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Abstract: Road traffic crashes cause social, economic, physical and emotional losses. They also
reduce operating speed and road capacity and increase delays, unreliability, and productivity losses.
Previous crash duration research has concentrated on individual crashes, with the contributing
elements extracted directly from the incident description and records. As a result, the explanatory
variables were more regional, and the effects of broader macro-level factors were not investigated.
This is in contrast to crash frequency studies, which normally collect explanatory factors at a macro-
level. This study explores the impact of various factors and the consistency of their effects on vehicle
crash duration and frequency at a macro-level. Along with the demographic, vehicle utilisation,
environmental, and responder variables, street network features such as connectedness, density, and
hierarchy were added as covariates. The dataset contains over 95,000 vehicle crash records over
4.5 years in Greater Sydney, Australia. Following a dimension reduction of independent variables, a
hazard-based model was estimated for crash duration, and a Negative Binomial model was estimated
for frequency. Unobserved heterogeneity was accounted for by latent class models for both duration
and frequency. Income, driver experience and exposure are considered to have both positive and
negative impacts on duration. Crash duration is shorter in regions with a dense road network, but
crash frequency is higher. Highly connected networks, on the other hand, are associated with longer
length but lower frequency.

Keywords: crash duration; crash frequency; hazard-based; Negative Binomial; latent class

1. Introduction

Traffic incidents such as vehicle breakdowns, accidents, and hazards have a significant
impact on traffic performance, resulting in traffic congestion, unreliability, and pollution [1].
Crashes can also have profound emotional, physical, economic and social implications.
Researchers have used a variety of variables to assess safety, including crash frequency, rate,
severity, and duration. However, the number of research articles on crash frequency far
outnumbers other metrics, likely to be because of the relative ease of obtaining frequency
data [2].

Vehicle crashes, as an example of unplanned incidents, not only affect typical traffic
conditions but have also been regarded as the eighth leading cause of death in all age
groups worldwide [3]. Due to their high injury and fatality rate, crashes have always been
a critical component of safety analysis. Although human factors are considered to be the
main contributor to crashes, those caused by other variables (e.g., roadway characteristics,
environment) are relatively more predictable and preventable. After the occurrence of
the crash, the assistance of responders such as police, roadside assistance, medical and
rescue departments is necessary in most cases. Generally, the longer responders take to
reach the scene, the more severe the accident tends to be and the longer it lasts. Therefore,
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it is essential to have a comprehensive understanding of the nature and pattern of crash
occurrence and clearance, and to implement appropriate incident management strategies.
With this intention, identifying the key variables that affect such events from the past crash
records is crucial.

Crash analysis is performed at the macro and micro levels. In the macro-models,
the area of interest is divided into traffic analysis zones (TAZ), census wards, statistical
areas, etc. The impact of macro-level covariates, such as socioeconomic, demographic, envi-
ronmental, infrastructure, and traffic patterns, are modelled to provide countermeasures
from a planning standpoint [4]. On the other hand, micro models evaluate crashes on a
highway segment or intersection. Here, the variables, such as geometric design, signage,
sight distance requirements, time of day, etc., are considered from the engineering and
operational standpoint.

Previous studies on crash duration usually extracted potential variables directly from
the crash records. These variables comprise crash characteristics, environmental and
temporal features, traffic flow, and the roadway geometry where the incident has taken
place. Consequently, the exogenous variables are localised due to the selection of highway
segments as the study scope [5,6]. The effects caused by macro-level factors have not
been thoroughly investigated in past studies, contrary to research on crash frequency.
Conducting a zonal level analysis of crash duration can help to better understand how
factors that significantly contribute to crash occurrence affect the post-incident response
process, thereby helping to minimise the risk of secondary incidents.

Different statistical methods have been used and compared against one another in
past research, but most studies only focus on a single safety metric. Thus, the focus has
been on the predictive power of different statistical models. A few studies jointly modelled
some metrics, notably crash frequency and severity [7–9]. However, studies analysing the
influence of the same explanatory variables (from the same study area and, thus, dataset)
on crash frequency and duration cannot be found in the literature. This research aims to
compare and contrast the impacts of different explanatory variables on crash frequency and
duration. Specifically, this study looks at determining: (a) whether a macro-level variable
that significantly impacts crash frequency has any impact on duration or vice-versa, and
(b) if the variable is significant in both cases, whether the direction of the impact is the
same, or not.

The study also fills the gap in past studies that have not sufficiently examined the
effect of street network patterns on highway safety. Over the last four decades, there has
been a declining trend in the number of people killed or injured in car accidents in more
than 30 countries. This could be explained by increasing recognition of traffic safety and
improved vehicle safety performance [10]. Additionally, the enhancements in general road
network structure and design could also be one of the reasons. However, this impact
brought about by the network structure is underestimated by previous studies and practice.
Only a few studies have analysed the safety effects of road network structure metrics, such
as density and connectivity [11,12]. Even so, these studies focus on either crash frequency
or crash rate, with no attention to other metrics, e.g., crash duration or severity.

The rest of the paper is organised as follows. First, a review of methods employed for
crash frequency and duration is provided. It is followed by an overview of the various
statistical models utilised in the paper, then by a description of the study area, crash data
and potential influencing factors. The results of the modelling are then presented, together
with information on the effects of key parameters on accident duration and frequency. The
last section summarises the most important findings and suggests future study directions.

