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Abstract

Alzheimer’s disease (AD) is the most common form of dementia among older people and

increasing longevity ensures its prevalence will rise even further. Whether AD originates by

disconnecting a localized brain area and propagates to the rest of the brain across disease-

severity progression is a question with an unknown answer. An important related challenge

is to predict whether a given subject, with a mild cognitive impairment (MCI), will convert or

not to AD. Here, our aim is to characterize the structural connectivity pattern of MCI and AD

subjects using the multivariate distance matrix regression (MDMR) analysis, and to com-

pare it to those of healthy subjects. MDMR is a technique developed in genomics that has

been recently applied to functional brain network data, and here applied to identify brain

nodes with different connectivity patterns, in controls and patients, because of brain atrophy.

We address this issue at the macroscale by looking to differences in individual structural

MRI brain networks, obtained from MR images according to a recently proposed definition

of connectivity which measures the image similarity between patches at different locations

in the brain. In particular, using data from ADNI, we selected four groups of subjects (all of

them matched by age and sex): HC (healthy control participants), ncMCI (mild cognitive

impairment not converting to AD), cMCI (mild cognitive impairment converting to AD) and

AD. Next, we built structural MRI brain networks and performed group comparison for all the

pairs of groups. Our results were three-fold: (i) considering the comparison of HC with the

three other groups, the number of significant brain regions was 4 for ncMCI, 290 for cMCI

and 74 for AD, out of a total of 549 regions; hence, in terms of the structural MRI connectivity

here adopted, cMCI subjects have the maximal altered pattern w.r.t. healthy conditions. (ii)

Eight and seven nodes were significant for the comparisons AD-ncMCI and AD-cMCI,

respectively; six nodes, among them, were significant in both comparisons and these nodes

form a connected brain region (corresponding to hippocampus, amygdala, Parahippocam-

pal Gyrus, Planum Polare, Frontal Orbital Cortex, Temporal Pole and subcallosal cortex)
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showing reduced strength of connectivity in the MCI stages; (iii) The connectivity maps of

cMCI and ncMCI subjects significantly differ from the connectome of healthy subjects in

three regions all corresponding to Frontal Orbital Cortex.

Introduction

Alzheimer’s disease (AD) is a progressive, neurodegenerative disease accounting for most

cases of dementia after the age of 65: the prevalence of clinically manifested AD is about 2% at

the age of 65 years, it increases to about 30% at the age of 85 years [1]. AD is characterized by

an accumulation of beta-amyloid plaques and neurofibrillary tangles composed of tau amyloid

fibrils [2] associated with synapse loss and neurodegeneration leading to long-term memory

impairment and other cognitive problems. There is currently no known treatment that

slows down the progression of this disorder. It is now accepted that the neurodegenerative cas-

cade in AD begins in the brain years, decades even, before the clinical and radiological mani-

festations of the illness. The dementia is preceded by a prodromal phase of mild cognitive

impairment, and this, in turn, by a pre-clinical phase of variable duration. The notion of MCI,

a disorder situated in the spectrum between normal age-related cognitive decline and demen-

tia, has varied over the past 2 decades. MCI has been classified into different broad categories

depending on memory performance and the number of impaired cognitive functions [3]. An

accurate prediction of conversion from MCI to AD can help clinicians to evaluate AD risk

pre-symptomatically, initiate treatments at early stage, and monitor their effectiveness [4, 5].

However, the group of MCI is very heterogeneous, and not all MCI patients convert to AD [6].

The annual rate in which MCI progresses to dementia varies between 8% and 15% per year

[7]. The amnestic subtype of MCI is more prevalent than non-amnestic one [8], and it has a

significantly higher annual conversion rate to AD, between 30% [9, 10] to 40% [11].

Many neuroimaging studies addressed the conversion from MCI to AD (see [12] and refer-

ences therein). In particular, it was shown that the hippocampus volume and the volume from

other subcortical structures at MCI were well correlated to a worse progression to AD, with

accuracy of about 65% in the prediction from MCI to AD [13]. Particularly important is the

choice of the hippocampal segmentation protocol [14]. Rather than assuming that specific

brain regions are going to be affected by AD, other authors achieved a better accuracy in the

prediction from MCI to AD (achieving values of about 80% accuracy) by performing a blind

approach including multiple regions of interest [15–17]. Despite extensive research shedding

light into this problem, the precise mechanisms and clinical variables responsible for the pro-

gression from MCI to AD have not been fully characterized, mainly due to the lack of time-

resolved longitudinal studies in large populations.

