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A B S T R A C T

The Sundarbans, the world’s largest mangrove forest, confronts potential threats from various
anthropogenic activities leading to degradation of its aquatic ecosystem. To examine the current
status of the aquatic ecosystem, this study aimed to evaluate the spatial and seasonal fluctuation
of three principal water quality attributes namely Chlorophyll-a (Chl-a), Total Suspended Matter
(TSM), and Colored Dissolved Organic Matter (CDOM) in the complex tidal river systems of the
Sundarban mangroves forest using earth observation and in-situ data. A set of two bio-optical
algorithms, Ocean color-2 (OC-2) and Ocean color-3 (OC-3), were applied to measure Chl-a
concentration, Green/NIR and the Red/NIR band ratio algorithms were used for TSM and the
Case-2 Regional Coast Color (C2RCC) processor in the SNAP software was applied to obtain
CDOM concentration in study area. A total of 50 in-situ samples were collected during post-
monsoon and pre-monsoon to validate the results. Our results clearly demonstrated seasonal
variability with higher Chl-a concentrations in post-monsoon than pre-monsoon. This was due to
the OC-2 algorithm which produced better results with R2 = 0.73, RMSE = 0.27 for post-monsoon
and R2 = 0.55, RMSE = 0.32 for pre-monsoon. Whilst, TSM concentration performed the best
with R2 = 0.77; RMSE = 15.82 and R2 = 0.65; RMSE = 33.96 in post-monsoon and pre-monsoon
according to the Green/NIR band ratio method. The nearshore and narrow waterway regions had
the highest concentrations of TSM and Chl-a, whereas the offshore regions had the lowest. Strong
association were observed between the in-situ and satellite derive absorption coefficient, aCDOM

(m− 1). The R2 for a CDOM during pre-monsoon was 0.65 and throughout the post-monsoon, it
was 0.74. Pre-monsoon concentrations were found to be higher due to marine sources and higher
wind speeds, possibly due to sediment resuspension. This kind of baseline evaluation will help to
detect threats, direct preventive measures for the protection of biodiversity, and deepen our
knowledge of these distinct ecosystems. The results will help develop flexible management and
preservation plans that can adjust to both natural and man-made changes.
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1. Introduction

The Sundarbans, the world’s largest mangrove forest, acts as an exceptionally productive ecosystem, profoundly influenced by the
substantial nutrient flow from the intersecting rivers within the region [1–5]. The Sundarbans ecosystem, situated with the Ganges
deltaic system spanning both the territory of Bangladesh and India, presents unparalleled biodiversity [6] and playing a pivotal role, in
serving as a vital breeding area for numerous economically significant fish species [7–9]. The intricacies of this mangrove ecosystem
play a significant role in maintaining a strong fishing productivity, holding crucial importance for coastal communities, particularly
those grappling with economic difficulties [10]. These coastal marine fisheries not only offer essential livelihood opportunities but also
make substantial contributions to national economic growth ensuring food nutrition security [10]. Moreover, this ecosystem con-
tributes a huge source of sustenance for local residents by providing resources such as honey, wood, timber and non-timber forest
product, tourism [11]. Despite the valuable benefits it provides to local communities, the Sundarbans ecosystem is currently facing
deterioration and is at potential risk, particularly in terms of its aquatic environment. A range of anthropogenic activities, including
pollution, oil spills, plastic debris, heavy metal contamination, sewage [12,13], industrial wastewater discharge, agricultural runoff,
collectively exert a detrimental impact on the health, diversity, productivity, and functioning capabilities of the Sundarban ecosystem
[4,14]. The primary productivity of the Sundarbans ecosystem is significantly shaped by the inflow of nutrients and debris from river,
the excess nutrients released from wastewater into coastal waterways lead to eutrophication and hypoxia, resulting in phytoplankton
blooms [14–16]. Hazardous algal blooms, which reduce oxygen levels, impede light penetration, and block fish gills [107]. The
Sundarbans and the areas around them are quite busy because of the operation of multiple commodities and vessels. For example, the
area around Mongla Port is facing problems with the manufacturing of various wastes [17]. Events like oil leaks during port loading
and unloading and infiltration into the oceans exacerbate this issue even more [18]. These activities reduce the amount of sunlight that
reaches deeper waters, which eventually reduces photosynthesis and ecosystem productivity in the Sundarbans. Oil pollution in the
Sundarbans has been shown to have a significant impact on the number of plankton communities and water quality [19]. Such actions
weaken the aquatic ecosystem’s ability to support productivity and pose a major threat to it. To be able to attain maximum benefit from
ecosystem and also be able to protect its environment baseline status it is necessary to determine the impact of anthropogenic threats
on the primary productivity, ecosystem function, biogeochemical cycles, bio-geochemistry, and water quality of the coastal waters in
the Sundarbans mangrove forest. Therefore, the main goal is thought to be assessment and monitoring in order to protect this delicate
aquatic habitat from further deterioration. Water quality metrics including Chl-a, TSM, and CDOM have been utilizing extensively and
successfully to determine the health of aquatic ecosystems [20]. Chl-a serves as a proxy for phytoplankton biomass, indicating higher
concentrations in environments with increased phytoplankton, leading to plankton blooms as a form of coastal pollution [21]. TSM
comprises solid particles like organic and inorganic matter, algal detritus, and various organisms suspended in water, influencing the
underwater ecological function by affecting light distribution and optical properties [22–25]. CDOM, a fraction of dissolved organic
matter , absorbs photo-synthetically active radiation, impacting productivity at different depths and providing UV protection [26]. Its
entry into aquatic environments occurs through plant and animal decomposition, affecting water color and influencing upper and
underwater primary productivity [27]. Chl-a, TSM, and CDOM are naturally or anthropogenic ally occurring optically active sub-
stances with light-absorbing and scattering characteristics in the ultraviolet and visible spectrum [28–30]. These substances impact
total primary productivity and fish abundance in near-shore environments [31].

