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INTRODUCTION

The presence of gene variants in mitochondrial 
encoded MT-RNR1 (12S RNA) genes is associated with 
aminoglycoside-induced sensorineural hearing loss 
(SNHL).[1-7] Global reports have shown variations in 
the prevalence/incidence of MT-RNR1; however, the 
A1555G mutation (the first identified homoplasmic 
variant)[2] is frequent among families in Africa, Asia, 
Europe and America.[6-13] This mutation has a matrilineal 
inheritance and in one study a reported propensity 
in more than 50% of those affected to develop SNHL 
following exposure to aminoglycosides.[14] Sporadic 
development of hearing loss in those who carry this 
mutation without aminoglycoside exposure is rare.[15]

Despite the risk of ototoxicity, aminoglycosides are 
widely used. Gentamicin is the most commonly used 
aminoglycoside in the treatment of neonatal sepsis due 
to bacterial sensitivity and cost effectiveness compared 
to other groups of antibiotics. Minimizing the risk of 
ototoxic hearing loss may require screening of all patients 
especially newborns for MT-RNR1 mutant genes prior 
to aminoglycoside therapy if MT-RNR1 mutations are 
common in the exposed population and if the risk of 
ototoxicity in the affected patients is significant.

Rapid screening tests with the ability to detect the 
most common variants are available.[16,17] The cost 
effectiveness of such screenings are yet to be done, 
but would need to consider both the upfront costs 
associated with screening for the mutation versus the 
lifetime cost of habilitation of a deaf child, either of 
which can be significant. Mohr et al. in a societal study 
put the lifetime cost of habilitation of children with 
severe-to-profound hearing loss at one million dollars 
USD per individual.[18]
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ABSTRACT

Background: This was a meta-analysis and 
systematic review to determine the global prevalence 
of the mitochondrially encoded 12S RNA (MT-RNR1) 
genetic mutation in order to assess the need for 
neonatal screening prior to aminoglycoside therapy. 
Materials and Methods: A comprehensive search 
of MEDLINE, EMBASE, Ovid, Database of Abstracts 
of Reviews of Effect, Cochrane Library, Clinical 
Evidence and Cochrane Central Register of Trials was 
performed including cross-referencing independently 
by 2 assessors. Selections were restricted to 
human studies in English. Meta-analysis was done 
with MetaXL 2013. Results: Forty-five papers out 
of 295 met the criteria. Pooled prevalence in the 
general population for MT-RNR1 gene mutations 
(A1555G, C1494T, A7445G) was 2% (1–4%) at 
99%. Conclusion: Routine screening for MT-RNR1 
mutations in the general population prior to treatment 
with aminoglycosides appear desirable but poorly 
supported by the weak level of evidence available in 
the literature. Routine screening in high-risk (Chinese 
and Spanish) populations appear justified.
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The objective of this systematic review was to 
determine the prevalence/incidence of MT-RNR1 
genetic mutations in the general population as a first 
step toward determining the cost-effectiveness of 
neonatal screening for MT-RNR1 mutations prior to 
gentamicin therapy.

MATERIALS AND METHODS

A comprehensive search of MEDLINE (from 1947 
to April 2014), EMBASE (from 1974 to April 2014), 
Publius Ovidius Naso (Ovoid), Database of Abstracts of 
Reviews of Effects and the Cochrane Central Register 
of Controlled Trials in issue 3, 2014 of the Cochrane 
Library was performed. The studies were restricted 
to humans and English language. The search strategy 
used the exploded Medical Subject Headings term 
“hearing screening” “hearing loss” combined with 
the second set obtained using the exploded terms 
“Genetic screening gene” or “susceptible gene for 
newborn” or “aminoglycosides” OR “MT-RNR1” OR 
“A1555G” OR “A7445G” OR “C1494T”. Reference 
lists and citation indexes of identified manuscripts 
were cross-referenced to identify further relevant 
literature. Short-listing of titles and abstracts on the 
basis of relevancy and subsequent data extraction were 
undertaken independently by two authors. Differences 
were resolved by mutual consensus.

Inclusion criteria
1. Studies investigating the prevalence/incidence 

of MT-RNR1 gene mutations (A1555G, C1494T, 
A7445G) in the population.

2. Relevant human studies on screening for MT-RNR1.
3. Studies describing the risk of SNHL in MT-RNR1 

mutation.

