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The complex and dynamic nature of human physiology, as exemplified by metabolism, has often been overlooked due to the lack of 
quantitative and systems approaches. Recently, systems biology approaches have pushed the boundaries of our current understand-
ing of complex biochemical, physiological, and environmental interactions, enabling proactive medicine in the near future. From this 
perspective, we review how state-of-the-art computational modelling of human metabolism, i.e., genome-scale metabolic modelling, 
could be used to identify the metabolic footprints of diseases, to guide the design of personalized treatments, and to estimate the mi-
crobiome contributions to host metabolism. These state-of-the-art models can serve as a scaffold for integrating multi-omics data, 
thereby enabling the identification of signatures of dysregulated metabolism by systems approaches. For example, increased plasma 
mannose levels due to decreased uptake in the liver have been identified as a potential biomarker of early insulin resistance by multi-
omics approaches. In addition, we also review the emerging axis of human physiology and the human microbiome, discussing its 
contribution to host metabolism and quantitative approaches to study its variations in individuals. 
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INTRODUCTION

The human body maintains homeostasis through highly com-
plex interactions of biochemical reactions, physiological pro-
cesses, and environmental interactions at different scales [1]. 
These complex and dynamic properties have been overlooked 
in many disciplines of biology and medicine due to the lack of 
quantitative and systems approaches. Recently, many interest-
ing strategies have been devised to simplify complex and dy-
namic biological problems into more understandable formulas 
(Fig. 1A) [2]. For example, network theory has been applied to 

cellular regulatory networks, uncovering key driver genes or 
modules of disease pathogenesis [3]. Genome-scale metabolic 
modelling (GEM) has been employed to explain metabolic phe-
notypes in various living systems, including human tissues and 
organs, the human gut microbiome, and bacteria engineered to 
produce biofuels and chemicals [4-12]. In addition, computa-
tional models and networks emulating biological systems have 
been established and freely shared by web-based services, in-
cluding Kyoto Encyclopedia of Genes and Genomes (KEGG), 
Reactome, Human Metabolic Atlas, and Tissue and Cancer Spe-
cific Biological Network (TCSBN) database [13-16]. These 
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collaborative efforts will expand our understanding of medicine, 
enabling proactive medicine based on personalized data 
clouds—that is, systems medicine (Fig. 1B). 

In recent years, with the boom of high-throughput omics data, 
human physiology has been extensively investigated through 
data-driven approaches. Based on longitudinal multi-omics pro-
filing, we can identify individual signatures of pre- and post-
disease states (Fig. 1C). For example, 108 healthy individuals 
were monitored for a year with personal multi-omics data, in-
cluding metabolomics, proteomics, and gut metagenomics [17]. 
Based on multi-omics observations, subjects progressing from 
pre-disease states, such as elevated glucose or haemoglobin A1c 
levels, inflammation, and iron deficiency, were coached to 
change their lifestyle and diet to prevent poor health outcomes. 
Moreover, some multi-omics studies have identified individual 
signatures of the transition from post-disease to pre-disease 
states as a result of interventions. For example, the effects of an 
isocaloric low-carbohydrate diet in subjects with hepatic steato-
sis were investigated with multi-omics data, including metabo-
lome, biopsy (liver) transcriptome, gut metagenome, and in-

flammatory markers [18]. Within 2 weeks after starting the low-
carbohydrate diet, significant reductions of liver fat, plasma tri-
glyceride levels, and inflammatory markers were observed de-
spite no significant weight changes. In particular, genome-scale 
metabolic models (GEMs) have been provided as scaffolds to 
explain metabolic phenotypes by integrating metabolomics and 
transcriptomics data. A liver GEM predicted increased fluxes 
through fatty acid beta-oxidation and one carbon metabolism, 
which generates antioxidants and cofactors, including NAD+ 
and glutathione, for beta-oxidation, and these increased fluxes 
were also linked to increased folate production of the gut micro-
biome. 