2. Literature Review
2.1. Crash Frequency

Crash count data modelling is an important branch of traffic safety analysis. In macro-
level analysis, researchers usually divide the area of interest into common units such as
traffic analysis zones (TAZ) [13,14], and census wards [15], or other units which are based
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on statistical level [16], uniform size grid [17], and cities [18]. A variety of covariates
including socio-economic and demographic, environmental and temporal, infrastructure
and road network (e.g., road density and length, network connectivity and circuity), vehicle
characteristics, and driver behaviour and licensing, traffic pattern variables (e.g., average
driving speed and traffic volume) are typically considered. Among these, socio-economic
and demographic features consist of population densities, age-group distributions, per-
capita income, employment rate, GDPs, number of hospitals and medical services, crime
rates, suicide rates, and police enforcement. Temporal and environmental covariates can
further be classified as average temperature and precipitation, number of rainy, frosty
and snowy days, road curvatures, and presence of ramps. The selections of considered
variables from certain categories, or in general, are different in each study, based on the
data availability or the significance. The effect of covariates could vary on a case by case
basis, but previous literature has provided strong evidence that driver behaviour covariates
and non-behaviour covariates both significantly influence the occurrence of crashes.

A wide variety of statistical approaches has been used and developed over the last
few decades. The Poisson regression model is the most basic and usually serves as a
starting point in crash frequency estimation. The biggest drawback of being unable to
deal with over-dispersion data (the variance exceeds the mean) has been addressed by the
Negative Binomial (NB) model (also known as the Poisson-Gamma regression). The NB
model offers a basic structure for model development and has been extensively applied in
both earlier and recent studies. The ability to account for zero count observations in the
above-mentioned models is usually not sufficient to handle predominant zeros in practice
(regions where no crash occurred during the observation period). The zero inflated Poisson
and NB model are developed for this circumstance, which has a splitting mechanism that
provides two types of zeros governed by logit and probit distributions [19,20]. Although
they are popular in traffic safety analysis, they have been criticised in highway safety
for being unable to properly reflect the process of the crash-count generation due to the
long-term zero means [21].

One methodological challenge in estimation is the existence of spatial unobserved
heterogeneity and spatial and temporal correlation (neighbouring zones may share un-
observed effects). These phenomena can be addressed with random-effects (in case of
panel data), hierarchical and random parameters models. For the random-effects model, it
is assumed that the effects remain constant over the spatial or temporal unit and follow
certain distributions [22,23]. Such effects are also assumed to be uncorrelated with the
considered covariates. The random parameters model, as an extension of the random
effects model, allows the parameter of covariates to vary across observations. It has been
applied to crash count estimation in previous literature [24,25], and has often showed a
significantly better statistical fit than the traditional fixed parameters models. Hierarchical
models are applied to analyse data grouped into clusters at one or more levels, and crash
data can be regarded as an example. The main assumption in this type of model is that
there may be a correlation among crashes with the same category of vehicle and location,
which may be due to unobserved features related to vehicle type or location. It has been
applied in a number of crash modelling studies [26,27].

Bivariate/multivariate models are necessary tools to analyse specific types of crashes
such as crashes that lead to death or injury. These specific types of crash counts are not
independent and can be solved by joint modelling, in which the correlation among the
severity levels for each roadway entity has been explicitly taken into account [28,29]. The
finite mixture model is also popular in examining heterogeneous populations. It was
developed based on the assumption that unobserved groups, also named latent class, exist
within the overall populations. The considerable potential offered by finite mixture models
can provide important new insights for crash data analysis, and has been applied in many
studies [30,31]. Other methods such as bivariate/multivariate, neural networks, support
vector machine, etc. are also widely used for crash frequency prediction [32].
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2.2. Crash Duration Methods

Crash duration typically consists of the following phases: detection, response, clear-
ance, and recovery. The clearance phase has the most potential to reduce overall duration
and is immediately affected by response agencies. This includes clearing the driveway
of stuck cars, wrecks and debris, assisting stranded motorists, and assisting with traf-
fic control and traffic management. Researchers have used various methods such as
regression [33–35], hazard-based duration models [6,36], fuzzy system [37], classification
tree [38], neural networks [39], Bayesian models [40], support vector machine [41], and
hybrid models [42] to evaluate crash duration.

In early studies, a Kolmogorov-Smirnov test was performed to determine the most
appropriate distribution of the accident duration, and a lognormal distribution was found
to provide the best fit [43,44]. Although hazard-based models are gaining popularity in
duration analysis, there have been many improvements in models using regression and
statistical tests in the past decade. Hou et al. (2013) [45] proposed a new probability model
for response time, which is based on crash operational mechanism instead of empirical ob-
servations. Seven influential factors (disabled vehicles, debris, shoulder/median involved,
fully enclosed, injuries involved, heavy truck involved, and weekends) were determined to
be associated with longer response preparation delays. At the same time, eleven factors
were found to have the opposite effect (abandoned vehicles, collisions, all lanes blocked,
fires involved, work areas involved, AM peak, PM peak, summer, winter, high-occupancy
vehicle lane accidents, and average daily traffic volume).

Researchers generally believe that if timely incident response measures are taken,
traffic incidents can be quickly cleared [45,46]. However, Ding et al. (2015) [47] suggested
that, due to similar characteristics and relatively simple processes, incidents with shorter
response times may have higher priority. To reduce such self-selection bias and better
understand the interaction between endogenous and exogenous variables on incident
clearance times, they applied the endogenous switching model. They found only one
variable (single lane blocked) associated with shorter clearance time and six factors were
closely related with longer clearance time: all travel lanes blocked, total closure, injury
involved, fire involved, heavy truck involved and traffic control. The authors of [48]
explored the potential of a modularity-optimising community detection algorithm and
association rule learning algorithm for large dimensional datasets.