Exclusion criteria
1. Letters to the editor, conference proceedings and 

editorials.
2. Non-English literature and animal studies.
3. Case reports from which incidence/prevalence data 

could not be extracted.

Studies that did not meet the inclusion criteria, though 
considered relevant to the body of evidence were 
reviewed as appropriate, including review of references 
to ensure inclusion of all relevant literature.

The 2011 Centre for Evidence Based Medicine Oxford 
criteria was used to assess/classify the quality designs 
of studies.[19]

Results/Meta-analysis
This was performed on all the prevalence recorded 
globally using the MetaXL 2013 random effect package 
and method.[20]

The preliminary search yielded 295 articles. Sixty-
nine full text articles were selected following review 
of the titles and abstracts. Cross-referencing of these 
articles provided a further 25 studies bringing the 
cumulative total to 91 of which 45 were found to meet 
our inclusion criteria [Figure 1], representing cohorts, 
case–control studies and case series only. All papers 
were independently reviewed for study design and data 
extraction by at least two investigators [Table 1].

Forty-two articles[3,6,7,9-13,16,17,21-36] (the others are as shown 
in Figure 2) addressed the prevalence/incidence of 
MT-RNR1 mutation in the populations with SNHL for 
which a range of 0% in Brazilian[30] and Argentine[32] 
subjects to 100% in 3 Spanish families[31] with 
aminoglycoside-induced hearing loss were presented. 
The modal prevalence was 3.2% and only A1555G 
and/or C1494T variants were assessed. Fourteen 
papers[9,10,16,21,30,32-34] [rest as seen in Figure 2] described 
prevalence/incidence in the general population/normal 
controls; these included low birth weight neonates, 
newborns and neonatal intensive care unit (NICU) 
patients. A range of 0% to 1.8% was presented. Three 
papers documented ototoxicity in patients with no 
observed MT-RNR1 mutations[9,21,24] while two papers 
had no hearing impairment among patients with the 
mutation with or without the gentamicin exposure.[26,33] 
Eight papers[7,17,22,26,29,35-37] recorded a wide phenotypic 
variance of hearing impairment, age-of-onset and 
audiometric configurations in patients with the 
mutation and hearing impairment.

Two articles[22,31] described the adverse effects/relative 
risks on hearing following aminoglycoside exposure in 
patients carrying the mutation. Both articles focused on 
Spanish populations and reported a relative increase 
in development of SNHL following aminoglycoside 
administration among the genetic mutation carriers, 
as high as 2.3 times greater in one of the studies[22] 
compared to those without the mutation.

A noteworthy article[16] focused on the accuracy and 
rapidity of a screening test for common MT-RNR1 
gene mutations. The screening test was found to 
be highly accurate (up to 99.8%), and results were 
rapidly available (within 60 min). Other innovative 
methods for screening MT-RNR1 include MassArray 
(Sequenom Inc, USA)(that combines a highly specific 
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Figure 1: Illustrates the search and selection processes for the articles 
utilised in the mitochondrially encoded 12S RNA systematic review and 
meta-analysis

Figure 2: The Forest plot of the meta-analysis of the mitochondrially 
encoded 12S RNA pooled global prevalence using the MetaXL 2013

polymerase chain reaction [PCR] and the accuracy 
of mass spectrometry)[38] and the “on/off switch” 
that is combined with PCR.[39] Base quenched probe 
technique in a PCR assay[40] and the multiplex 
primer extension methods[41] were described as 
the most appropriate for mass screening of MT-
RNR1. The denaturing high-performance liquid 
chromatography[42] method was found to be simple, 
accurate and cost effective whereas, Li et al.[43] also 
described the Real-time quantitative PCR as suitable 
for a rapid screening for MT-RNR1 in the deaf 
population.

The meta-analysis result gave a global pooled prevalence 
0.02 (confidence interval 0.01; 0.04) at 99% of the global 
population. This represents approximately 2% (1-4%) 
of the general global population. The forest plot is as 
below in Figure 2.