Human brain networks [18, 19] can be constructed using multimodal neuroimaging tech-

niques in vivo. Nowadays, functional MRI (fMRI) and diffusion tensor imaging (DTI) are the

two main modalities to build individual brain networks [20, 21]. Besides fMRI and DTI, struc-

tural MRI has recently attracted increasing attention in delineating whole-brain morphological

connectivity patterns by calculating interregional morphological correlations across a cohort

of participants [22, 23]. Compared with fMRI and DTI, MRI has an easy access, high signal-to-

noise ratio, and relative insensitivity to artifacts (e.g., head motion). MRI-based brain networks

are thus a promising approach to characterize brain organization under both healthy and path-

ological conditions [24]. Nevertheless, it should be noted that the methodology of [22, 23] can

obtain only one network for a group of participants, while ignoring inter-individual variability.
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This makes problematic the examination of brain-behavior relationships and health-disease

classification. Methods for the construction of a network from an individual structural MR

image have been reported [25–27], but not yet widely applied. In [28] the topology of these

networks in healthy and AD patients was analyzed, whilst in [29] the graph properties and

their connection with cognitive impairment in early- and late-onset Alzheimer’s disease was

studied; in [30] the brain properties in schizophrenia were studied.

Regarding modelling and description of the brain, a number of different graph theory strat-

egies have been widely used in recent years [31–33]. Two approaches are mainly adopted [34]:

(i) voxel-wise and (ii) region of interest analyses. We adopt here a patch-based approach [27]

which combines the ease of interpretation typical of voxel-wise descriptions (while avoiding its

huge computational burden [35]) with the robustness of region of interest (ROI) strategies,

without the intrinsic segmentation errors affecting ROI approaches [36]. Brain diseases have

diffuse effects, affecting multiple voxels but not necessarily corresponding to entire anatomical

structures, nonetheless whole brain investigations cannot have the required sensitivity, espe-

cially looking for subtle effects on millions of voxels with typically small size data samples.

Therefore, here we construct individual MRI brain networks from images provided by the Alz-

heimer’s Disease Neuroimaging Initiative (ADNI), and corresponding to healthy controls,

MCI subject converting or not to AD, and AD patients; we look for brain regions whose map

of connectivity, with the rest of the brain, is significantly altered due to the disease. To this aim

we use the method in [37] where techniques from genome wide association studies, coping

with the problem of huge number of comparisons, were applied to functional connectome

data.

Materials and methods

Materials

The MR images used in this paper were obtained from ADNI database http://adni.loni.usc.edu

[38]. ADNI was launched in 2003 by the Nat. Inst. on Aging (NIA), the Nat. Inst. Biomedical

Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-pri-

vate partnership. ADNI’s main goal has been to test whether serial magnetic resonance imag-

ing (MRI), positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cognitive

impairment (MCI) and early Alzheimer’s disease (AD). Determination of sensitive and specific

markers of very early AD progression is intended to aid researchers and clinicians to develop

new treatments and monitor their effectiveness, as well as to lessen the time and cost of clinical

trials. The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Cen-

ter and Univ. California—San Francisco. ADNI subjects have been recruited from over 50

sites across the U.S. and Canada. Currently, around 1500 adults were recruited in the different

ADNI initiatives, ages 55 to 90. The follow up duration of each group is specified in the proto-

cols for ADNI-1, ADNI-2 and ADNI-GO, see further information in www.adni-info.org.

A total number of N = 316 subjects were used in this study; MR images were selected and

downloaded from ADNI database, belonging to 4 different groups: healthy controls HC

(N1 = 80), subjects with mild cognitive impairment not converting to Alzheimer Disease

ncMCI (N2 = 82), subjects with mild cognitive impairment converting to Alzheimer Disease

cMCI (N3 = 70) and subjects affected by the disease AD (N4 = 84). Some subjects belong to a

benchmark dataset selected in order to obtain a compact yet representative sample of ADNI

[39]. Remaining subjects were randomly sampled from the whole ADNI in order to match the

demographic characteristics of benchmark subjects, making sure that each subject is not
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considered twice. Age and sex were balanced across groups (see Tables 1, 2 and 3) respectively,

using a t-test and chi-squared test. cMCI subjects had converted to AD in a time range of

(30,108) months subsequent to the initial assessment. All 316 participants underwent whole-

brain MRI at 34 different sites. Both 1,5 T and 3,0 T scans were included. ADNI images con-

sisted of MPRAGE MRI brain scans, which were normalized with the MNI152 brain template

of size of 197 × 233 × 189 mm3 and resolution of 1 × 1 × 1 mm3. Accordingly, from now

onwards mm3 and voxels are interchangeably used.