Thus, by measuring the water leaving radiance in the visible spectrum of electromagnetic radiation [31], an accurate measurement
of Chl-a, TSM and CDOM is required for the assessment of water quality, monitoring the level of pollution and its seasonal variability
[32,33], primary productivity, ecological functioning and the sustainability of the aquatic environment. Water quality needs to be
monitored continuously, although the conventional in-situ observations provide accurate measures but labor-intensive, time
consuming and time series monitoring is impractical [34]. Hence, satellite remote sensing provides a through foundation for
long-term, continuous water quality monitoring. It is the most effective way to find out how these parameters are distributed in the
coastal area both seasonally and spatially.

Earth observation data plays a pivotal role in monitoring and assessing aquatic environments [35,109]. Utilizing satellite imagery
and remote sensing technologies, scientists can gain valuable insights into the health and dynamics of water bodies and represent them
in a spatially explicit way [36–39]. By employing spectral indices and algorithms, water quality parameters such as Chl-a concen-
tration, TSM, and CDOM [40] can be measured spatially enabling researchers to identify trends, spatial patterns, and potential
environmental stressors impacting aquatic ecosystems [35,41]. The ability to conduct temporal analyses facilitates the detection of
changes over time, aiding in the assessment of long-term trends or the impact of human activities and climate change [42]. Earth
observation data analysis, coupled with ground validation, has been employed in many studies as a potent tool for informed
decision-making in environmental management, conservation initiatives, and the sustainable use of aquatic resources [43,44].

Given its significance, this approach has been applied in numerous studies so far across the globe. For instance, Poddar et al. (2019)
[45] employed Landsat-8 and Sentinel-2 satellite imagery to estimate Chl-a concentrations in the Bay of Bengal (BoB); Kyryliuk and
Kratzer [46] utilized the C2RCCmethod to estimate water quality parameters in the Baltic Sea, employing Sentinel-3 satellite data; Das
et al. (2017) [47] measured concentrations of CDOM in the northern BoB; while De et al. (2021) [48] focused on estimating Chl-a and
SPM using Sentinel-3 satellite data along the northeast coast of the BoB; Moutzouris-Sidiris and Topouzelis (2018) [49] employed
Sentinel-2 satellite data for Chl-a estimation; Ouma et al. (2020) [50] investigated Chl-a, TSS, and turbidity using Sentinel-2 MSI and
Landsat-8 OLI, employing a multivariate regression model; Boucher et al. (2018) [51] studied Chl-a estimation using Landsat-8,
Watanabe et al. (2017) [52] estimated Chl-a using Landsat-8 OLI and Sentinel-2 MSI sensors; and Salyuk et al. (2022) [53] applied
a bio-optical algorithm to remote sensing techniques in the western part of the Bering Sea. Although few researches are evident in
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Sundarban areas, however, a comprehensive studies targeting major water quality parameters have not been attempted so far.
Since the Sundarbans mangrove forest is acknowledged globally as the most significant ecosystem, the ecology of the mangroves

warrants protection by routine monitoring and assessments of water quality. Considering this fact and address the research gap, this
study thus intended to evaluate water quality parameters in Sundarban areas to be able to investigate seasonal variability of the health
of aquatic environment using multi-temporal earth observation and in-situ data. We utilized Sentinel-2 MSI and Landsat-8 OLI due to
their higher spatial resolution provide regular and consistent observations over a large area, and they are also effective for monitoring
water quality, inherent optical properties, and sediment transport, as well as analyzing the fate and distribution of these parameters in
riverine and coastal water [54,55]. Therefore, the main objectives of this research are i) to analyze the seasonal variability and spatial
distribution of Chl-a, TSM, and CDOM ii) To validate the satellite derived Chl-a, TSM, and CDOM with in-situ data iii) To evaluate the
appropriate algorithm to retrieve Chl-a, TSM, and CDOM iv) spatial distribution of these parameters in the study area using geospatial
techniques. This study thus helps to get information about the land based marine pollution (HABs, eutrophication), potential pro-
ductive fishing zones, and the health of the ecosystems in order to take necessary actions for strengthening their resiliency, protection,
and restoration so that the country can reach the SDG goal 14.

2. Materials and methodology

2.1. Study area

The Sundarbans is a vast mangrove forest located in the southwestern tip of the Ganges delta is believed to be formed by the
confluence of several rivers, including the Ganges, Brahmaputra, and Meghna [56]. Majority of its aerial coverage is in Bangladesh
(60%) that stretches into India (40%) on the western side [57]. The Sundarban was declared a UNESCO World Heritage Site in 1997
and a Ramsar Wetland Site by the Ramsar Convention in 2007 [58]. The region is characterized by a complex network of tidal wa-
terways, small islands, mudflats, and dense mangrove forests [59]. Being the largest mangrove ecosystem in the world, this ecosystem
offers a unique biodiversity hotspot and ecological value [60,108]. This region provides significant ecosystem benefits that sustain the
livelihoods of the local population, fostering diverse biodiversity and making essential contributions to the well-being and cultural
activities in the neighboring areas [61]. Sundarbans offer elevated primary productivity resulting from nutrient enrichment, making it
excellent fishing grounds and breeding ground for various globally threatened species [2,5]. Therefore, the livelihoods of those who
live close to the Sundarbans ultimately depend largely on aquaculture, fishing, honey harvesting, agriculture, and fuelwood [62,63].