The hazard-based duration modelling method is appropriate for handling positive,
censored, and time-varying duration data [49]. Its main superiority is the ability to capture
time dependency, not just the duration alone, which allows explicit research on how
various explanatory variables affect the conditional likelihood of incident clearance over
time [50]. In the family of hazard-based models, accelerated failure time models (AFT) and
proportional hazard models (PH) are two optional parametric methods that incorporate
the effects of external independent variables on the hazard function. Whereas the effect
of PH modelling is to multiply the hazard by a certain constant, an AFT assumes that the
survival time is accelerated or decelerated by a constant factor, which captures the direct
impact of exposure on survival time. The most representative studies for incident duration
modelling using the family of hazard-based models are presented below.

In an early study, ref. [51] used an accelerated lifetime method underlying hazard
function to analyse crash duration and frequency data. They claimed that log-logistic
distribution can replicate duration data better than lognormal distribution. In addition,
shorter response and clearance times were observed for crashes that occurred during peak
hours and daytime; special events, motorist and vehicle characteristics were also found
to impact duration. The study by [46] evaluated duration data using the proportional
hazard-based model with multiple parametric distributions. This study indicated that the
Weibull distribution with gamma heterogeneity was the best fitting model for incident
detection and response duration, while the log-logistic distribution provided the best
likelihood ratio statistics. In terms of modelling result, longer response times were observed
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during peak hours, nights, weekends, and when spillage or non-single occupancy vehicles
were involved.

A research study by [50] applied a hazard-based model to identify the variables that
significantly affect the incident clearance time. This study also compared five common
distributions underlying hazard function (exponential, Weibull, Lognormal, Log-logistic,
Gamma) and the generalised F distribution, where each of these five distributions is a
special form. The result clearly showed that the generalised F distribution provides a better
fit for the incident clearance data than other parametric models within any reasonable
confidence interval. Furthermore, the effects of incident characteristics are significantly
different among different approaches. Regarding the estimate results, a shorter incident
clearance time was observed at lower traffic volume, while a longer time was required dur-
ing the winter. The authors [52] examined the effect of abandoned and disabled vehicles on
freeway incident duration, in addition to detection mechanisms, towing times and various
environmental and temporal factors. AFT hazard-based models with log-logistic distribu-
tion were applied for disabled vehicles, abandoned vehicles and combined models. The
modelling results suggested that more lane segments and notifications through the HELP
patrol program are associated with shorter clearance times, and shoulder involvement and
inverse weather decreased disabled vehicle incident duration but increased correspond-
ingly the duration of an abandoned vehicle incident. Besides, incidents involved with
multiple vehicles and forced multiple lanes closed are associated with a shorter duration,
as expected.

Apart from the parametric accelerated failure time model underlying hazard-function,
some studies have applied semi-parametric or non-parametric models to analyse incident
duration. Unlike fully parametric proportional models, the most commonly applied semi-
parametric model, the Cox regression model, uses a partial likelihood estimation approach
to evaluate how explanatory variables alter the baseline hazard to avoid specific dura-
tion distribution assumptions [53]. Hou et al. (2013) [45] used this approach and found
that injury involved, fire involved, summer, and mean annual daily traffic volume were
related to time-constant effects; seven factors including single/multiple lanes blocked,
short/medium/long response time, disabled vehicles and collision were associated with
time-increasing factor-affected hazards; the rest (debris, abandoned vehicles, heavy truck
involved, night, weekends, traffic control) were found to have the opposite effects.

Zhang et al. (2014) [54] employed nonparametric regression based on the Kaplan-
Meyer model to calculate survival function and hazard function in order to separately
describe the spatial-temporal distribution features of the multi-influencing factors. Then
they applied the COX proportional hazard model to analyse the co-evolution mechanism
among them. The probability of the occurrence of traffic incidents was higher under a
relatively large amount of traffic and most of the incidents were observed at non-bottleneck
segments or at low running speed. In addition, the vast majority were minor collision
between two cars, or one-car breakdowns.

As may be noticed from the above review, all studies on crash duration are conducted
at a micro-level, i.e., considering each crash record separately. Therefore, almost all the
covariates considered are location-specific. On the other hand, for crash frequency analysis,
crashes are aggregated at a region-level, and the region-specific covariates are typically
considered. To reconcile this limitation, we perform a macro-level analysis of both frequency
and duration to determine the impact of region-level covariates.

3. Methodology
3.1. Crash Duration

The hazard-based model’s ability to consider time dependency allows researchers
to examine how the conditional likelihood of incident clearance is affected by different
external variables over time. To characterise duration data, the hazard-based approach uses
two main formulations: hazard and survival functions. The survival function, commonly
abbreviated as S(t), denotes the likelihood that an event will not occur by a given time t.
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The probability that the event durations will end at time t, assuming that the individual
has not arrived at time t, is known as the hazard function, or h(t).

Two different ways of modelling incident duration data are the proportional hazard
model (PH) and the accelerated failure time model (AFT) [55]. The PH model posits that
the influential factors multiply the hazard function. A breach of this hypothesis may lead
to inaccurate estimations. Therefore, the AFT model can be used as an alternative when the
survival data does not meet the requirements of the PH model. The AFT model assumes
that the effect of an explanatory variable can accelerate or decelerate the survival time by
a constant. AFT is a linear model of the logarithm of event duration, making it easy to
interpret [56]. The AFT model’s underlying distribution could be a log-normal, exponential,
log-logistic, or Weibull distribution. Only the exponential and Weibull distributions can fit
the PH model’s hypothesis. Thus, to better fit incident data, the AFT technique is used in
this study [6].

