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ABSTRACT

Background. Hepatocellular carcinoma (HCC) is the

fourth most common cause of cancer death worldwide, and

the prognosis remains dismal. In this study, two pivotal

factors, microvascular invasion (MVI) and vessels encap-

sulating tumor clusters (VETC) were preoperatively

predicted simultaneously to assess prognosis.

Methods. A total of 133 HCC patients who underwent

surgical resection and preoperative gadolinium ethoxy-

benzyl-diethylenetriaminepentaacetic acid (Gd-EOB-

DTPA)-enhanced magnetic resonance imaging (MRI) were

included. The statuses of MVI and VETC were obtained

from the pathological report and CD34 immunohisto-

chemistry, respectively. A three-dimensional convolutional

neural network (3D CNN) for single-task learning aimed at

MVI prediction and for multitask learning aimed at

simultaneous prediction of MVI and VETC was established

by using multiphase Gd-EOB-DTPA-enhanced MRI.

Results. The 3D CNN for single-task learning achieved an

area under receiver operating characteristics curve (AUC)

of 0.896 (95% CI: 0.797–0.994). Multitask learning with

simultaneous extraction of MVI and VETC features

improved the performance of MVI prediction, with an

AUC value of 0.917 (95% CI: 0.825–1.000), and achieved

an AUC value of 0.860 (95% CI: 0.728–0.993) for the

VETC prediction. The multitask learning framework could

stratify high- and low-risk groups regarding overall sur-

vival (p \ 0.0001) and recurrence-free survival (p \
0.0001), revealing that patients with MVI?/VETC? were

associated with poor prognosis.

Conclusions. A deep learning framework based on 3D

CNN for multitask learning to predict MVI and VETC

simultaneously could improve the performance of MVI

prediction while assessing the VETC status. This combined

prediction can stratify prognosis and enable individualized

prognostication in HCC patients before curative resection.

Hepatocellular carcinoma (HCC) accounts for more than

80% of the primary liver cancers and is the fourth most

common cause of cancer-related death worldwide.1,2

However, due to the high risk of early relapse and metas-

tasis, the prognosis is dismal. Therefore, predicting the

prognosis is necessary for the formulation of a treatment

plan.

Microvascular invasion (MVI), as an important part of

the hypothesis, is a well-known prognostic factor occurring

after surgical resection in patients with HCC.3,4 The inci-

dence of MVI can reach 15–57.1%,5 and recent studies3,6,7

have shown that MVI is the main risk factor for early

recurrence in the first 2 years after curative treatment.

Therefore, MVI could be used as a predictor of early

recurrence in patients with HCC after hepatectomy. The

determination of MVI is traditionally based on the micro-

scopic examination of postoperative specimens, and

� The Author(s) 2022

First Received: 17 February 2022

Accepted: 23 May 2022

Published Online: 26 June 2022

F. Wei, MD, PhD

e-mail: wei_feng@jlu.edu.cn

Ann Surg Oncol (2022) 29:6774–6783

https://doi.org/10.1245/s10434-022-12000-6

http://crossmark.crossref.org/dialog/?doi=10.1245/s10434-022-12000-6&amp;domain=pdf
https://doi.org/10.1245/s10434-022-12000-6


surgeons are usually unable to assess this before surgery.

Previously, some studies8–12 have begun to use preopera-

tive data as input to establish models to predict MVI before

hepatectomy. Preoperative prediction of MVI is proposed

to be critical when developing treatment strategies for

improved therapeutic outcomes in patients with HCC.

However, many patients without MVI experience early

recurrence after hepatectomy, which challenges the

heterogeneity and mechanism of MVI in predicting HCC

recurrence and metastasis.