Image processing

Image processing was carried out with the Oxford FMRIB library FSL [40]. Firstly, MRI scan

intensity differences, yielded by bias field, were normalized, then intra-cranial regions were

extracted with the FSL Brain Extraction Tool (BET). After intensity normalization and brain

extraction, a spatial normalization was performed to co-register the different images into a

common coordinate space. The MNI152 was adopted as reference template. An affine registra-

tion was performed with the FSL Linear Registration Tool (FLIRT) with a standard parameter

configuration. The method adopted here for network modeling is based on the idea that ana-

tomical regions should roughly overlap in order to be robust to subtle local differences, due

for example to subject morphological variability, or small registration failures. Once the MRI

scans and the template had been co-registered they shared the same reference space and

dimensions. Thus, using the template brain coordinates, we automatically divided the brain of

each subject into the two hemispheres by the medial longitudinal fissure. Starting from this

sagittal plane, it was possible to uniformely cover each hemisphere with an equal number of

rectangular ℓ1 × ℓ2 × ℓ3 boxes, from now onward referred to as patches, covering the whole

Table 1. Demographic groups information.

Group Label Age Sex (M/F)

HC 74.95 (60-89) (43/37)

ncMCI 75.48 (60-89) (52/30)

cMCI 74.73 (55-87) (39/31)

AD 75.95 (60-90) (45/39)

https://doi.org/10.1371/journal.pone.0187281.t001

Table 2. P-values group matrices from two sample t-test for age showing that groups are appropri-

ately balanced.

HC ncMCI cMCI AD

HC - 0.598 0.843 0.537

ncMCI 0.598 - 0.525 0.914

cMCI 0.843 0.525 - 0.476

AD 0.537 0.914 0.476 -

https://doi.org/10.1371/journal.pone.0187281.t002

Table 3. P-values group matrices from χ2 test for sex showing that groups are appropriately balanced.

HC ncMCI cMCI AD

HC - 0.276 0.939 1

ncMCI 0.276 - 0.424 0.259

cMCI 0.939 0.424 - 0.918

AD 1 0.259 0.918 -

https://doi.org/10.1371/journal.pone.0187281.t003
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brain. Patches provide a gray matter volume measure and its spatial distribution and are not

chosen to represent predefined anatomical areas, in contrast to region of interest approaches.

We adopted a patch size of 3000 voxels, corresponding to the optimal dimensions 10 × 15 × 20

mm3. Thus, 549 patches were used to cover the whole brain, as explained in the next section.

The patches were considered nodes of a network whose connections represent the degree of

similarity between them. To obtain an anatomical interpretation of brain nodes, it is important

to relate them to anatomical areas of interest for the disease. Nodes, identified as significant by

the proposed approach, were localised on the reference template and the corresponding atlas.

We adopted Harvard-Oxford cortical and sub-cortical structural atlases [41].

Definition of connectivity between patches

For each subject and for each pair of patches, the corresponding measure of connectivity was

evaluated as follows. The intensity values of voxels within a patch were reshaped to form a vec-

tor of length ℓ1 ℓ2 ℓ3, in the same way for the two patches; then the Pearson’s correlation coeffi-

cient between these two vectors was evaluated and taken as the connectivity strength between

the two nodes associated to the patches. Pearson’s correlation was chosen in [27] to model the

effects of atrophy, as it is fast to implement and compute, simple to understand and interpret,

and it does not require any scaling or centering of the patches, being intrinsically normalized.

In addition, Pearson correlation is a similarity criterion that associates corresponding voxels

within patches, therefore taking into account spatial relationships between voxels, differently

from [26] where the Kullback divergence, between the intensity histograms of the intensity in

pairs of ROIs, was considered. The Pearson correlation between small cubes (consisting of 27

voxels) has been already used in [25] to construct individual MRI networks, obtaining net-

works of about 7000 nodes. In order to provide a robust description of the brain, in [27] it has

been proposed to consider patches of about 3000 voxels, i.e. on a dimensional scale far higher

than the voxel, but not as large as in a ROI description.

In order to fix the optimal dimension for the brain subdivision in rectangular patches, we

explored different patch sizes and for each size we computed some intensity related features

(degree, strength, inverse participation, and others) to assess the information content provided

by those patches; we fed a random forest classifiers with these features in a 5-fold cross-valida-

tion framework and evaluated the classification accuracy for discriminating healthy control

and AD patients. Experimental results showed an accurate and stable classification perfor-

mance within the [2250;3200] voxel (mm3) range, corresponding approximately to 500

patches, with variations lower than 5%. The best accuracy (� 88%) was obtained with N = 549

patches. Accordingly, we have adopted this patch size, which leads for each subject u to a

