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Abstract: This paper theoretically simulated (using DFT and TD-DFT in N,N-dimethylformamide
(DMF) solvent) the photodynamic properties of three non-metallic dye molecules with D-π-A1-π-A2

structure. The total photoelectric conversion efficiency (PCE) could be evaluated by the following
parameters: the geometric structures, the electronic structures, and the absorption spectra,
the analyses of charge difference density (CDD) and natural bond orbitals (NBO), the analyses
of ionization potential (IP) and electron affinity (EA) from electronic contribution capacity,
the reorganization energies (λh, λe, and λtotal), and the chemical reaction parameter (h, ω, ω−,
and ω+) for intramolecular charge transfer (ICT) processing, the excited lifetime (τ) and the vertical
dipole moment (µnormol). The ∆Ginject, the ∆Gregen

dye , the light harvesting efficiencies (LHE) and the
excited lifetime (τ) were used to explain experimental JSC. The experimental trend of VOC was
explained by the calculation of ∆ECB and µnormol . Moreover, the 15 dyes were designed by adding
the electron-donor groups (–OH, –NH2, and –OCH3) and the electron-acceptor groups (–CF3, –F,
and –CN) to the LS-387 molecular skeleton, which improved electronic contribution, intramolecular
charge transfer (ICT), and optoelectronic performance.

Keywords: dye-sensitized solar cells (DSSC); Acetylene-congeners; DFT; TD-DFT; photoelectric
characteristics; ICT

1. Introduction

Since the beginning of the 21st century, environmental degradation and energy consumption have
intensified. In order to realize the sustainable development of the environment and human society, it
has become urgent to explore and develop new energy sources. Currently, silicon-based solar cells play
a vital role in the field of energy with their excellent photoelectric conversion efficiency of about 26.6%.
However, their disadvantages, such as high cost, non-renewable raw materials, difficulty in preparation
and not easy to be improved, have limited their wide application. Since O’Regan and Grätzel in 1991 [1]
reported the highly efficient dye-sensitized solar cells (DSSCs) based on Ru complex with photoelectric
conversion efficiency (PCE) of 7.1–7.9%, more and more attention has been paid to DSSC due to its
comparatively low cost and high efficiency [2–5]. DSSCs sensitized by free-metal organic dyes have
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been attracting attention by researchers for their clean and environment-friendly characteristics [6].
Particularly, the structural diversity and the simple synthetic routes of organic dye molecules provide
the possibility to seek more competitive DSSC sensitizers [7]. For DSSCs, the core component is the
sensitizing agent, which is divided into two kinds: metal-free organic dyes and metallic dyes [8].
Among them, organic dyes have the characteristics of low price, high extinction coefficient, adjustable
structure, and light absorption characteristics by molecular design [9,10]. In order to achieve higher
PCE, development of new structures, materials, and technologies has become important for researchers
to improve conversion efficiency. From the viewpoint of molecular structures, donor-π bridge-acceptor
(D-π-A) dyes have been widely used for non-metallic organic dye sensitizers; in addition, researchers
have developed various molecular configurations (such as D-A-π-A, D-(π-A)2 and D-π-A4 etc.) to be
used as the unit of the sensitizing agent for solar cells [11–13].

Non-metallic organic dyes with D-π-A-π-A structure have many advantages compared with
the typical D-π-A structure [14–16], such as wider absorption spectra and improved intramolecular
charge transfer ability. P Naik et al. reported non-metallic organic dyes with D-π-A-π-A structures
(N1-3) from experiment and theory; dye N1 containing cyanoacetic acid as an acceptor unit showed
a better PCE of 3.55% [14], and DFT calculations provided deeper understanding of the mechanism
of experimental photovoltaic parameters from the viewpoint of charge separation between occupied
and unoccupied molecular orbitals as well as matching simulated spectral data with experimental
data. G Wang et al. reported an N,N-di-p-tolylaniline-based D-π-A1-π-A2 sensitizer XD1, obtaining a
slightly higher PCE of 5.04% [15]. The influence of DFBT and DPP on the electron-density distribution
and structural feature were revealed by DFT. Recently, the molecules associated with the D-π-A1-π-A2

were reported [16], in which LS-387 displayed a high PCE of 5.61%, with a higher short-circuit current
(JSC) of 13.26 mA/cm2 and open-circuit voltage (VOC) of 0.595 V; furthermore, effective intramolecular
charge transfer (ICT) characteristics can be adjusted by changing the unit of donors. To understand the
experimental micromechanism, we analyzed parameters of molecular geometric structure, electron
absorption spectroscopy, frontier MOs, energy levels and gaps, charge-transfer, electron injection
free energy, and dye regeneration characteristic for LS-385, LS-386, and LS-387 through DFT and
TD-DFT theory [17–19]. Moreover, based on LS-387, a series of molecules was designed to detect how
the modification of the donor and acceptor affects the JSC and VOC. The main purpose was focused
on D-π-A1-π-A2 organic materials, studying the relationship between structure and properties, and
providing a design experience with specific functional groups.

2. Computational Methods

The quantum chemistry calculations were done using the GAUSSIAN09 software [20].
The ground state of three molecules (LS-385, LS-386, and LS-387) before and after absorbtion on
(TiO2)9 were fully optimized in vacuum and N,N-dimethylformamide (DMF) solvent with DFT [21],
using B3lyp/6–31G(d) [22]. Based on the geometrical optimization of ground state, the relative
vibration frequencies were computed at the same level, showing the minimum value of the optimal
potential energy surface. The molecular bond lengths and dihedral angles, the frontier MOs, the energy
gaps, the injection and recombination parameters were calculated. The absorption and emission
characteristics of the three dyes in vacuum and solvent were obtained with TD-DFT [23] by using the
CAM-B3LYP [24] functional with the 6–31G(d) basis set. Natural bond orbitals (NBO) analysis [25]
based on the difference in charge between the ground state and the excited state was simulated
using the NBO 6.0 program [26]. Furthermore, the Multiwfn 3.4 program [27] combined with the
VMD 1.9.3 program [28] was used to visually analyze electrostatic potential (ESP) and average local
ionization energy (ALIE). Moreover, we also calculated the first static hyperpolarization βtot of three
molecules [29].
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It is well known that the efficiency of DSSCs can be calculated from the VOC, JSC, fill factor (FF)
and the incident solar power on the cell (Pin). Calculated efficiency can be written as follows [30]:

η(%) =
VOC × JSC × FF

Pin
× 100% (1)

The fill factor (FF) is defined as the ratio of the maximum power that the battery can output to the
theoretical maximum output power of the product of the JSC and VOC:

FF =
Im ×Vm

VOC × JSC
(2)

where Im and Vm are the current and voltage corresponding to the maximum output power of
the battery.