Vessels encapsulating tumor clusters (VETC), affecting

the recurrence-free survival (RFS) and overall survival

(OS) of HCC patients,13 is present in some patients without

MVI, and these patients have a worse prognosis than those

without either MVI or VETC.14 Noting that VETC has

complementary significance to MVI in predicting progno-

sis to some extent, recent studies began to use preoperative

images to assess the VETC status.15,16 Additionally, a

significant correlation between VETC and MVI has been

presented.13 Lin et al.17 identified VETC and MVI as

independent predictors for RFS and incorporated them into

a multivariate model to predict RFS. Lu et al.14 determined

the prognostic role of a novel vascular classification system

based on the VETC and MVI statuses after curative

resection. A certain degree of relevance exists between

MVI and VETC, which could be combined as a preoper-

ative prediction label for survival. However, the specific

effect of the label combination in predicting prognosis

remains unclear.

Developments in imaging technology and artificial

intelligence have enabled preoperative noninvasive

assessments of MVI.18,19 Deep learning (DL) technology

can combine the low-level feature representation of the

task into higher-level semantic features through the deep

structure of multiple hidden layers to achieve the learning

goal of the model. It performs better than radiomics and

has been proven to solve various challenging clinical

problems.20,21 DL is increasingly applied to predict the

MVI status but ignores the correlation between VETC and

MVI.22–25 Thus, a multitask learning method was adopted

to simultaneously predict MVI and VETC statuses. We

introduced features that are helpful for predicting MVI in

the process of predicting VETC through model-sharing

parameters, and used the correlation between VETC and

MVI to improve the performance of MVI prediction. By

sharing the feature representation between two related

tasks, the generalization ability of the multitask model in

predicting MVI tasks is better than that of the single-task

model.26

In this study, a three-dimensional convolutional neural

network (3D CNN), as a suitable method for processing

image data in the DL algorithm, was used for multitask

learning of preoperative gadolinium ethoxybenzyl-

diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-en-

hanced MRI data of HCC patients to predict MVI and

VETC statuses simultaneously. The 3D CNNs could

potentially assist surgeons in formulating treatment strate-

gies and accurately assess prognosis.

METHODS

Study Population

The present study was approved by the institutional

ethical review board of the First Bethune Hospital of Jilin

University. It was conducted in accordance with the ethical

guidelines of the 1975 Declaration of Helsinki.27 From

January 2017 to August 2020, a total of 840 consecutive

patients underwent partial hepatectomy and were diag-

nosed with HCC based on pathological results in our

center. The relevant patient information was extracted from

the case resource database. The patient recruitment path-

way and the inclusion and exclusion criteria are listed in

Fig. 1. Finally, 133 patients were included. The patients

were randomly stratified into a training set (N = 93; 35

[37.6%] MVI-positive cases, 31 [33.3%] VETC-positive

cases) and a validation set (N = 40; 16 [40.0%] MVI-

positive cases, 13 [32.5%] VETC-positive cases) at a ratio

of 7:3.

MRI Protocol

The enhanced MR images included in this study were

obtained by three different MRI scanners, including a

Discovery MR750 3.0 T (GE Healthcare, USA) with

breath-hold axial liver acquisition with volume accelera-

tion (LAVA), an Ingenia 3.0 T (Philips Medical Systems,

Netherlands), and an Achieva 3.0 T (Philips Medical

Systems, Netherlands) with axial enhanced T1 high-reso-

lution isotropic volume excitation sequence (e-THRIVE)

protocols (Supplementary Table 1). The contrast agent

used was Primovist (Bayer, Germany), the bolus injection

rate was set to 1 ml/s, and the contrast dose for each patient

was 25 lmol/kg body weight (0.1 ml/kg). Subsequently,

15–20 ml of saline was flushed at a rate of 2 ml/s for each

patient. Enhanced MR images of the late arterial phase (L-

AP), portal vein phase (PVP) and hepatobiliary phase

(HBP) were obtained 30 s, 45 s, and 20 min after the

injection of the contrast agent.

Volumetric Region Extraction and Data Augmentation

The regions of interest (ROIs) of HCC (Fig. 2) were

determined by two radiologists separately using ITK-

SNAP software (http://www.radiantviewer.com). The ROI

was manually delineated on each axial slice of the AP,
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PVP, and HBP images, covering the entire tumor. Finally,

a volume of interest (VOI) representing the tumor area was

manually extracted. Before inputting into the models, the

segmentation results were independently validated by a

senior radiologist to reduce possible bias. In the training

stage, the data in the training set were augmented by ran-

dom rotation, random horizontal flipping, random vertical

flipping, affine transformation, and elastic transformation,

and the data were expanded to twice the amount of the

training set data. The data in the test set were not

augmented.