As for example, fishery production in Sundarbans has risen to 0.18 lakh M.T., contributing 0.42% to the total production and

Fig. 1. Location of the study area.
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reflecting a growth rate of 0.32% [64]. The fisheries sector contributes 3.52% of the GDP of Bangladesh [64]. Contribute to the na-
tional economy, provide food and nutrition security [10], and contribute direct and indirect income as well as employment to 1.7
million individuals residing in the border villages of the Sundarbans [65] and supplies various ecosystem services that benefit
approximately 3.5 million people [66]. The Sundarbans ecosystem plays a crucial role in land reclamation, coastal habitat protection
from cyclones, and socioeconomic upliftment for coastal communities [14]. But over time, the once-pristine mangrove has seen
environmental deterioration [67]. Human-induced factors contributing to the degradation involve diverting freshwater from the
Ganges at Farakka, oil pollution, navigation, industrial pollutants, coal-fired power plant construction, heavy metals, pesticides,
shrimp cultivation, poaching etc. Pollutants accumulated during dry periods are subsequently washed and transported to the BoB
during the monsoon [57]. Besides, over time, unregulated fishing, excessive harvesting of aquatic resources, and habitat destruction
disrupt the overall health of the ecosystem.

2.2. In situ data

One of the primary targets of the study was to conduct a comprehensive field investigation to collect samples from the surface of the
water across the study area. To do so, we took samples targeting two seasons: i) post-monsoon (12–15 December 2021) ii) pre-monsoon
(13–15 April 2022) to be able to assess water quality within the coastal water of the Sundarban’s. A total of 50 water samples were
collected using Niskin Bottle Sampler from the rivers of Passur, Shibsha, Sela, Jafa Gang, and Betmore Gang of the Sundarban
mangrove forest (Fig. 1). In addition, a number of hydrological parameters such as temperature, dissolved oxygen, salinity, pH, total
dissolve solid, conductivity, and Secchi disk depth (cm) were measured using a multi-parameter water quality meter during the field
data collection. To avoid the water sample’s original features being altered by sunlight, some precautions were taken. As soon as the
necessary hydrological parameters are measured, we quickly pour the sample water into a sample bottle. Since the parameter that
would be examined later is very sensitive to sunshine, we then stored the water samples in an icebox covered in black polythene to
protect them from sunlight. After that, a laboratory analysis was accomplished.

2.3. Laboratory estimation of Chl-a, TSM and CDOM

The procedure developed byMarker et al. (1980) [68], which involved double extraction with hot and cold treatments for assessing
Chl-a concentrations. The quantification is performed through spectrophotometry, employing 90 % ethanol as the extracting solvent
and 2M hydrochloric acid (HCl) in subsequent stages. TSM was quantified in accordance with APHA (2005) [69] gravimetric method.
While CDOMmeasurements were followed by Das et al. (2017) [70]. Finally, the calculation of Chl-a, TSM, and CDOM concentrations
were completed using the following equations(1)–(3) in Table 1.

2.4. Multispectral satellite imagery and preprocessing

For our study, we deployed Landsat-8 OLI and Sentinel-2 MSI satellite sensors. The Landsat-8 OLI and Sentinel-2 MSI images were
acquired from the Earth Explorer websites (https://earthexplorer.usgs.gov/). All imagery was extracted with a synchronization of the
satellite passing time over the area and our sampling time in various spots in the Sundarbans (Table 2). Before using the final imagery,
we deployed a few image processing techniques to be able to achieve the best outcomes. The level-1 data from Sentinel-2 MSI is the Top
of the Atmosphere (TOA) reflectance, and the level-1 data from Landsat-8 OLI consists of quantized and calibrated scaled DN values. To
be able to retrieve Chl-a, TSM, and turbidity from satellite sensors over the study area, we deployed four fold steps [45]. 1) Conversion
of scaled DN values to absolute TOA reflectance for all the required bands 2) Conversion of TOA reflectance to bottom of the At-
mosphere (BOA) reflectance, BOA is the surface reflectance that actually originates from the water surface. 3) Conversion of the BOA
surface reflectance to the corresponding remote sensing reflectance (Rrs) at these bands by dividing the BOA reflectance by π,
following the method outlined by Moses et al. (2015) [71]. 4) Using a specific algorithm, retrieve Chl-a and TSM from Rrs. To ensure
spatial consistency among the processed imagery we used image to image geo-referencing techniques.

2.5. Retrieval algorithm of Chl-a, TSM and CDOM

Over recent years, several algorithms have been developed to estimate Chl-a from satellite reflectance data, including OC2v2, OC3,
Global Processing, andMorel’s versions 1–4 [72]. The OC-2 algorithm, initially designed for SeaWiFS and adjusted using SeaBAM data,

Table 1
Laboratory estimation equation of Chl-a, TSM and CDOM.

Parameters Equation Explanation References

Chl-a (μg/l) 29.6 (Eb − Ea)*v
V*l

Eb =OD before adding 2M HCl, Ea =OD after adding 2M HCl, v= extracted volume of the pigment in ml, V
= filtered volume of sample water in liter, l = path length of the cuvette used to measure OD in cm.

[68]

TSM (mg/L) (A − B) × 1000
C

A = weight of filter + dried residue, mg, B = weight of filter, mg, C = sample volume, mL. [69]

aCDOM

(m− 1)
2.303×
(ODS − ODnull )

l

aCDOM = absorption coefficient of CDOM, l= cuvette path length (0.01 m), 2.303 is the conversion factor of
base 10 to base e (2.718) logarithms, ODS= optical density for a specific band, OD (null)= average optical
density over 740–750 nm.