The JSC is an important representation of the PCE for DSSC, which can be expressed as [31]:

JSC =
∫
λ

IPCE(λ)dy (3)

where IPCE is the incident photon-to-electron conversion efficiency, which can be obtained by the
following calculation formula:

IPCE = LHE(λ)φinjectηcollectηreg Is (4)

where LHE(λ) represents the light harvesting efficiency, and φinject indicates the electron injection
efficiency, ηcollect is the charge collection efficiency, and ηreg expresses the regeneration efficiency
of dyes.

For particular DSSCs, the charge collection efficiency (ηcollect) is only a negligible difference in the
same semiconductor electrode (universal is TiO2). Therefore, the JSC is determined by the remaining
three parameters: LHE, φinject, and ηreg. The LHE can be expressed as [32,33]:

LHE = 1− 10−A= 1− 10− f (5)

where f is the calculated oscillator strength.

3. Results and Discussion

3.1. Geometric Structures

The ground state geometries of three organic molecules were calculated by using DFT/B3lyp with
6–31G(d) basis set in vacuum and DMF solvent. As shown in Figure 1a, the three molecules have a
similar acceptor and π-bridge based on the benzene ring and the auxiliary acceptors of benzothiadiazole
(BTZ) units near the acetylene bridge; the only difference is that the donor unit has different atom
of oxygen, sulfur, and nitrogen. Based on the similarity of the three molecules, we defined six bond
lengths d1 to d6 (see Figure 1a). In vacuum, d1 of three molecules shows a great difference due to
the differences in the donor group (such as O, S, and N atoms), and the single bonds d1 show a
shorter bond length for C–O (1.360 Å) and C–N(1.379 Å) (see Table 1), respectively. Moreover, in
solvent, the d1 for the three molecules is less than that in vacuum. The DFT calculation shows that the
relatively short bond length may be derived from the hybridization between sp2 and sp3 carbon [34],
and the corresponding bond length value has a good correlation with the photoelectric properties. By
comparing d2 to d6 in vacuum and solvent, LS-387 has a shorter bond length, and thus LS-387 has
better molecular stability. However, there is no significant difference between LS-386 and LS-385.

The acetylene bridge plays a crucial role in the coplanarity between the benzothiadiazole (BTZ)
and the donor group (see Figure 1b). The two dihedral angles ∠1 and ∠2 in vacuum and DMF solvent
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are listed in Table 1. However, due to the spatial repulsive force between the nitrogen atom and the
hydrogen atom of the benzene ring in the BTZ structure, the dihedral angle (∠1) between BTZ and
the adjacent phenyl group produces an angle of about 33◦ (See Table 1). For ∠2, compared with the
vacuum, the dihedral angles in solvent are smaller, and LS-387 has the minimal dihedral angle (0.5◦)
compared with LS-385 and LS-386 in DMF solvent.
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Figure 1. (a) shows molecular structures and names of LS-385, LS-386, and LS-387; (b) shows the
ground-state optimized geometry by DFT calculations performed at the 6–31G(d) level.

Table 1. bond lengths (Å) d1 to d6 and dihedral angles (◦) of dyes in vacuum and DMF
solvent, respectively.

LS-385 LS-386 LS-387

Vacuum Solvent Vacuum Solvent Vacuum Solvent

d1(Å) 1.360 1.358 1.777 1.777 1.379 1.371
d2(Å) 1.420 1.421 1.419 1.421 1.416 1.416
d3(Å) 1.413 1.415 1.413 1.415 1.410 1.411
d4(Å) 1.477 1.477 1.477 1.477 1.476 1.476
d5(Å) 1.458 1.455 1.452 1.450 1.451 1.448
d6(Å) 1.494 1.492 1.489 1.488 1.488 1.488
∠1 32.4 34.4 33.2 34.6 32.4 33.5
∠2 26.8 25.5 1.4 0.7 1.5 0.5

3.2. Electronic Structure

Electronic structure analysis gives the charge transfer characteristics. The energy level of HOMO,
LUMO, and energy gaps (∆H = |H − L|) and electron density of the frontier MOs are the important
parameter reflecting the electronic excitation and transition characteristics of the dyes, shown in
Table S1 and Figures 2 and 3. As shown in Figure 2, HOMO and LUMO belong to the π and π∗,
respectively [35]. For LS-385 and LS-386, the electron density of HOMO is distributed on the D-π-A1-π
part; the electron density of LUMO resides in the π-A1-π-A2 part; and for LUMO+1, the electron
density is the distribution on the A1-π-A2 part; most of the electrons are in the acceptor; and for the
HOMO-1, the electron is distributed throughout the molecule. LS-385 and LS-386 exhibit a similar
electron density distribution. For LS-387, the LUMO distribution is not significantly different from
the other two molecules, but HOMO energies have a good aggregation on the donor, indicating that
LS-387 has a better push-pull effect.
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Figure 3. The molecules energy levels diagram of LS-385, LS-386, LS-387 (V, S, and S/TiO2

representative in vacuum, in solvent and dyes/TiO2 in solvent, respectively).

