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The study of human movement and biomechanics forms an integral part of
various clinical assessments and provides valuable information toward diagnosing
neurodegenerative disorders where the motor symptoms predominate. Conventional
gait and postural balance analysis techniques like force platforms, motion cameras,
etc., are complex, expensive equipment requiring specialist operators, thereby posing a
significant challenge toward translation to the clinics. The current manuscript presents
an overview and relevant literature summarizing the umbrella of factors associated with
neurodegenerative disorder management: from the pathogenesis and motor symptoms
of commonly occurring disorders to current alternate practices toward its quantification
and mitigation. This article reviews recent advances in technologies and methodologies
for managing important neurodegenerative gait and balance disorders, emphasizing
assessment and rehabilitation/assistance. The review predominantly focuses on the
application of inertial sensors toward various facets of gait analysis, including event
detection, spatiotemporal gait parameter measurement, estimation of joint kinematics,
and postural balance analysis. In addition, the use of other sensing principles such as
foot-force interaction measurement, electromyography techniques, electrogoniometers,
force-myography, ultrasonic, piezoelectric, and microphone sensors has also been
explored. The review also examined the commercially available wearable gait analysis
systems. Additionally, a summary of recent progress in therapeutic approaches,
viz., wearables, virtual reality (VR), and phytochemical compounds, has also been
presented, explicitly targeting the neuro-motor and functional impairments associated
with these disorders. Efforts toward therapeutic and functional rehabilitation through
VR, wearables, and different phytochemical compounds are presented using recent
examples of research across the commonly occurring neurodegenerative conditions
[viz., Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis, Huntington’s
disease (HD), and amyotrophic lateral sclerosis (ALS)]. Studies exploring the potential
role of Phyto compounds in mitigating commonly associated neurodegenerative
pathologies such as mitochondrial dysfunction, α-synuclein accumulation, imbalance
of free radicals, etc., are also discussed in breadth. Parameters such as joint angles,
plantar pressure, and muscle force can be measured using portable and wearable
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sensors like accelerometers, gyroscopes, footswitches, force sensors, etc. Kinetic foot
insoles and inertial measurement tools are widely explored for studying kinematic
and kinetic parameters associated with gait. With advanced correlation algorithms
and extensive RCTs, such measurement techniques can be an effective clinical and
home-based monitoring and rehabilitation tool for neuro-impaired gait. As evident
from the present literature, although the vast majority of works reported are not
clinically and extensively validated to derive a firm conclusion about the effectiveness
of such techniques, wearable sensors present a promising impact toward dealing with
neurodegenerative motor disorders.

Keywords: gait, inertial sensor, myography, plantar pressure, postural balance, wearable sensors, neurological
disorder, phytochemical

INTRODUCTION

Human gait refers to the way an individual walks. It is a
cyclical process with various phases, and each step contributes
to one of the significant tasks responsible for locomotion, viz.,
weight acceptance, balance, and limb advancement. Human gait
has been widely studied in healthy individuals and various
pathologies to understand the mechanisms of movement and
balance disorders. Alteration of synchronous coordination of
multiple muscles and the neuro-motor system can cause atypical
gait generation. Factors like accidents, aging, and neurological
impairments cause degeneration of the musculoskeletal system,
resulting in gait abnormalities. In turn, a pathological gait can
significantly reduce the quality of life in terms of mobility
and other psychological factors. One of the leading causes for
gait impairment is neurodegenerative disorders like Parkinson’s
disease (PD), multiple sclerosis (MS), Alzheimer’s disease
(AD), Huntington’s disease (HD), Amyotrophic Lateral Sclerosis
(ALS), along with certain forms of dementia. Although, as
per the prediction of the World Health Organization (2006),
neurological disorders were to contribute as the second leading
cause of worldwide deaths, this figure was surpassed almost
one and half decades ahead of its predicted time frame (Feigin
et al., 2017, 2019). PD is one of the major neurodegenerative

Abbreviations: 10 MWT, 10 meter walk test; 2D, two dimensional; 3D, three
dimensional; AA, ankle arthrodesis; AD, Alzheimer’s disease; ALS, amyotrophic
lateral sclerosis; AO, ankle orthosis; BBS, Bergs Balance Scale; BF, biceps femoris;
CF, complementary Filter; CMT, Charcot-Marie-Tooth; CNN, convolution neural
network; CoG, center of gravity; CoM, center of mass; CoP, center of pressure;
EMG, electromyography; ES, erector spinae; FF, flat foot; FFT, Fast Fourier
transform; FMG, force myography; FSR, force sensitive resistors; GCT, gait cycle
time; GM, gastrocnemius medialis; GRF, ground reaction force; HC, healthy
controls; HD, Huntington’s disease; HMM, Hidden Markov Model; HO, heel
off; HS, heel strike; IC, initial contact; IMU, Inertial Measurement Unit; IPM,
inverse pendulum model; IS, inertial sensors; KF, Kalman Filter; LDA, linear
discriminant analysis; Lstp, step length; MEMS, micro-electromechanical systems;
MS, multiple sclerosis; ms, millisecond; MSt, mid-stance; NWS, non-wearable
sensors; OMC, optical motion camera; PD, Parkinson’s disease; PSw, pre-swing;
PVDF, polyvinylidene fluoride; RF, rectus femoris; ROM, range of motion; SCI,
spinal cord injury; sEMG, surface-electromyography; SL, stride length; STP,
spatiotemporal parameter; Stt , stance time; SV, stride velocity; SVM, support vector
machine; Sw, swing; TA, tibialis anterior; TAR, total ankle replacement; TO, toe off;
TS, toe strike; TSw , swing time; TUGT, time-up and go test; vGRF, vertical ground
reaction force; VM, vastus medialis; WFSM, wireless foot sensor module; WHO,
World Health Organization; WS, wearable sensors; ZUPT, zero update; µV, micro
volts.

disorders of the central nervous system (CNS), affecting
motor and non-motor functions, including gait and posture
(Emamzadeh and Surguchov, 2018). Hip and knee are the
two major contributors to non-neurological gait abnormalities
(Pirker and Katzenschlager, 2017).

Gait events like heel strike (HS) of the foot [often denoted
as Initial Contact (IC)] as well as the toe off (TO) signify
the phase shift between stance and swing phase. Although
these events are general indicators of typical gait phases and
appear sequentially in gait timelines, these might be missing
in some pathological cases. Figure 1 shows the conventional
events associated with walking and different phases of the human
gait cycle. Previous literature has reported gait kinetics and
kinematics, spatiotemporal, mobility, balance, rhythm, etc., as
potential inputs for classifying gait patterns of healthy controls
from PD (Wahid et al., 2015; Papavasileiou et al., 2017; Suppa
et al., 2017), HD (Kegelmeyer et al., 2017; Purcell et al.,
2019), Hemiplegia (Lemoyne and Mastroianni, 2020, 2021), and
stroke (Mannini et al., 2016; Papavasileiou et al., 2017). Gait
parameters are a practical input in monitoring and quantifying
therapeutic progress (Badaru et al., 2012). An in-depth study of
any individual’s gait can give information varying from kinetic
and kinematic aspects to different musculoskeletal functions (Li
et al., 2016a). Hence, gait analysis finds application in clinical
diagnosis, rehabilitation, sports, and biometric security. This
article presents a review of the latest advances in wearable
sensors and techniques for ambulatory gait analysis, focusing
on clinical aspects of neurodegenerative gait disorders. The role
of different sensors in studying various facets of clinical gait
analysis, including event detection, spatiotemporal parameter
measurement, joint kinematics analysis, gait investigation, and
postural balance analysis, have been methodically reported.
A total of 48 original research articles published from 2005 to
2021 have been thoroughly discussed, along with several other
technical and review papers. In addition, four commercially
available products and their application have also been
outlined. Section 2 presents an overview of the most prevalent
neurodegenerative gait disorders and their neuromuscular
motor implications. Section “Gait Analysis: Terminologies and
Techniques” gives an overview of various practiced modalities
of a conventional clinical gait analysis over the years and
how the advancement of wearable technology has led to the

Frontiers in Neuroscience | www.frontiersin.org 2 April 2022 | Volume 16 | Article 859298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-859298 April 9, 2022 Time: 15:10 # 3

Das et al. Neurodegenerative Gait Analysis

shift from stationary ambient sensor-based measurement setups
to body-mounted techniques. Section “Wearable Sensors for
Gait Parameter Estimation” offers a detailed review of the
sensing techniques for general and neurodegenerative gait
disorders. This section predominately highlights the role and
application of inertial sensors in almost all spectrums of gait
analysis. Other methods such as force sensor-based insole and
electromyography are also discussed in detail. Apart from
these conventional methods, different miscellaneous sensors
that have been attempted or show promising performances
are also highlighted. In addition, the review also discusses
some commercially available measurement systems. Section
“Advances in Therapeutic Intervention” introduces the recent
progress toward a non-pharmacological intervention to mitigate
the challenges of neurodegenerative motor and functional
impairments. Section “Discussion and Future Direction” includes
a discussion and the authors’ comments about the reported
techniques and the future trends. Each unit is presented with
a short concluding remark by authors emphasizing relevant
context. The review concludes with a summary of the article.

NEURODEGENERATIVE GAIT
DISORDERS

Neurodegenerative diseases are a heterogeneous group of
progressive disorders associated with degeneration of the central
or peripheral nervous system. They alter the nervous system’s
structural, biochemical, electrical, and functional activities. This
results in a loss of coordination of the neuromuscular system,
causing gait and balance disorders (Cicirelli et al., 2021).