Incident duration T is a continuous random variable with a cumulative distribution
function F(t), also denoted as the failure function. This function gives the probability that
the incident has occurred before duration t.

F(t) = Pr(T ≤ t) (1)

The survival function provides the probability that the duration of a traffic incident is
greater than or equal to time t.

S(t) = Pr(T ≥ t) = 1− Pr(T ≤ t) = 1− F(t) (2)

The probability function f (t) can be expressed as

f (t) =
dF(t)

dt
(3)

The hazard function h(t) describes the instantaneous potential unit time of the incident,
given that the individual has not ended up at time t. The slope of the hazard function
can capture the duration dependence. A positive duration dependence is observed when
the slope is positive, suggesting that a longer duration of the incident is associated with a
higher possibility of the incident ending soon. The clearance of the incident is independent
of the time when the slope is zero.

h(t) =
f (t)

1− F(t)
=

f (t)
S(t)

(4)

The AFT model describes how explanatory variables affect survival time rescaling. It
is assumed that the vector of variables X and the log of survival time T are linear.

ln(T) = βX + ε (5)

where β is the estimated parameter vector, and ε is the error.
The hazard rate is written as

h(t, X) = ψh0(ψt) (6)

where h0(·) is the baseline hazard function, ψ = exp
(
−(β′0 + β′1x1 + β′2x2 + ···+ β′nxn

)
=

exp(−(β′X)), and n is the number of external variables.

3.2. Crash Frequency

Negative Binomial (NB) and Poisson models are the two most commonly utilised
approaches to model count data, which are discrete and non-negative [57]. The Poisson
regression model assumes that the mean of the incident count strictly equals its variance,
i.e., E(yi) = Var(yi). However, this equality does not hold in most practical cases of crash
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modelling, where the variance exceeds the mean, so the data is considered to be over-
dispersed. Previous literature suggests that the NB model is preferred to Poisson due to its
capability to address this issue [32,55]. Following the most common log-linear relationship,
NB relaxes this assumption by adding an error term εi to the mean of the Poisson model:

λi = exp(βXi + εi) (7)

where λi is the Poisson parameter, which is also the expected incident frequency at location
i. Xi is the vector of given explanatory variables for location i, and β is the corresponding
vector of estimated parameters. exp(εi) is gamma distributed with mean one and variance
α. Therefore, the variance can be defined as λi(1 + αλi), which is different from the mean.

3.3. Accounting for Unobserved Heterogeneity

The implicit assumption for the above two statistical methods is that the estimated
coefficients of any individual covariate are constant across observations—such specification
is known as a “fixed-parameter (FP) approach”. It also assumes that vector X’s external
variables capture all variations in incident duration and frequency. However, when the
influence of explanatory variables is not completely homogeneous throughout observa-
tions, this assumption may be violated. Alternatively stated, there may be unobserved
heterogeneity among incident duration and frequency in regions that are not adjacent or
neighbours [31,58].

Statistical approaches such as random parameters models [31,59], latent class (finite
mixture) models [30], a combination of latent class and random parameters models [60],
and Markov-switching models [61] are widely used to address the problem of unobserved
heterogeneity. In the current study, Latent Class models are estimated to account for unob-
served heterogeneity in crash frequency and duration prediction. The latent class approach
is a discrete finite mixture model to capturing unobserved heterogeneity. The observations
are divided into Q latent classes, with the calculated coefficients of the variables treated as
constants. Because it does not enforce a distributional assumption on coefficients, LCM is
considered semi-parametric [31,58]. The incident duration Y can be written as

Y = βqX + εq (8)

where βq is an unknown parameter vector for class q (q = 1, . . . , Q). εq follows a normal
distribution with a scale parameter σq. The Akaike and Bayesian information criteria values
are used to determine the number of classes [62].

Random parameter models are more time intensive than fixed parameter models
because the analyst must make parametric assumptions about the distribution of hetero-
geneity across observations. Choosing the number of classes and covariates in a class
membership component is likewise difficult in latent class models, although relatively
straightforward.

In summary, this study estimates Fixed Parameters Negative Binomial (FPNB) and
Latent Class Negative Binomial (LCNB) models to evaluate crash frequency. Further, this
study estimates Fixed Parameters Accelerated Failure Time (FPAFT) and Latent Class
Accelerated Failure Time (LCAFT) models to evaluate crash duration.

3.4. Study Area and Data Collection

In this paper, the dataset, collected over 4.5 years, from January 2012 to June 2016, is
used, accounted for 95,568 records of crashes. It covers the entire Sydney Metropolitan
Area in New South Wales, Australia [63]. It provides comprehensive information about
each incident, including the location, incident time, duration, number of lanes affected,
incident detection mechanism, and a brief description of each incidence. It was found that
crash duration is highly skewed (positively skewed in this dataset), which is consistent
with the unique feature of survival time data. Extreme outliers can last for days and are
possible because of accidents that required special response (e.g., chemical spill) or caused
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damages to infrastructure. Given the capability of the median in describing the central
tendency of the data, the median crash duration of each zone within the observation period
will be used as the dependent variable for duration analysis. There are approximately 0.6%
of crash records that lack duration and 0.1% that lack spatial coordinates. These data were
omitted from the final analysis.