The driving force for electron injection and oxidation dye regeneration can be evaluated by the
energy levels. As shown in Figure 3, the LUMO energy levels of three molecules are higher than
the conduction band (CB) of TiO2 [ECB(TiO2)] of −4.0 eV, which facilitates electron injection from
the excited dyes to the TiO2 electrode. The LUMO energy levels of LS-385, LS-386, and LS-387 are
lower than that of the redox potential I−/I3− (−4.60 eV [36,37]), which means that the electrolyte can
release electrons into the oxidative dye. From Table S1, the HOMO energies of the three molecules
in vacuum can be arranged as LS-387 (−5.125 eV) > LS-386 (−5.564 eV) > LS-385 (−5.595 eV), it is
probably because the N atom in LS-387 donor is effective in reducing the HOMO level. The LUMO
energies are in following order: LS-387 (−2.789 eV) > LS-385 (−2.918 eV) > LS-386 (−2.962 eV), it can
be concluded that both HOMO and LUMO of LS-387 are greater than for other molecules. Higher
HOMO energy can result in higher electron donation capabilities, meaning that LS-387 has strong
electronic donation capabilities. In solvent, the HOMO and LUMO of LS-385 and LS-386 do not show
obvious changes compared with vacuum (see in Figure 3). While for LS-387 in solvent, the HOMO is
greater than that in vacuum, and the LUMO is less than that in vacuum.

The HOMO and LUMO energy levels after adsorption on titanium dioxide are shown in Figure 3.
The HOMO energy of LS-387/s and LS-387/s + TiO2 are −5.085 eV and −5.100 eV (see Table S1),
respectively. It is obvious that the HOMO has changed slightly before and after adsorption onto TiO2.
For LUMO, LS-387/s + TiO2 (−3.286 eV) is significantly higher than LS-387/s (−2.912 eV). A similar
trend also occurs in the other two molecules. In addition, the energy gap also shows a downward
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trend compared with isolated molecules; their values are: LS-385/s + TiO2 (2.287 eV), LS-386/s + TiO2

(2.291 eV), and LS-387/s + TiO2 (1.814 eV).
The charge difference density (CDD) of the three molecules was used to study the charge transfer

characteristics (see Figure S1). The CDD map clearly shows the change of charge density between
the ground state and the excited state during photo-excitation, [38,39], indicating the ICT direction.
As shown in Figure S1, the electron density is mainly distributed in BTZ units and acceptor, and
the hole density is mainly distributed in donor, π-bridge, and BTZ, therefore, CI is from donor to
acceptor. Figure 4 shows the CDD of the dye and TiO2 complex model, which has a more obvious
charge separation compared with the isolated dye molecules. As shown in Figure 4, for LS-385/TiO2

and LS-386/TiO2, the electron density is gradually transferred into TiO2 clusters with the increase
of energy levels, and the hole density is gathered in the site of the donor. For LS-387/TiO2, with the
increase of the energy levels, the separation of electrons and holes become gradually obvious; for S4–S6

it seems that the electrons tend to be distributed in TiO2 clusters on one site, while the hole distribution
is on the molecule near the site of the donor, thus enhancing the ICT characteristics of LS-387.
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Figure 4. Charge difference density (CDD) of the selected excited state for dyes/(TiO2)9 complexes in
solvent. (Green and red stand for the hole and electron, respectively).
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3.3. Electronic Absorption Spectra

Based on the geometry optimization of the ground-state, the excited states of the three dyes and
dyes/TiO2 were calculated based on TD-DFT/cam-B3lyp/6–31G(d) in vacuum and DMF solvent.
As compared, a diffused basis set 6–31+G(d,p) was used to calculate λmax on the basis of optimization
with the same basis set, and the values of λmax for LS-385, LS-386, LS-387, are 543.27 nm, 564.42 nm
and 671.80 nm, respectively, which are greatly red-shifted in comparison with experiment (425 nm,
425 nm, and 475 nm). Therefore, the basis set 6–31G(d) was used in the following calculations
due to the wide application and certain accuracy. As shown in Table 2, the maximum wavelength
(λmax) of the three molecules in vacuum can be arranged as follows: LS-387 (449.11 nm) > LS-386
(426.65 nm) > LS-385 (421.57 nm), and LS-387 has about 25 nm red-shift. In solvent, the λmax is
in order: LS-387 (470.40 nm) > LS-386 (428.83 nm) ≈ LS-385 (428.47 nm), and LS-387 also has about
40 nm red-shift compared with LS-385 and LS-386, which is due to the fact that LS-387 has a smaller
energy gap to exhibit a high molar extinction coefficient and produce more electrons under visible
light. Meanwhile, the LS-387 also showed higher VOC in the experiment [16].

Table 2. The excitation energy and oscillator strength obtained by TD-DFT//Cam-B3LYP/6–31G(d) in
vacuum and N,N-dimethylformamide (DMF) solvent.

Dye State Eg/λmax F Main CI

Gas

LS-385
S1 2.9410/421.57 1.1646 0.65655(H→L)
S2 3.8832/319.29 0.5094 0.54620(H→L + 1)
S3 4.1821/296.46 0.0214 0.57628(H-1→L)

LS-386
S1 2.9060/426.65 0.7495 0.66540(H→L)
S2 3.8161/324.90 0.0063 0.43530(H-9→L)
S3 4.0477/306.31 0.7171 0.51222(H→L + 1)

LS-387
S1 2.7606/449.11 1.2886 0.62767(H→L)
S2 3.7304/332.36 0.4445 0.55969(H→L + 1)
S3 3.9155/316.65 0.0101 0.58567(H-1→L)

Solvent

LS-385
S1 2.8936/428.47 1.3613 0.64539(H→L)
S2 3.7665/329.18 0.4518 0.52513(H→L + 1)
S3 4.1529/298.55 0.0581 0.53107(H-1→L)

LS-386
S1 2.8912/428.83 1.5163 0.62471(H→L)
S2 3.7748/328.46 0.4001 0.50349(H→L + 1)
S3 4.0716/304.51 0.1023 0.48781(H-1→L)

LS-387
S1 2.6357/470.40 1.4452 0.61544(H→L)
S2 3.5912/345.25 0.4431 0.52970(H→L + 1)
S3 3.7958/326.63 0.0016 0.53890(H-1→L)

Solvent + TiO2

LS-385
S1 2.8183/439.92 1.5757 0.44929(H→L + 1)
S2 3.5424/350.00 0.2339 0.31156(H→L + 7)
S3 4.0393/306.94 0.0108 0.37487(H→L)

LS-386
S1 2.8292/438.23 1.8788 0.54394(H→L)
S2 3.6151/342.96 0.3837 0.28510(H→L + 7)
S3 4.0090/309.26 0.0084 0.41495(H-1→L)