Alzheimer’s Disease
Alzheimer’s disease is the most prevalent neurodegenerative
disorder that affects the patient’s memory and comprehension
early and eventually leads to neuromotor impairments. Although
the exact pathology behind AD isn’t ascertained, studies
have reported mitochondrial dysfunction (Correia et al., 2012;
Carvalho et al., 2015; Rahman and Rhim, 2017) and alteration
of axonal transport (AT) (Wang Z. X. et al., 2015) as contributing
agents for neurodegenerative diseases like AD. In the late stages,
the most common motor impairments include bradykinesia
(slow movement), extrapyramidal rigidity, and gait disorders.
Such patients exhibit reduced gait speed and step length,
decreased gait frequency (cadence) and increased variability
(Pieruccini-Faria et al., 2021). A recent study (Tian et al.,
2021) has shown that older persons with slow gait speed
and less fragmented activity are at higher risk of developing
AD, thereby presenting gait as a potential early indicator for
predicting the disease.

Parkinson’s Disease
Parkinson’s disease is the second most common
neurodegenerative disease, resulting from neuronal cell
loss in the mid-brain substantia nigra pars compacta
region and dopamine (DA) depletion in the striatum (ST)
(Bastide et al., 2015) with multiple neurotransmitters deficits

(Marinus et al., 2018). In addition, AD associated pathology
like mitochondrial dysfunction is also commonly present
(Carvalho et al., 2015; Rahman and Rhim, 2017). Accumulation
of misfolded α-synuclein, often related to different neurotoxin
pathways, is another distinct hallmark of PD (Chen et al.,
2019) and can cause neuroinflammation, oxidative stress, and
induced endoplasmic reticulum (ER) stress in such patients.
This neuro-disorder affects up to 10 million people worldwide
(Emamzadeh and Surguchov, 2018). Oxidative stress caused
due to imbalance of free radicals’ homeostasis in the body
causes cellular and tissue damage. PD involves the primary type
of hypokinetic movement disorder resulting in bradykinesia,
hypertonia (rigidity), tremor, and flexed posture, marked by
reduced gait speed and step length, festination (Vallabhajosula
et al., 2013). A typical condition during severe stages of the
disease is the freezing of gait (FOG). It is defined as a brief,
episodic absence or marked reduction of forwarding progression
of the feet while walking, turning, or initiating gait, despite the
intention to walk. FOG episodes are one of the primary reasons
for losing balance and increased risk of falls in such patients.

Huntington’s Disease
The Huntingtin (HTT) gene mutation, due to expansion of CAG
triplet (cytosine, adenine, and guanine), leads to polyglutamine
tract elongation is often linked to HD (Xu et al., 2017). In
addition, the formation of Reactive Oxygen Species (ROS) due
to oxidative stress is also considered a significant trigger for
it (Manoharan et al., 2016). Increased ROS generation is also
related to the accumulation of proteins such as α-synuclein in PD
(Follett et al., 2016). HD is clinically characterized by involuntary
movements such as chorea, psychiatric signs, and progressive
dementia. Such patients struggle with uncontrolled movements
and loss of cognitive abilities. With disease progression, poorly
coordinated body movements and unsteady gait become more
visible. Their gait is characterized by slow speed, reduced stride
length, variable stepping pattern, and increased stance-to-swing
duration ratio. All these factors, in turn, increase the risk of falls
in HD patients, thereby further limiting their functional capacity
(Georgiou et al., 2020).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis is pathogenically characterized by
enormous oxidative stress and mitochondrial dysfunction. It
affects the motor neurons of the cerebral cortex, brain stem,
and spinal cord. This disruption of communication between the
cerebrum and muscle results in muscle atrophy improper limb
functioning, resulting in altered gait patterns. Gait dysfunction
in ALS is distinguished by increased inter-stride fluctuation,
small duration on a single limb, small step length, and decreased
cadence (Garcia-Gancedo et al., 2019).

Multiple Sclerosis
Multiple sclerosis is a demyelinating, chronic, and progressive
disease-causing episodic deterioration of neuromuscular
functions caused due to autoimmune-mediated loss of myelin
and axonal damage (Jones et al., 2017). Clinical symptoms of
MS include sensory, cognitive, and motor impairment. With
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FIGURE 1 | Gait phases and used terminologies to partition the phases. For the representational purpose, the gait segmentation of the right leg (ipsilateral) is
described w.r.t. the left (contralateral) leg. [Image source: Li et al. (2016a), the open-access article under the CC BY-NC-ND license].

progression over time, the gait shows distinguishable signs of
decreased gait speed, step length, cadence, and joint range of
motion (ROM) with increased inter-stride gait variability. Such
patients also exhibit poor postural control (Kalron et al., 2016).

To summarize, the literature shows that gait and functional
impairments are prevalent in subjects with neurodegenerative
disorders. So, gait and balance analysis as a clinical tool is helpful
for better diagnosing and managing such impairments. In many
cases, locomotor impairments are the earliest manifestation of
the disease, such as PD. Also, different neurological disorders
often appear with overlapping clinical symptoms, such as
dementia. However, assessment of movement and balance-
related parameters can help diagnose the exact underlying cause.
Thus, gait and postural analysis are increasingly used in clinical
setups for diagnosis, progression monitoring, and providing
targeted therapy.

GAIT ANALYSIS: TERMINOLOGIES AND
TECHNIQUES

Gait analysis refers to the systematic measurement, description,
and assessment of parameters significant to human motion.
These parameters can vary from ground reaction force (GRF)
and joint torque to joint kinematics like range of motion
(ROM) and segment acceleration. A systematic gait analysis
includes structuring information, observation of a strict pre-
assigned protocol, and a method for data interpretation. General
gait analysis is performed from the perspectives of extracting
kinematic, kinetic, or Spatiotemporal gait parameters. During
the clinical gait study, two effective practices were followed:
semi-subjective analysis and objective analysis. Specialists and
experts usually perform semi-subjective measurements based
on a predefined set of observations and questionnaires. The

subjects must perform certain activities in a pre-determined
walking circuit with clear markings, and the clinician records
the parameters of interest with simple tools like a stopwatch.
Although such methods are practical in settings with no access
to sophisticated gait measurement systems, such measurements
are primarily inaccurate, require expertise, and are highly
subjective processes. It is almost impossible to observe/record
multiple contrasting parameters simultaneously. On the other
hand, the objective-based analysis uses sophisticated devices
and equipment to measure a wide range of parameters
simultaneously. These devices can be based on image processing
techniques, floor-mounted measurement systems, or body-
mounted instruments.

Objective assessments based on quantitative gait
measurements are desired for practical gait analysis and
rehabilitation planning. However, 3D gait analysis, which is
conventionally conducted using motion capture cameras and
force platforms, requires technical expertise and is inaccessible
to most clinics and hospitals in rural settings due to high cost.
Gait data outputs can include many variables, which may be
overwhelming for clinicians to interpret, adding to the challenges
of using gait analysis in clinical settings. Therefore, a low-cost,
portable, user-friendly instrumented method that quantifies
gait has broad clinical application for monitoring individuals’
gait parameters and physical activities in outpatient clinics,
community, and home settings. An objective, automated process
of quantifying and assessing gait pathology can allow clinicians
to invest their resources and time in prescribing effective and
more targeted treatments. User-friendly systems for measuring
and tracking gait can also aid in assessing the quality of life.

The earliest modern studies on human walking kinematic
were performed by Marey and Muybridge using still cameras
in the 1870s (Whittle, 1996). With the use of television
cameras during the seventies, the process became quicker and
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more convenient since these cameras were linked directly
into computers (Whittle, 1982). Several research groups
developed a kinematic gait measurement system using this
approach, and several of these early systems evolved into
commercial equipment.

Gait kinetic measurement-based studies have mainly dealt
with the forces generating during the ground-foot interactions,
primarily measured using force platforms. The force platforms
have evolved from purely mechanical one-dimensional design
(Amar, 1920) to more accurate 3D instruments with digital
outputs. Although, until recently, most research on gait kinetic
analysis was focused on ground reaction forces, modern gait
analysis systems also provide a measure of joint moments
and joint powers.

Based on the requirement and technique of measurement,
a clinical gait analysis is targeted either at gait event detection
and segmentation, spatiotemporal parameter estimation, or
gait classification. A wide range of sensors and systems are
developed and used for capturing these signals. These devices
and techniques used for gait investigation can be classified based
on the placement and positioning of the measurement system:
Wearable sensors (WS) and Non-wearable sensors (NWS). A WS
system is mandatorily placed on different body segments like
the foot, shank, pelvis, etc. For example, data from an inertial
sensor (accelerometer and gyroscope) set around the ankle
joint can be used for distinguishing a healthy gait from a
person with Friedrich’s ataxia (Lemoyne et al., 2016). State-of-
the-art NWS systems, colloquially also referred to as ambient
sensors, consist of two distinct technological approaches: (a)
optical motion capture systems that track targeted joints and
orientations while walking, either in 2D or 3D and (b) floor
sensor-based plantar profile measurement systems. Again, the
optical motion capture systems have two families: reflective
markers (Roy et al., 2020; Wang et al., 2021) and markerless
camera systems (Zago et al., 2020; Hazra et al., 2021). The
marker-based systems compute the position of joints and the
orientation body segments through the 3D localization of the
body markers using multi-camera stereophotogrammetric video
systems. A markerless camera system uses the human body
model and image features to determine the shape, pose, and
joint orientations. The floor sensor-based measurement method
relies on pressure sensing technology. Force plates, consisting
of load cells, measure the 3D GRF and moments involved
during human locomotion. On the other hand, a pressure
platform records the plantar pressure profile variation during
gait, revealing critical information regarding foot loading pattern
and CoP progression. Such a platform consists of arrays of
capacitive/resistive sensitive cells that measure pressure acting
on each cell due to foot-ground interaction. Both force plate
and pressure platform are usually floor mounted, and thus
several gait steps can be recorded from them depending on
the size of the same. However, a class of treadmill-mounted
force/pressure measurement systems allows a larger volume of
gait data recording (Wiik, 2016). All NWS systems are operated
in controlled facilities, and subjects must follow a predefined
protocol. Some measurement methods involve a combination
(hybridization) and are essentially a laboratory confined practice.