Confirmation of MVI and VETC Statuses

The determination of the presence of MVI in HCC

patients depends on the reading of MVI status described in

the pathological report after hepatectomy. The status was

reviewed by two senior pathologists who were both blinded

to the clinical data. In the routine postoperative pathology

report, there was no record of VETC status. Therefore, we

obtained at least 3 tissue blocks from different parts of the

tumor acquired from each selected patient, with a mean of

4.1 (median 4, range 3–5) paraffin-embedded tissue blocks

per tumor available for evaluation. Immunohistochemistry

following the manufacturer’s instructions was performed

on all specimens. In brief, paraffin embedded slices were

dewaxed, rehydrated and were subsequently tested for

antigens. BSA (3%) was used for blocking in the dark for

30 min. The slices were incubated with CD34 antibody

(CST, ICO115) overnight at 4 �C and incubated with a

secondary antibody for 50 min afterward. After treated

with DAB and hematoxylin to re-stain the nuclei, slide

images were taken using a Nikon E100 microscope. Con-

sidering the definition of VETC, the area of VETC was

Patients who underwent liver

resection with pathological

proven HCC

(n=840)Included criteria:

Excluded criteria :

Presence of second primary

tumor (n=47)

Incomplete clinical data or

pathological data or no follow-up

data (n=51)

No available MR imaging (n=523)

Motion artifact existence (n=53)

No tissue samples available for

immunohistochemical staining

(n=33)

Histologically confirmed primary

HCC;

Curative liver resection (R0

resection) as the initial treatment;

Well-preserved liver function

(Child-Pugh grade A or B);

Without prior treatment including

MWA, SIRT, RFA or TACE.

Absence of macrovascular

invasion (radiological evidence of

major portal or hepatic vein

invasion) and extrahepatic

metastasis;

a)

b)

c)

d)

e)

a)

b)

c)

d)

e)

Eligible patient cohort

(n=133)

Training set (n=93) Validation set (n=40)

FIG. 1 Flow chart of patient recruitment for the study. HCC, hepatocellular carcinoma

(a) (b) (c)

FIG. 2 A case of hepatocellular carcinoma (HCC) with Gd-EOB-DTPA-enhanced MRI: a 50-year-old man with pathologically confirmed HCC.

The lesion area on each axial slice of arterial phase a, portal vein phase b, and hepatobiliary phase c images was delineated
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semi-quantitatively evaluated in 5% of the units according

to the CD34 evaluation, as the degree of the VETC-posi-

tive area ranged from 0% to 100% of the tumor region;

55% was considered the optimal cutoff value to further

divide HCC patients into VETC? and VETC- groups as

previously reported13 (Fig. 3).

Training a DL Model for Single-Task Learning (STL)

Figure 4 shows the designed network structure of the DL

model for STL, which uses 3D CNN to extract deep fea-

tures related to MVI characterization from three MRI

sequences. First, all voxels in the MRI were normalized,

and the lesion area was then cut into a cube shape

according to each VOI. Due to the different sizes of

tumors, all extracted cube regions were normalized to a

preset size of 60 9 60 9 60. The Adam algorithm was used

as the optimization algorithm in the training phase, the

batch size in training was set to 16, and the model learning

rate was 10-4. For the structure of the model, three-phase

MRI images were input at the same time. Each phase

extracted features through a 3D CNN, and then the

extracted three-phase feature vectors were concatenated

and input into the fully connected layer. Finally, the soft-

max layer outputs the predicted MVI status. The 3D

convolution operation (3 9 3 9 3, stride =1, padding=1)

was applied to extract feature maps containing feature

information. Each convolution operation was followed by

the batch normal layer, the ReLU layer, and the max

pooling layer. The batch normal layer aimed to speed up

the convergence of the model and prevent the model from

overfitting. The max pooling layer (2 9 2 9 2, stride = 2)

was used to reduce the dimensionality of the data so that

the model could extract data features from different levels

of receptive fields. After the last convolution operation,

global average pooling was used to convert the feature

maps extracted by the CNN into feature vectors. Then, the

feature vectors extracted in the three sequences were

concatenated and input into the subsequent fully connected

layer. A 2-dimensional one-hot vector was output through

the softmax layer to indicate that the model finally pre-

dicted whether MVI status was positive or negative.