Mutations in the MT-RNR1 gene result in increased 
susceptibility to ototoxic hearing loss following 
treatment with aminoglycoside antibiotics. Mutations 
are globally prevalent across all races[9,10,16,18-21,24,33,44] 
with variable susceptibility and penetrance,[42,45] 
affecting both sexes and all age groups.[46] Before now, 
there is no acceptable global prevalence because of 
the skewed distribution in the inheritance pattern of 
this gene. This necessitated the systematic review and 
metanlysis on all documented prevalences within the 
general population to give insight into this lacuna. A 
pooled global prevalence of 0.02 recorded represents 
2% of the world’s population, and this suggests that up 
to 0.14 billion people are at risk of MT-RNR1 mutation.

DISCUSSION

The prevalence estimates of MT-RNR1 mutations vary 
widely across different populations, perhaps artificially 
influenced by the screening method used and the 
accuracy of available epidemiologic data. In African 
countries,[6,9,16] estimated prevalence ranged from 0.9% 
to 2%, in Asia[7,16,21,25,28,34-36] 0.09-17%, in the Polish[28] 
population 0.4% and in America[10,12]1.85%. In a recent 
report[13] no patients with the mutation were found among 
Mexicans whereas prevalence estimates ranged as high 
as 17% in Chinese and Spanish populations.[24,29,32,35] A 
limited comparative study conducted in Iowa (USA) 
suggested no significant difference in the prevalence 
of MT-RNR1 mutations between NICU babies and the 
general population (1.85% vs. 1.83%).[9] Exposure to 
aminoglycosides could increase the relative risk of 
developing SNHL among the mutant gene carriers by 
2.3 times.[31,36] However, this could be confounded by 
low birth weight[33] prematurity, variations in duration of 
drug exposure[33] and race[21,34] which were not controlled 
for in the available limited studies.

The penetrance of the effects of the MT-RNR1 gene 
A1555G variant mutation (hearing loss following 
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aminoglycoside exposure) among Koreans[26] was 
estimated between 28.6% and 75%, with an average of 
60.8%. This is similar to that recorded for a large Arab-
Israeli population (65.4%)[47] and compares with the 
Spanish population (54.1%).[25] It differs significantly in 
the Chinese population with a relatively low penetrance 
ranging from 4% to 18%,[23,37,48,49] a factor to consider 
when deciding on the merits of population screening. 
Other factors worthy of consideration that may explain 
variations in clinical expression include the total dose 
of the aminoglycoside administered, other potentiating 
medications given simultaneously as well as the age 
of the patient. Extremes of ages appear to be more 
vulnerable.[26]

Mitochondrially encoded 12S RNA gene mutation on its 
own is insufficient to produce significant hearing loss 
and, therefore, aminoglycoside exposure is necessary 
for full expression of the mutation and for hearing loss 
to occur.[7,49-52]

Globally, it is estimated that 10-20% of patients with 
aminoglycoside–induced ototoxicity carry the MT-RNR1 
mutation.[35,53] This suggests that a significant percentage 
of non-MT-RNR1 gene carriers may also develop SNHL 
resulting from aminoglycoside ototoxicity. Some 
studies showed no correlation between aminoglycoside 
blood levels and development of ototoxicity[54-58] in 
contrast to an earlier finding that high serum levels 
of amikacin were significantly associated with the 
development of cochlear toxicity.[59] In addition, some 
idiosyncratic reactions (resulting in profound hearing 
losses) following exposure to an otherwise “low-dose” 
of an aminoglycoside in some individuals have been 
reported.[56] Under-reporting of MT-RNR1 genes due to 
non-screening or incomplete assessment of the patients 
for all variations of mutations of the MT-RNR1 genes may 
be responsible. However, 38.5% of the documentations 
on prevalence of MT-RNR1 in our study recorded 0 (0%) 
prevalence [Figure 2], which hypothetically support the 
notion that the occurrence, spectrum and distribution 
of the gene are narrow. Hence, there is a need for the 
identification of susceptible populations for the genetic 
screening rather than the general population.

Mechanism of action
The exact biochemical mechanism of ototoxicity 
related to the various MT-RNR1 mutations is unclear. 
There is evidence to suggest the most common 
mutations (A1555G and C1494T) tend to reduce the 
accuracy of the translation in the mitochondria to 
render the ribosome decoding site hyper-susceptible 
to aminoglycoside.[60,61] The mutations locate to Ta
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the penultimate helix of the 12S rRNA, which is a 
component of the aminoacyl-tRNA necessary for 
the decoding of the mRNA acceptor site (the A-site). 
The A-site is the target site of the aminoglycoside in 
bacteria.[15] Therefore, a defect in this mitochondrial 
site in humans is thought to result in defective 
metabolism and elimination of the aminoglycosides 
and/or their by-products resulting in the exaggerated 
concentration of metabolites within the system and 
hence toxicity to susceptible organs.