However, the current gold standards for gait analysis are NWS-
based measurement tools and consist of either a force plate,
an instrumented walkway, or a motion capture system. These
measurement methods provide excellent quality data with high
accuracy and repeatability. However, high-cost setups provide
limited capture volume and a specialized workforce to operate
the instruments. Work on compact and ambulatory gait sensors
(WS) has picked up the pace at different research groups to
overcome these limitations. Such a measurement system provides
an alternative to conventional laboratory-based measurements at
the cost of reduced accuracy and reliability. Table 1 highlights
some of the characteristics associated with both techniques.

The distinct advantages possessed by WS in terms of proving
almost natural agility over long-term measurements have made
them a popular choice for use in ambulatory gait analysis.
Such a method allows researchers and clinicians to record
physiological features constantly. Therefore, the demand for such
technology, which measures gait characteristics either for activity
recognition or gait event classification, has risen significantly in
the last two decades.

Literature shows that gait analysis is a multidimensional
approach depending on the parameter of interest. The gait and
balance features can vary from kinematic kinetic to physiological
aspects, presenting a vast gait feature set. However, a current
technique to extract these features is broadly grouped into
two classes, based on the position of the measurement device.
The ambient or non-wearable sensors, although being gold
standards for gait measurements, possesses specific challenges,
thereby limiting their clinical translation. On the other hand,
wearable devices show promising performance for future clinical
gait analysis. Therefore, this review presents an overview of

TABLE 1 | Comparison of NWS and WS measurement systems.

NWS • Accurate, precise, and repeatable measurements

• Free from environmental interference

• Multidimensional feature sets can be extracted

• No restriction of power consumption

• The number of gait cycles that can be recorded depends on the
dimension of equipment and room

• High cost and bulky equipment confined to laboratory space

• Requires comparatively higher subject preparation time and
stringent protocols; often leads to biased walk from the subject

• Not suitable for outdoor applications and continuous data
monitoring

WS • The portable, low-cost, miniaturized system that can be easily
integrated into electronic systems

• No need for a controlled environment; the application can be
extended to indoor as well as real-life scenarios

• It can be used for feedback in real-time control applications like
orthosis/prosthesis control

• The range of extracted gait features generally is low. However, with
intelligent and powerful computing techniques, new features can be
added

• Requires complex data processing tools to tackle noise and
external interferences

• Sensor placement location and attachment is a significant issue

• Restriction of power consumption
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advancements in wearable technologies aiming to mitigate the
challenges associated with ambient sensors.

WEARABLE SENSORS FOR GAIT
PARAMETER ESTIMATION

Wearable gait analysis tools generally comprise different sensing
principles, mainly inertial, force, flexible goniometers, and
myoelectric. Few additional sensors, such as electromagnetic
tracking systems, sensing fabric, ultrasonic sensors, etc., have
also been reported. A single type or combined multiple sensor
system (multimodal) may be used based on the target application.
However, the wearable gait analysis-based technique is still in
its infancy. There is no consensus regarding a set of derived
gait characteristics to be assessed and their clinical relevance
(Beauchet et al., 2017). The basic principles, features, and
overview of reported works around these sensors and systems are
described in this section.

Inertial Sensors
Inertial sensors (IS) or Inertial Measurement Units (IMU),
comprising accelerometers and gyroscopes and sometimes
magnetometers, measure an object’s motion dynamics, viz.,
orientation, velocity, acceleration, and gravitational forces. An
accelerometer measures acceleration along its sensitive axis and
effectively measures the gait motion. The acceleration/velocity
of the feet or legs in the gait has been determined to perform
the gait analysis (Zeng and Zhao, 2011; Hsu et al., 2014).
A gyroscope measures the angular rate and can be incorporated
to measure the motion and body segment orientation (Catalfamo
et al., 2010; Ayrulu-Erdem and Barshan, 2011). The commercial
availability of MEMS-based IS, small form factor, and accessible
electronic integration is the critical factor that truly opened up
new perspectives in human movement analysis, which justifies
the significant literature-related exploitation during the last two
decades (Tao et al., 2012; Muro-De-La-Herran et al., 2014; Caldas
et al., 2017; Bowman et al., 2021).

Morris (1973) marked the beginning of wearable sensor-based
ambulatory gait analysis using accelerometers. The author used
six uniaxial accelerometers mounted on a rigid bar for solving
the equation governing the motion of a rotating rigid body and
determining its angular acceleration. IS-based gait analysis since
then has been used for a wide range of measurements: from event
detection, kinematic, and kinetic parameter estimation to gait
classification. Inertial sensors, placed at different limb segments
such as foot, shank, hip, etc., produce a repeatable pattern of
signals that signify specific gait events. Many algorithms and
methods like thresholding (Ledoux, 2018), peak detection (Lee
and Park, 2011; Maqbool et al., 2016; O’brien et al., 2019), zero-
crossing (Hundza et al., 2013; Formento et al., 2014; Gouwanda
et al., 2016; Maqbool et al., 2016; O’brien et al., 2019), angular
rate reversal (Hundza et al., 2013; Schülein et al., 2017), Linear
Discriminant Analysis (LDA) (Jiang et al., 2018) have been
proposed and developed to identify gait events like HS, TO, and
flat foot (FF) on real-time as well as offline mode. For example,
the TO and HS detection work using a single gyroscope placed

at shank by Hundza et al. (2013) uses rate reversals and zero
crossings of the angular rate pattern. Figure 2 shows typical
acceleration and angular rate trajectories of foot-mounted IMUs
(Schülein et al., 2017). The algorithm satisfactorily identifies
events with 100% accuracy in the case of healthy controls and
PD patients. However, the method needs manual adjustment of
parameters to process data with varied angular rates to reject
any false peaks.

Rampp et al. (2015) presented a method for detecting gait
events and subsequently computing clinically relevant temporal
and spatial parameters like stride length, stride time, swing
duration, and stance time using an accelerometer and gyroscope.
The stride length was calculated by double integrating the
acceleration data obtained from an accelerometer. A work on TO
detection for level ground and transition on-ramps was reported
by Joshi et al. (2016) using a tri-axial accelerometer placed at the
dorsum of the foot. The method uses the wavelet decomposition
technique of foot acceleration data to derive a unique feature in
a particular frequency band, yielding estimated TO occurrence.
For repeatable reference of TO, foot switches were placed below
the foot. The work also reported the detection of a transition from
a level ground walk to ramps. However, as noted, the algorithm
is limited to the identification of TO alone and has not been
validated for detecting HS. Das et al. (2019) proposed a method
based on the variation of foot inclination angle, measured using
an inertial sensor-based wireless foot sensor module (WFSM)
placed at the dorsum of the foot during walking to identify HS
TO. The detection algorithm uses a peak detection and heuristic
approach to mark these events.

The choice of the detection algorithm is based on the position
of the sensor attachment as the signal patterns are strictly a
function of the sensor placement on limb segments. The methods
discussed above have the advantage of being easy to implement
and require less computation power and tools. However, inherent
noise in raw data, like multiple peaks and thresholds from inertial
sensors, yields poor detection when gait is altered (Cuesta-Vargas
et al., 2010; Chalmers et al., 2014). Techniques such as Fuzzy
Logic (Alaqtash et al., 2011), Machine Learning (Mannini et al.,
2016; Hannink et al., 2017), Neural Networks (Sun et al., 2012;
Dehzangi et al., 2017) have also been used to overcome this.
Such practices show improved accuracy and can handle complex
signals. However, they require high computation time and power
and thus are not always apt for real-time applications.

Although the earliest application of inertial sensors, especially
accelerometers, was for gait event detection, most recent reports
targeted kinematic gait features (Seel et al., 2014; Picerno, 2017;
Dorschky et al., 2019). The first study that formalized estimating
joint kinematics using inertial sensors (accelerometers) dates
to 1990 (Willemsen et al., 1990). Accelerometers have been
widely used for static tilt calculation, while a gyroscope has
frequently been used for estimating rotational angles. A fusion
of both these sensor inputs can yield information regarding
joint angles and positions. Figure 3 shows the typical functional
block for inertial-based estimation of parameters such as linear
acceleration, position, tilt angle, etc.

Measurement of position and range of motion (ROM) of lower
limb joints, viz., knee (Willemsen et al., 1990; Tong and Granat,
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FIGURE 2 | Foot mounted inertial gait pattern in the sagittal plane. (Top) the plot shows a variation of foot angle (w.r.t. ground) at TO, HS, and toes clearance during
the swing phase. The negative peak of the acceleration signal determines the HS (middle plot) whereas (lower plot) TO is extracted using the zero crossing of the
angular velocity signal [Image source: Schülein et al. (2017), under Creative Commons Attribution 4.0 International License].

1999; Dejnabadi et al., 2005; Cooper et al., 2009; Favre et al., 2009;
Takeda et al., 2009; Djurić-Jovičić et al., 2011; Seel et al., 2014),
hip (Cutti et al., 2010; Horenstein et al., 2019; Teufl et al., 2019b),
ankle (Kwakkel et al., 2007; O’donovan et al., 2007; Chang et al.,
2016), and entire lower limbs (Findlow et al., 2008; Picerno et al.,
2008; Sun et al., 2016), is one of the leading reported methods
toward gait kinematics. Such methods rely on either calculation
of individual segment kinematics (mainly in the hip and ankle) or
the relative orientation between the proximal and distal sensor-
embedded frames (in the case of knee joints).

Dejnabadi et al. (2005) presented a novel method for
measuring the absolute angle of knee rotation by estimating the
joint center of rotation acceleration. Two accelerometers were
placed at the shank and thigh region, and their projections

(virtual sensors) were set to adjacent segments at the center of
rotation. As a result, the absolute value of knee joint rotation
could be measured rather than the relative angle (commonly
measured using information about adjacent limb inclination).
The method thus eliminates the need for integration or cyclical
nature to compute the angle, thereby minimizing integration
or drift errors. However, subject-specific modeling with prior
anatomical information is required.