[70]
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is a modified cubic polynomial method [73]. The OC-2 and OC-3 algorithms are well-suited for managing the diverse turbidity levels in
coastal and estuarine waters, including those in the Sundarbans. In the present study, the OC-2 and OC-3 algorithms were employed to
calculate Chl-a concentration by utilizing specific band ratios from two sensors, as outlined in Table-3. For OC-2, the ratio of Rrs at 490
and 555 nmwas used. Conversely, OC-3 employed the higher ratio between Rrs values at 443 nm, 555 nm or 448 nm, and 555 nm [72,
73]. A regression model has been applied to estimate the TSM concentration incorporating various band combinations of reflectance
values from the MSI [74] (Table 3). For TSM, the Green/NIR and Red/NIR band ratio algorithms were selected for their sensitivity to
sediment concentrations, which is crucial in the highly turbid waters of the Sundarbans. C2RCC atmospheric correction is a
full-spectrum version that uses neural networks trained on simulated top-of-atmosphere reflectance [75]. The C2RCC processor was
specifically applied to the Landsat-8 OLI satellite sensor to estimate aCDOM within the study area. It was chosen for CDOM due to its
robustness in optically complex waters, effectively distinguishing between various water constituents. These algorithms were selected
for their ability to address the challenges posed by the Sundarbans’ dynamic estuarine ecosystem, which features significant seasonal
variability and high turbidity. Specifically, they are well-suited to handle elevated levels of suspended sediments and accurately
retrieve chlorophyll-a and CDOM concentrations in such complex optical environments.

2.6. Model evaluation and validation

Results have been evaluated and validated to assess the reliability and correctness of the satellite derived concentrations with in
situ measurements of Chl-a, TSM and CDOM, respectively. We also considered the model’s calculated and observed values, the Root
Mean Square Error (RMSE) (Eqn. (1)), Bias (Eqn. (2)), Mean Absolute Percentage Error (MAPE) (Eqn. (3)), Coefficient of Determi-
nation (r) (Eqn. (4)), to be able to ascertain our model’s accuracy. RMSE measures the difference between values predicted by the
model and the actual values (in-situ measurements). It provides an average magnitude of the errors, with lower RMSE indicating better
model performance [76]. Bias shows the systematic error between in-situ and satellite-derived values. A positive bias suggests an
overestimation by the model, while a negative bias indicates underestimation [77]. MAPE measures the percentage error between
in-situ and satellite-derived data. It is a normalized metric that expresses error as a percentage, providing insight into the scale of
discrepancies [76].

The formula for the above statistical indices are given below:

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Xinsitu,i − Xsensor,i

)2

n

√
√
√
√
√

(1)

Bias=
1
n
∑n

i

(
Xinsitu,i − Xsensor,i

)
(2)

Table 2
Details of the Sentinel-2 MSI and Landsat-8 OLI satellite images.

Sensor Sensing period PRODUCT_ID Cloud Coverage (%)

OLI 14 December 2021 LC08_L1TP_137045_20211214_20211223_01_T1 1.02
20 March 2022 LC08_L1TP_137045_20220320_20220329_02_T1 0.29

MSI 12 December 2021 L1C_T45QYE_A024898_20211212T043524 0.18
22 March 2022 L1C_T45QYE_A026328_20220322T043718 0.20

Table 3
Retrieval algorithm of Chl-a, TSM, and CDOM of the Present Study Region.

Parameters Algorithms Equations Coefficient Values References

Chl-a OC-2
R = log

(
Rrs490
Rrs555

)
Where, a= 0.341, − 3.0010, 2.811, − 2.041, 0.0400 [45,73]

C = 10(ao+a1×R+a2×R
2+a3×R3) + a4

OC-3
R = log

(
Rrs443 > Rrs488

Rrs555

)
Where, a = 0.283, − 2.753, 1.457, − 0.659, − 1.403 [45,73]

C = 10(ao+a1×R+a2×R
2+a3×R3+a4×R4)

Note:
(
Rrs443
Rrs555

)

or (
Rrs488
Rrs555

)

(which ever greater is used)

TSM Regression
Model

X =
Rrs Green
Rrs NIR

a = − 12.80, b = 102.74 [74]

TSM = ax + b
Regression
Model

X =
Rrs Red
Rrs NIR

a = − 20.24, b = 127.08 [74]

TSM = ax + b
CDOM Neural Network C2RCC – [46]
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MAPE=
1
n
∑n

i

⃒
⃒Xinsitu,i − Xsensor,i

⃒
⃒

Xinsitu,i
(3)

r=
n
∑(

Xinsitu,iXsensor,i
)( ∑

Xinsitu,i
)( ∑

Xsensor,i
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[n
∑(

Xinsitu,i
)2( ∑Xinsitu,i

)2
]
[n
∑(

Xsensor,i
)2

−
(∑

Xsensor,i
)2]

√ (4)

Where,

Xinsitu,i = In-situ data obtained
Xsensor,i = Satellite data obtained
n = Sample size

3. Results

3.1. Spatial and seasonal distribution of Chl-a

The analysis of all in-situ data showed a significant difference in the seasonal mean Chl-a between the two seasons where the values
ranged higher (2.3–4.36 mg/m3) for post-monsoon than lower (1.7–4.5 mg/m3) for pre-monsoon (Fig. 2). During the post-monsoon
season, the mean Chl-a concentration was calculated at 3.04 mg/m3, while for the pre-monsoon period, it was estimated at 2.91 mg/
m3. Spatial distribution showed that elevated Chl-a (mg/m3) levels were identified in close proximity to the upstream and narrower
areas, with a gradual decrease observed in offshore regions. Descriptive statistics detailing the estimated Chl-a concentrations are
presented in Table 4.