Training a DL Model for Multitask Learning (MTL)

Figure 5 shows the second model we trained, which used

MTL to predict both MVI and VETC simultaneously. The

model could be roughly divided into two steps. In the first

step, the model input three phases of images at the same

time, used the 3D CNN to extract the features, and then

connected the feature vectors of the three phases into one

feature vector. The two tasks of predicting MVI and VETC

shared the same model parameters and shared the under-

lying features extracted by the model. In the second step,

the model used its own unique model parameters according

to the specific tasks to be performed. The first step enabled

the model to make full use of the correlation between the

two tasks, and the second step ensured the difference

between the tasks. Thus, the accuracy of the model in

predicting MVI was further improved, and the general-

ization ability of the model was enhanced.

Statistical Analysis

We used the area under the receiver operating charac-

teristic (ROC) curve (AUC), accuracy, specificity,

sensitivity, precision, and F1-score for model evaluation.

The chi-square test or Fisher’s exact test was used to

analyze categorical variables, and the independent Stu-

dent’s t-test or Mann–Whitney U test was used to analyze

continuous data. Survival curves for each group were used

to evaluate OS and RFS, as calculated by the Kaplan–

Meier method, and were compared using the log-rank test.

All statistical analyses were performed with PASW

Statistics, version 18.0 (SPSS Inc., Chicago, IL, USA) and

R software, version 3.4.1 [www.R-project.org (accessed on

(a) (b)

FIG. 3 Representative morphological features of VETC status in HCC. a VETC-positive, b VETC-negative
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30 June 2017)]. The threshold for statistical significance

was a 2-sided p\ 0.05.

RESULTS

Demographic Comparison of Baseline Clinical

Features

After a review of the postoperative pathology report and

the immunohistochemistry results, among the 133 lesions,

51 were pathologically determined to have MVI present,

while 44 were pathologically determined to have VETC

present. To verify the performance of the 3D CNN for

MTL, the dataset was divided into two parts, including 93

HCC patients in the training dataset and the remaining 40

HCC patients in the independent validation dataset. The

clinical characteristics of the patients in the training and

validation cohorts are summarized in Supplementary

Table 2.

Predictive Performance of the DL Model

The performance of the 3D CNN for predicting the

corresponding target was separately assessed. As shown in

Fig. 6a, the proposed method of STL yielded moderate

performance, with an accuracy of 0.85 and an AUC of

0.896 [95% confidence interval (CI): 0.797–0.994]. The

MTL model yielded better performance with an accuracy

of 0.90 and a higher AUC of 0.917 (95% CI: 0.825–1.000).

The sensitivity and specificity of the MTL model were also

better than those of the STL model. The ROC curves based

on 3D CNN for STL and MTL to predict MVI status are

plotted in Fig. 6b. The 3D CNN of MTL produced good

performance in predicting VETC status simultaneously,

with an accuracy of 0.825 and an AUC of 0.8604 (95% CI:

0.728–0.993). The ROC curves based on 3D CNN for MTL

to predict VETC status are plotted in Fig. 6c.

Prognostic Assessment of the DL Model

We further evaluated the prognostic role of the VETC-

MVI model in prognosis. According to the output of the

MTL model, patients could be stratified into VETC?/

32
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128

50 50
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32
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128

50

Conv Batch Norm ReLU Max Pooling Global Avg Pooling FC Soft Max

2 SOFT

FIG. 4 Flowchart of the proposed deep learning framework for single-task learning
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MVI?, VETC-/MVI-, VETC?/MVI-, and VETC-/

MVI? subpopulations. For OS and RFS, the MTL model

showed meaningful performance (OS: p = 0.01, PFS: p\
0.001). The postoperative PFS and OS were significantly

different between the MTL-predicted VETC?/MVI?

group and some other groups (VETC?/MVI? vs VETC-/

MVI-, OS: p\0.001, PFS: p\0.001; VETC?/MVI? vs

VETC?/MVI-, OS: p = 0.002, PFS: p = 0.026). The

Kaplan–Meier curves are shown in Fig. 7.