A recent application of IMUs in movement analysis is toward
gait and postural balance study, especially for patients with
balance disorders like AD, PD, mild cognitive impairment (MCI),
etc. Hsu et al. (2014) proposed an automated algorithm with
input from a hip-mounted accelerometer for studying gait
balance in AD and healthy controls (HC). The acceleration data
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FIGURE 3 | Schematic for IMU-based gait kinematics measurement.

of the waist was used to compute the signal vector magnitude
and subsequently the 3-axis directional angle. The projection
displacement of each step, estimated using the inclination angle,
is translated in postural sway in the anterior-posterior and
medial-lateral directions. The method was validated on a cohort
of 21 AD and 50 HC under eight standard balance test protocols
like Eyes open/close, single foot tandem stand, etc.

Wang Z. X. et al. (2015) presented an automated algorithm for
performing the time-up and go test (TUGT) using inputs from 3
IMUs, one each placed at hip and both feet. A unique motion
signature pattern, based on a pre-set threshold, recorded from
the coronal plane is segregated to identify the start point and
endpoint of the stand-up period and sit-down. The time required
by an individual to perform, sit, stand, and finally complete
the TUGT is calculated based on these events. A study with
46 subjects (21 AD + 25 HC) was performed to validate the
proposed methodology.

One of the most detailed works on balance analysis using
IS-based measurement is reported by O’brien et al. (2019)
using a single IS placed at the hip. Gait events, namely HS
and TO, were detected by finding the local minima and
local maxima of the continuous wavelet transformed vertical
acceleration component. The angular velocity along the vertical
axis filtered through a fourth-order low pass Butterworth filter
identifies the left and right foot. The lower limbs were modeled
using an inverse pendulum model (IPM) for spatial feature
estimation. The change in the height of CoM (obtained by double
integration of vertical component of acceleration) was scaled
in terms of step length. The frequency-domain features were
extracted using the Bergs Balance Scale (BBS) for the static
postural balance study. In contrast, the time-domain features
were evaluated from acceleration and its differential and integral
outputs. Table 2 tabulates significant inertial sensor-based gait
analysis targeted at event detection, parameter estimation, and
balance analysis.

To recapitulate, inertial sensors, including accelerometers,
gyroscopes, and magnetometers owing to distinct advantages,

presents probably the most promising alternative to laboratory-
based gait analysis. The measurement from IMU-based methods
has been reported for all the domains of gait measurement, i.e.,
from the very initial step of gait clinical gait assessment (event
detection) to its use for automated quantification of disease
severity (PD and balance grading). The integration of IMU sensor
chips in modern smart devices and their widespread penetration
all across society [smartphones (Lemoyne et al., 2010a,b; Mcguire,
2012; Kashihara et al., 2013; Susi et al., 2013; Lemoyne and
Mastroianni, 2015, 2018; Sprager and Juric, 2015), wearable
bands, etc.] are a positive aspect to look forward to the translation
of such technologies for clinical benefit. However, there are still
specific challenges to the domain that need to maximize the
benefit and make IMU-based devices a conventional gait analysis
tool. One of the definite challenges toward fulfilling it is the
non-uniformity of technology and use. There is no consensus
and guidelines for inertial sensor-based clinical gait evaluation,
making it a technology-specific and subjective method. Subject
preparation for trials also depends on the specific nature of the
targeted parameter, which again is a significant challenge for
deployment in clinical settings. Also, from a technology point of
use, most of the reported work toward neuro-disorder diagnosis
relies on certain aspects and characteristics of the disease. This
limits the general use for evaluating other disorders.

Instrumented Foot Insoles for Gait
Kinematics
Floor mounted plantar pressure measurement systems/force
plates provide accurate and repeatable measurements. Such
systems are widely used for clinical gait assessment and
studying gait biomechanics worldwide. However, such stationary
platforms have certain demerits, primarily due to the high cost
and number of steps that could be recorded. To overcome these
limitations, various research groups worked toward developing
instrumented force insole that can measure specific plantar
kinetic parameters. However, the initially reported methods
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TABLE 2 | Inertial sensor-based gait and balance analysis: from the prospect of event detection, spatiotemporal parameter estimation, joint ROM, and balance analysis.

Reference Parameter(s) Technique(s) used Subject(s) Calibration/validation
technique

Remarks

Event detection/temporal parameter measurement

(Jasiewicz et al.,
2006)

HS and TO One gyroscope, two linear
accelerometers, peak
detection, zero crossing,
heuristic

26 HC + 14 SCI +
Charcot-Marie-
Tooth
(CMT)

Foot switches TO latency 50 ms, 100 ms for HS
detection; obtrusive due to semi-wired
connectivity

(Raveendranathan
et al., 2011)

HS and HO Single 3-axis accelerometer at
alternate/multiple positions;
peak detection + HMM

1 HC None Adaptive to Sensor placement

(Yang et al., 2012) HS and asymmetry
feature

Single accelerometer placed at
the lower back, peak detection

15 HC N/A No specific accelerometer; The
developed iGAIT tool requires manual
intervention to set input pre-sets

(Mariani et al.,
2013)

HS, TO, HO, and
TS

Foot mounted 3D
accelerometer+ gyroscope,
pitch velocity, negative peak,
zero crossing

10 HC, 12 AO, 11
TAR, and 9 AA

Pedar-X Pressure Insole −33 ± 14 for angular velocity, 81 ± 15
for acceleration

(Hundza et al.,
2013)

Temporal, stride
length

4 IMU (gyroscope), Y-angular
rate reversal

6 (PD) + 7 (HC) GAITRite, OMC 100% event detection, SD of 6.6 ms
and 11.8 ms in HC and PD

(Joshi et al., 2016) TO Three-axis accelerometer,
wavelet decomposition

6 HC Foot switch The transition between level ground
and ramps

(Das et al., 2019) HS and TO Six-axis IMU, Foot angle
variation, peak detection

34 HC FSR Improved detection latency of 16 ms

Joint kinematics and ROM

(Dejnabadi et al.,
2005)

Knee angle One IMU (Two accelerometer +
one gyro) placed at shank and
thigh; virtual projection of
physical sensor into rotation
joint

8 HC OMC Absolute angle calculation with no drift
error; subject-specific modeling
requires prior anatomical information

(Dorschky et al.,
2019)

Hip, knee, and
ankle angle

07 six-axis IMU,
musculoskeletal model,
trajectory optimization

10 HC (M) OMC P ≥ 0.93

(Gholami et al.,
2020)

Hip, knee, and
ankle
flexion/extension

01 accelerometer placed at
foot + CNN

10 HC (M) OMC RMSE <3.4% for intra-subject and
<6.5% for inter subject

Spatiotemporal parameters

(Salarian et al.,
2012)

HS, TO, SL, and
gait velocity

Two gyroscopes placed at the
shank, a Double pendulum
model with two gyroscopes +
Fourier series, and most minor
square optimization

10 PD, 18 HC, 36
hip-replacement,
and seven orthosis

OMC Validated on a sizeable patient
population with multiple disorders

(Takeda et al.,
2014)

Gait phases, SL,
and LStep

One IS on each ankle, shank,
and thigh; one on the pelvis.
Peak detection for events, drift
reduction protocol for spatial
parameters

5 HC, 10 m
walk-test

OMC Linear drift modeling does not hold for
extended walking

(Rampp et al.,
2015)

SL, GCT, Tswing,
and Tstance

Inertial sensors, Template
Search for events

101 NW, 84 WW GAITRite R© 0.93 and 0.95 in NW and 0.80 and 0.95
in WW for SL and GCT, respectively

(Wang and Ji,
2015)

Tstance, Tswing, and
SL

Foot mounted IS, peak-peak
detection+ adaptive
thresholding for event
detection; CF+ ZUPT+ double
integration for SL

15 HC Non-standard 1.64 ± 0.839 for SL

(Liu et al., 2016) SL 3D acceleration and angular
rate, Dual-ZUPT

14 steps Videography

(Ferrari et al., 2015) GCT, SL, and stride
velocity

Foot mounted IMU,
Medial-lateral foot angle peak
detection for events; KF+ZUPT
for stride length

12 HC, 16 PD GAITRite R© Real-time computation on a
smartphone, RMSE SL = 4%

(Hao et al., 2019) SL 3D Euler angle, acceleration,
discrete KF, smoother

9 HC (male adults) OMC −0.24 ± 1.1 cm for SL

(Continued)
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TABLE 2 | (Continued)

Reference Parameter(s) Technique(s) used Subject(s) Calibration/validation
technique

Remarks

(O’brien et al.,
2019)

Tstance, TSw, SL,
step velocity, and
step count

One IMU at hip; Local
minima/maxima + Butterworth
filter for events; IPM + Double
integration for SL

51 HC GAITRite R© Need for additional optimization
constant that is derived from GAITRite R©

for SL estimation

(Das and Kumar,
2021)

SL Six-axis IMU at foot dorsum;
foot angle for gravity
compensation and double
integration of foot acceleration

10 HC Zebris walkway,
outdoor marking

Acceleration integrated only for swing
duration; compensated with foot length

Spatiotemporal + Joint kinematics

(Teufl et al., 2019a) 12 STP including
Lstp, step width, 6
DoF kinematics

7 Xsens IS 24 HC (12 M + 12
F)

OMC Detection means error ∼1.6%, Step
width, and swing width RMSE > 30%

(Yeo and Park,
2020)

Stt, SL, cadence,
step length; knee
and hip ROM

Five triaxial accelerometers,
gyroscope, and magnetometer
(LEGSys+ wearable device)
placed at shank, thigh, and
pelvis; self-selected walking at
the 7-m walkway