549 × 549 structural MRI network Cu ¼ fcij
ugi;j¼1;...;N

Multivariate distance matrix regression analysis

A cross-group analysis has been performed using the Multivariate Distance Matrix Regression

(MDMR) approach proposed in [37], which allows testing the variation of distance in connec-

tivity patterns between groups as a response of the Alzheimer’s progression. As in [37], for

each fixed brain node i, and for each pair of subjects (u,v), the vector representing the connec-

tivity pattern of i with all the brain is considered, for both subjects u and v, fcij
ugj¼1;...;N and

fcij
vgj¼1;...;N . Then a distance between u and v is defined as:

di
uv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � ri

uvÞ
p

ð1Þ

where ri
uv is the Pearson correlation between connectivity patterns of i for subjects u and v,

Multivariate regression analysis of structural MRI connectivity matrices in Alzheimer’s disease
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fcij
ugj¼1;...;N and fcij

vgj¼1;...;N . Thus, the collection of distances amounts, at fixed brain region i, to

a distance matrix in the subject space. Note that both u and v vary in the two groups, hence the

distance matrix contains both intra-group distances and inter-group ones.

Next, we applied MDMR to perform cross-group analysis as implemented in R [42].

MDMR yielded a pseudo-F estimator (analogous to that F-estimator in standard ANOVA

analysis), which addresses significance of the between-group variation as compared to within-

group variations, details can be found in [37]. When two groups, of cardinality n1 and n2

respectively, are being compared and the regressor variable is thus categorical, the approach of

[37] is equivalent to what follows. One firstly calculate the total sum of squares as:

SST ¼
1

n

XN

u¼1

XN

v¼uþ1

d2

uv ð2Þ

with n = n1 + n2 being the total number of subjects. In this way, one gets a different SST for

each region i. Similarly, the within-group sum of squares can be written as

SSW ¼
1

n1

Xn

u¼1

Xn

v¼uþ1

d2

uv�
a
uv þ

1

n2

Xn

u¼1

Xn

v¼uþ1

d2

uv�
b
uv ð3Þ

where �a
uv is one if u and v belong to the first group and zero otherwise; similarly �b

uv is one if u
and v belong to the second group and zero otherwise. The between-group variation is then

given by SSA = SST − SSW, and the pseudo-F statistic of [37] amounts to the following:

F ¼ ðN � 1Þ
SSA

SSW
ð4Þ

As it was acknowledged in [37], the pseudo-F statistic is not distributed like the usual Fisher’s

F-distribution under the null hypothesis. Accordingly, we randomly shuffled the subject indi-

ces and computed the pseudo-F statistic each time. A p-value is computed by counting those

pseudo F-statistic values from permuted data greater than that from the original data, and

divide by the total number of performed permutations. Finally, we controlled for type I errors

due to the independent statistical performed tests by false discovery rate corrections. We

required 1% significance so as to discuss more accurate findings.

Results

Comparisons with healthy subjects

The comparison between HC and each of the other three groups aims at identifying brain

regions whose connectivity map is altered w.r.t. healthy conditions. Application of MDMR, at

1% significance after false discovery rate correction, leads to the number of brain regions, with

significant different patterns in the two groups, depicted in Table 4.

The four regions altered in ncMCI are also found altered in cMCI but not in AD. Out of

the 74 regions altered in AD, 69 were already found altered in cMCI whilst five regions were

altered only for AD and not for MCI groups: the alteration of the patterns of these five regions,

hence, is peculiar of the AD disease. The location of these five patches, in the brain, is depicted

Table 4. Number of altered regions, in the MCI and AD groups, w.r.t. HC.

ncMCI cMCI AD

4 290 74

https://doi.org/10.1371/journal.pone.0187281.t004
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in Fig 1. We report that at 5% significance the number of altered regions would have been 99

(ncMCI) 421 (cMCI) and 323 (AD).

Comparing MCI groups with AD

At 1% significance after false discovery rate correction, comparing ncMCI and AD, the nodes

that are found to have significantly different pattern are eight, whilst comparing cMCI and

AD the significant nodes are seven. All these regions are not significant in the comparison

HC-AD.

Six regions, out of these, are significant for both comparisons ncMCI-AD and cMCI-AD;

they include also the four significant regions for the comparisons HC-ncMCI and HC-cMCI.

In order to visualize the peculiar pattern of these six regions, within each group we averaged

their connectivity pattern with the whole brain, obtaining a 6 × 549 matrix for each group.