LS-387
S1 2.5615/484.02 1.7597 0.50407(H→L)
S2 3.4105/363.53 0.3750 0.30764(H→L + 8)
S3 3.6944/335.60 0.0863 0.43001(H-1→L)

As shown in Figure 5a, the UV-Vis absorption spectra of the three dye molecules in vacuum and
solvent cover the near-ultraviolet and visible regions, and they all have distinct double absorption
peaks. The highest absorption peak is due to the first excited state (S1), and its electronic transition
is from HOMO to LUMO, showing better ICT characteristics. For LS-385 in vacuum and solvent,
the lower absorption peak (located near 325 nm) is mainly attributed to the second excited state (S2),
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and the corresponding electronic transition is from HOMO to LUMO + 1 (f = 0.5094 and 0.4518 in
vacuum and solvent, respectively). It can be seen from the similar charge distribution of LUMO and
LUMO + 1 that the electron transfer pathway is similar to that of S1. For LS-386 in solvent, the main
absorption peak at 330 nm corresponds to the second excited state (S2), it shows an electron transition
from HOMO to LUMO + 1 (f = 0.4001); and for LS-387 in vacuum and solvent, the second absorption
peak (near 340 nm) corresponds to a transition from HOMO→LUMO + 1 in the S2 (f = 0.4445 and
0.4431 in vacuum and solvent, respectively); similarly, the transition of this state is the same as S1.
In summary, λmax is mainly ICT derived from the S1 excited state. Figure 5b shows the UV-Vis
absorption spectra of three dyes after adsorbing on TiO2 cluster, and the absorption spectra of three
dyes having red-shifted compared to isolated dyes. Moreover, the molar extinction coefficients
of LS-386 and LS-387 have a marked increase of 7.64 × 104 M−1cm−1 and 7.14 × 104 M−1cm−1,
respectively. Therefore, the absorption spectrum of dyes after adsorption has obviously changed,
which can increase the ICT and the electron transfers into TiO2CB.
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Figure 5. UV-Vis Absorption spectra of LS-385, LS-386, and LS-387 (where (a) represents in vacuum
and (b) represents in DMF solvent).

The analysis of natural bond orbitals (NBO) provides a deeper understanding of the optical
excitation properties of dyes. As shown in Table 3, the difference in charge (∆q, from S0 to S1) of the
three molecules at the donor group indicates that LS-387 and LS-386 have a strong electron-providing
ability compared with LS-385. This is probably because oxygen atoms on the LS-385 donor have
poor electron capacity. Compared with LS-385 and LS-386, the BTZ group of LS-387 sneaked
into the electron collection of the receptor. Besides, ∆q on the acetylene bridge of LS-385 (−0.09),
LS-386 (−0.08), and LS-387 (−0.086), provide an ICT channel. Also, the acceptor of ∆q shows the
following: LS-387 (0.09) > LS-386 (0.08) ≈ LS-385 (0.08), which illustrates that LS-387 has a strong
ability to accept electrons. As a result, LS-387 should stimulate more electron transfer in the optical
excitation mechanism.

Table 3. Natural Bond Orbital Analysis (Atomic Charge in a.u.) for the Ground State (S0) and Excited
State (S1) of the dyes with D-π-A-π-A fragments.

Dye Donor π Acetylene Bridge BTZ Acceptor

LS-385
S0 −0.18 0.30 0.02 −0.07 −0.06
S1 −0.16 0.46 0.11 −0.27 −0.14
∆q −0.02 −0.16 −0.09 0.20 0.08

LS-386
S0 0.14 −0.04 0.03 −0.05 −0.08
S1 0.28 0.004 0.11 −0.23 −0.16
∆q −0.14 -0.036 −0.08 0.18 0.08

LS-387
S0 0.02 0.14 0.004 −0.07 −0.09
S1 0.13 0.31 0.09 −0.36 −0.18
∆q −0.11 −0.17 −0.086 0.29 0.09
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3.4. Analysis of Charge Injection Capability.

An important indicator for assessing injection capacity is ionization potential (IP) and electron
affinity (EA) for holes and electrons, respectively [40–43]. IP represents the energy change of
electron extraction or hole addition. EA means the change in energy of hole extraction or electron
absorption [35]. As shown in Table S2, the IP of the three molecules in the order: LS-385(6.67 eV) >
LS-386 (6.64 eV) > LS-387 (6.23 eV), and the smallest LS-387 has the better injection capacity. The EA
of the three dyes is as follows: LS-387 (1.80 eV) < LS-385 (1.93 eV) < LS-386 (1.99 eV), and the higher
the EA, the higher the electronic acceptability becomes [44]; so LS-386 has a greater ability to inject
electrons. Nevertheless, the IP of the three dyes in solvent goes down compared with vacuum, and
LS-387 in solvent has the lower IP of 4.92 eV, which also indicates that LS-387 is more advantageous
for extracting electrons. The E f und = IP− EA is used to characterize the electronic contribution of
the dye molecules. As shown in Table S2, the E f und of the three dyes in vacuum is as follows: LS-385
(4.74 eV) > LS-386 (4.65 eV) > LS-387 (4.43 eV), and in solvent the dye of LS-387 has a lower E f und of
1.76 eV, which is in agreement with the experiment [16]. The E f und is vacuum > solvent, therefore,
the molecules in the DMF solvent produce a better electronic capability than in vacuum.

3.5. Analysis of Chemical Reaction Parameters

Another method for evaluating the charge transfer properties of sensitizers is the recombination
energy [35], and the Marcus theory gives the rate formula [45]:

KET= A exp[−λ/4KBT] (6)

where λ is the recombination energy, T is the temperature, A is the electron coupling, and KB is the
Boltzmann constant.