30 HC OMC The significant difference in hip ROM;
measurement within 95% limit of
agreement

Balance

(Hsu et al., 2014) CoM, postural
sway rate

Three-axis accelerometer in
waist

21 PD + 50 HC N/A Validated on a large group; Only static
balance

(Wang W.-H. et al.,
2015)

TUGT Three IMUs (1 at hip + 1 at
each foot); Signature matching
of lateral angular rate +
thresholding

21 AD + 25 HC N/A Test specific

(O’brien et al.,
2019)

10 MWT, BBS, and
TUGT

One IMU at hip; FFT+
integration for static balance;
Daubechies wavelet
approximation for dynamic
balance

51 HC GAITRite R© 178 features extracted for three
balance assessment tests

(Noamani et al.,
2020)

Two minutes
standing test,
inter-segmental
moments, and CoP

Accelerometer + gyroscope
placed at foot, leg, pelvis, and
head-arms-trunk;
Musculoskeletal inverse
dynamics model

10 HC OMC+ force plates Accelerometers alone provide reliable
data for standing balance analysis

(Dugan et al., 2021) Two minutes
barefoot standing in
EO, EC

17 IMU placed at whole body;
jerk index and complexity index
from postural sway from pelvis
accelerometer

38 concussed
patients

N/A Single accelerometer yields information
about postural sway

HS, heel strike, TO, toe off, HC, healthy control, SCI, spinal cord injury, CMT, Charcot-Marie-Tooth, HMM, Hidden Markov Model, HO, heel off, TS, toe strike, AO,
ankle orthosis, TAR, total ankle replacement, AA, ankle arthrodesis, OMC, optical motion camera, CNN, convolution neural network, CF, complementary filter, ZUPT, zero
update, KF, Kalman Filter, GCT, Gait cycle time, IPM, inverted pendulum model, Stt, stance time, TSw, swing time, Lstp, step length, CoM, center of Mass, TUGT, time-up
and go test, 10 MWT, 10 meter walk test, BBS, Berg Balance Scale, AD, Alzheimer’s disease, FFT, Fast Fourier transform.

(Hausdorff et al., 1995; Fraser et al., 2007; Yong et al., 2011) were
based on wired communication that often disturbs the natural
walk. However, with the advancement of material technology,
components of standard plantar force and pressure measurement
devices have become readily available in compact and robust
forms. As a result, many novel wirelesses-based plantar gait
measurement systems have been developed to study gait in
naturalistic scenarios over a longer duration (Wahab et al., 2008;
Yang et al., 2009; Liu et al., 2010; Crea et al., 2012, 2014; De Rossi
et al., 2012; Donati et al., 2013; Howell et al., 2013; Mn, 2014;
Qin et al., 2015; Bark et al., 2017; Arafsha et al., 2018; Zhang
et al., 2019; Sorrentino et al., 2020; Tahir et al., 2020). While most
studies reported the application of commercially available force
sensors for their development (Howell, 2012; Howell et al., 2013;

Mn, 2014; Qin et al., 2015; Bark et al., 2017; Arafsha et al., 2018;
Tahir et al., 2020), few groups designed and fabricated the sensors
as well (Wahab et al., 2008; Yang et al., 2009; Zhang et al., 2019;
Sorrentino et al., 2020).

One of the detailed and earliest works toward a whole plantar
pressure profile measurement system was reported by Howell
(2012) and Howell et al. (2013). They reported an instrumented
insole with 32 FSRs to cover the entire footprint area with more
concentration in pressure hotspots. Each sensor was calibrated
for force measurement using a load cell, and the contribution
of each calibrated sensor was taken into consideration for
measuring vGRF and ankle moment. The loading patterns were
studied at each sensor during walking to sort an adequate number
of sensors and their best locations. Subsequently, a second

Frontiers in Neuroscience | www.frontiersin.org 10 April 2022 | Volume 16 | Article 859298

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-859298 April 9, 2022 Time: 15:10 # 11

Das et al. Neurodegenerative Gait Analysis

prototype was developed with 12 FSRs to measure vGRF, ankle,
and knee moments. Using the developed insole and data recorded
from the motion analysis laboratory, a database was generated
and validated on HC hemiplegic patients using regular ankle-foot
orthosis on stroke patients. A linear regression model with inputs
from the database was used to develop each subject’s gait models.
Testing data for each subject were used to predict the GRF and
ankle and knee motion moments with appreciable correlations.
Several FSR-based force insoles for gait analysis and related
studies have been reported with the interplay of the number and
location of sensors, parameters estimated from it, and application
area (Liu et al., 2010; Qin et al., 2015; Tahir et al., 2020).

A novel and well-reported system for real-time foot pressure
measurement based on silicon cell-based pressure-sensitive pad
is reported by the research group of De Rossi et al. (2011, 2012),
Crea et al. (2012, 2014), and Donati et al. (2013). The device,
consisting of 64 pressure-sensitive elements, is embedded in an
insole. The integrated signal conditioning electronic board with
wireless communication and power source (battery) is placed
inside a casing along the shoe’s lateral side. The authors calculated
the vGRF, CoP, and a set of temporal parameters based on the
amplitude and activation profile of the sensitive cell and validated
against an AMTI force plate. The method thus reported has few
distinct advantages in providing high spatial resolution plantar
force data, insensitivity to temperature variation, and the need
for only calibration. Pressure insoles currently are extensively
used for studying gait and balance disorders associated with
neurodegenerative motor symptoms, such as detection of FOG
episodes in PD (Marcante et al., 2021; Pardoel et al., 2021; Shalin
et al., 2021).

Electromyography
The muscles in a human compose about half of the total body
weight. These are composed of bundles of specialized cells
capable of contraction and relaxation in response to the stimuli
received from the cerebral cortex. The contraction and expansion
of skeletal muscles provide the force required to perform various
actions in electrical signals. These signals range from a few hertz
to 400 Hz and voltages ranging from approximately 10 µV
to a few millivolts. The underlying chemical process produces
a shortening of the contractile elements of the muscle cell.
Electromyography (EMG) is a technique to record and measure
muscle activities. Based on the placement of EMG electrodes on
the human body, it can be either invasive or non-invasive (also
known as surface-EMG).

Surface-EMG (sEMG), in particular, has been exploited for
studying muscle activity during dynamic activities such as
walking, particularly in gait events and phase recognition for
healthy as well as neuro-impaired gait (Ryu and Kim, 2017;
Ziegier et al., 2018; Morbidoni et al., 2019; Nazmi et al., 2019; Di
Nardo et al., 2020; Keloth et al., 2021; Zahra, 2021; Rezaee et al.,
2022). Nazmi et al. (2019) proposed a classification approach for
the segregation of stance and swing phase (HS and TO detection)
from feeding EMG signal to an artificial neural network. EMG
has also been used for intent, like sit to stand detection (Rasool
et al., 2012; Chorin et al., 2016; Li B. et al., 2016; Roldán Jiménez
et al., 2019; Bhardwaj et al., 2021) and quantitative localized

muscle fatigue estimation (Boudarham et al., 2014; Ropars et al.,
2016; Roldán Jiménez et al., 2019; Parent et al., 2019) during
gait. Although fatigue is considered a multidimensional concept
involving both physiological and psychological implications, the
former dimension of fatigue can be observed in both the central
and peripheral system domains (Zwarts et al., 2008) and is
a widely accepted tool for fatigue estimation (Al-Mulla et al.,
2011). Analysis of the EMG frequency spectrum (mean, median)
is the most widely explored technique for fatigue estimation,
and localized muscle fatigue often results in a downward shift
of the frequency content of the EMG signals (Naik, 2012).
Besides being an everyday activity humans perform in their daily
lives, a sit-to-stand task is also commonly used in clinics to
evaluate lower limb muscle function. Moreover, it is immensely
practiced for therapeutic rehabilitation exercises targeting muscle
strengthening, balance improvement, and gait therapy.

Chorin et al. (2016) analyzed EMG and force data from 40
subjects (10 elderly fallers, 30 non-fallers) and concluded that
the gastrocnemius lateralis muscle activity differs significantly
between fallers and non-faller group. Similarly, Li B. et al. (2016)
detected sit-to-stand transitions from the quadriceps EMG data
integrated with upper Trunk kinematic data. Roldán Jiménez
et al. (2019) evaluated the fatigue during the 30-second sit-to-
stand (30-STS) test on a young obese and sedentary woman to
ensure fatigue during the trial. The subject was otherwise free
from cognitive disorders, musculoskeletal, bone, or joint injury.
The muscle activity was measured at six locations of the dominant
side (GM, BF, VM, AR, ES, RF, SO, and TA) at a frequency of
1,000 Hz. Muscle fatigue estimation for neurological disorders
such as hemiplegia (Boudarham et al., 2013, 2014; Wang et al.,
2017; Mazzoli et al., 2018; Fujita et al., 2020, 2021), PD (Huang
et al., 2017; Palinkas et al., 2019; Cao et al., 2021), MS (Octavia
et al., 2015; Porcaro et al., 2019; Stańczyk et al., 2019) has been
reported. The approach for EMG-to-muscle force has also been
analyzed in Bogey et al. (2005). Furthermore, EMG signals have
been reported to be used to measure other gait characteristics
like joint kinematic plots. The joint angular motion recorded
simultaneously with EMG data is correlated.

Miscellaneous Sensors
In addition to the widely used sensing methods discussed above,
researchers have explored the possibility of the novel application
of alternate sensors/techniques for gait analysis. A few such
measurement techniques are discussed below.