On the other hand, Chl-a calculated from OC-2 algorithm indicated relatively higher concentrations during post-monsoon
compared to pre-monsoon (Fig. 3a–b). Spatial distribution of OC-2 based outcomes for the study area indicated significant varia-
tions in Chl-a concentrations captured by the Sentinel-2 MSI sensor. Notably, the eastern part near the head of the GBMRiver estuary of
the study area exhibited higher concentration values than the western section. Chl-a concentrations ranged from 2.5 to 5 mg/m3 in
post-monsoon (Fig. 3a), contrasting with pre-monsoon values of approximately 2–3.5 mg/m3 (Fig. 3b). Similarly, the OC-3 algorithm
for the MSI sensor also depicted distinct variations in Chl-a concentrations between the two seasons.

3.2. Spatial and seasonal distribution of TSM

The estimated TSM concentrations (mg/L) exhibited noticeable variations between the two seasons, with a higher concentration
(117.5–154.5 mg/L) and having a mean of 126.04 mg/L during the pre-monsoon phase compared to lower concentration (44–113.11
mg/L) with a mean of 82.47 mg/L during post-monsoon phase (Fig. 4). It’s worth mentioning that the standard deviation, coefficient of
variation, and mean absolute deviation were lower during the pre-monsoon season (Table 5). Higher concentrations were particularly
identified near the upstream region of both narrower and broader channels, gradually decreasing towards the downstream areas.

TSM has been shown to be difficult for remote sensing because of its multiple components [78]. The TSM model was applied to
cloud-free images from Sentinel-2 MSI sensor in the tidal river system of the Sundarban Mangrove Forest during the sampling period to
be able to reveal its seasonal variability and spatial distribution.

The TSM concentration was observed to be higher in the upstream region and narrower channels in compare to the wider and

Fig. 2. In-situ measured Chl-a (mg/m3).
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offshore areas (Fig. 5a–b). The distribution of TSM concentrations during the pre-monsoon season exhibited the highest values
(80–110 mg/L) (Fig. 5a) compared to post-monsoon (75–90 mg/L) (Fig. 5b). In particularly, a decrease in TSM concentration was
observed near the river mouth, with further declines in the offshore areas (5–50 mg/L).

Table 4
Descriptive statistics for the estimated concentrations of Chl-a.

Sampling Time No. of Samples Max. Min. Mean Median Mode MAD SD Variance C.V. (%)

Post-monsoon (December 2021) 25 4.36 2.3 3.04 3.1 2.37 0.48 0.56 0.31 18.30
Pre-monsoon (April 2022) 25 4.5 1.7 2.91 2.89 2.98 0.32 0.48 0.23 16.56

Note: C.V. is the coefficient of variation; SD is the standard deviation; MAD is the mean absolute deviation.

Fig. 3. Chl-a retrieved from Sentinel-2 MSI using OC-2 algorithm for (a) Post-monsoon (b) Pre-monsoon.

Fig. 4. Variation of in-situ TSM concentration (mg/L).
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3.3. Spatial and seasonal distribution of aCDOM 443 (m− 1)

Since the primary Chl-a absorption band is located nearby at a wavelength of 443 nm, the absorption coefficient of CDOM was
specifically set for this wavelength [79]. As a result, measurements of CDOM at this wavelength may be immediately applied in remote
sensing applications. The absorption coefficient of CDOM at 443 nm (aCDOM m⁻1) exhibited significant variability during two seasons,

Table 5
Descriptive statistics for the measured concentrations of TSM.

Sampling Time No. of Samples Max Min Mean Median MAD SD Variance C.V. (%)

Post-monsoon (December 2021) 25 113.11 44 82.47 88.89 19.25 23.24 539.98 28.27
Pre-monsoon (April 2022) 25 154.5 117.5 126.04 121.5 7.17 9.28 86.21 7.36

Note: C.V. is the coefficient of variation; SD is the standard deviation; MAD is the mean absolute deviation.

Fig. 5. Spatial and temporal distribution of TSM (a) Post-monsoon (b) Pre-monsoon.

Fig. 6. Variation of in-situ measured aCDOM 443 (m− 1).
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with values ranging from 0.13 to 0.890 m⁻1 for post-monsoon and 0.23–1.62 m⁻1 for pre-monsoon. The temporal mean aCDOM (443)
also supported a significant difference between the two seasons. Pre-monsoon is the most important time for the seasonal dynamics of
the absorption coefficient of colored dissolved organic materials at 443 nm (Fig. 6). In terms of spatial distribution, higher aCDOM (443)
values were observed in proximity to the upstream sampling stations, gradually decreasing in offshore areas (Fig. 7a–b). For the
post-monsoon season, the mean value of aCDOM (m⁻1) is 0.439 m⁻1, contrasting with 0.596 m⁻1 for the pre-monsoon. The minimum and
maximum values for post-monsoon are lower compared to those for the pre-monsoon (Table 6).

The results revealed that the aCDOM at the 443 nm wavelength in the study area was higher in the eastern region compared to the
western region (Fig. 7a–b). In the rivers of the Sundarbans, the satellite-derived aCDOM ranged between 0.02 and 0.99 m⁻1 in post-
monsoon (Figs. 7a), 0.1 and 4 m⁻1 in the pre-monsoon season (Fig. 7b).

3.4. Comparison of Chl-a, TSM and aCDOM 443 using earth observation and in-situ data

Accurate assessment of satellite-derived Chl-a concentrations relies heavily on the precision of bio-optical algorithms and vali-
dation is crucial for ensuring the reliability [32]. For the post-monsoon and pre-monsoon seasons, data from 25 stations were used for
validation. Pointwise water leaving reflectance pixel values were extracted and compared with in-situ datasets. The validation result
indicates that using OC-2 algorithm for MSI sensor showed the highest coefficient of determination, R2 = 0.73, and the prediction
accuracy RMSE = 0.27 mg/m3; MAPE = 7%; Bias = 0.09 mg/m3 during post-monsoon season (Fig. 8a). On the other hand, the OC-2
showed moderate correlation which is around R2 = 0.55 the prediction accuracy RMSE = 0.32 mg/m3; MAPE = 6%; Bias = − 0.07
mg/m3 during the pre-monsoon season. OC-3 retrieval algorithm for Chl-a concentration performed lesser than OC-2 retrieval algo-
rithm (Fig. 8b) where bias is also higher.