Quantitative methods provide a feasible method for studying charge transport in organic material
systems [46] and for calculating hole and electron recombination energy (λh and λe), which can be
calculated [46]:

λh=
(
E−0 −E−) +

(
E−0 −E0) (7)

λe =
(
E+

0 − E+
)
+
(
E+

0 − E0
)

(8)

The above parameters can be obtained by optimizing the neutral molecular structure and the anion
(cation) structure. As shown in Table 4, λh of the three molecules in vacuum can be arranged: LS-385
(0.25 eV) > LS-386 (0.20 eV) > LS-387 (0.18 eV); and λe can be arranged in the order: LS-386 (0.42 eV) >
LS-385 (0.37 eV) > LS-387 (0.33 eV). Table 4 also shows the λh and λe in DMF solvent has a noticeable
decrease, and LS-387 has a lower recombination energy in vacuum and solvent, which will produce
better molecular charge transfer and thus better photoelectric performance.

Table 4. The reorganization energy (λh and λe) and the chemical reactivity parameters λh and λe of
LS-385, LS-386 and LS-387 in vacuum and DMF solvent.

LS-385 LS-386 LS-387

Vacuum Solvent Vacuum Solvent Vacuum Solvent

λh 0.25 0.24 0.20 0.19 0.18 0.13
λe 0.37 0.34 0.42 0.29 0.33 0.27
h 2.37 1.09 2.32 1.08 2.22 0.88
ω 3.91 8.41 4.01 8.57 3.64 9.27

ω+ 2.05 6.41 2.14 6.56 1.91 7.36
ω− 6.35 10.69 6.46 10.86 5.93 11.40

Electrochemical parameters (such as chemical hardness h, electrophilic index ω, electron accepting
power ω+, and electron donating ability ω−) are important factors affecting the efficiency of
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photovoltaic cells. The relevant calculated data are in Table 4. The parameter h represents the
impedance for ICT [47]. Low chemical hardness is characterized by low ICT resistance, which in
turn increases the acceptability of electrons [40]. Therefore, good dyes should have low h and higher
ω+. As shown in Table 4, LS-387 (h = 2.22 eV) has a lower chemical hardness compared with that
of LS-385 (h = 2.37 eV) and LS-386 (h = 2.32 eV), and the h of three molecules is: vacuum > solvent,
indicating that LS-387 has a smaller ICT resistance in solvent. Moreover, LS-387 in solvent has a
higher electron accepting power (ω+ = 7.36) than LS-385 (ω+ = 6.41) and LS-386 (ω+ = 6.56), which
implies that LS-387 exhibits a higher electron withdrawing capacity through its receptor moiety.
Taken the two parameters into account, it can be inferred that LS-387 will have higher ICT and
PCE. The higher the electrophilic index (ω), the higher the stability of the dye becomes. In solvent,
LS-387 has a higher electrophilicity index (ω = 9.27 eV) compared with that of LS-385 (ω = 8.41 eV)
and LS-386 (ω = 8.57 eV), and the ω of three dyes is solvent > vacuum, which indicate LS-387 has
a higher energetic stability. In order to obtain a large electron supply capacity, the hope is that
the molecule has a lower electron donating energy. Table 4 shows that LS-387 in vacuum has a
lower electron donating power (ω− = 5.93 eV) compared with that of LS-385 (ω− = 6.35 eV) and
LS-386 (ω− = 6.46 eV); however, in solvent, the three dyes have a higher ω− compared with that in
vacuum. Never the less, comprehensive consideration on the chemical reactivity parameters indicates
that LS-387 in solvent has a better chemical reactivity parameter, resulting in a better photoelectric
performance of LS-387 among the three dyes.

3.6. Performance of DSSCs Based on Dyes

The LHE is an important parameter to measure the performance of sensitizer and to evaluate
JSC. Table 5 shows LS-387 (0.9485) in vacuum has a higher LHE compared with LS-385 (0.9315) and
LS-386 (0.8220). Moreover, in DMF solvent the LHE of them increases to different degrees. The higher
LHE will lead to higher JSC, therefore, LS-387 will have better photoelectric conversion performance
due to its higher LHE.

Table 5. The VRP, the light harvesting efficiencies (LHE), the electron injection free energy (∆Ginject, in
eV), the oxidation potential of the dye in ground state (Edye∗

ox , in eV), the oxidation potential of the dye
in excited state (Edye

ox , in eV), the dye regeneration free energy (∆Gregen
dye , in eV), and the vertical dipole

moment of (µnormol , in Debye) in vacuum and DMF solvent.

LS-385 LS-386 LS-387

Vacuum Solvent Vacuum Solvent Vacuum Solvent

VRP 0.673 0.660 0.671 0.662 0.818 0.776
LHE 0.9315 0.9565 0.8220 0.9695 0.9485 0.9641

∆Ginject −1.346 −1.319 −1.342 −1.324 −1.636 −1.551
∆Gregen

dye 0.995 0.975 0.964 0.968 0.525 0.485

Edye
ox 5.595 5.575 5.564 5.568 5.125 5.085

Edye∗
ox 2.654 2.681 2.658 2.677 2.364 2.449

µnormol −10.6528 −12.6125 −6.1017 −6.7901 −10.5313 −12.9878

In addition, the influence of the electron injection efficiency of the excited state (φinject) on
the JSC was evaluated. The φinject is closely related to the driving force of electron injection
(∆Ginject). The Marcus theory determines the electron transfer ability of an excited state dye into
a semiconductor [48,49]:

κinject = [VRP]
2
h

(
π

λkBT

) 1
2

exp [−
(
∆Ginject + λ

)2

4λkBT
] (9)
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where κinject is the rate constant (in S−1) of the electron injection from dye to TiO2, h is the
Planck constant, kB is the Boltzmann constant, ∆Ginject is the electron injection free energy, λ is the
reorganization energy. |VRP| is the coupling constant between the reagent and the product potential
curves. It can be concluded from the above equation that a larger |VRP| will increase κinject and result
in faster electron injection. Hsu et al. have given the equation for |VRP| [50]:

|VRP| =
∆ERP

2
(10)

According to Koopmans approximation, the ∆ERP is derived from [51,52]:

∆ERP = Edye
0−0 − [2Edye

ox + Edye
RED + ETiO2

CB ] (11)

Preat’s theoretical method shows the calculation method of ∆Ginject [53]:

∆Ginject= Edye∗
ox −ESC

CB (12)

Here Edye∗
ox represents the oxidation potential of the dye in the excited state, ESC