Force Myography
Force myography measures the external muscle force/pressure
generated during human activity. When strapped around a limb
circumference using a bracelet/socket, force Sensors measure
the outward force developed due to the volumetric changes
resulting from the displacement of muscles, tendons, and the
skin (Castellini et al., 2014). Research groups have proposed
and demonstrated the application of different sensors like
piezoelectric (Li et al., 2016b; Ha et al., 2018), capacitive
(Truong et al., 2018), flexible fabric (Rasouli et al., 2015),
and optical sensors (Fujiwara and Suzuki, 2018). However, the
most commonly used sensor for FMG application is FSR, and
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FlexiForce Sensors, made out of Resistive polymer thick film
material (Xiao and Menon, 2019). These methods have been
widely used (almost 90% of work-related to FMG) to study and
control an upper limb, especially arm-related movements (Xiao
and Menon, 2019). Lukowicz et al. (2006) first presented the use
of FMG to segregate four types of walking. Signal patterns from
FSRs strapped at the thigh were used for classifying locomotion
patterns. Yungher et al. (2011) demonstrated the correlation of
FMG (surface muscle pressure) with surface muscle electrical
activity during gait. FMG signal patterns showed better stride-
to-stride consistency than sEMG signals.

Similarly, the study reported in Belyea et al. (2018) also
supported the correlation of FMG and sEMG signals, with FMG
signals being reported as a better indicator for understanding
the fatigue label. Although these studies show potential for
application toward gait analysis, the objectives/outcomes of these
reported works do not precisely meet the requirement of clinical
gait analysis with targeted parameter evaluation. Two recent
results (Godiyal et al., 2018; Jiang et al., 2018), using FMG, have
been reported for gait event/phase detection.

The work reported by Godiyal et al. (2018) presented a method
for detecting HS and TO for overground and ramp walking,
including transition. Eight FSRs, evenly placed in a bracelet was,
strapped around the subject’s thigh such that each FSR aligned
corresponding to prominent thigh muscle. A foot insole system
for ground truth/reference data synchronized with the FMG
measurement system. A classifier was trained with reference
signatures extracted during the training phase that consisted
of two signature patterns (one each for HS and TO) for each
locomotion mode. Hence, the system could successfully match
any of the three-locomotion modes for a test FMG signature.
However, the detection framework is subject-dependent as a
separate database is created for every trial subject.

Another subsequent work on gait phase detection is reported
by Jiang et al. (2018) and Jiang (2018) for event detection
in treadmill walking. During gait, periodic contraction and
relaxation of the extensor and flexor muscles at the ankle alter
the pressure distribution. An FMG band, consisting of eight
equispaced instrumented FSRs, was strapped around the ankle
to record these distinctive FMG patterns (Figure 4). A high-
speed motion camera was used for referencing four instances: HS,
MSt, PSw, and Sw. A 125 ms sliding window with 93 ms overlap
was used to extract a set of 14 distinguishable features, and a
Linear Discriminant Analysis (LDA) technique was implemented
to classify the gait phases further.

Piezoelectric Sensors
Piezoelectric sensors, when stressed, generate electric potential
and are often used for dynamic pressure or vibration
measurement. The most common piezoelectric sensors are
made of either ceramic-based or MEMS-based material. Due to
the parasitic effect of piezo materials, the ceramic piezoelectric
sensors are not suitable for static or low-frequency measurements
(Tahir et al., 2020). However, the MEMS sensors possess distinct
advantages: they can be used for 3-axis measurements they
generate positive or negative (amplitude) electrical impulses
depending on the direction of force acting around each axis.

They help detect human motion primarily due to their flexibility,
wide frequency range (0.001 Hz to 10 MHz) (Tahir et al., 2020).

Balbinot et al. (2014) designed a footswitch system for HS and
TO detection using a piezoelectric transducer out of a buzzer. The
Piezo sensors, calibrated for force measurement, were attached
beneath a rubber insole at the hallux and heel region. HS and
TO were defined as the instances when the force signal exceeded
or fell from a threshold of 5N, respectively. These events, thus
detected, were further used for deriving a set of temporal gait
parameters. The results were validated with a standard force plate
(AMTI Inc., United States).

A gait recognition based on flexible piezoelectric sensors
[polyvinylidene fluoride (PVDF)] is reported by Cha et al. (2018).
Four flexible sensors, one each at the knee and hip of both legs,
were attached on an item of loose clothing. The PVDF sensor
generates an electric voltage that corresponds to the bending of
the corresponding limb joint. The periodic motion component,
extracted from the FFT of the time-varying signal, correlates
to the gait speed. The system was also able to detect different
postural transitions between standing and walking.

Although explored widely, the majority of the piezoelectric
sensor-based gait measurement systems focus on analyzing
vertical components of pressure/force. However, the shear stress
provides vital information especially involving a pathological gait
(Hamatani et al., 2016; Jeong et al., 2021). Moreover, crosstalk
arising due to the co-existence of piezoelectric coefficients
significantly impacts the measurement accuracy (Dai et al.,
2020). To address these challenges, recent works (Chen et al.,
2020; Dai et al., 2020; Gao et al., 2020) have proposed
using multilayer structure with piezoelectric films in distinct
polarization orientations (Gao et al., 2020), lamination technique
for assembling electrodes with functional films (Dai et al., 2020),
and signal decomposition technique to separate the raw signal
into several intrinsic mode functions (Chen et al., 2020).

Wearable Microphone
The foot is the anatomical structure that is in contact with
the ground during walking, and exploration of foot-ground
interaction (footstep sound) can reveal important aspects of
gait. Microphone sensors, being tiny, low-cost, portable, and
readily configurable with embedded electronics, has promising
application for capturing footstep sounds generated due to
ground-foot impact. Although very limited, footstep sound or
gait acoustics have also been explored for gait analysis (Makela
et al., 2003; Altaf et al., 2015; Hwang and Gim, 2015). The
first wearable acoustic sensor-based gait parameter estimation
method was reported by Wang et al. (2016). They presented an
event detection method using the wearable microphone to collect
footstep sound signals during walking. One microphone attached
at the ankle of each foot, such that the microphone holes face
toward the ground, was used to collect the sound resulting from
different foot parts. Based on the spectral analysis of the sound,
a set of 36 features were extracted that included correlation
coefficients, energy bands, zero-crossing rate, linear prediction,
and mel-frequency coefficients. A support vector machine (SVM)
based approach was used to identify and classify step detection,
HS, and toe-on, and a set of 9 STP were estimated by fusing both
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FIGURE 4 | An FSR sensor-based force myography band for gait application [Reproduced with permission from Jiang (2018), Memorial University of Newfoundland].

feet sound data. The study was validated on 15 healthy subjects
with a detection accuracy of nearly 95%. Jesus et al. (2019)
presented a case report on estimation of gait cadence, speed,
and stride/step duration for a PD subject (stage 3 on Hoehn
and Yahr’s scale) from the gait acoustic signal captured using
a microphone. The parameters thus recorded were validated
against a motion capture system.

A very recent and exciting feasibility study for using an ear-
worn wearable (Earable) microphone for gait identification is
proposed by Ferlini et al. (2021). Their work (called EarGate)
demonstrates the feasibility of gait identification from walking
sound generated and propagated through the musculoskeletal
system in the body. The EarGate system employs an inward-
facing earphone to leverage the occlusion effect (low-frequency
components of a bone-propagated sound when the ear canal
orifice is sealed) during the wearer’s movement from inside the
ear canal. The proposed method identified 31 healthy subjects
with an overwhelming balance accuracy of over 97%. Chiang et al.
(2019, 2020) explored the self-doppler effect using a microphone
coupled with three buzzers (mounted on a shoe) to detect gait
events and compute step length, orientation, and posture.

Ultrasonic Sensor
An ultrasonic sensor computes the distance of a target object
by emitting short, high-frequency sound waves at regular
intervals. When the sound pulse encounters an object in
its path, it has reflected the transmitter as an echo signal.
This signal reflects a measurement of the distance of the
object/target from the source based on flight time. Such time-
of-flight-based measurements possess a distinct advantage in
suppressing background interference compared to intensity-
based measurements. Recent ultrasonic sensors can measure
very minute distance change, showing potential for gait
analysis application.

Huitema et al. (2002) presented a semi-wearable (hybrid)
system for measuring spatiotemporal parameters using ultrasonic
sensors. An ultrasonic transmitter, fixed at a stationary position

in the room, sends bursts of periodic pulses to the two receivers
attached at both shoes of the subject. The propagation delay
recorded between transmission and reception is used to localize
the position of the subjects’ feet. Information about the dynamic
position of the foot and zero foot-velocity phase was used to
calculate step length and stride length. Gait events, namely HS
and TO, were calculated from the speed plot variation within
a single step by applying pre-set thresholds. The study was
validated on four healthy subjects.

Another work on the semi-wearable approach by Qi et al.
(2014) reported the measurement of 3D foot trajectory using a
wireless ultrasonic sensor network. Contrary to Huitema et al.
(2002), the ultrasonic transmission unit (mobile) was fixed at
the shoe. At the same time, there were four receiving units
(anchor), set at 3D planes across the room, all interconnected and
synchronized wirelessly. The system records the time-of-flight of
the ultrasonic sound waves from mobile to anchors and measures
the distance covered by the foot. The 3D foot trajectories
thus computed were validated using eight motion camera-based
systems while tracking three reflective markers, systematically
fixed at the subject’s foot with an RMS error of 4.2%.

