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A B S T R A C T   

Objective: To develop an algorithm using deep learning methods to calculate the volume of intraretinal and subretinal fluid in optical coherence 
tomography (OCT) images for assessing diabetic macular edema (DME) patients’ condition changes. 
Design: Cross-sectional study. 
Participants: Treatment-naive patients diagnosed with DME recruited from April 2020 to November 2021. 
Methods: The deep learning network, which was built for autonomous segmentation utilizing an encoder-decoder network based on the U-Net 
architecture, was used to calculate the volume of intraretinal fluid (IRF) and subretinal fluid (SRF). The alterations of retinal vessel density and 
thickness, and the correlation between best-corrected visual acuity (BCVA) and OCT parameters were analyzed. 
Results: 2,955 OCT images of fourteen eyes from DME patients with IRF and SRF who received anti-vascular endothelial growth factor (VEGF) agents 
were obtained. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve of the algorithm was 0.993 for IRF and 0.998 for 
SRF. The volumes of IRF and SRF were significantly decreased from 1.93 ± 0.58 /1.14 ± 0.25 mm3 (baseline) to 0.26 ± 0.13 /0.26 ± 0.18 mm3 

(post-injection), respectively (p = 0.0170 for IRF, and p = 0.0004 for SRF). The Spearman correlation demonstrated that the reduction of IRF volume 
was negatively correlated with age (coefficient = − 0.698, p = 0.006). 
Conclusion: We developed a deep learning assisted fluid volume calculation algorithm with high sensitivity and specificity for assessing the volume 
of IRF and SRF in DME patients. Key words: deep learning; diabetic macular edema; optical coherence tomography.   
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1. Introduction 

Diabetic macular edema (DME) can appear in any stage of diabetic retinopathy (DR), which occurs due to the deregulation of fluid 
entry and exit, with the accumulation of intraretinal fluid (IRF) and subretinal fluid (SRF) [1,2]. Currently, several randomized 
controlled trials have conclusively demonstrated that intravitreal injections of anti-vascular endothelial growth factor (VEGF) drugs, 
such as aflibercept and ranibizumab, can produce superior visual outcomes than conventional laser therapy [3]. 

Optical coherence tomography (OCT)/OCT-angiography (OCTA), which detect retinal lesions in multiple layers with segmentation 
in a non-invasive fashion, are widely used in clinic assessments of DME. 

The majority of available OCT analysis software in clinical practice is restricted to measuring the layer thickness of the retina, such 
as the central macular thickness (CMT) [4,5], despite the fact that previous research has demonstrated the limited utility of this 
biomarker for visual prognosis and disease management [6]. However, CMT can vary significantly between individuals due to several 
variables, including age, sex, refractive status, etc. [7–9]. For example, women have thinner retinas than men, so it is more likely to be 
missed diagnosis of centrally involved edema in women [10]. Due to the overlap between normal populations and diabetic patients, 
there will theoretically always be a certain number of false positives and false negatives, regardless of the threshold used. In addition, 
other macular pathological characteristics, such as the preretinal membrane or DR-induced retinal atrophy, may increase or reduce 
CMT. Direct measurement of the changes in fluid volume, an intrinsic characteristic of DME, does not have the above limitations, 
which may be more sensitive and specific than thickness measurement. 

Previous studies have developed several algorithms and demonstrated their efficacy in fluid volume detection. Nevertheless, these 
methods possess several drawbacks, including low precision in segmenting data [11], the need for human intervention [12], rigorous 
requirements for raw data [13] and the absence of manual annotations and effective constraints [14]. Therefore, a better optimal 
approach is needed to determine the fluid volume in OCT images. This study aims to develop an algorithm using deep learning to 
calculate the volume of IRF and SRF of DME patients to evaluate anti-VEGF therapy. 

2. Materials and methods 

2.1. Patients enrollment 

This study enrolled 14 eyes from 12 treatment-naïve DME patients with both IRF and SRF at baseline. This study followed the 
Declaration of Helsinki’s principles and was reviewed by the ethical committee of Shanghai General Hospital, affiliated with Shanghai 
Jiao Tong University (2023-263). 