Then, a mutual distance between these matrices have been evaluated as the mean of the abso-

lute values of the differences of entries. Using multidimensional scaling [43] we obtained the

four points, in two dimensions, whose Euclidean distances are closest to the distances among

submatrices, as depicted in Fig 2; for comparison, in Fig 3 we also depict the four points that

we obtain applying the same procedure to the whole 549 × 549 matrices. These six patches are

thus characterized by a pattern which is peculiar to the MCI conditions.

It is also worth stressing that two brain regions are significant only for ncMCI, i.e. they are

relevant for the not converting MCI condition. In Fig 4 we depict the brain nodes highlighted

by the comparison between MCI and AD.

We report that at 5% significance the number of significant regions in the comparison with

AD would have been 22 (ncMCI) and 17 (cMCI).

Comparing ncMCI and cMCI

The application of MDMR to the two groups ncMCI and cMCI did not identify any significant

region, although the cMCI shows an huge number of altered brain regions w.r.t. HC, differ-

ently from ncMCI which shows just four. Such a big difference, in the two comparisons

Fig 1. Brain nodes which are altered only in AD. The five brain nodes which are altered only in AD. Their patches correspond to the following anatomical

structures: (A) right hemisphere: Hippocampus, Amygdala, Temporal Fusiform Cortex (posterior division), Planum Polare; (B) right hemisphere: Cingulate

Gyrus, Lateral Ventricle, Precuneous Cortex; (C) left hemisphere: Superior Temporal Gyrus, Postcentral Gyrus; (D)left hemisphere: Planum Temporale,

Central Opercular Cortex; (E) left hemisphere: Cingulate Gyrus, Lateral Ventricle.

https://doi.org/10.1371/journal.pone.0187281.g001
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ncMCI-HC and cMCI-HC, suggested us to project the connectivity maps of MCI subjects

onto the average connectome of healthy subjects, as follows. Consider the brain region i, and

let h be the connectivity vector of i averaged over the set of HC subjects. For every MCI subject,

u, we denote ci(u) the Pearson correlation between h and the connectivity vector of region i in

subject u. The farthest ci(u) from one, the more altered from healthy conditions the pattern of

connectivity of brain region i in subject u. For each node i, we perform a nonparametric test

(Wilcoxon ranksum) against the hypothesis that the 82 values of this quantity for the ncMCI

group come from a distribution with median higher than those of the cMCI group, and use

the Bonferroni correction for the 549 multiple comparison. Three regions are found to be sta-

tistically significant at 1% significance, and they are depicted in Fig 5.

Fig 2. Multidimensional scaling from signficant MCI-AD nodes. In order to visualize the peculiar pattern

of the region corresponding to the six nodes that are significant when AD patients are compared with MCI, the

four groups are represented here, using multidimensional scaling applied to the average connectivity map of

these brain regions, as explained in the text. The plot clearly shows that, in AD, the connectivity pattern of this

region is similar to those corresponding to healthy conditions. As we are dealing with distances between

arrays of Pearson correlation coefficients, the units of both axis are dimensionless.

https://doi.org/10.1371/journal.pone.0187281.g002

Fig 3. Multidimensional scaling from all brain regions. The same as the previous figure but all the brain

regions have been used to provide the input to multidimensional scaling. It shows that also globally in AD the

connectivity is closer to those of controls than MCI states, although to a lesser extent than the six regions of

Fig 1. As we are dealing with distances between arrays of Pearson correlation coefficients, the units of both

axis are dimensionless.

https://doi.org/10.1371/journal.pone.0187281.g003
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Comparison of the average strength in the groups

We note that the Pearson correlation between two patches depends on the shape of the con-

nectivity patterns but not on their amplitude. Hence the MDMR analysis can be comple-

mented by an analysis of the strength of connectivity that we calculate as the mean of the

absolute value over all entries of the structural MRI network, for each subject. We perform a

nonparametric test (Wilcoxon ranksum) against the hypothesis that the 80 values of this quan-

tity for the HC group come from a distribution with median higher than those of the three

other groups, obtaining the p-values depicted in Table 5. These values show that the strengths

are significantly higher in controls than MCI, whilst statistically it is not possible to differenti-

ate controls and AD on the basis of the average strength of networks. Moreover, cMCI is the

group with smallest p-value, i.e. the most altered w.r.t. healthy conditions.