Multimodal In-Shoe Approaches
Researchers all across have been trying to integrate/embed one
or more of these techniques, as mentioned earlier, to develop
a wearable gait analysis system (especially an in-shoe based)
that can deliver the majority of clinically relevant kinetic and
kinematic gait parameters. The shoe-based measurement offers
distinct advantages in requiring the least preparation time,
providing a surface for embedding electronics and hardware
with minimal or no aesthetic change. One of the earliest and
most comprehensive (and highly referred) works on multimodal
shoe-based gait system development is the GaitShoe by Bamberg
et al. (2008) from the Massachusetts Institute of Technology
(MIT). GaitShoe includes 3-axis (orthogonal) accelerometers
and gyroscopes, four foot-force sensors, two bidirectional bend
sensors, two dynamic pressure sensors (PVDF strips), as well
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as electric field height sensors. The accelerometers estimate
SL, SV, and displacement, whereas Gyroscopes measure the
foot orientation. The force-sensitive resistors were used for two
targets: first to analyze the force distribution under the foot and
second to detect gait events, namely HS and TO. The PVDF
strips were used as redundant event detection while the electric
field sensor analyzed the foot clearance from the floor. The bend
sensor records the foot plantar flexion/dorsiflexion variation at
metatarsal points. The GaitShoe system physically consists of
an instrumented insole that houses FSR, PVDF, bend sensor,
and field sensor with an attachment housing the accelerometers,
gyroscopes, and hardware electronics. The system performance
was validated on healthy and pathological (Parkinsonian) gait.
However, this system still needs a high level of customization
for regular use.

A similar recent system (eSHOE) based on integrated sensors
packaged in a shoe is reported by Jagos et al. (2017). The
developed wireless eSHOE includes a six-axis IMU with four
FSR sensors used for calculating eight temporal parameters:
gait cycle time, stance time, swing duration, step time, single
support duration, initial double support, double terminal
support, and cadence. The system’s performance was validated
against GAITRite R©walkway, a standard plantar pressure and gait
analysis system used widely for computing STP. The measured
parameters collected during a study of 10 subjects with a proximal
femur fracture from eSHOE showed a significant correlation
with the parameter recorded from GAITRite R©. However, this
system functionality is limited to measuring temporal feature sets
only, emphasizing spatial features, essential outcomes of clinical
gait analysis. Similar in-shoe-based multimodal measurement
systems have been reported for application in rehabilitation
tasks (Benocci et al., 2009; Edgar et al., 2010; Wada et al.,
2010).

Commercial Ambulatory Wearable Gait
Sensors
Research in WS-based gait analysis system development has been
ongoing for the last two decades. However, there are minimal
commercial WS-based gait analysis systems available in clinics
and research setups. One prominent WS system is the Xsens
Motion System that uses inertial trackers to capture full-body
kinematics of the body with a wireless communication suit. It
is widely used in gait motion and biomechanics study (Zhang
et al., 2013; Loose and Orlowski, 2015; Schepers et al., 2018)
and also serves as a referencing system for validating custom-
developed gait measurement methods and protocols (Cutti et al.,
2008; Ferrari et al., 2010; Wouda et al., 2016).

Another very recent product based on inertial sensor-based
for gait and biomechanics study is “Mobility Lab” from APDM
Wearable technologies (Eftekharsadat et al., 2015). The system
can perform a standardized test based on clinical protocol, and
a patient report is generated for assessment by the clinicians.
The system can report performance regarding gait STP, arm
kinematics, lumbar postural sway, and sit-stand parameters.
Many experimental studies have been reported for studying gait

pathologies (Horak et al., 2016; Pal et al., 2016; De Souza Fortaleza
et al., 2017; El-Gohary et al., 2017).

An in-shoe plantar pressure measurement system called
F-Scan (Júlio et al., 2020) provides dynamic pressure, force,
and timing information for foot function and gait analysis. The
system targets two user bases: Researchers and Clinicians with
additional research software that provides researchers access to
raw and processed data in-depth. For medical practitioners,
the system generates automated reports. This system is often
used to optimize and customize therapy and understand foot
biomechanics (Mueller et al., 2003; Thies et al., 2007; Fourchet
et al., 2015). Another insole-based plantar force measurement
system with integrated IMU is available from Moticon (Moticon
ReGo AG, Munich, Germany) (Barratt et al., 2021). It is an
entirely wireless device such that the insoles can be embedded
into any pair of shoes for continuous and unobtrusive data
collection. It also has onboard data recording for outdoor and
more extended data recording.

ADVANCES IN THERAPEUTIC
INTERVENTION

Despite the widespread prevalence of neurodegenerative
disorders, the current treatment (pharmacological) options
focus on providing symptomatic relief and slowing down the
progression. Presently, no effective drug is available to cure or
prevent neurodegenerative disorders. They are also reported to
produce adverse health effects. For example, Levodopa (L-dopa)
is the most commonly prescribed drug for managing early-stage
motor symptoms of PD (Chagraoui et al., 2020). Still, it is also
reported to cause high dyskinesia and relapse of PD symptoms
(Turcano et al., 2018). Also, several disorders exhibit similar
symptoms but vary in terms of mechanisms of their pathogenesis.
These challenges demand an effective therapeutic intervention to
slow down or halt the progression and present a permanent cure.
Thus, researchers and clinicians have been looking for promising
alternate, personalized, targeted therapeutic strategies to combat
such neurodegenerative gait/postural impairments. This section
highlights three current paradigms of neurodegenerative
disease therapy design: Wearables, virtual reality (VR), and
phytochemicals to improve neuro-motor functions.

Wearable and Virtual Reality
Technologies for Gait and Balance
Rehabilitation
Taking a step forward from gait analysis, wearable devices are
also being explored to assist/rehabilitate to tackle neurological
gait disorders (Bowman et al., 2021). These devices perform real-
time computation/detection based on kinematic, kinetic, and
other physiological parameters and provide desired biofeedback
(auditory, visual, vibratory, etc., cues) on detecting gait or
postural anomaly (Mazilu et al., 2015; Lazarou et al., 2016; Pacilli
et al., 2016; Pereira et al., 2016; Mendoza et al., 2017; Suppa
et al., 2017; Amato et al., 2018; Rossi et al., 2020; Saif et al.,
2020; Muurling et al., 2021; Stavropoulos et al., 2021). Such an
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approach influences motor learning in patients by engaging them
toward continuous and real-time rehabilitation. Wearables, often
compact and lightweight, possess a distinct advantage of being
suitable for long-term and outdoor use, thereby enabling the user
to experience and learn during realistic scenarios.

Virtual reality (VR) is another technology-driven paradigm
shift in therapeutic intervention toward physical and cognitive
rehabilitation of neurological disorders (Voinescu et al., 2021).
VR-based rehabilitation technique creates a realistic experience
by projecting virtual environments (through immersive/non-
immersive displays). Physiotherapy is one of the earliest and most
effective forms of therapy for gait and balance rehabilitation.
However, it is a monotonous task that requires individuals to
perform specific tasks repeatedly, and the outcome for such
activity is not available for immediate realization. As a result,
often, the individual loses interest in the activity. The VR-based
intervention addresses this challenge by translating the standard
therapeutic exercise protocols into interactive games (actions).
The real-time measurement from the body segments (hands, leg,
head, etc.) is used as biofeedback signals to update the therapy
(game) environments. This results in better patient engagement
in the physiotherapy session, ensuring a more effective outcome
(Voinescu et al., 2021).

Phytochemicals and Its Neuroprotective
Roles
With the significant shortcomings associated with available
drugs for the management of neurological disorders, researchers
have been investigating the discovery of molecules that can
effectively cure/prevent the pathology. The major pathological
features associated with neuro-disorders are oxidative stress,
neuro-inflammation, and aggregated proteins. Naturally, derived
compounds from the plant (phytochemicals) have been widely
used for extracting clinically valuable compounds. For example,
the common flowering quince (FQ) has been used traditionally
to treat migraine, neuralgia, depression, tremors, and dyskinesia
(Zhao et al., 2008). Over the recent years, researchers have
been exploring various phytochemicals like Berberine (BBR),
Curcumin, Ginsenoside, Puerarin, etc., with potential application
toward the management of neurodegenerative disorders and
symptoms (Price et al., 2012; Lin et al., 2018; Corpas et al.,
2019; Nair et al., 2019; Wang et al., 2019; Calfio et al., 2020;
Balakrishnan et al., 2021). For example, phytochemical like
Resveratrol (a bioactive component of red wine) (Price et al.,
2012; Lin et al., 2018; Corpas et al., 2019; Nair et al., 2019) and
Melatonin (Wang et al., 2019) have shown reported benefit, both
in vitro and vivo conditions, toward improving the mitochondrial
function believed to be one primary cause for diseases like
AD and PD. Resveratrol, at a very low concentration, has
also demonstrated its benefit toward preventing α-synuclein
aggregation (Eschbach et al., 2015; Gautam et al., 2017).
Apigenin (AGN), a flavone class phytochemical known for
anti-inflammatory and free radical scavenging activities, is also
reported to alleviate α-synuclein accumulation significantly and
mitochondrial dysfunction in rotenone-induced PD rats (Anusha
et al., 2017). Many studies reported promising results toward

effective management of cognitive and non-motor functions
(Balakrishnan et al., 2021). However, compounds such as BBR,
quercetin, ferulic acid (FA), etc., have also shown promising
motor functions in neuro-disorder induced rat and mice models
(Chen et al., 2002; Van Kampen et al., 2003; Zhao et al.,
2008; Kim et al., 2014; Jiang et al., 2015; Yadav et al., 2016;
Askar et al., 2019; Madiha et al., 2021). For example, blueberry
supplementation (rich in polyphenols) in the geriatric population
effectively checks the decline of functional mobility and improves
the performance of activities of daily living (Schrager et al.,
2015). BBR showed effectiveness toward preventing memory
loss in PD (Kim et al., 2014) and alleviating motor dysfunction
in PD (Kim et al., 2014) and HD (Jiang et al., 2015) in mice
models. Quercetin stands as a strong potential candidate for
application in PD as it enhances antioxidant enzyme activity,
thereby improving motor function (Madiha et al., 2021). When
subjected to FA doses, rotenone-induced PD mice improved
neuromotor function and muscle exercises (Askar et al., 2019).
Curcumin, a polyphenol in turmeric, is one of the most
promising natural compound against AD (Serafini et al., 2017;
Reddy et al., 2018) owing to its β-amyloid inhibition and
antioxidant solid property (Tang and Taghibiglou, 2017; Su
et al., 2020; Utomo et al., 2021). An established ROS scavenger
(Cao et al., 2008; Barzegar and Moosavi-Movahedi, 2011),
curcumin also safeguards mitochondria against peroxynitrite
in nigrostriatal, making it a strong therapeutic agent for AD
and PD (Ramires Júnior et al., 2021). It is also reported to
induce neuroplasticity in rats (Choi et al., 2017; Fan et al.,
2018). Another widely extracted Phyto-compound, Ginseng, was
reported to have improved dopaminergic neuronal loss and gait
disturbance in PD mice models (Van Kampen et al., 2003).
Table 3 summarizes the motor and biomechanical implications of
common neurodegenerative gait disorders and the ongoing novel
therapeutic approaches to mitigate the common gait and balance
impairments accompanying them.