This study used the Statistical Area Level 3 (SA3) as the spatial aggregation to model
crash duration and identify the contributing factors [64]. The crash frequency and median
crash duration of these SA3s are presented in Figure 1.
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Figure 1. Crash frequency and the median crash duration of SA3. The zonal shapefile of SA3 was
downloaded from the Australian Bureau of Statistics [64]. The original shapefile covered the entire
state of New South Wales in Australia. Therefore, we trimmed the shapefile to restrict it to our study
area, i.e., Sydney. Then we visualise our processed data (crash frequency and duration) spatially.

3.5. Independent Variables

Most of the independent variables for the current study are sourced from [65], which
evaluated the impacts of zonal-level explanatory variables on the duration of vehicle
breakdowns. A detailed description of the variables and the descriptive statistics can be
found there. The explanatory variables included SA3-level socioeconomic characteristics,
demographics, road network structure, etc. Apart from these variables, the current study
also collects additional data in the form of the responder data obtained from websites
of multiple government departments (Police Force, Ambulance, Health and Emergency
Service) and the Australian Business Register Lookup (roadside assistance service) [66].
The descriptive statistics for the additional variables are provided in Table 1.

Table 1. Descriptive statistics of the variables.

Variable Mean SD Minimum Maximum

Median vehicle crash duration (minutes) 37.15 9.06 21 72
Crash frequency 2171 1420.51 350 7159

Independent variables (apart from the ones already considered in [65])
Total number of roadside assistance services 7.75 7.93 0 36

Total number of emergency services 0.93 1.26 0 6
Total number of police stations 2.50 2.33 0 11

Total number of ambulance stations 1.25 1.10 0 4
Total number of public hospitals 1.32 1.46 0 6
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4. Results
4.1. Factor Analysis

In this study, 42 candidate explanatory variables were examined, which included
11 which were road network structure related and 31 others. To overcome multicollinearity,
a linear dimension reduction approach is used. The principal component factor analysis
method is employed [67], and a varimax rotation with Kaiser Normalization is conducted
to define probabilistic loadings. The number of factors depends on when the eigenvalues
displayed by all factors are greater than one. Only the loadings (the Pearson correlation
between the variables and the extracted component) greater than 0.4 are retained for
interpretative purposes, as suggested by [68]. If the loading value is higher, it shows that
the variable is strongly correlated to the factor that it belongs to. In addition, the direction
of correlation is indicated by the sign of the loading. Eight factors had eigenvalues greater
than one, accounting for 84% of the variance. The results of the factor analysis are shown
in Table 2. The study by [65] performed two separate factor analyses for network structure
and other variables, whereas in this study, the factor analysis is performed once for all the
variables combined. The factors are discussed in length in the “Discussion” section.

The factors are labelled according to the underlying variables that have a strong
influence on the factor. For example, the first factor is termed “Inexperience and Unaffluent”
because of the strong loading of variables such as driving licenses and income. It has been
named thus, instead of “Income and Affluent”, due to the negative factor loading of the
variables. This labelling makes it simple to interpret the modelling results.

The second factor, Land use homogeneity, is mainly composed of fuel utilisation and
land use. In terms of land use, relatively remote areas are expected to have more diversified
land use. In addition to the commercial and residential areas that each region is equipped
with, the proportion of undeveloped land and land used for industrial, agricultural, and
shipping purposes is higher in relatively remote areas. Road cargo transportation is con-
sidered as a crucial factor in adding value and improving productivity in these industries,
so it is reasonable that more heavy vehicles are registered in these SA3s. Furthermore,
most heavy vehicles operate on diesel. Besides, the trips used for shipping purposes are
usually long-distance, high speed and intercity, and are generally made on motorways and
freeways in relatively remote areas. Such a hypothesis explains the correlation between
road length and the second factor.
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Table 2. Rotated factor loading of all candidate variables.

Candidate Variables
Component

1—Inexperience and
Unaffluent

2—Land Use
Homogeneity 3—Density 4—Responder 5—Connectivity 6—Hierarchy 7—Exposure 8—Public Transport

Proportion

Proportion of P2 license holders 0.937
Proportion of P1 license holders 0.931
Proportion of unrestricted license holders −0.931
Proportion of income earners −0.916
Average yearly income of income earner (in $10,000) −0.863
Proportion of white-collared workers among total employees −0.835
Proportion of LPG vehicles 0.834
Proportion of learners’ license holders 0.798
Proportion of vehicles older than 10 years 0.729
Proportion of vehicles aged between 5 to 10 years −0.724
Proportion of people who speak a language other than
English at home 0.649

Total number of roadside assistance services 0.607 0.523
Average precipitation per day (in mm) −0.591 0.441
Proportion of vehicles aged less than 5 years −0.562 0.422
Pproportion of petrol powered vehicles 0.927
Proportion of diesel powered vehicles −0.908
Land use entropy −0.823
Proportion of heavy vehicles 0.515 −0.734
Road length (km) −0.670
Proportion of individuals born overseas 0.483 0.472
Average daily temperature (◦C) 0.481 0.429
Entropy of length-weighted spatial orientation of roads [69] −0.460
Intersection density (intersections/sq.km.) 0.920
Road density (km/sq.km.) 0.402 0.886
Population density 0.404 0.826
Rratio of car users to other mode users −0.738
Proportion of families with children under 15 years −0.698
Number of speed cameras 0.788
Total number of emergency services 0.787
Total number of police stations 0.783
Total number of ambulance stations 0.668
Total number of public hospitals 0.421 0.646
Meshedness coefficient 0.876
Link-node ratio (# links/# intersections) 0.873
Average node degree 0.713
Proportion of Motorway, trunk and primary roads (MTP) 0.850
Average number of lanes 0.693
Entropy of length-weighted road type 0.669
Average daily weighted travel distance (in million-km) 0.753
Total number of registered vehicles (in 10,000) 0.707
The ratio of public transport users to other mode users 0.500 0.522
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The third component, Density, primarily consists of population and road network
densities. In low-density areas, the public transportation system may not be well-developed
or widely covered, and more people may need cars to meet their travel needs. The fourth
factor is mainly comprised of the amount of response service depots within an SA3. The sub-
sequent factors, Connectivity and Hierarchy [70], are two fundamental network structure
characteristics that are highly correlated with their corresponding indicators as expected.
The seventh component, the Exposure factor, is widely used to measure vehicle usage.
Finally, the eighth component describes public transport usage.