DISCUSSION

HCC, as one of the most fatal diseases, has the highest

incidence and mortality in East Asia and Africa.28 Patients

with HCC are highly heterogeneous, and the outcomes

after radical treatment are different. It is difficult for sur-

geons to assess recurrence after surgery. How to evaluate

prognosis before surgery has remained an unsolved prob-

lem. As one of the most powerful preoperative diagnostic

tools, imaging data of HCC plays a significant role in MVI

and VETC prediction.

Contrast-enhanced MRI images were chosen to be

included in the study according to the clinical practice

guidelines of the National Comprehensive Cancer Network

(NCCN).29 Theoretically, more information could be

obtained, including anatomical and functional aspects,

from MRI images. Therefore, Gd-EOB-DTPA-enhanced

MRI images were selected as the input data. The choice of

AP, PVP, and HBP MR sequences was based on their

higher image quality and their diagnostic significance

indicated in the clinical guidelines of the NCCN. The input

of multisequence data would enable the model to grasp

different information from each sequence, thereby

improving the predictive performance.

The DL algorithm was applied as a tool instead of the

conventional radiomics methods that require considerable

manpower and time and rely on precise tumor contours

delineated manually. The radiomics method is based on a

hand-made feature extractor, which is usually affected by

subjective factors to a certain extent.12 Feng et al.10 pro-

posed a radiomics model using the HBP in Gd-EOB-

DTPA-enhanced MRI to preoperatively predict MVI,

which had an AUC value of 0.85. In the presence of sub-

jective factors, the model does not achieve good results.

However, the DL algorithm could use a cube area con-

taining the tumor and peripheral tissue as the VOI without

strict requirement on the boundary. When proceeding with

data labeling, it was unnecessary to perform pixel-level

32
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FIG. 5 Flowchart of the proposed deep learning framework for multitask learning
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tumor labeling, and cubes were used to label the general

tumor position. This corresponds with the objective pro-

gression of malignant tumors and could reduce the

subjective bias in the delineation process, especially in the

application of small datasets for lesion characterization.24

Many studies have proven that MVI prediction could help

surgeons assess the prognosis of patients before surgery

and formulate more accurate treatment plans to improve

prognosis.22–25,30,31 Each study used its own data for DL to

predict MVI, which achieved AUCs ranging from 0.810 to

0.915. The prediction performance of the model was

ensured by the change of the source data type and the DL

algorithms.

MVI and VETC are two completely different vascular

modes that both affect tumor metastasis. However, patients

without MVI still experience recurrence and metastasis,

and the use of MVI status in predicting prognosis is

somewhat stretched. Therefore, we introduced VETC,

which could explain the mechanism of Epithelial-mes-

enchymal transition (EMT) tumor cell metastasis32 and had

a certain connection with MVI.13,17,33

Two types of models to predict MVI were trained in our

research. The first model predicted MVI using a 3D CNN

for STL with an input of multisequence MRI images, and

produced a good performance, with an AUC of 0.896 (95%

CI: 0.797–0.994). The second model was based on the idea

of MTL using a 3D CNN to simultaneously predict MVI

and VETC. Since the image data were taken from multiple

models of equipment, we standardized the data to ensure

the generalization ability of the model, while also making

the model capable of accepting validation from indepen-

dent external data. However, the existing studies

mentioned above only used MVI as a separate task for

prediction, ignoring the correlation between MVI and

VETC. Based on the correlation and the complement

supplied by VETC in predicting prognosis, coupled with

the characteristics of the MTL model that could simulta-

neously predict related tags, the idea of MTL was adopted

in our study. We integrated predicting MVI and VETC as

two related tasks into a DL model at the same time. In the

first stage of the feature extraction, we made the tasks share

the same feature representation. In the second stage of the

prediction, the feature representation was input into the

targeted task prediction module, and the correlation

between the tasks of predicting MVI and VETC could

improve the prediction performance and generalization

ability of the model. The difference between the two tasks

and the respective predictive abilities of the two tasks in a

MVI prediction

(a)