Screening methods: Feasibility 
and cost-effectiveness
The universal application of aminoglycosides in 
the management of neonatal sepsis/childhood 
infections emphasises the clinical relevance of 
knowledge of the prevalence of these mutations. In 
the USA alone, over 5 million patients are treated 
with aminoglycoside antibiotics annually.[51,53] The 
worldwide re-emergence of tuberculosis (TB) and the 
growing incidence of the multi- and extreme-drug 
resistant (MDR & XDR) TB that are only amenable 
to aminoglycosides (kanamycin and amikacin) are 
further cause for concern.

At least five different methods are employed in 
the (PCR) screening for the MT-RNR1 mutation. 
These include: Allele specific PCR testing, DNA 
sequencing, PCR-restriction fragment chain length 
polymorphism (PCR-RFLP) analysis and allele 
specific oligonucleotide hybridisation and SNaPshot 
analysis technique. The SNaPshot analysis technique 
developed at the Stellenbosch University of Cape 
Town (2009) possesses the advantage of multiplexing 
and, therefore, is capable of screening for all five 
common genetic variants. The quoted costs per 
screening an individual sample including the cost of 
DNA extraction is USD $16 for SNaPshot compared 
to USD $30 for PCR methods.[16]

With over 5 million patients in the USA treated with 
aminoglycoside antibiotics annually and with the cost 
of screening using the SNaPshot technique at $16 
each, an estimated $80 million would be incurred in 
screening all patients receiving aminoglycoside therapy 
in the USA annually. Assuming the prevalence rate 
of 1.85% in the USA for the MT-RNR1 mutant gene, 
an estimated 92,500 patients are at risk of developing 
ototoxic hearing loss each year. If the cost of habilitation 
of a severe-to-profound prelingually deaf child is truly 
one million dollars screening for MT-RNR1 mutations 
warrants further consideration, including prospective 
consecutive cohorts screened for the prevalence of 

a relevant mutation and followed prospectively for 
development of aminoglycoside-induced hearing loss. 
This would allow better estimates of cost-effectiveness 
of screening programs.

Hypothetically, the cost of screening the entire world 
population will be about $22.4 Billion USD against the 
cost of full habilitation of the potential 0.14 billion at 
risk that is estimated at about $140 trillion USD. The 
above are quantifiable costs and exclude the non-
quantifiable costs. It is true that the above figures 
for just MT-RNR1 may be unrealistic considering the 
world’s limited resources chasing several global health 
concerns and disasters; however, it makes economic 
sense to prevent possible complications that might 
emanate from this genetic anomaly. On the other 
hand, effort toward reducing this occurrence appear 
achievable through the screening of all patients before 
receiving the first dose of aminoglycosides and/or 
the screening of every newborn within the at risk 
population group.

LIMITATIONS

At the onset of the study, the quality and number 
of the available studies for review evidence were 
suboptimal and hence the delay in the reporting 2 
years after first presentation at the American Academy 
of Otorhinolaryngology Head and Neck Surgery 
Conference in Boston USA. This delay was necessary 
to enable us recruit more papers. No studies identified 
were felt to offer level 1 evidence (local and current 
random sample surveys [or censuses]). Our systematic 
review represents an attempt at obtaining level 2 
evidence (systemic reviews and meta-analysis of 
surveys that allow matching to local circumstances). 
Many identified studies suffered poor design/sample 
selection and or ambiguous eligibility criteria for 
inclusion/exclusion of patients.

In conclusion, the global pooled prevalence of MT-
RNR1 mutations in the general population appears 
significant with a racial bias in Chinese and Spanish 
populations. Patients with MT-RNR1 mutations are 
susceptible to aminoglycoside-induced ototoxicity, 
but with variable penetrance. Routine screening for 
MT-RNR1 mutations in the general population prior 
to treatment with aminoglycosides appear desirable, 
but currently poorly supported by the weak level 
of evidence available in the literature, but warrants 
further consideration as more data become available. 
Routine screening in high-risk (Chinese and Spanish 
populations) appear justified.
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