CB represents the

reduction potential of TiO2 semiconductor [54] (ESC
CB = 4.0 eV) Thereunto Edye∗

ox can also be expressed as:

Edye∗
ox = Edye

ox −λmax (13)

where Edye
ox represents the oxidation reduction potential of the ground state, λmax represents the energy

of the ICT. Higher oxidation potentials can result in greater driving force for the injection.
As show in Table 5, the Edye∗

ox , the ∆Ginject, and |VRP| of LS-385, LS-386 and LS-387 were

calculated. The oxidation potential (Edye∗
ox ) of the three dyes in vacuum is as follows: LS-387 (2.364 eV) <

LS-386 (2.658 eV)≈ LS-385 (2.654 eV), and in solvent is as follows: LS-387 (2.449 eV) < LS-386 (2.677 eV)
< LS-385 (2.681 eV); so LS-387 has a lower value of Edye∗

ox in vacuum and solvent. Lower Edye∗
ox will

result in easier photooxidation.
The value of ∆Ginject is negative, which means that dye excited states can easily inject electrons

into TiO2CB. As shown in Table 5, the absolute value of the ∆Ginject of the three dyes in vacuum can
be arranged in sequence: LS-387 (1.636 eV) > LS-385 (1.346 eV) > LS-386 (1.342 eV), and the ∆Ginject

of the three molecules is higher than 0.2 eV, which also shows that the molecular excited states can
smoothly inject electrons into the TiO2CB. Moreover, the absolute value of ∆Ginject for LS-387 is much
larger than LS-385 and LS-386. Therefore, LS-387 has the higher ∆Ginject; Table 5 also lists the coupling
constant (VRP) in vacuum and solvent, in which LS-387 has the higher VRP compared with LS-385 and
LS-386. Therefore, LS-387 will produce a higher JSC and further improve efficiency.

The dye regeneration free energy (∆Gregen
dye ) can be used to characterize the regeneration ability of

dye molecules from I−/I3− electrolyte; the higher the ∆Gregen
dye drive, the better the regenerative capacity

and electron transport capacity of the dye become. ∆Gregen
dye can be calculated as the difference between

the redox potential of I−/I3− (Eelectrolyte
redox = −4.60 eV) [55,56] and Edye

ox . Table 5 shows the ∆Gregen
dye of the

three dyes can be arranged: LS−385 (0.995 eV) > LS−386 (0.964 eV) > LS−387 (0.525 eV); and dyes in
the solvent follow the same sequence. The values of ∆Gregen

dye of the three dyes in vacuum and solvent
are higher than 0.5 eV, which means that the three dyes can finalize the regenerative process.

An important parameter to study charge transfer efficiency is the excited state lifetime (τ), which
can be evaluated via the following equation:

τ =
1.499
f × E2 (14)

where E represents the excitation energy of the different electronic states (cm−1) and f is the oscillator
strength. Relevant data are in Table 6. The τ of the three dyes are arranged in sequence: LS 386 (1.82 ns)
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< LS-385 (2.02 ns) < LS-387 (2.29 ns). Intuitive data shows that LS-387 maintains long-term stability in
the cationic state.

Table 6. The excited state lifetime of (τ, in ns) in DMF solvent.

LS-385 LS-386 LS-387

τ (ns) 2.02 1.82 2.29

The VOC represents the difference between the quasi-Fermi level (electrons in the titanium dioxide
conduction band) and the redox potential (electrolyte) [57]. Movement of the ECB after the dye
adsorption on the semiconductor substrate directly affects the VOC, and the relationship between the
movement of the ECB and adsorbed molecular characteristics can be written as [31,58]:

∆ECB =
−qµnormolγ

ε0ε
(15)

where µnormol is the dipole moment component of the dye molecules perpendicular to the surface
of TiO2, γ is the absorption concentration of the semiconductor surface, and ε0 and ε represent the
dielectric constant and the organic monolayer in vacuum, respectively. The dyes with larger µnormol
and ∆ECB will generate a larger VOC. Figure 6a shows that for isolated dyes, the µnormol (in Debye)
of LS-387 (12.9878D) is the largest compared with LS-385 and LS-386; for dye/(TiO2)9, the value of
µnormol should follow the sequence of LS-387 > LS-385 > LS-386 (see Figure 6b). Therefore, the high
VOC of LS-387 can be contributed to the larger µnormol of LS-387, which is in good agreement with the
experimental results [16].
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3.7. Analysis of Recombinant Active Site

It is very important to gain electrons in the regeneration process of dyes. Molecular surface
electrostatic potential (ESP) [59] and average local ionization energy (ALIE) [60] can be used to
determine the active sites of electrolyte and dye cations in the active region. A higher ESP site means
the site attracts the strongest nucleophilic agent and is most likely to interact with the negatively
charged electrolyte [37]. One of the most important roles of ALIE is to predict the reaction sites for
electrophilic or free radical attack. The minimum value of surface ALIE can effectively reveal which
atoms are more likely to be the preferred location for electrophilic or free radical attack. The relevant
data and images are summarized in Figure 7. As shown, the minima of ALIE distributed near the
donor atom (O, S, N), and LS-387 has a smaller value than LS-385 and LS-386. Furthermore, in the
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donor site, the maxima ESP have a concentrated distribution near the N atom site of LS-387. It seems
that the main atoms O, S, N of donor complement can serve as active sites for dye molecules and
electrolytes. The extreme points of ALIE and ESP determine that the donor site may be a point of
interest for electrolyte ions.
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Figure 7. Graphical representation for minima of ALIE on VMD surface and local maxima of ESP on
VMD surface of the dye cations of LS-385+, LS-386+, and LS-387+. The extrema ALIE (in eV) and ESP
(in kcal/mol) points near to the donor regions are marked.