4.2. Modelling Results

We used the Anderson-Rubin approach to determine the factor scores for each zone
(SA3) after identifying the factors [71]. In the crash frequency and duration models, we
used these scores as the explanatory variables. For the duration model, various model
specifications were fitted by changing the distribution of the hazard function. The results
of both the FP and LC approaches are shown in the paper to demonstrate the better model
fit of the LC approach.

Tables 3 and 4 display the modelling results for crash duration and frequency, respec-
tively. In terms of duration analysis results, the final comparison only shows the best hazard
distribution inside the FPAFT (log-logistic) and LCAFT (Weibull) models. The negative
sign of the estimated parameter suggests that an increase in the factor is associated with
a decrease in the crash duration. The best-fit LCAFT model has two latent classes, with
Class-1 including 37% of SA3s and Class-2 including 63% of SA3s. Further, the LC-AFT
model with Weibull distribution is preferred, and performed better than the FP model.

Table 3. Crash duration model estimation results.

FPAFT
Model—Logistic LCAFT Model—Weibull

Class-1 Class-2

B p-Value B p-Value B p-Value

Constant 3.59 <0.01 3.65 <0.01 3.60 <0.01
Inexperience and

Unaffluent - - −0.02 <0.01 0.04 0.02

Land use homogeneity −0.13 <0.01 −0.14 <0.01 −0.12 <0.01
Density −0.10 <0.01 −0.11 <0.01 −0.13 <0.01

Responder - - - - −0.06 0.05
Connectivity - - 0.03 <0.01 - -

Hierarchy −0.08 <0.01 −0.03 <0.01 −0.09 <0.01
Exposure - - −0.06 <0.01 0.02 0.10

Public transport
proportion −0.04 0.02 −0.12 <0.01 - -

Sigma (Scale parameter) 0.06 <0.01 0.01 <0.01 0.06 <0.01
Class Probability - - 0.37 <0.01 0.63 <0.01

AIC −64.1 −84.4
BIC −53.4 −47.0

Loglikelihood 38.03 63.22

As described in Table 4, FPNB and LCNB models were fitted to crash frequency data. A
positive sign of an estimated coefficient suggests an increase in crash frequency associated
with an increase in that factor and vice versa. The best-fit LCNB model has two classes,
showing that unobserved heterogeneity is present in the crash data. The following section
offers some intriguing insights using statistical modelling.
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Table 4. Crash frequency model estimation results.

FPNB Model
LCNB Model

Class-1 Class-2

B p-Value B p-Value B p-Value

Constant 7.49 <0.01 7.76 <0.01 7.45 <0.01
Inexperience and Unaffluent 0.24 <0.01 0.41 <0.01 0.14 <0.01

Land use homogeneity 0.3 <0.01 0.36 <0.01 0.27 <0.01
Density 0.3 <0.01 0.55 <0.01 0.27 <0.01

Responder 0.22 <0.01 0.47 <0.01 0.24 <0.01
Connectivity - - - - −0.08 0.07

Hierarchy 0.28 <0.01 0.63 <0.01 0.27 <0.01
Exposure 0.28 <0.01 0.5 <0.01 0.21 <0.01

Public transport proportion 0.12 <0.01 - - 0.16 <0.01
Alpha (Overdispersion

parameter) 0.06 <0.01 - - 82.24 0.03

Class Probability - - 0.32 <0.01 0.68 <0.01
AIC 677.3 624.5
BIC 693.3 662

Loglikelihood −329.64 −291.27

5. Discussion

In explaining the impact of significant factors, crash duration and frequency discussion
are restricted to the best-fitting model, the LC-AFT model, with Weibull hazard distribution
and the LC-NB model, respectively.

5.1. Inexperience and Unaffluent

The majority of SA3s, i.e., those belonging to Class-2, observe an increasing crash
duration with decreased income and experience, whereas those belonging to Class-1 show
the opposite relation. In minor crashes, more experienced drivers (no license restrictions)
are likely to be more proficient, resulting in faster reporting and reaction times. Because
higher-income persons have more work-related obligations, immediately calling the police
and/or notifying insurance representatives may be the best solution. Furthermore, the
SA3s with higher income are correlated with newer vehicles (i.e., aged less than five years),
as seen in Table 2. Newer vehicles are superior in terms of safety. Besides, safety standards
and regulations have developed over the years, providing more affordable vehicles with
the latest safety features [72]. Therefore, the severity and casualty of crashes with newer
vehicles tend to be lower, resulting in a shorter clearance duration.