Several algorithms, including empirical, semi-empirical, analytical, and semi-analytical methods, have been utilized to measure
TSM concentrations through satellite-based models [80–82]. This study employed a regression model to estimate TSM concentration,
utilizing various band combinations of Sentinel-2 MSI band reflectance values. To determine the most accurate prediction, the study
validates the correlation between in-situ data and satellite-derived data for different bands or band ratios. In Fig. 9a, the Green/NIR
band ratio algorithm exhibited highest performance in post-monsoon with a R2 value of 0.77, and precise predictions: RMSE of 15.82
mg/L, MAPE at 15%, and a slight bias of − 2.69 mg/L. Conversely, during the pre-monsoon season, the Green/NIR algorithm displayed
lower performance, with a R2 of approximately 0.65, and less accurate predictions: RMSE of 33.96 mg/L, MAPE at 36%, and a bias of
33.29 mg/L (Fig. 9b). The band ratio algorithm for Red/NIR showed the coefficient of determination, R2 = 0.67, and the prediction
accuracy RMSE= 21.25mg/L; MAPE= 18%; Bias= -13.58 mg/L during post-monsoon (Fig. 9c). The model showed correlation for the
Red/NIR algorithm, which is around R2 = 0.62 for both sensors; the prediction accuracy RMSE = 19.70 mg/L; MAPE = 18%; Bias =
18.81 mg/L during the pre-monsoon season (see Fig. 9d). The Green/NIR band ratio algorithm performed better compared to the
Red/NIR band ratio based algorithm for the present study area.

One of the most important measures of the health of coastal ecosystems is the capacity of coastal waters to allow sunlight to reach
planktonic, macro-phytic, and other submerged vegetation for photosynthesis [70]. So, health of the ecosystem in the present study

Fig. 7. Spatial and temporal distribution of satellite derived aCDOM at 443 nm (a) Post-monsoon (b) Pre-monsoon.
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area is dependent on the absorption properties of CDOM because this region is important for fisheries production. The variability of
aCDOM (443) is very rarely documented in the surface waters of the Sundarban mangroves forest. After matchup with in-situ data with
the satellite derived aCDOM (using C2RCC) for post-monsoon season the coefficient of determination, R2 = 0.74, and the prediction
accuracy RMSE= 0.12 m− 1; MAPE= 33% and Bias= 0.05 m− 1 (Fig. 10a). For the season of Pre-monsoon, coefficient of determination
R2 = 0.55 and the prediction accuracy RMSE= 0.26 m− 1; MAPE = 83%; and Bias = 0.13 m− 1 (Fig. 10b). For the post-monsoon season
the prediction accuracy MAPE is good as it is<30% compared to the pre-monsoon season where the prediction accuracy is bad. Higher
CDOM concentrations were observed in the study region during the pre-monsoon season compared to post-monsoon, possibly orig-
inating from land sources or organic decompositions.

4. Discussion

This study investigated spatial distribution and seasonal variation of three major water quality parameter’s: Chl-a, TSM, and CDOM
in world’s largest mangrove aquatic system using Earth observation data: Sentinel-2 MSI and Landsat-8 OLI and subsequently vali-
dated with the in-situ data. According to our research, there were notable variations in the concentration and spatial distribution of
both of these parameters throughout the studied region. As far as we are aware, no previous study has focused on the seasonal and
spatial variability of significant water quality measures while examining the aquatic environment in the Sundarbans region. In this
study, high concentration of Chl-a within the narrower channel and nearshore waters obtained both in-situ and satellite data during

Table 6
Descriptive Statistics of In-situ aCDOM m− 1 at 443 nm.

Sampling No. of Samples Max Min Mean Median Mode MAD SD Variance C.V. (%)

Time

Post-monsoon (December 2021) 25 0.898 0.139 0.439 0.461 0.461 0.146 0.187 0.035 42.56
Pre-monsoon (April 2022) 25 1.612 0.230 0.596 0.461 0.461 0.252 0.341 0.116 57.14

Fig. 8. Scatter plot displaying Chl-a concentrations (a) In-situ Chl-a (mg/m3) Vs Sentinel-2 MSI derived Chl-a for Post-monsoon and (b) for Pre-
Monsoon season using OC-2 algorithm (c) In-situ Chl-a (mg/m3) Vs Sentinel-2 MSI derived Chl-a for Post-monsoon and (d) for Pre-Monsoon sea-
son using OC-3 algorithm.
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post-monsoon phase which are considered to be regulated by the availability of the nutrient concentrations from land sources. The
monsoon and post-monsoon seasons have the largest concentration of nutrients deposited, which promote phyto-plankton growth and,
consequently, the enrichment of Chl-a [83,84]. Despite the nutrients being present in the monsoon and post-monsoon, higher con-
centration of Chl-a may be observed during the post-monsoon because of the favorable water temperatures and the pre-settled nu-
trients that the rivers previously transported [45]. Phytoplankton production typically occurs in cooler waters, and the elevated Chl-a
levels observed during the post-monsoon season in our study area can be attributed to this phenomenon. Plankton growth and