3.8. First Hyperpolarizability

The first static hyperpolarizability is viewed as third-order tensor and second-order nonlinear
optical response (NLO) coefficient [61]. Table S3 shows that the direction of the first hyperpolarizability
(positive value) is in the same direction as the X axis, which also means that the three molecules have
the same direction of charge transfer. LS-387 has a higher first hyperpolarizability, which may be
due to the planar structure between the π bridge and the acceptor (see Table 1). This facilitates the
better ICT of electrons from the donor to the acceptor and accelerates electron injection from the dye
molecules to the TiO2CB.
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3.9. Molecular Design

By analyzing the photoelectric properties of the original dyes, we can obtain the conclusion that the
parameters of LS-387 are superior to the others; as a result, LS-387 produces better PCE(η = 5.61% [16]).
DFT provides a design strategy for controlling performance from the viewpoint of theory [60–62].
Based on LS-387, we theoretically designed fifteen new dye molecules to improve the electro-optical
performance. On the donor group, we symmetrically introduced to the electron donating substituents
(–OH, –NH2 and –OCH3); on the molecule’s acceptor group, the electron-acceptors (–CF3, –F and
–CN). By introducing different groups, we reduced the molecular energy gap, which is conducive to
a red-shift of the absorption spectrum; at the same time, the introduction of individual groups can
improve the dye regeneration free energy to some extent, thus improving the regeneration efficiency
(ηreg) and JSC of the dyes. On LS-387, we defined five positions (R1–R5) to introduce electron groups
(see Figure 8). Also, in R1 and R2, three donor groups were introduced, where the molecules are
named: LS-387-X (X = 1A, 1B, 1C, 12A, 12B and 12C); and in the acceptor group(R3, R4, and R5), we
introduced three electron-acceptors, where the molecules are named: LS-387-Y (Y = 3D, 3E, 3F, 4D, 4E,
4F, 5D, 5E and 5F).
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The molecules (LS-387-X and LS-387-Y) ground state were optimized in DMF solvent, and bond
length and dihedral angle are listed in Tables S4 and S5. As shown in Table S4, the bond length
(d1 to d6) of LS-387-1A (1B and 1C) is not obviously changed compared with LS-387; However, the d1

of LS-387-12A (12B and 12C) is higher than LS-387. It seems that introducing into two of the same
electron groups leads to larger bond length that can affect the stability of the molecules. In addition,
in the acceptor group, the d5 and d6 of LS-387-3D (3E, 3F, 4D, 4E, 4F, 5D, 5E and 5F) is greater than
LS-387, but the d1–d4 is not obviously changed compared with LS-387. Therefore, the electronic
groups introduced by the acceptors are also not conducive to improving the stability of the molecules.
As shown in Table S5, the dihedral angle (∠1) of LS-387-X (X = 1A, 1B, 1C, 12A, 12B and 12C) is not
obviously changed compared to LS-387; for the dihedral angle ∠2, the LS-387-12C (−0.062) has a
smaller value than LS-387, and the molecule is more planar in the acceptor site, which is beneficial to
ICT. For LS-387-Y, due to the interatomic repulsive effect of the group, the increases of ∠1 and ∠2 will
be different, and the ICT will have a negative effect.

Figure 9 shows the HOMO, LUMO energy level and the energy gap (∆G = |H − L|), and data
are listed in Table S6. The energy gap of LS-387-1B and LS-387-12B is 2.072 eV and 1.921 eV, and the
higher HOMO energy level of LS-387-1B and LS-387-12B will result in a small gap (see Figure 9a).
Because a narrow energy gap is favorable to red-shift absorption, the smaller energy gap for LS-387-1B
and LS-387-12B by introducing –NH2 will lead to a larger absorption peak. For acceptor designed
molecules LS-387-Y, the LS-387-3D (1.676 eV), LS-387-4D (2.115 eV), and LS-387-5D (2.128 eV) have a
lower gap (see Figure 9b), which is due to lower LUMO level for LS-387-Y (3D, 4D and 5D). To sum
up, the introduction of the –NH2 group at the donor site and the introduction of –CN at the acceptor
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site can reduce the gap, thus leading to a red-shift in the maximum absorption peak and improvement
of the light trapping efficiency.
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The excited state characteristics of the design molecules were calculated, and the results are listed
in Table S7. As shown in Table S7, the LS-387-1B and the LS-387-12B have the λmax of 496.16 nm
and 490.19 nm, which is larger than LS-387 (470.40 nm). So dye LS-387-1B and LS-387-12B have
a red-shift of 20–25 nm. The first excited states of LS-387-1B and LS-387-12B show an electron
transition of HOMO→LUMO (see Figure S2). While for the LS-387-3D, its λmax (an electron transition
is HOMO→LUMO) is found to be 485.58 nm, which configuration will produce a larger red-shift
relative to the original molecule. Figure S3 shows absorption spectra of 15 designed molecules, which
show that LS-387-1B and LS-387-12B have obvious red-shifted absorption (LS-387-3D has an obvious
absorption peak red-shifted relative to the original molecules). In summary, it was found that the
design by introducing the –NH2 group individually or in pairs on the donor site should reduce the
energy gap and make the spectrum red-shifted, and then improve the ICT; introducing on the acceptor
site R3 position –CN groups has a similar trend.

From Section 3.4, IP and EA are important injection parameters, and E f und can be used to
characterize the electronic contribution of dye molecules [62–64]. The LS-387-1B (12A, 12B and 12C)
has a lower value of IP compared with LS-387 (see Table S8), and the EA of LS-387-3D has a large
value relative to LS-387 and other designed molecules. Therefore, LS-387-1B (12A, 12B and 12C) will
produce a higher outcome of extracting electrons, and LS-387-3D will have a better absorbing ability of
electrons. The E f und of LS-387-3D produced a lower value relative to the original molecule and other
designed molecules, therefore, LS-387-3D will show better electronic ability.