Such advances in systems medicine would eventually allow 
N-of-1 trials—that is, clinical trials designed for a single pa-
tient—based on the prediction of treatment efficacy and side ef-
fects (personalized and predictive medicine). Moreover, through 
systems biology tools and models, possible risk factors will be 
prevented through active participation of customers (preventive 
and participatory medicine). Personalized, predictive, preven-
tive, and participatory medicine (P4 medicine) would thereby 
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Fig. 1. Quantitative and systems approaches in biology and medicine. (A) Dynamic and complex systems can be studied with computational 
modelling, such as genome-scale metabolic models, and network theory, such as network biology principles. Augmenting with multi-omics 
observations, we could interpret complex and dynamic biological/clinical problems through more understandable readouts. (B) Based on 
data-driven approaches and systems science, future medicine can be transformed from reactive medicine, interpreting the outcomes of an in-
tervention, into proactive medicine, predicting outcomes from prior observations in healthy conditions. (C) For example, the progression 
from pre- to post-disease states can be investigated with multi-omics datasets and its signatures could help disease prevention. Likewise, 
outcomes of interventions, which reverse the states from post-disease to pre-disease, can be studied with multi-omics observations, enabling 
the prediction of treatment efficacy.
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transform the current form of healthcare services in the near fu-
ture. Recently, international consortia of systems medicine, in-
cluding the European Association of Systems Medicine (EASyM) 
and the Coordinating Action Systems Medicine (CASyM), have 
started discussions on a roadmap for implementing systems ap-
proaches into medical practice [19,20], and also for systems 
medicine courses comprising multidisciplinary education and 
specific analytic skills [21].

In the following sections, we detail how systems biology 
methodology could help understand health and disease with 
concrete examples. Specifically, we explain (1) how GEM could 
identify tissue-specific or disease-specific metabolic signatures 
and new therapeutic compounds for personalized treatments; (2) 
how multi-omics data can be integrated into genome-scale mod-
els to identify biomarkers of dysregulated metabolism; and (3) 
how associations of the gut microbiome with diseases can be 
identified with quantitative and systems approaches. 

COMPUTATIONAL MAPS OF HUMAN 
METABOLISM: GENOME-SCALE 
METABOLIC MODELS

All living organisms, including humans, survive by converting 
nutrients into energy and chemical substances used as the build-
ing blocks of cells [22,23]. All biochemical reactions that pro-
duce metabolites, energy, and redox power are strictly regulated 
in cells, especially by metabolic enzymes, and these reactions 
are interconnected, as different biochemical reactions share sub-
strates. Because of the highly interconnected nature of metabo-
lism, any changes in biological processes could affect metabo-
lism, and therefore dysregulated processes in diseases could 
leave metabolic footprints [22]. 

Recently, the systems biology community has established a 
computational “map” to explore the complexity of metabolism 
through GEMs (Fig. 2A). In these maps, all metabolites are 
connected through roads (“reactions”) and the traffic along all 
the roads are controlled by enzymes. Based on a metabolism 
map, we can estimate the possible degree of traffic (“flux”) by 
linear programming (or called linear optimization), through a 
process known as flux balance analysis (FBA). For example, 
bacteria regulate metabolic fluxes to maximize the production 
of biomass, so we can identify higher fluxes for all the roads 
(“reactions”) that contribute to the production of biomass by us-
ing FBA as an optimization method. However, in humans, met-
abolic demands vary across cells and tissues. Thus, an alterna-
tive strategy is to estimate fluxes by integrating information re-

garding enzymes, which function as “traffic controllers” [4,24, 
25]. For example, when gene expression levels of glycolytic en-
zymes are higher in cancers, we could predict relatively higher 
fluxes of the corresponding enzymes. 

Using this strategy, we can also generate tissue- and disease-
specific metabolic “maps,” or GEMs composed of fluxes that 
may be maintained in given conditions (Fig. 2B) [4,25]. For ex-
ample, hepatocyte, adipocyte, and myocyte GEMs were gener-
ated and analysed in the context of liver disease, obesity, and di-
abetes [26-28]. Using a hepatocyte GEM, serine deficiency was 
identified in non-alcoholic fatty liver disease (NAFLD) and ele-
vated levels of branched amino acids in obese patients were 
identified using an adipocyte GEM [26,27,29]. 

Moreover, generating personalized GEMs could guide the 
treatment of individual tumors [25,30,31]. For example, dysreg-
ulated metabolites identified from personalized GEMs can be 
treated with anti-metabolites, which are analogue compounds of 
given metabolites that function as competitive inhibitors [25]. 
In hepatocellular carcinoma, 101 anti-metabolites have been 
predicted to suppress tumour growth in individuals, among 
which the anti-metabolite of L-carnitine, perhexiline, has had its 
inhibitory effect validated using the HepG2 cell line [25]. Fur-
thermore, personalized GEMs for NAFLD have guided inter-
ventions to supplement metabolic co-factors (serine, N-acetyl-
cysteine, nicotinamide riboside, and L-carnitine) to reduce liver 
fat [30,31], and its acute effects were observed based on plasma 
metabolomics and levels of inflammatory markers [32].