The inclusion criteria for this study were: ① diagnosis of type 1 or type 2 diabetes; ② the presence of SRF in the fovea with IRF (0–1 
mm diameter from the central point of fovea) at the baseline. The exclusion criteria were: ① patients who didn’t consent to participate 
in this study or did not cooperate with the examinations; ②patients with other ocular fundus diseases, such as age-related macular 
degeneration, retinal vein occlusion, or choroidal neovascularization, or with a history of intraocular surgery within 3 months; ③ low 
quality ophthalmic images (the detailed description of image quality was described in Supplementary Table 1). 

All patients were intravitreally injected with anti-VEGF agents, including aflibercept (8 eyes) and conbercept (6 eyes). The 
intravitreal injection and follow-up procedure were described previously [15,16]. 

2.2. Parameters for evaluation 

Data were collected, including age, sex, BCVA, volume of IRC and SRF, vessel density, and other OCT variables. 

2.3. Image dataset 

Macular scans of 6 × 6 mm2 were obtained with OCT (Optovue Inc., Fremont, CA, USA) approximately one week after intravitreal 
injection in all patients. 2955 OCT images of B- scan from different layers were collected from 14 eyes. 

2.4. Deep learning of automatic segmentation 

In this study, the VGG16 (Visual Geometry Group) [17] deep convolutional neural network is selected as the backbone to determine 
the main parameters of the original U-net convolutional layers to encode the input images. The encoder of this study consists of five 
convolutional modules, from shallow to deep, which is responsible for extracting the features of original images. The decoder part, 
composed of four upsampling modules, is responsible for recombining and restoring the features. Every module consists of an 
upsampling layer and a convolutional layer that concatenate corresponding features from different depths to gradually reconstruct the 
encoding. The integrated flowchart of this deep learning method was presented in Supplementary Fig. 1. 

The data pre-processing, training process, hardware, and software parameters are briefly described as follows: 159 labeled slice 
images were the training set, with 40 images as the validation set. To prevent overfitting, data augmentation was performed: ① 
resizing and distorting the input image, with a transformation threshold of 0.2–2 for the length and width; ② flipping the image 
horizontally. The batch size of the network was set to 2, and a total of 100 iterations of training were performed, with the first 50 
iterations being frozen to improve training efficiency, and the remaining 50 iterations being unfrozen. The Adam optimizer was used as 
the optimization algorithm for the network, and the learning rate was dynamically adjusted based on the training situation. 
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Additionally, an independent external dataset [18] was employed to ensure an unbiased evaluation of this model. Among them, 50 
images were enrolled as testing set. 

The primary hardware environment for the experiments in this study was Intel Xeon® Silver 4114 CPU and Nvidia TESLA V100 
32G GPU, and the deep learning framework used was PyTorch. 

2.5. Volumetric calculation analysis 

The volume of IRF, SRF and fluid in INL at each visit were calculated according to the Cavalieri principle of stereological analysis 
[19,20]. The volume calculation is limited to a 1 mm circle centered from the central fovea. First, the areas of macular fluid in in
dividual OCT slices were quantified based on the aforementioned deep learning algorithm. Subsequently, the fluid volume between 
two contiguous slices was defined as the average area of two sequential slices multiplied by the fixed interval (0.015 mm between two 
adjacent slices in OCT AngioVue software). Finally, the summation of volume from every separating segment demonstrated the total 
volume in the retina. The unit for volume is mm3. 

2.6. Mixed-effects model analysis 

Concerning binocular collinearity and mutual influence, the mixed-effects model was employed in data analysis. This model is 
particularly suitable for analyzing data with multiple layers or group structures, such as repeated measurements from the same subject. 
The fixed effects of interest were the change in edema volume pre- and post-treatment, and the individual differences of patients were 
considered random effects. The "readxl" and "lme4″ packages in R software were utilized. 