Non-parametric distance between connectivity patterns

In the standard application of MDMR, the distance between connectivity patterns is defined in

terms of Pearson correlation. To assess the robustness of our results w.r.t. of the choice of the

distance, we have repeated our analysis using a non-parametric measure of the distance which

reads as follows

di
uv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ð1 � ri

uvÞ
p

; ð5Þ

where ri
uv is the Spearman’s rank correlation coefficient between connectivity patterns of node

i for subjects u and v. The number of altered regions when comparing pairs of groups using

Fig 4. The brain nodes significantly differing in MCI and AD. Their patches correspond to the following anatomical structures: (A) left hemisphere:

Hippocampus, Amygdala, Planum Polare; (B) left hemisphere: Parahippocampal Gyrus; (C) right hemisphere: Parahippocampal Gyrus; (D) right

hemisphere: Hippocampus, Amygdala, Planum Polare; (E) left hemisphere: Frontal Orbital Cortex, Temporal Pole; (F) Inter-hemispheric: Subcallosal

Cortex. (G) right hemisphere: Frontal Orbital Cortex, Temporal Pole; (H) left hemisphere: Subcallosal Cortex. Green patches are significant for both ncMCI

and cMCI, whilst red patches are significant only for ncMCI.

https://doi.org/10.1371/journal.pone.0187281.g004
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this non-parametric distance definition is depicted in Table 6. Apart from small changes, the

scenario found using Pearson correlation is substantially confirmed: converting MCI have

the maximal altered pattern w.r.t. healthy conditions. Moreover, the relevant regions showed

in Figs 1 and 4 are also found to be significantly discriminating using the non-parametric

distance.

Discussion

The aim of this paper was to analyze MR images of MCI and AD patients in order to character-

ize their altered structural connectivity pattern compared to healthy subjects. Individual struc-

tural MRI networks were evaluated as the Pearson correlation of the intensity of voxels in the

Fig 5. The three significant regions for the comparison ncMCI-cMCI. Their patches are all in the left

hemisphere and correspond to the following anatomical structures: (A) Frontal Orbital Cortex, Temporal Pole;

(B) Frontal Pole, Frontal Orbital Cortex; (C) Frontal Pole, Frontal Orbital Cortex.

https://doi.org/10.1371/journal.pone.0187281.g005

Table 5. P-value of the comparison of the mean strength of connectivity, i.e. the mean of the absolute

value of all entries of the structural MRI network of healthy subjects, with the other groups. cMCI is the

group with smallest p-value, i.e. the most altered w.r.t. healthy conditions.

ncMCI cMCI AD

3.5 × 10−4 7.1 × 10−6 0.57

https://doi.org/10.1371/journal.pone.0187281.t005
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patches corresponding to nodes. Then, we performed the MDMR analysis to each pair of

groups, so as to identify brain regions with different connectivity pattern in the two groups.

We remark that here we were not interested in analyzing topological metrics of brain net-

works: in the structural MRI newtorks, these properties have been already studied, pointing

out, e.g., that AD networks have abnormal small world property w.r.t. networks of healthy sub-

jects [44–46]. In [28] the path length, the clustering coefficient and the betweenness centrality

were studied in controls and AD patients: altered path length of the parahippocampal gyrus,

hippocampus, fusiform gyrus and precuneous showed a strong relationship with cognitive

decline. Moreover, we stress that the definition of connectivity here used corresponds just to

image similarity between patches and does not have an immediate neurophysiological inter-

pretation, indeed two patches can be similar also in the absence of axonal connectivity.

The first interesting result here was the observation that MCI subjects converting to AD

have the maximal altered pattern w.r.t. healthy conditions (the minimal average strength in

the four groups), indeed ncMCI show only four significant regions; AD subjects thus show a

partial recovery of connectivity, in the sense that many regions, that were altered in cMCI

group, are not recognized altered in AD. The apparently paradoxical finding that in AD the

structural networks are less altered than in cMCI lies in the fact that in AD there is more abun-

dance of atrophic tissues. Consider two patches from an healthy brain and the corresponding

connectivity (as measured by the Pearson correlation of intensities); now let us assume that

one out of the two patches is affected by atrophy, then we expect a relevant alteration of their

connectivity w.r.t. healthy conditions. On the other hand, when also the second patch becomes

affected by atrophy, it is likely that the connectivity of the two patches gets back closer to the

value of healthy brains. Moreover it is worth to mention that it has been found that the mean

atrophy rates of ncMCI subjects are more similar to controls, whereas the mean atrophy rate

of cMCI are more similar to AD [47]: this explains why we found a much lower degree of alter-

ations in ncMCI than in cMCI. Also the analysis of the mean strength of the brain networks

confirmed this scenario.

Furthermore, five regions were altered in AD but not in MCI conditions, i.e. their discon-

nection appears only when the AD disease sets in. The five regions, are depicted in Fig (4) and

correspond to interesting anatomical structures such as hippocampus, whose altered neuro-

genesis has been shown to represent an early critical event in the course of AD [48], amygdala

and cingulate gyrus [49], and others.