While the factor has contrasting impacts on duration in the two latent classes, it has
a consistent (same direction of impact) impact on crash frequency. The LCNB model
indicates that, as experience and income increase, the number of crashes decreases, which is
consistent with past studies [73]. Mechanical failure occurring during driving is one of the
leading non-artificial reasons causing crashes. Newer and more high-end vehicles usually
have better safety performance. The willingness and financial capability of higher-income
earners to purchase these vehicles may be higher. According to [74], the two most common
issues that lead to crashes are tires and wheel-related problems and brake failure, and
worn-out components are the main contributing factor. Under the same maintenance
frequency, vehicles aged more than ten years old will bear a higher risk of crashes caused
by mechanical failure than newer vehicles in general.

5.2. Land Use Homogeneity

It is observed that the increase in land use homogeneity reduces the crash duration in
both latent classes. In heavy vehicle crashes, response services are limited compared to light
vehicle crashes, causing a lengthier response time. Towing, roadside diagnostics, and repair
may also take longer. Heavy vehicles also usually transport cargo or passengers. Therefore,
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the response efficiency may depend significantly on the availability of rescue resources
(e.g., ambulance, trailer and heavy load crane). Usually, post-incident management takes
a longer time compared to light vehicles. Responders may encounter more intersections
in regions with shorter average road lengths, causing a delay in arriving at the incident
location. The above hypothesis can also be applied to the Density Factor.

The increase in this factor increased the crash frequency. The compositions of diesel
are not as active or volatile as petrol, and they are less likely to form explosive mixtures.
Therefore, diesel-powered vehicles are less likely to be accidentally ignited or exploded.
In addition, diesel engines usually have lower speeds, resulting in slower aging and wear
than petrol engines. These vehicles are equipped with fewer auxiliary appliances and do
not require an ignition system [75]. As a consequence, diesel vehicles may contribute less
to crashes caused by component failures.

These possible reasons could also be applied to heavy vehicles. Besides, due to the
low manoeuvrability and blind spots of heavy vehicles, drivers of light vehicles tend to be
more cautious and patient when approaching them.

5.3. Density Factor

The results suggest that, as the density factor increases, crash duration decreases
but crash frequency increases. Regions with higher network density could cause more
traffic conflicts because of multiple crossing movements and approaches [12,17,76]. A
report from [77] indicates that approximately 40% of crashes occurred at intersections.
Higher network density is also a proxy for traffic congestion, as frequent encountering of
intersections would lead to a reduction in traffic speeds. Thus, although there are more
conflicts (and crashes), their severity (and consequently duration) may not be high [78].

As the number of families with children in SA3s increases, duration increases but
frequency decreases. The reduction in crash frequency is likely to be because of the extra
awareness and protection by parent drivers [57]. On the other hand, the increase in
duration could be attributed to children’s special medical care requirements. The anatomy
and physiology of children differ significantly from those of adults. Therefore, when
crashes happen, the impact on the head is more prominent in children than adults. For
example, serious head injuries are seen in 80% of children who die from multiple organ
injuries, but the figure is 50% in adults [79].

5.4. Responder Factor

An increase in the Responder factor decreases the crash duration in 63% of SA3s, i.e.,
those belonging to Class-2. However, the factor is insignificant for Class-1. High availability
of responders may help shorten response and clearance time and minimise the possibility
of casualties caused by rescue or medical care delays. It is also worth mentioning that both
endogeneity bias and self-selection are observed in incident duration phases [47]. Higher
priority is usually granted when a severe fire or fatality incident occurs, resulting in a faster
response. This faster response could effectively prevent the crash from becoming more
severe, leading to a shorter clearance duration.

However, the responder factor indicated an increased crash frequency in both the
latent classes of the LCNB model. The availability of responders does not contribute directly
to crash frequency. A possible explanation for the result is that previous incident records
may have been used in setting up more responders. This hypothesis may generate an
endogeneity problem, and further study is required [80].

5.5. Connectivity Factor

The increase in road connectivity increases crash duration in the minority of SA3s
(class-1). Strongly connected networks feature more links connecting each node, indicating
greater complexity and a longer signal cycle (in the case of signalised intersections). Delays
at such intersections may result in lengthier reaction times.
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In Class-2 of the LCNB model, well-connected networks are expected to have fewer
accidents. A network with poor connectivity is usually associated with more dead ends
and loop streets. Compared with the traditional grid pattern, this network layout may
restrict motorists’ sight distance, resulting in decreased perception, longer reaction time
and greater difficulty in reducing vehicle speed [81]. All of these impacts might increase
the risk of a crash for vulnerable road users in poorly connected networks. The authors
of [82] mentioned that suburban areas with high connectivity could effectively distribute
local traffic by collector roads parallel to the arterials. Therefore, the safety of arterials
could be improved thanks to decreasing local traffic access. Highly connected networks are
usually associated with more complex intersections such as roundabouts and signalised
intersections. These have usually been adequately designed and assessed by transportation
authorities to ensure the safety of various road users crossing from different directions [77].
The other contribution may be that highly connected networks retain the capacity to
dissipate the congestion, which could lower the need to build more arterials and generate
less travel in a city-wide network [11].

5.6. Hierarchy Factor

In both classes, crash duration decreases with the presence of more high-functional
roads. This is likely to be due to better detection infrastructure and faster identification
of problems on higher functional class edges [83]. Higher functional class edges are
usually built with more lanes. Therefore, when involved in incidents, the possibility of a
complete road blockage is relatively lower than for lower functional class edges. Under
this circumstance, the delay due to congestion could be reduced.