2.7. Statistical analysis 

R software (R Foundation for Statistical Computing, Vienna, Austria) and EmpowerStats version 2.0 (X&Y solutions Inc., Boston, 
MA, USA) were employed for all the statistical analyses. P-value <0.05 was interpreted as statistically significant and mean ± standard 
error of mean (SEM) was used to describe quantitative results. 

3. Results 

3.1. General clinical characteristics 

Table 1 and Supplementary Table 2 summarized the characteristics of study participants. The average age of participants at 
baseline was 58.43 ± 2.91 years. At the initial visit, the mean BCVA was 0.54 ± 0.05 logMAR, while the BCVA improved to 0.42 ±
0.05 logMAR (p = 0.0058) at the final visit (Table 1). 

Table 1 
Demographic and clinical information of the participants.  

Variable Value (N = 14) P value 

Age, mean (SEM) [range], y 58.43 (2.91) [30–71]  
Sex, No. 

Male 4  
Female 8  

Eyes, No. 
OS 6  
OD 8  

Anti-VEGF agents, No.(eyes) 
Aflibercept 8  
Conbercept 6  

BCVA, mean (SEM) [range] 
Baseline 0.54 (0.05) [0.16–1.00] 0.0058 
Post-injection 0.42 (0.05) [0.04–0.70] 

CMT, mean (SEM) [range], μm 
Baseline 532.70 (45.02) [340.00–874.00] 0.0004 
Post-injection 284.70 (20.05) [200.00–453.00] 

IRF, mean (SEM) [range], mm3 

Baseline 1.92 (0.58) [0.00–7.37] 0.0170 
Post-injection 0.26 (0.13) [0.00–1.34] 

SRF, mean (SEM) [range], mm3 

Baseline 1.14 (0.25) [0.25–3.29] 0.0004 
Post-injection 0.26 (0.18) [0.00–2.35] 

Reduction of IRF, mean (SEM) [range], mm3 1.66 (0.61) [-0.98-7.37]  
Reduction of SRF, mean (SEM) [range], mm3 0.88 (0.19) [0.07–2.25]  

BCVA, best-corrected visual acuity; CMT, Central macular thickness; OD, oculus dexter, right eye; OS, oculus sinister, left eye; SEM, 
standard error of the mean. 
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3.2. Assessment of network performance 

The elaborate structure of the classifier is illustrated in Fig. 1. The particular indices of this model (Table 2) and ROC curves (Fig. 2) 
were calculated. The promising specificity of the model for both IRF (0.996) and SRF (0.998) indicates that it achieves a high level of 
sensitivity and recognition for both types of cumulus (Table 2). Besides, the model has a higher recall value for SRF, suggesting that it 
can distinguish SRF regions more accurately than IRF (0.844 for SRF vs. 0.686 for IRF). Besides, the confusion matrix, intersection over 
union (IOU), pixel accuracy (PA), and mean pixel accuracy (MPA) were also calculated. The confusion matrices are as follows: 

⎡

⎣
5036813 18850 11327
27486 60087 0
13752 0 74565

⎤

⎦

Averaging the IOUs across categories gives mIOU = 0.7663. PA, which is the ratio of correctly predicted pixels to the total number 
of pixels, was calculated as 0.9864, and MPA, which is the average of the accuracies for each category, was calculated as 0.8415. The 
ROC curve showed that for the IRF and SRF, the AUC were 0.993 and 0.998 (Fig. 2A), and the precision-recall curve showed the AUC 
were 0.810 and 0.933 for IRF and SRF, respectively (Fig. 2B). Additionally, the performance of algorithm in external testing dataset 
was depicted in Supplementary Table 3 and representative segmentation images of external dataset were shown in Supplementary 
Fig. 2. The enrollment of external dataset, without data leakage and bias, ensured the reliability and robust classification ability. 