Lastly, the functional role of the human gut microbiome can 
be studied with GEMs. The human gut microbiome can signifi-
cantly contribute to host metabolism by breaking down resistant 
fibres to generate short-chain fatty acids (SCFAs), such as ace-
tate, propionate, and butyrate, and synthesizing essential amino 
acids and vitamins [33]. Its contribution to host metabolism can 
be studied with tissue-specific GEMs. For example, 28 tissue-
specific GEMs from a mouse model were generated using pro-
teomics data and the contribution of the microbiome to host me-
tabolism was investigated. In short, by comparing gene expres-
sion levels between conventionally raised and germ-free mice, 
tissue GEMs predicted that host amino acid and glutathione me-
tabolism would be different in conventionally raised mice, com-
pared to germ-free mice [6,7]. Moreover, diet-induced metabol-
ic changes caused by the microbiome can be studied with the 
state-of-the art algorithms of microbial community simulations 
using microbial GEMs, known as the Community And Sys-
tems-level INteractive Optimization (CASINO) toolbox [7]. 
Based on this microbial community algorithm, alterations of 
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faecal and serum amino acid and SCFA levels were predicted 
and validated with faecal and blood metabolomics. In addition, 
personalized nutrition can be recommended based on the gut 
microbiome composition and diversity measure. 

MULTI-OMICS INTEGRATION 
APPROACHES

Following the information flow in the central dogma of molecu-
lar biology, any genomic, transcriptomic, and proteomic chang-
es can be read out in the form of metabolomic changes (Fig. 3). 
Therefore, multi-omics observations would yield clear insights 
regarding which levels of omics initiate the downstream chang-
es to metabolic alterations in chronic diseases. Currently, thou-
sands of risk loci of diseases have been identified by genome-
wide association studies (GWAS), but many of their linkages to 
pathophysiology have remained obscure. Recent studies have 
attempted to integrate GWAS findings with those of other omics 

studies, including RNA-seq, and by doing so have gained better 
insights into the identification of causal variations [34]. Like-
wise, multi-omics observations could identify how genetic, epi-
genetic, or transcriptional changes lead to metabolic alterations 
in complex diseases in a comprehensive manner.

Importantly, GEMs could serve as a scaffold for integrating 
biological networks and multi-omics datasets, thereby allowing 
us to trace the alterations of biomolecule abundance levels and 
their interactions in different omics layers. For example, by in-
tegrating tissue-specific biological networks into GEMs, such 
as hepatocyte, adipocyte, and myocyte GEMs, tissue-specific 
metabolism could be identified based on co-regulation of the 
corresponding enzymes. In a recent study, co-regulation analy-
ses of integrated networks identified that cholesterol biosynthe-
sis was highly co-regulated in the liver and interestingly, that 
mannose metabolism was highly co-regulated in hepatocytes, 
adipocytes, and myocytes [35]. Mapping the transcriptome of 
liver and adipose tissue biopsies, co-regulation analyses identi-
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fied that mannose metabolism in liver tissue was significantly 
decreased through co-regulation in obese subjects. This finding 
was corroborated through the analysis of an independent algo-
rithm (reporter metabolite analysis) [36], which identified sig-
nificant transcriptional changes regarding mannose uptake in 
the liver. The findings of decreased mannose uptake in liver tis-
sue and subsequent increased plasma mannose levels were vali-
dated in 3 independent metabolomics cohorts: (1) lean versus 
obese subjects (the Relationship between Insulin Sensitivity and 
Cardiovascular disease [RISC] study); (2) insulin-sensitive ver-
sus insulin-resistant obese subjects (the Leipzig study); and (3) 
high versus low insulin-secreting subjects (the Kuopio study). 
Interestingly, plasma mannose was significantly enriched in 
obese, insulin-resistant, and low insulin-secreting subjects, even 
more significantly than glucose. Furthermore, an independent 
study of mannose supplementation suggested that mannose 
could improve insulin tolerance and reduce weight and body fat 
in mice with high-fat diets if supplemented at early stages [37]. 
Likewise, integrative network analyses of GEMs could identify 
potential biomarkers of chronic diseases through multi-omics 
observations in a comprehensive manner. 