Fig. 9. Scatter plot of TSM concentrations (a) In-situ TSM (mg/L) Vs Sentinel-2 MSI derived TSM for Post-monsoon and b) for Pre-monsoon season
using Green/NIR band ratio algorithm (c) In-situ TSM (mg/L) Vs Sentinel-2 MSI for Post-monsoon and d) Pre-monsoon season using Red/NIR band
ratio algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 10. Scatter plot of aCDOM 443 (m− 1) (a) In-situ aCDOM 443 (m− 1) Vs C2RCC derived aCDOM 443 (m− 1) for Post-monsoon (b) In-situ aCDOM 443
(m− 1) Vs C2RCC derived aCDOM 443 (m− 1) for Pre-monsoon season.
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distribution rely on environmental carrying capacity, inorganic nutrient availability, and coastal water physicochemical character-
istics [85]. The fluctuation in nutrient concentration was primarily a result of freshwater inflow from perennial rivers and monsoon
rainfall, as well as anthropogenic factors [86]. Moreover, nutrients concentration is significantly influenced by precipitation. Sha-
feeque et al. (2019) [87] in their study showed that given the positive correlation between Chl-a and precipitation, the higher Chl-a
concentrations during the winter (post-monsoon) season can be further attributed to increased precipitation. Higher monthly total
precipitations during post-monsoon can lead to increased nutrient transport, contributing to elevated Chl-a levels in the study area. In
the study area, the monthly average precipitation in post-monsoon (December) (Fig. 11a) was higher compared to pre-monsoon (April)
(see Fig. 11b).

In our study, the eastern part near the head of the Ganges-Brahmaputra-Meghna (GBM) river estuary had higher Chl-a concen-
tration values than the western section (see Fig. 3a–b). However, high Chl-a levels are limited to the head of the GBM River estuary in
the post-monsoon and pre-monsoon. This phenomenon could be attributed due to the GBM delta river system, which transports
ecologically and nutrient enriched waters in the northern BoB [18]. Hoq et al. (2006) [88] reported that fluctuating Chl-a levels in the
Sundarbans, with lower values recorded during the pre-monsoon and monsoon seasons in Koyra, Kholpatua, and Madar rivers and
elevated Chl-a values were observed during the post-monsoon seasons. Observations from Rahman et al. (2014) [1] study also sup-
ported this claim regarding the higher Chl-a concentrations in the Sundarban area during post-monsoon period. We found that, Chl-a
concentrations derived from earth observation data indicated that OC-2 exhibited higher prediction accuracy and overall better
performance compared to the OC-3 algorithm. Studies elsewhere such as Poddar et al. (2019) [45] also observed that the OC-2 al-
gorithm provides a Chl-a estimate with a higher correlation of 0.795 andminimal bias of 0.35 mg/m3. Whilst Lotliker et al. (2019) [32]
obtained R2 values of 0.67 and 0.50 in the western BoB using the OC-3 algorithm with MODIS and VIIRS, respectively.

Both seasonal and spatial variabilities observed in the TSM concentrations in the coastal water of the Sundarban mangrove forest.
Its changes are highly dynamical, spatial, and seasonal in the northern coastal BoB [89]. There are number of factors namely turbidity,
organic inorganic matters, chlorophyll concentration, waste water dilution, and the tidal fluctuations that govern TSM fluctuation in
the study area [90]. However, all these factors are largely influenced by tidal action as the study area is highly tidal dominated that
varies spatially and temporally. Higher TSM levels were reported in upstream areas, with distinct variations in estimated concen-
trations within larger and smaller channels. This might result due to the fact that enormous quantities of sediments are carried
downstream by river discharge and are deposited in the channel, with the remainder being discharged into the BoB near Sundarban
area [91]. Human activities like channel dredging significantly influence variations of TSM concentrations in estuaries. Where the
complex structure, along with channel deepening and stretching, contributes to higher bank erosion and suspended sediment con-
centrations [91]. The fluctuation in TSM concentration illustrates the impact of the summer monsoon on river runoff and its subse-
quent influence on TSM concentration [89]. Both river runoff and tidal forces, exerting a significant influence at the study site,
contribute to variations in TSM concentration [92–94]. Wind energy is one of the important variables that plays a role in the resus-
pension of sediment [95]. a distinct spatial and temporal variation, such as a higher concentration at the river mouth during the
pre-monsoon period, are observed. This occurrence is attributed to elevated wind speeds during that time, leading the re-suspension of
sediments. It is evident from the monthly average wind speed that was found higher during pre-monsoon (Fig. 12b) compared to the
post-monsoon (Fig. 12a).

Transparency measurements in this study showed a considerable rise in the post-monsoon compared to the pre-monsoon season,
when increase turbidity resulted in decreased transparency. Dust deposition in the ocean and river discharge, which carry TSM from
terrestrial sources, have an impact on the spread of TSM [96]. Regarding this assumption, we found a negative correlation between
secchi disk depth and TSM concentrations (Fig. 13a–b), with transparency being greater downstream compared to upstream channels.