(b) (c)

VETC prediction

Framework

Single-task

0.85 0.686

(0.797-0.994)

(0.825-1.000)
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1 0.6316
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FIG. 6 a Performance of 3D convolutional neural networks for

single-task learning and multitask learning. b ROC curves of 3D

convolutional neural networks (CNNs) for microvascular invasion

(MVI) prediction in single-task learning and multitask learning.

c ROC curves of 3D convolutional neural networks (CNNs) for

vessels that encapsulate tumor cluster (VETC) prediction in multitask

learning
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targeted manner were ensured. Compared with the single-

task model, the multitask model improved the performance

of predicting MVI and the generalization ability of the

model while outputting the results of VETC as well as the

results of MVI, instead of separately training a model to

predict VETC, thereby reducing the training time of the

model. Finally, the MTL model improved the prediction

accuracy of MVI from 0.85 in the original STL model to

0.9, and increased the AUC to 0.917 (95% CI:

0.825–1.000). By adding the task of VETC prediction,

various other indicators, such as sensitivity, specificity,

precision, and F1-score were improved, indicating that

labels related to MVI indeed improved the prediction

performance, and we considered that the potential con-

nection between the labels was helpful.

As two important prognostic factors, MVI and VETC

are both effective in prognostic stratification.14 Analogous

results were obtained in our study. According to the dif-

ference in the MVI and VETC statuses in the results

predicted by the 3D CNN, the patients were divided into

four subpopulations. Survival analysis showed that strati-

fication based on the prediction results was meaningful,

indicating that the 3D CNN for MTL could evaluate

prognosis by predicting the combination of MVI and

VETC statuses. In particular, postoperative PFS and OS

were significantly different between the VETC?/MVI?

group and other groups, such as the VETC-/MVI- and

VETC?/MVI- groups, which indicated that our model has

the potential to stratify patients with VETC?/MVI? who

have the shortest survival period. Although a significantly

shorter median follow-up time was observed in patients

with VETC?/MVI- and VETC-/MVI? than in those

with VETC-/MVI-, no significant differences in OS and

PFS were detected between these groups, which might be

caused by the small sample size. These results revealed that

the coexistence of MVI and VETC could indeed shorten

the OS and PFS, resulting in a poor prognosis. However,

when one of the two existed, although the survival time

was slightly prolonged, the stratification was still

ambiguous. Collectively, these highlighted the potential

prognostic value of the 3D CNN for MTL for personalized

risk stratification and long-term management. However,

the single institution, limited sample size, and strict

exclusion standard limited the reproducibility and compa-

rability of the study. Future multicenter studies with larger

scale populations are needed to validate our findings. The

data standardized module included in our model is pre-

pared to accept data from other centers as an independent

external validation panel to form multicenter studies. In the

future, multi-center applications will be promoted with our

3D CNN framework as the core through the regionalized

medical and telemedicine platforms we are building. In this

way, a more convenient online system in the form of

Browser/Server could be provided for other centers, the

MRI images of patients could be uploaded using a Web

browser for prediction, and the privacy of patient data

would be protected by means of registration and

encryption.

In conclusion, we proposed a DL model for MTL based

on a 3D CNN and Gd-EOB-DTPA-enhanced MRI images

for MVI and VETC prediction, which improved the pre-

diction performance of MVI while assessing the VETC
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FIG. 7 Overall survival (OS) and recurrence-free survival (RFS) curves scaled by MVI-VETC status predicted by the 3D CNN for MTL with

Kaplan–Meier analysis. a Overall survival. b Disease-free survival
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status of the sample. The outstanding performance of the

model not only proved the correlation between MVI and

VETC but also made the assessment of prognosis more

accurate. An MVI/VETC remote prediction and diagnosis

system based on our novel framework has potential to

formulate treatment strategies and assess survival before

surgery, and ultimately improve the survival time of HCC

patients.
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