3.3. Volumetric quantification of fluid volume 

Intravitreal injection of anti-VEGF agent reduced the volume of IRF significantly (1.93 ± 0.58 mm3 at baseline vs. 0.26 ± 0.13 mm3 

after injection, Fig. 3A), and the volume of SRF diminished significantly from 1.14 ± 0.25 mm3 (baseline) to 0.26 ± 0.18 mm3 (post- 
injection) (Fig. 3B). In addition, there was a significant reduction in the total volume of IRF and SRF after treatment (Fig. 3C). 
Similarly, in mixed-effects model, the fixed effects analysis indicated a significant difference in fluid volume before and after treat
ment, with an estimated difference of 1.6617 mm3 for IRF (t = 2.990), and 0.8817 mm3 for SRF (t = 3.630). Since the presence of 
disorganization within the inner nuclear layer (INL) has been identified as a predictor for visual acuity in DME [21] and the volume of 
fluid in INL has a strong correlation with visual acuity [22], the fluid volume within INL was also calculated. Consistently, the fluid 
volume in INL decreased significantly after treatment (Supplementary Fig. 3). Fig. 4 presents two representative examples. Patient 1 

Fig. 1. The overall architecture of the encoder-decoder network. 
The classifier is a complex function that computes the mapping relationship between the pixel values of an image and the pixel types. The classifier 
is trained and predicted on a single image basis, and the operational dimension of each image is the pixel dimension, which means that each pixel is 
classified (IRF, SRF, non-fluid). The gray bars in the schematic represent the extracted features. The classifier consists of encoders and decoders. The 
encoder extracts the deep features of the image, which are divided into 5 levels from shallow to deep. The decoder gradually restores the deep 
features back to the shallow features (the shallowest features are the picture itself), and the process of feature restoration at each level is spliced with 
the upper encoded features, with the purpose of computing the macroscopic connections between pixels and keeping the decoded dimensions 
consistent with the corresponding encoded levels. The final effect of decoding is to restore the same dimension as the original image, when the value 
of each pixel is the class predicted for the corresponding pixel of the original image. 
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was a 50-year-old male with DME, IRF and SRF were observed at the 6 × 6 mm2 sections centered on the fovea (Fig. 4A). The volume of 
IRF and SRF was reduced significantly, and the IRF almost disappeared (7.37 mm3 and 3.29 mm3 at baseline vs. 0.001 mm3 and 1.10 
mm3 at final follow-up) after anti-VEGF treatment; Patient 2 was a 50-year-old man with DME (Fig. 4B). The volume of IRF and SRF 
reduced (3.58 mm3 and 0.75 mm3 at baseline vs. 0.04 mm3 and 0 mm3 at final follow-up), and the BCVA improved from logMAR 0.4 at 
baseline to logMAR 0.3 after treatment. 

Table 2 
The performance of this deep learning assisted fluid volume calculation algorithm.   

Non-fluid IRF SRF 

TP 5036813 60087 74565 
FP 41238 18850 11327 
TN 134652 5136457 5143236 
FN 30177 27486 13752 
Recall 0.994 0.686 0.844 
Specificity 0.766 0.996 0.998 
Precision 0.992 0.761 0.868 
F1 0.993 0.722 0.856 
ACC 0.986 0.991 0.995 
AUC 0.992 0.993 0.998 
IOU 0.986 0.565 0.748 

TP: true positives; FP: false positives; TN: true negatives; FN: false negatives; ACC: accuracy; AUC: area under the curve; 
IOU: intersection over union; IRF: intraretinal fluid; SRF: subretinal fluid. 

Fig. 2. Evaluation of the fluid segmentation results and receiver operating characteristic curves for test OCTA images. (A) The ROC curve; 
(B) the precision-recall curve. AUC, area under the curve; IRF, intraretinal fluid; ROC, receiver operating characteristic curve; SRF, subretinal fluid. 