In the Northern BoB, aCDOM values exhibited seasonal variations, increasing in the pre-monsoon, and decreasing after the monsoon.
In spatial analysis, higher values of aCDOM were observed nearshore areas, gradually decreasing offshore. The aCDOM (m− 1) concen-
tration varies with in-situ and ex-situ sources, which means it can be from terrestrial or marine sources. In the current study area, pre-
monsoon concentrations were found to be greater, and this finding may be explained by marine sources. The elevated wind speed
during the pre-monsoon season suggests that resuspension processes may contribute to the increased CDOM levels in the study area.
aCDOM (443) levels peaked at the end of summer, declining as the post-monsoon months approached and water flow became limited, as
reported by Das et al. (2016) [97]. It is anticipated that CDOM would fluctuate greatly across time and place due to the complicated
optical nature of the study area. Human activities, such as discharging domestic or industrial effluents into rivers, and the in-situ
creation from phytoplankton debris, contribute to elevated CDOM concentrations in coastal waters [98,99]. Additionally, the mix-
ing of freshwater and saltwater, along with environmental factors like photo-degradation in coastal areas, leads to changes in CDOM’s
optical characteristics [70,98–102]. The absorption coefficient of CDOM (aCDOM ) had a significant inverse linear connection with the
salinity of the surface waters, which suggests the presence of the conventional mixing effect of marine and fresh water [70]. Several
other studies found similar relationship between Sea Surface Salinity (SSS) and aCDOM [103,104]. As SSS increase during the
post-monsoon due to lower discharge of freshwater the aCDOM decreased accordingly [70]. Pandi et al. (2014) [105] also found a
significant inverse liner relationship with SSS in their study. The present study also found negative correlation between aCDOM and SSS
(Table 7). In our study, we have not had any significant correlation between aCDOM and Chl-a or TSM (Fig. 14a–f) which was quite
analogous to the finding of Das et al. (2017) [70]. Knowing the sources and sinks of CDOM is essential to comprehending the carbon
cycle and biogeochemical activities that include CDOM directly or indirectly. These processes are more prevalent in coastal and
estuarine systems than in offshore areas [106]. Building on this study, there are several potential areas for future research. Future
research could explore additional water quality parameters, such as dissolved oxygen, turbidity, total organic carbon, alkalinity,
hardness, metals, and nutrients etc., to provide a more comprehensive view of the ecosystem. Investigating the impact of climate
change on water quality and applying advanced machine learning techniques for improved data accuracy are also promising areas.

Mosa.T.A. Shampa et al. Heliyon 10 (2024) e38789 

12 



Therefore, the findings will contribute to develop management and preservation plans by highlighting the spatial and seasonal
variability of water quality in the Sundarbans. Based on these results, we recommend adaptive water quality monitoring using remote
sensing to promptly address changes, sustainable resource management to regulate human activities like fishing and tourism, and

Fig. 11. Monthly average precipitation during (a) Post-monsoon (b) Pre-monsoon in the study area.

Fig. 12. Wind speed (m/s) with their direction during (a) Post-monsoon and (b) Pre-monsoon.

Fig. 13. Relationship between TSM and Secchi disk depth (a) Post-monsoon (b) Pre-monsoon.
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climate change mitigation policies to address impacts such as sea level rise and increased salinity. These strategies will support the
long-term preservation of the Sundarbans ecosystem. Long-term studies using time-series satellite data could further enhance un-
derstanding of seasonal and inter-annual variability in the Sundarbans.

5. Conclusion

The present study examines three crucial water quality measures utilizing multispectral satellites imagery namely Sentinel-2 MSI
and Landsat-8 OLI sensors to assess performance and calculate seasonal and spatial variability in the intricate network of tidal rivers
that make up the Sundarban Mangrove Forest. The study utilized OC-2 and OC-3 retrieval algorithms to estimate Chl-a concentrations
from Sentinel-2 MSI satellite imagery. Following a comparison with in-situ measured Chl-a, the OC-2 algorithm demonstrated higher
accuracy. For TSM estimation, Green/NIR and Red/NIR band ratio regression algorithms were employed, with the Green/NIR
regression exhibiting higher prediction accuracy. Additionally, the C2RCC processor was applied to derive absorption coefficients of
CDOM (aCDOM ) from Landsat-8 OLI satellite data. The result showed a significant seasonal and spatial variation in the present study
area. Chl-a, TSM, and CDOM are highly dominated in the upstream narrower channels compared to the downstream and wider
channels. During the post-monsoon season, Chl-a concentrations were higher than in the pre-monsoon, while TSM and CDOM con-
centrations were elevated during the pre-monsoon season. Factors influencing Chl-a concentration included favorable water tem-
perature, pre-deposited nutrient concentrations, and precipitation. TSM concentration was influenced by wind speed, regulating the
resuspension process, leading to higher TSM concentrations during the pre-monsoon season, where elevated wind speeds were
observed. CDOM concentration was also higher during the pre-monsoon, attributed to intensified sediment resuspension processes
driven by higher wind speeds, accompanied by an influx of freshwater reducing surface salinity and contributing to higher aCDOM

concentrations. This study initiated the use of earth observation data to estimate critical water quality parameters in the Sundarban
mangrove forest of Bangladesh. By assessing seasonal and spatial variations in Chl-a, sunlight penetration (influenced by TSM and
CDOM), the research aims to gauge the impact of anthropogenic threats on primary productivity, ecosystem health, environmental

Table 7
Correlations between aCDOM (443) and related variables.

Variables aCDOM

Post-monsoon Pre-monsoon

SSS − 0.30 − 0.26
TSM 0.10 − 0.12
Chl-a 0.34 − 0.35
Turbidity 0.3 0.05

Fig. 14. Correlation between aCDOM 443 (m− 1) with SSS (a, d), Chl-a (b, e), and TSM (c, f) for both post-monsoon and Pre-monsoon season,
respectively.
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change, and water quality. This information is pivotal for prioritizing areas that need immediate conservation attention and devel-
oping targeted management strategies. It also supports the creation of policies that adapt to the changing environmental conditions in
the Sundarbans, such as establishing seasonal monitoring programs, promoting sustainable fishing practices to prevent overfishing,
implementing habitat restoration projects to improve water quality and biodiversity, and implementing conservation measures
tailored to the region’s specific ecological needs throughout the year. The findings will also contribute to sustainable fishing practices,
ecosystemmanagement, and pollution prevention, aligning with SDG 14.1 and 14.2 objectives. However, this study did not invent new
algorithms; instead, it applied established algorithms from relevant studies adapted to the region. By leveraging these existing al-
gorithms, the research will help to assess the present conditions and productivity of the world’s largest mangrove ecosystems. To
strengthen the prediction of these light-sensitive parameters, it is necessary to build regional algorithms that require greater sample
frequencies.
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