 

A NEW EMERGING PARADIGM: THE 
HUMAN MICROBIOME

Recently, human microbiome research has been highlighted due 
to its therapeutic potential beyond the knowledge of lactate-pro-
ducing bacteria. For example, gut microbiota have been found 
to (1) successfully cure multiple diseases through transplanta-
tion from donors to patients, including Clostridium difficile in-
fection, inflammatory bowel disease, and obesity [38-40]; and 
(2) modulate the efficacy of host-directed drugs, even immune 
check-point inhibitors [41,42].

In light of increasing demands for a better understanding of 
the human microbiome, many approaches have been attempted 
to reconstruct reference genomes for the human microbiome. 
However, as many species were unculturable in laboratory con-
ditions, reference genomes for many microbes could not be ob-
tained by in vitro isolations and remained as microbial “dark 
matter” [43-45]. While powerful, 16S rRNA amplicon sequenc-
ing is dependent on reference genomes from isolated bacteria, 
making it difficult to uncover the whole bacterial population, 
which includes unculturable species [46]. In addition, this meth-
od could introduce biases due to variation in 16S rRNA gene 
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the gene expression levels of 2 hexokinases were decreased, whereas glucokinase, the more efficient isozyme of hexokinase for glucose, 
showed increased gene expression among obese subjects. Therefore, we could conclude that metabolic adaptations led to increased uptake 
of glucose and decreased uptake of mannose in liver tissue. Interestingly, decreased levels of mannose, a major building block of glycosyl-
ation, can affect the glycosylation of hepatic insulin receptors, thereby leading to less clearance of free insulin and eventually to insulin re-
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copy numbers, and 16S rRNA sequence conservation limits the 
ability of this technique to distinguish closely related organisms, 
posing difficulties for taxonomic classifications at the species 
and strain levels [46,47]. 

Recently, computational methods that enable the direct identi-
fication of reference genomes from shotgun metagenomics 
were devised. For example, short reads of shotgun sequencing 
were assembled and binned into metagenome-assembled ge-
nomes (MAGs) based on the similarity of nucleotide composi-
tions [48,49], and co-abundant gene profiling was used to iden-
tify clustered gene groups and assemble them into metagenom-
ics species (MGSs), or a metagenomic species pan-genome 
(MSP) [50,51]. These methods allow us to uncover unculturable 
species from MAG or MGS/MSP and thereby to quantify the 
microbiome composition without reference genomes known.

Based on quantitative microbiome profiling of shotgun 
metagenomics using isolate genomes or MGS, variations of the 
human microbiome have been associated with diets, diseases, 
and levels of drug efficacy [52]. For example, a metagenome-
wide association study was conducted to investigate the micro-
bial species that are enriched or depleted in adults with diabetes 
[53], and functional analyses identified that elevated levels of 
branched amino acids in diabetes were associated with microbi-
al dysbiosis [52]. Unsupervised clustering of human gut micro-
biome compositions revealed that all individuals can be classi-
fied as having three different types of microbiome, called en-
terotypes, which are associated with different dietary patterns 
[54]. For instance, the individual gut microbiome can be en-
riched with Bacteroides, Prevotella, or Firmicutes. Individuals 
with a high-fat diet and low-grade inflammation were enriched 
with the Bacteroides type, whereas those with a high-fibre diet 
were enriched with the Prevotella type. Likewise, the individual 
microbiome could indicate susceptibility to chronic diseases 
and predict drug efficacy [41,55], and even could be used in 
therapeutics to improve metabolic phenotypes, such as obesity 
[40]. Based on diet-microbiome-host interactions, microbiome 
studies could guide personalized nutrition for the prevention 
and early intervention of diseases [56].

CONCLUSIONS

The complex and dynamic nature of human physiology can be 
studied with systems biology approaches, simplifying complex 
biological problems into more understandable formulas. Based 
on quantitative and systems approaches, current healthcare ser-
vices can be transformed to proactive medicine in the near fu-

ture. For example, state-of-the-art modelling of human metabo-
lism through GEMs could accelerate the systems understanding 
of metabolic alterations in diseases by providing computational 
“maps,” enabling personalized treatments and diets to be sug-
gested. In addition, multi-omics studies with integrative net-
work analyses could also identify which level of omics changes 
eventually leads to metabolic alterations. For example, metabol-
ic adaptations driving lower levels of mannose consumption in 
the liver, and subsequently increased plasma mannose levels, 
were identified. This lack of mannose might lead to insulin re-
sistance because poorly glycosylated hepatic insulin receptors 
could not clear free insulin in the blood. As a recently emerged 
axis of human physiology, the human microbiome could explain 
unexplored variations in human physiology, and quantitative 
and systems approaches have been devised to study those varia-
tions in health and disease.
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