Fig. 3. Intravitreal injection of anti-VEGF agents was effective to decrease the volume of IRF and SRF. The reduction in IRF volume (A), SRF 
volume (B), and the total volume of IRF and SRF (C) were compared between the baseline and post-injection. *p < 0.05; **p < 0.01; ***p < 0.001; 
IRF, intraretinal fluid; SRF, subretinal fluid. 
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3.4. Correlation analysis with OCT parameters 

The Spearman correlation revealed that the reduction of IRF volume was negatively correlated with age (coefficient = − 0.698, p =
0.006, Fig. 5A), but not SRF (coefficient = − 0.003, p = 0.992, Fig. 5B). In addition, the reduction of the total volume of IRF and SRF 
was also negatively correlated with age (coefficient = − 0.700, p = 0.005, Fig. 5C). Correlation between BCVA and fluid volume in INL 
was also performed (Supplementary Fig. 4). In addition, correlations between CMT and other available OCTA characteristics were 
analyzed, and it was found that the association between CMT and SRF at baseline was statistically significant (Supplementary Table 4). 

3.5. Alteration of retinal thickness and retinal vessel density after anti-VEGF treatment 

Significant reductions in retinal thickness were observed in fovea (0–1 mm diameter from the central fovea) and para-fovea regions 
(1–3 mm diameter from central fovea), including the temporal, superior, nasal, and inferior of para-fovea (Fig. 6A). In contrast, no 

Fig. 4. Representative images of two patients demonstrating the IRF and SRF at baseline and after intravitreal anti-VEGF injections. (A) 
The OCTA image of patient 1 at baseline (left) and post-injection (right); (B) The OCTA image of patient 2 at baseline (left) and post- 
injection (right). 

Fig. 5. Correlation analysis between age and OCTA characteristics. The correlations between age and reduction of IRF volume (A), reduction of 
SRF volume (B), and reduction of the total volume of IRF and SRF (C). IRF, intraretinal fluid; SRF, subretinal fluid. 
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Fig. 6. Comparison of retinal thickness, vessel density, and other comparable parameters. Comparison of retinal thickness (A) and retinal 
vessel density (B) between the baseline and post-injection in different subareas of the macula. (C–E) Alterations of FAZ area (C), FAZ perimeter (D), 
and FD-300 (E) at the baseline and post-injection. FAZ, foveal avascular zone; FD-300, vessel density of foveal in a 300-μm wide annulus encircling 
the FAZ. 
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statistically significant changes were detected in any of the perifoveal regions (3–6 mm diameter from central fovea). There were no 
significant differences in vessel density between pre-injection and post-injection in all macular regions (Fig. 6B), as well as in the foveal 
avascular zone (FAZ) area (Fig. 6C), the FAZ perimeter (Fig. 6D), and the FD-300 (Fig. 6E). 

4. Discussion 

CMT has been widely used in clinical studies as a representative OCT parameter. However, CMT, as a two-dimensional parameter, 
could not fully reflect alterations of macular fluid in the three-dimensions [23]. In this study, we utilized 2955 OCT images and 
developed a deep learning-based algorithm to measure the volumetric change, which objectively interprets the efficacy of anti-VEGF 
therapy on the edema regression of DME patients. This model has high sensitivity and specificity for both IRF and SRF, and could 
discriminate the region of the fluid accurately. As SRF and IRF typically indicate the outer and inner blood-retinal barrier disruption, 
respectively, the differential accumulation patterns of IRF and SRF provide insights into the underlying pathophysiological mecha
nisms and may guide more targeted therapeutic interventions. Overall, these studies would facilitate physicians in determining disease 
activity and evaluating treatment effectiveness. 

