesis and steroidogenesis also might
explain/contribute to the high vulnerability of this system to
exogenous interferences.One consequence of thewealth of studies
on the effects of EDCs onhumanmale reproduction is the growing
interest of the general population and of policy makers. This
has been translated rapidly into the legal ban of some highly
mediatized compounds.While this seemed the proper response at
first, in reality, it did not change much the way of consuming, and
many less studied or less well-known compounds, which could
be as deleterious as those that have been banned, remain in the
environment. Even more worrying, “new” molecules for which
very few or no data on their potential toxicity exist are put on
the market to palliate for the withdrawal of some “old” ones.
This increases the diversity and the number of compounds we
may be concomitantly exposed to, another risk that is difficult
to assess as these compound mixtures change over time. On the
other hand, the action of a single EDC may involve directly or
indirectly several nuclear receptors, while multiple EDCs may act
through a single nuclear receptor. Despite all these difficulties, it
is surprising that few studies have investigated the activation of
nuclear receptors upon EDC exposure simply by measuring the

target gene expression. Indeed, nuclear receptors constitute a large
family of transcription factors that regulate developmental and
physiological processes by directly controlling gene expression.
Moreover, nuclear receptor-mediated transcription is often mod-
ulated through tissue-specific coregulators (coactivators or core-
pressors) (157); however, very few studies have investigated EDC
effects on the expression of these coregulators. These issues will
have to be addressed in future studies to provide reliable predic-
tions about chemicals suspected to threaten human reproductive
health. The formidable explosion of cre-lox-based approaches and
transcriptomic analyses has rendered this goal achievable.

Another important point to address is whether it is worth
to continue working on specific compounds for which a wealth
of scientific data and experimental models are available, even
though these compounds are going to be legally banned soon. The
answer is unexpectedly yes! For many EDCs, we close to under-
stand the mechanism of reprotoxicity. Indeed, the finding that
reprotoxicity is not obligatorily mediated through estrogen- or
androgen-disrupting activities allows now focusing on structure-
based approach. Additionally, the identification of the mecha-
nisms of action of a given compound is a mandatory step that
will allow screening at medium throughput the thousands of
remaining pollutants, which may use the same mechanism to
target reproductive functions, and help predicting their potential
reprotoxic effect. However, this will only be possible if the mech-
anism underlying their deleterious effect within the reproductive
organs, and not only in a reporter cell line, is deciphered. On the
other hand, major advances from in silico, in vitro, and in vivo
(notably model organisms) studies are now helping to define
some unsuspected challenges. For instance, it is now possible to
propose that two substances together may activate an unexpected
signaling cascade. Such evidences are expected to multiply in the
near future and raise a major question: how are we expected to
investigate the potential effect of combinations of hundreds of
compounds? For instance, if among the 900 existing EDCs, only
10 compounds are sufficiently abundant, this would already lead
to billions (9× 1022) of possible different exposure combinations.
Is this a lost battle? Possibly not. Indeed scientists, and particularly
toxicologists, always aim at performing experiments in specifically
defined conditions and by taking into account similar experiments
for reasoning. This might be a narrow view and one may wish to
test nowmore realistic exposure conditions with less definedmix-
tures but that reflect a real life situation. For instance, it has already
been proposed to start using sewage sludge and from there move
to airborne mixtures, compounds extracted from serum…etc.

In the end, every effort needs to keep in mind human health.
From this point of view, the potential reprotoxicity of chemi-
cals is worrying and alarming. The potential transgenerational
effect of some substances is an additional issue. Indeed, we
may need to determine not only the current exposure but also
what our ancestors have been exposed to. This alarming scenery
is definitively a factor of stress and stress is an endocrine
based/endocrine disrupting situation that affects negatively the
reproductive function as well. This is something we all need to
consider when communicating to broad audiences. On an opti-
mistic note, we hope that as EDC deleterious effects are under
the spotlight, this will help gathering efforts to understand the
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mechanismof action of some of them.However, this is insufficient
and a sustained research effort on the fundamental mechanisms
that govern the development of the reproductive system, especially
in humans, is obviously needed. Indeed, unraveling the key signal-
ing cascades underlying the development and maintenance of the
reproductive function is a complementary approach to identify
altered signaling pathways using model compounds. Only, the
synergy of both approaches will ensure the efficient prediction of
EDC reprotoxicity and preserve the health of the future human
generations.

Conclusion

Despite thewealth of data showing the deleterious effects of phtha-
lates, BPA, and DES on testis development, their mechanisms of
action remain poorly understood. In a general way, EDCs can act
by modulating many genomic and non-genomic pathways. While
non-genomic mechanisms are already seriously investigated, the
deregulation of genomic signaling through nuclear receptors has
not been fully elucidated yet. Twomain reasons could explain this:
first, the embryonic lethality of some mutants (e.g., PPARγ) may
preclude later investigations; second, the complexity of the system.
We believe that it is still essential to identify the mechanism of
action of compounds, the harmful effects of which have been
already demonstrated in the developing testis. This knowledge

might help us predicting the reprotoxic potential of other sub-
stances that, alone or in combination with other molecules, use
the samemechanism to target reproduction. Such prediction tools
are crucially needed to supervise efficiently the replacement of
compounds, such as BPA or phthalates, by other molecules that
are currently poorly known.
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