On the basis of the ground state optimizations of fifteen designed molecules, four electrochemical
activity parameters are also listed in Table S8. The h of LS-387-1B (12A, 12B and 12C) has a significant
decrease compared with LS-387 (0.88). Among the above three designed dyes, for LS-387-1B (12B) the
introduction of –NH2 in the donor terminal reduces the chemical hardness of the dyes more effectively
than other introductions of –OCH3 and –OH. The LS-387-3D (4D and 5D) and the LS-387-3E also has a
lower h compared with LS-387. In summary, introduction of two electron groups (–NH2) in the donor
site or the introduction of R3 (–CF3 and –CN) in the acceptor are more beneficial to reducing the h of
the dye molecules. Moreover, the dyes of LS-387-12A (12B and 12C) have a higher ω+ compared to
LS-387 and LS-387-1A (1B and 1C). LS-387-3D (13.17) and LS-387-3F (9.76) also has a maximum value
of ω+. So, introduction of electron-donating groups (–NH2) in pairs on the donor site and introduction
of –CF3 and -CN in the acceptor site R3 were beneficial to increase the ω+ dye molecules. Therefore,
the above two parameters indicated that LS-387-12B and LS-387-3D (3F) would have a higher JSC.
The higher absolute value of ∆Ginject can lead spontaneously to inject electrons to TiO2. Table 7 shows
that LS-387-1B (12B) has a higher absolute value of ∆Ginject compared with dye LS-387. The higher
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HOMO levels of LS-387-1B (12B) lead to greater ∆Ginject (see Figure 9a). The introduction of the –NH2

group is helpful to increase the electron injection, and introduction of two –NH2 groups can still further
increase the electron injection compared with single introduction of –NH2. Also, the coupling constant
(VRP) is listed in Table 7. For serials LS-387-X, LS-387-1B (12B) has the higher VRP compared with
LS-387 and the other five dyes, which means that faster electron injection can occur for LS-387-1B (12B).
The dye regeneration free energy (∆Gregen

dye ) has important effects on the PCE. As shown in Table 7,

for LS-387-X, LS-387-12A (12C) has a higher value of ∆Gregen
dye compared with other dyes, indicating

that two groups –OH and –OCH3 are beneficial to improve the free energy of the dye regeneration.
In addition, for LS-387-3D (4D and 5D), the ∆Gregen

dye is large than LS-387, showing that the –CN radical

group is helpful to improve the free energy of the dye regeneration. The larger ∆Gregen
dye is beneficial to

improve ηreg and increase JSC. Considering the above three properties (∆Ginject, ∆Gregen
dye and LHE), the

JSC of LS-387-1B (12B) and LS-387-3D (4D and 5D) will be better than LS-387.

Table 7. Chemical parameters in DMF solvent. (∆Ginject, ∆Gregen
dye , Edye

ox and Edye∗
ox , in eV; µnormol, in Debye).

Dyes LHE ∆Ginject ∆Gregen
dye Edye

ox Edye∗
ox VRP µnormol

LS-387-1A 0.9636 −1.512 0.499 5.099 2.489 0.756 11.5551
LS-387-1B 0.9585 −1.538 0.361 4.961 2.462 0.769 13.3062
LS-387-1C 0.9634 −1.529 0.509 5.109 2.471 0.765 12.9133
LS-387-3D 0.9584 −1.453 0.500 5.100 2.547 0.727 12.5191
LS-387-3E 0.9563 −1.558 0.493 5.093 2.442 0.779 12.9292
LS-387-3F 0.9349 −1.650 0.470 5.070 2.350 0.825 9.1245
LS-387-4D 0.9503 −1.538 0.508 5.108 2.462 0.769 14.0796
LS-387-4E 0.9605 −1.531 0.499 5.099 2.469 0.766 13.8853
LS-387-4F 0.9598 −1.510 0.505 5.105 2.490 0.755 13.1415
LS-387-5D 0.9458 −1.574 0.525 5.125 2.426 0.787 10.6711
LS-387-5E 0.9500 −1.628 0.498 5.098 2.372 0.814 11.4385
LS-387-5F 0.9272 −1.713 0.495 5.095 2.287 0.857 11.0183
LS-387-12A 0.9609 −1.545 0.524 5.124 2.455 0.773 7.3461
LS-387-12B 0.9323 −1.687 0.242 4.842 2.313 0.844 10.3030
LS-387-12C 0.9642 −1.503 0.566 5.166 2.497 0.752 12.3172

Table 7 shows the µnormol of fifteen designed molecules, and for LS-387-X, the LS-387-1B has a
higher µnormol compared with LS-387; for LS-387-Y, the dyes of LS-387-4D (4E and 4F) have higher
µnormol compared with LS-387. In summary, introduction of electron-donating groups (–NH2) on the
donor site and introduction of electron-acceptor groups (–CN, –F and –CF3) on the acceptor site R4 are
beneficial for the improvement of µnormol , which then improves the VOC.

4. Conclusions

This paper systematically studied the photoelectric properties of three basic dye molecules with
DFT calculations from the following aspects (structures, energy levels, spectra, electron transfer process,
and chemical parameters etc.). We inferred some common conclusions: (a) LS-387 has a shorter bond
length and smaller dihedral angle, which is of benefit to the ICT. (b) LS-387 displays higher HOMO
and narrow gap, which leads to stronger electron donating ability and a broad absorption spectrum;
(c) Analysis by CDD shows that LS-387 can effectively improve charge separation, which is supported
by NBO analysis; (d) the well experimental performance of JSC and VOC for LS-387 can contribute
to higher ∆Ginject and LHE as well as µnormol ; (e) fifteen dyes were designed with pull-push electron
groups in donor and acceptor, and it was found that the rational introduction of electron groups
(–NH2, –CN, –F and –CF3) in the molecule can effectively improve the photoelectric properties of
dyes. The above discussion can provide a theoretical basis for achieving higher performance of DSSC.
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stand for the hole and electron, respectively), Figure S2. Frontier molecular orbital of molecular designing in DMF
solvent. Figure S3. The UV-Vis absorption spectrum in DMF solvent. Table S1. Energy levels of HOMO and
LUMO and energy gaps calculated by DFT in vacuum and DMF solvent of three dyes. Table S2. The ionization
potentials(IP) and electron affinities(EA) of LS-385, LS-386 and LS-387 in vacuum and solvent. Table S3. Calculated
the static first hyperpolarizability of the three dyes in vacuum and DMF solvent. Table S4. The bond length
of LS-387 analogous in DMF solvent. Table S5. Dihedral angle in DMF solvent. Table S6. The energy level
and the energy gap in DMF solvent. Table S7. Transition energies (Eg) and oscillator strengths of 15 designed
molecules in DMF solvent. Table S8. The Electrochemical Parameter in DMF solvent. Cartesian coordinates of the
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