In this study, even though only 14 eyes were included, based on nearly 3000 OCT images at different layers, we still constructed a 
reliable algorithm for evaluating retinal fluid volume using deep learning, with multidimensional metrics assessment, including TP, 
FP, TN, FN, F1 score, AUC, IOU, PA, MPA, recall, precision, and specificity. It combines the feature extraction capability of the residual 
structure with the ability to coordinate global pixels of the U-net structure, demonstrating fast computation, high accuracy, and a 
broader range of applicability in experimental settings. Schlegl et al. proposed an encoder-decoder structure composed of convolu
tional and transpositional convolutional modules to accomplish semantic segmentation [11]. However, it could lose some critical 
feature information after multilayered convolutional modules with the linear network structure, which results in a lower upper limit of 
segmentation accuracy; Sometimes even experienced medical practitioners could find it difficult to reach consensus on ambiguous 
low-quality regions where the true segmentation type cannot be deduced from the image. De Fauw et al. employed multiple instances 
of the segmentation network to train and generate entire segmentation maps for a particular scan, which led to superior performance 
particularly in challenging scenarios with ambiguity and complexity [12]. In this study, the algorithm also performed well in low 
quality and blurred images by individually analyzing each pixel and predicting its classification according to confidence score, without 
any deliberate human intervention. Compared with existing relevant works, improvements in network architecture design and training 
methodology have rendered this model more advanced. Due to the relatively small scale of the available training dataset, a pre-trained 
weight scheme was introduced for transfer learning. Leveraging the universally applicable features extracted by the backbone network 
(VGG16 in this study) not only enhanced the performance on small dataset training but also accelerated the convergence rate. 
Simultaneously, it effectively mitigated overfitting issues, thereby endowing the model with superior generalization capabilities. 
Furthermore, in the process of training the neural network, freezing and thawing stages were devised, aiding in the better execution of 
retinal fluid classification tasks based on the pre-trained model. The incorporation of a dynamically adjusted learning rate balanced 
training efficiency and model performance. 

In this study, the microvascular densities in the foveal, parafoveal, and perifoveal regions were detected and showed no change 
before and after treatment. In contrast to our results, previous studies have revealed that blood flow density decreases significantly 
following anti-VEGF therapy, especially patients who received more than 20 injections considerably reduced mean peripapillary flow 
index [24]. This phenomenon might likely be attributed to the inadequate duration provided for the regression of neovascularization 
over the follow-up period. Alterations in blood flow density over a short period are not sufficient to be detected by instruments 
(Fig. 6B), but the change of fluid volume could be observed (Fig. 3). This further implies that fluid volume, rather than vascular 
density, is the more sensitive indicator for determining the efficacy of anti-VEGF therapy. Similarly, Schmidt-Erfurth, Ursula et al. 
emphasized the potential of automated fluid quantification in enhancing therapeutic management and decision-making in neovascular 
age-related macular degeneration patients who received anti-VEGF therapy [25]. 

Consistent with previous findings [26–28], no significant correlation between BCVA and CMT as well as volume, was detected in 
the present study. Both volume and CMT have limited ability to determine BCVA because they predominantly evaluate edema and 
disregard many other aspects of DR, such as structural disorders and ischemia. Interestingly, a negative correlation between decrease 
in IRF volume and age was discovered, the same as the decrease in volume of IRF plus SRF. This indicated that anti-VEGF treatment 
was less effective for older patients. Although no statistically significant association has been observed between BCVA and fluid 
volume in INL, a trend does suggest that smaller fluid volume in INL tend to be associated with superior visual acuity, which is 
consistent with previous studies [22]. The limited number of patients may have contributed to the absence of statistically significant 
results, necessitating additional verification by the inclusion of a larger sample size. 

This study has several limitations. First, as the high-resolution OCTA used in this study has denser scanning, which offers the 
possibility of accurate estimation of fluid volume, this deep learning-based algorithm may be limited in its applicability to more widely 
accessible structural OCT scans, which only equip a less-dense scan pattern. Second, this study did not determine the impact of clinical 
care and patients age [29] on therapeutic effects across patients, which could have influenced the findings. Third, in consideration of 
the limited sample size and relatively short observation period, there might be inherent biases that could potentially influence the 
generalizability. In future research, more patients, including those with resistance to anti-VEGF treatments or on other medications 
such as dexamethasone intravitreal implant, will be enrolled in the study to further validate the algorithm. 

In conclusion, we developed a deep learning-assisted calculation algorithm with high sensitivity and specificity for assessing the 
volume of IRF and SRF in DME patients who received anti-VEGF treatment. Moreover, this methodology has the potential to facilitate 
ophthalmologists monitoring the condition change in OCT/OCTA images in patients with other ocular fundus diseases. 
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