Networks with a higher hierarchy are associated with more crashes, as indicated by
the positive coefficient in the LCNB model. Higher functional class edges are usually
built with more lanes and are expected to have higher traffic volume. On the one hand,
it could be explained by the increasing number of sudden lane-changing related crashes,
accounting for approximately 17% of severe accidents [84]. On the other hand, various
pieces of literature have identified a positive correlation between traffic volume and accident
frequency [85,86]. In addition, excessive speed driving could be more frequent on roads
with a higher speed limit, which also contributes to higher crash frequency. Finally, the
hierarchy may indirectly increase the exposure of vehicles by encouraging auto dependency
and generating unnecessary travel distance.

5.7. Exposure Factor

A negative coefficient of the exposure factor was observed in class-1 of the LCAFT
model. Higher exposure in a region usually indicates higher traffic volume in general,
which could induce more congestion and lower the average vehicle speed of responders.
Acknowledging that this is also associated with more crashes, the availability of respon-
ders may decrease, and their average travel distance may increase. Both hypotheses are
responsible for longer response duration. However, minor incidents may allow drivers to
gain expertise and reduce time. Crash frequency increases as the level of vehicle exposure
increases. This is explained by increased driving time and vehicle wear and tear.

5.8. Public Transport Proportion Factor

A negative impact was observed on crash duration, and the opposite effect was
observed on frequency. Traffic congestion in urban areas continues to grow; the use of
public transportation will also increase simultaneously to meet people’s daily travel needs.
The factor analysis shows a negative association between public transportation and car
proportion variables, and the reasoning for the Density Factor may apply here as well.

5.9. General Discussion

As presented in Figure 1, zones with higher crash frequency are generally associated
with a shorter duration, most likely due to the proportion of minor crashes. The overall
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trend also basically matches the distribution of remote areas and areas that are densely
populated and developed in Greater Sydney. The majority of factors are observed to show
different sides of impacts on crash duration and frequency (i.e., increase in duration but
a decrease in frequency as a factor increases and vice-versa). Besides, many underlying
explanatory variables are living conditions and lifestyle measures, urban quality, and
incident management resources, which are unevenly distributed in these two categories
of region. Due to higher vehicle exposure, the crash frequency in densely populated and
urban environments is expected to be much higher. These areas are usually associated with
higher traffic congestion and lower vehicle speeds, which can reduce the proportions of
fatalities and severe injuries. In this case, thanks to the reduced difficulty and complexity
of the response, the overall crash duration can be shortened. It is also worth noting that
the significance and scale of the effect are quite different in these areas. For example,
a minor crash closer to the downtown area may severely affect the traffic flow of up
to several kilometres of roadway. As a result, the response team may be blocked, and
the risk of secondary crashes may increase. On the other hand, uneven service demand
(incident occurrence) may lead to uneven distribution of response resources. In regions that
experience the longest duration, it is expected that additional time required will be spent on
the preparation and travel of the response team. Lastly, the discrepancy in travel patterns
and driving behaviours is also a contributor. These variables have not been adequately
considered in this study and could generate diverse or even opposite effects. Therefore, a
comprehensive understanding of crash frequency and duration based on the same dataset
will help develop optimal countermeasures and post-incident management plans.

6. Conclusions

Past research efforts have been placed on analysing vehicle crashes with respect to
frequency, risk, severity, and duration. Regarding crash duration, a branch of studies is
devoted to developing real-time duration prediction models that traffic operation centres
could employ. The existing studies concentrated on micro-level or localised explanatory
variables. These variables include the time of day, weather, distance from the city centre,
road geometry, posted speed, type and number of vehicles involved, etc. On the other
hand, the effects of zonal factors such as road network features, demographic character-
istics, environmental properties, etc., have not been thoroughly examined, contrary to
studies on frequency. Hence, fully understanding how macro-level factors affect incidents
and subsequent management processes can help develop the most suitable strategies for
different regions.

With this intention, the current study described the modelling of vehicle crash duration
and frequency data from the Greater Sydney Metropolitan Area. After a preliminary
dimensionality reduction process, a total of eight factors in terms of socioeconomic, vehicle
utilisation, environmental, responder, and network structure features were examined as
candidate variables. Factor scores were computed, and different statistical models were
developed to evaluate crash frequency and duration.

With regard to modelling results, the LCAFT model with Weibull distribution and the
LCNB model were the most suitable for crash duration and frequency, respectively. This
study’s findings are interesting for congestion management and reduction, especially in
metropolitan settings. Network administrators and multiple response service personnel
can implement the findings to develop more efficient incident clearance strategies and
distribute response resources more reasonably. Results also proved that network density
and structure are associated with the number of crash occurrences. In transportation safety
studies, taking network structure characteristics into account may aid in the planning of
safer and more sustainable communities. Even though the overall structure of the road
network has already been decided in some locations, the results can still be used by the
relevant authorities to reduce traffic congestion and the danger of secondary events (e.g.,
ideal position of emergency service depot, emergency lane, and fast detection devices).
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A key limitation of this study is the lack of sufficient sample size. Another limitation
is the lack of consideration of temporal stability and transferability in our considered time
range (i.e., from January 2012 to June 2016). This could be an issue because the data related
to various explanatory variables are collected at different time intervals. The study is only
employed the most fundamental road network measures. Nevertheless, any additional
data in terms of street-level data (e.g., average shoulder width and the proportion of road
length with curbs) and road network measures such as network pattern may increase the
model’s usefulness.

Subsequent research can be conducted in order to account for more street network
measures such as circuity and network pattern. The crash frequency and median duration
of SA3 were applied in the current study as dependent variables for the statistical model
development. The temporal stability of dependent variables can also be jointly modelled
and used to validate current results. Further research can be applied to other geographical
regions and by including more regions in the analysis.
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