Secondly, comparing AD with ncMCI and cMCI, we found few significant nodes, in partic-

ular we identified six nodes with the following properties: (i) they are significant in the com-

parisons ncMCI-AD and cMCI-AD (ii) they contain all the four significant regions of both

comparisons HC-ncMCI and HD-cMCI (iii) they are not identified as altered in the compari-

son HC-AD. These nodes form a connected brain region (which correspond to parahippocam-

pal gyrus [50] subcallosal cortex [51] and other structures already studied in existing literatures

[52]) with reduced strength of connectivity in the MCI stages; its structural connectivity, in

Table 6. Number of significantly altered pattern connectivities of regions between groups after false

discovery rate correction at 1% and 5% (in parenthesis) using Spearman correlation between connec-

tivity patterns.

HC ncMCI cMCI AD

HC - 3 (26) 284 (413) 8 (327)

ncMCI 3 (26) - 0 (0) 4 (17)

cMCI 284 (413) 0 (0) - 5 (7)

AD 8 (327) 4 (17) 5 (7) -

https://doi.org/10.1371/journal.pone.0187281.t006
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AD, was statistically indistinguishable from those of healthy subjects. Alteration of this regions

is thus characteristic of the MCI condition. This peculiar behavior is clearly shown by Fig (3).

Remarkably, two brain regions were significant only for ncMCI and correspond to hippo-

campus, amygdala, planum polare and subcallosal cortex.

Finally, the comparison of ncMCI and cMCI did not identify any significant region, but

projecting the connectivity maps of MCI subjects onto the average connectome of healthy sub-

jects lead to identify three brain regions that are significantly more altered in cMCI than in

ncMCI. All these three regions correspond to the Frontal Orbital Cortex, which contains the

secondary taste cortex, in which the reward value of taste is represented. It is also involved in

emotional enhancement of memory [53]. The damage of the orbitofrontal cortex in AD is well

known [54].

It is worth mentioning that all the five patches, which were identified as relevant for the

ncMCI-cMCI comparison, belong to the left hemisphere, in accordance with previous results

[55]. The structural connectivity pattern of these regions can thus provide useful information

for predicting AD disease and, together with other indicators, such as Voxel Based Morphom-

etry [56], Aβ brain networks [57], functional and DTI networks, can contribute to the con-

struction of more efficient machine learning tools tailored to this important task.

Notably, we have also showed that by using a different distance measure for connectivity

patterns, even though the number of significant nodes slightly changes, the overall scenario

established by nodes depicted in Figs 1 and 4 remains consistent, thus assessing the robustness

of MDMR method in concordance with [37]. Likewise, our method also suffers from the limi-

tations noted in [37], in particular we would like to stress the sensitivity loss of highly focused

areas related with group difference due to the fact of taking whole-brain pattern connectivity.

In our case, this issue might be relevant in comparisons with MCI stages where the onset of

cognitive deterioration takes place in small regions and then spread to the rest of the brain. As

a consequence, an analysis within specific regions rather than the full brain should be per-

formed to address this issue.

In addition, it is also important to clarify that regions found significant do not directly lead

to high accuracy when used as features to classify between group labels [58]. Rather, our

method seeks for changes in brain pattern connectivity that correlate significantly with a phe-

notypic variable, i.e. group label, within an exploratory analysis. Recent classification applica-

tions using MRI data that optimise prediction in AD/MCI diagnosis can be found in [59–61].

Conclusions

Summarizing, our results confirm that individual structural MRI networks can be used to

measure the departure from the healthy pattern, in MCI and AD patients. The definition of

connectivity, here used, depends only on the image similarity of the intensity patterns in

patches: it follows that alterations in the connectivity are due to atrophy and that these net-

works provide a geometrical representation of the progression of atrophy in AD. Since the

connectivity of two atrophic patches can be similar to those of two healthy patches, the most

altered connectivity is observed in the intermediate cMCI stage. Individual MRI-based net-

works are thus promising brain network which bring complementary information w.r.t. indi-

vidual fMRI and DTI brain networks for the study of neurodegenerative diseases, and MDMR

is a valuable method to study alterations of the connectivity pattern.
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51. Lindberg O, Westman E, Karlsson S, Östberg P, Svensson LA, Simmons A, et al. Is the subcallosal

medial prefrontal cortex a common site of atrophy in Alzheimer’s disease and frontotemporal lobar

degeneration? Front Aging Neurosci. 2012; 4: 32. https://doi.org/10.3389/fnagi.2012.00032 PMID:

23189052

52. Zhang Y, Dong Z, Phillips P, Wang S, Ji G, Yang J, et al. Detection of subjects and brain regions related

to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning. Front Comput

Neurosci. 2015; 9: 66. https://doi.org/10.3389/fncom.2015.00066 PMID: 26082713

53. Kumfor F, Irish M, Hodges JR, Piguet O. The orbitofrontal cortex is involved in emotional enhancement

of memory: evidence from the dementias. Brain. 2013; 136: 2992–3003. https://doi.org/10.1093/brain/

awt185 PMID: 23838694

54. Van Hoesen GW, Parvizi J, Chu CC. Orbitofrontal cortex pathology in Alzheimer’s disease. Cereb Cor-

tex. 2000; 10: 243–251. https://doi.org/10.1093/cercor/10.3.243 PMID: 10731219

55. Derflinger S, Sorg C, Gaser C, Myers N, Arsic M, Kurz A, et al. Grey-matter atrophy in Alzheimer’s dis-

ease is asymmetric but not lateralized. J Alzheimers Dis. 2011; 25: 347–357. PMID: 21422522

56. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000; 11: 805–821.

https://doi.org/10.1006/nimg.2000.0582 PMID: 10860804

57. Duan H, Jiang J, Xu J, Zhou H, Huang Z, Yu Z, et al. Differences in Aβ brain networks in Alzheimer’s dis-

ease and healthy controls. Brain Research. 2017; 1655: 77–89. https://doi.org/10.1016/j.brainres.2016.

11.019 PMID: 27867033

58. Lo A, Chernoff H, Zheng T, Lo S-H. Why significant variables aren’t automatically good predictors. Proc

Natl Acad Sci U S A. 2015; 112: 13892–13897. https://doi.org/10.1073/pnas.1518285112 PMID:

26504198

59. Liu M, Zhang D, Shen D. Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer’s

Disease and Mild Cognitive Impairment. IEEE Trans Med Imaging. 2016; 35: 1463–1474. https://doi.

org/10.1109/TMI.2016.2515021 PMID: 26742127

60. Liu M, Zhang D, Shen D, the Alzheimer’s Disease Neuroimaging Initiative. View-centralized multi-atlas

classification for Alzheimer’s disease diagnosis: View-Centralized Multi-Atlas Classification. Human

Brain Mapping. 2015; 36: 1847–1865.

61. Liu M, Zhang D, Adeli-Mosabbeb E, Shen D. Inherent Structure Based Multi-view Learning with Multi-

template Feature Representation for Alzheimer’s Disease Diagnosis. IEEE Trans Biomed Eng. 2016;

63: 1473–1482. https://doi.org/10.1109/TBME.2015.2496233 PMID: 26540666

Multivariate regression analysis of structural MRI connectivity matrices in Alzheimer’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0187281 November 14, 2017 16 / 16

https://doi.org/10.1212/WNL.0b013e318281ccd3
https://doi.org/10.1212/WNL.0b013e318281ccd3
http://www.ncbi.nlm.nih.gov/pubmed/23303849
https://doi.org/10.1186/1750-1326-6-85
http://www.ncbi.nlm.nih.gov/pubmed/22192775
https://doi.org/10.1371/journal.pone.0162889
http://www.ncbi.nlm.nih.gov/pubmed/27741236
https://doi.org/10.1212/WNL.0000000000003285
http://www.ncbi.nlm.nih.gov/pubmed/27708130
https://doi.org/10.3389/fnagi.2012.00032
http://www.ncbi.nlm.nih.gov/pubmed/23189052
https://doi.org/10.3389/fncom.2015.00066
http://www.ncbi.nlm.nih.gov/pubmed/26082713
https://doi.org/10.1093/brain/awt185
https://doi.org/10.1093/brain/awt185
http://www.ncbi.nlm.nih.gov/pubmed/23838694
https://doi.org/10.1093/cercor/10.3.243
http://www.ncbi.nlm.nih.gov/pubmed/10731219
http://www.ncbi.nlm.nih.gov/pubmed/21422522
https://doi.org/10.1006/nimg.2000.0582
http://www.ncbi.nlm.nih.gov/pubmed/10860804
https://doi.org/10.1016/j.brainres.2016.11.019
https://doi.org/10.1016/j.brainres.2016.11.019
http://www.ncbi.nlm.nih.gov/pubmed/27867033
https://doi.org/10.1073/pnas.1518285112
http://www.ncbi.nlm.nih.gov/pubmed/26504198
https://doi.org/10.1109/TMI.2016.2515021
https://doi.org/10.1109/TMI.2016.2515021
http://www.ncbi.nlm.nih.gov/pubmed/26742127
https://doi.org/10.1109/TBME.2015.2496233
http://www.ncbi.nlm.nih.gov/pubmed/26540666
https://doi.org/10.1371/journal.pone.0187281