DISCUSSION

Gait and balance analysis offer a medium to not only understand
the locomotor/functional impairments but a way to accurately
diagnose neurodegenerative disorders like PD, AD, MS, etc., that
otherwise have almost similar non-motor symptoms. Despite
being accurate and reliable, conventional gait laboratory-based
measurement setups suffer from the limitation of being costly,
bulky, and requires specialists to operate. Various research groups
have researched WS-based gait analysis globally to address these
challenges. We present a detailed review of all such recent
progress (from 2005) in WS-based gait analysis based on the
application of IMU, pressure sensor, EMG, FMG, Piezoelectric
sensor, Microphone, and ultrasonic sensors along with available
commercial systems. The review was performed covering certain
clinically relevant aspects (parameters) of neurodegenerative
gait disorders, and below, we summarize the role, applicability,
and technique of the aforementioned sensors toward them. In
addition, a summary of ongoing efforts toward mitigation of
neurodegenerative gait disorders through application of wearable
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TABLE 3 | Current progress in non-pharmacological therapeutic and rehabilitation
measures for neurodegenerative gait and motor functions.

Neuro-
disorder

Gait and biomechanical
manifestation(s)

Advances in
therapeutic/Caregiving
strategies

AD Slow gait speed
Reduced step/stride length
Low cadence
Increased inter stride variability
Bradykinesia

Wearables (Lazarou et al., 2016;
Mendoza et al., 2017; Amato et al.,
2018; Saif et al., 2020; Muurling
et al., 2021; Stavropoulos et al.,
2021), Virtual Reality (Gago et al.,
2016; Doniger et al., 2018; Uğur
and Sertel, 2020), Phytochemicals
(Janßen et al., 2010)

PD Freezing of gait
Slow walking speed
Small step length
Bradykinesia
Hypertonia (rigidity)
Tremor
Flexed posture
Festination

Wearables (Mazilu et al., 2015;
Pacilli et al., 2016; Pereira et al.,
2016; Suppa et al., 2017; Rossi
et al., 2020), Virtual Reality (Gilat
et al., 2015; Killane et al., 2015;
Georgiades et al., 2016; Bluett
et al., 2019; Feng et al., 2019;
Bekkers et al., 2020; Júlio et al.,
2020; Pelosin et al., 2020;
Yamagami et al., 2020; Goh et al.,
2021), Phytochemicals (Van
Kampen et al., 2003; Zhao et al.,
2008; Kim et al., 2014; Yadav et al.,
2016; Askar et al., 2019; Madiha
et al., 2021)

HD Slow gait speed
Reduced stride length
Variable stepping pattern
Increased stance-to-swing ratio

Wearable (Kegelmeyer et al., 2017;
Georgiou et al., 2020), Virtual
Reality (Kloos et al., 2013; Júlio
et al., 2020), Phytochemicals (Jiang
et al., 2015)

ALS Small stride length
Decreased cadence
Small single limb support
Increased double limb support
Increased knee flexion at IC
Increased inter stride variability

Wearables (Garcia-Gancedo et al.,
2019; Van Eijk et al., 2019), Virtual
Reality (Ortiz et al., 2018),
Phytochemicals (Mohi-Ud-Din
et al., 2022)

MS Decreased gait speed
Small step length
Reduced cadence
Reduced joint ROM

Wearables (Peruzzi et al., 2017),
Virtual Reality (Eftekharsadat et al.,
2015; Kalron et al., 2016; Calabrò
et al., 2017; Peruzzi et al., 2017;
Munari et al., 2020)

and VR technologies and the potential role of phytochemicals for
alleviating such conditions have also been presented.

Event Detection
Gait events like HS, TO, and FF are critical to gait partitioning
and signify the phase shift between various walking states. Almost
all reported sensors from IMUs to EMG are explored to detect
such events in both healthy and impaired gait. Commonly
used detection techniques include thresholding (in case of
IMU, footswitches, pressure sensors, wearable microphone, and
piezoelectric sensors), rate reversal/peak detection/zero-crossing
(IMUs) (Jasiewicz et al., 2006; Raveendranathan et al., 2011;
Yang et al., 2012; Hundza et al., 2013; Mariani et al., 2013;
Joshi et al., 2016; Montero-Odasso and Perry, 2019), PSD and
frequency analysis (for EMG and FMG) (Ryu and Kim, 2017;
Ziegier et al., 2018; Morbidoni et al., 2019; Nazmi et al., 2019;
Di Nardo et al., 2020; Keloth et al., 2021; Zahra, 2021; Rezaee

et al., 2022). Researchers have focused on applying machine
learning too for handling complex signals (from IMUs) associated
with impaired gait for such event recognition.

Kinematic Analysis
Joint and limb trajectories offer a proper way to understand
the biomechanics of walking. Among all the reported sensors,
IMU contributes to an overwhelming majority of research into
understanding the kinematics of locomotion. From head to
toe and range of motion to pose estimation, IMUs have been
extensively used (Dorschky et al., 2019; Teufl et al., 2019a;
Gholami et al., 2020; Yeo and Park, 2020). Recent effort
toward the analysis of joint angles using instrumented force
insole has also been reported using an artificial neural network
(Li G. et al., 2016).

Kinetic Analysis
Understanding of forces and torques associated with walking
is equally important. The most common kinematic parameter
explored in gait analysis is ground reaction forces. The force and
pressure sensors embedded into footwear have been investigated
by most researchers for healthy and impaired gait (Marcante
et al., 2021; Pardoel et al., 2021; Shalin et al., 2021). Recently,
the application of inertial sensors has also been studied for the
estimation of GRF and joint moments (Kodama and Watanabe,
2016). EMG and FMG are the other two techniques commonly
used for measuring muscle forces.

Spatiotemporal Analysis
Gait presents a series of time and length domain data crucial
for quantitative and qualitative gait evaluation. Although almost
all the mentioned sensors capable of event detection are useful
for temporal parameter measurement, IMUs integrated with a
human model are reported widely toward estimation of spatial
parameters such as step/stride length and step width (Salarian
et al., 2012; Takeda et al., 2014; Ferrari et al., 2015; Rampp et al.,
2015; Wang and Ji, 2015; Liu et al., 2016; Hao et al., 2019; O’brien
et al., 2019; Teufl et al., 2019a; Yeo and Park, 2020; Das and
Kumar, 2021).

Balance Analysis
Center of mass, CoG, and postural sway are the most common
indicator of postural balance corresponding to gait and stance.
Instrumented foot insoles are the most commonly used technique
for measuring (Marcante et al., 2021; Pardoel et al., 2021; Shalin
et al., 2021), along with a few reports using IMUs (Hsu et al.,
2014; Noamani et al., 2020; Dugan et al., 2021). In addition, such
methods are also reportedly used for automated and quantified
measures of standard balance scales such as 10 MWT, BBS,
2 min standing test, and TUGT (Wang Z. X. et al., 2015;
Kodama and Watanabe, 2016; Noamani et al., 2020; Dugan et al.,
2021). However, gait and balance analysis have already been
commonly adopted for physiological and functional monitoring;
limited reliable and straightforward wearable devices are used
in non-specialized clinical settings. Realistic implementation of
WS in the clinical setting demands limiting the number of
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sensor devices for long-term monitoring. Although a more
significant number of sensors placed at different body segments
yields higher spatial features, at the same time, it increases
computational as well as data analysis complexity along with
system cost. Moreover, the outcome/output from a gait analysis
system should contain clinically meaningful and comprehensive
gait features. To minimize clinicians’ temporal, physical, and
cognitive burdens, it is highly desirable to have the fewest number
of devices possible to assess performance. Although the state-of-
art commercially available systems provide widely accepted gait
parameters, they lack objectivity in data interpretation. Clinicians
analyze the data based on their expertise and experience
to draw inferences for disorder correlation. This is a time-
consuming and burdensome process and often suffers from
subjectivity limitation. An added “intelligence” to the WS-based
measurement to automatically correlate normal and pathological
gait would assist the clinicians in better evaluation of the derived
gait features. Progress has been made in research in automatic
neurodegenerative disorder classification using gait features
during the last few years. However, most reported research on
gait impairment identification algorithms involves input features
from laboratory-based measurement (NWS) systems.

Therapeutic Advances
Although the exact pathogenesis of most neurodegenerative
disorders like PD, AD, MS, ALS, etc., couldn’t be ascertained
yet, some distinctive hallmarks have been associated with
them. The common pathologies reported includes mitochondrial
dysfunction (common in AD, PD, and MS) (Correia et al.,
2012; Carvalho et al., 2015; Rahman and Rhim, 2017),
accumulation of misfolded α-synuclein (Chen et al., 2019),
aggregation of Amyloid-β (Aβ) senile plaques (Malafaia et al.,
2021), up of dopamine (DA) depletion (Bastide et al., 2015),
neuroinflammation, oxidative stress, and induced endoplasmic
reticulum (ER) stress, formation of reactive oxygen species
(ROS) (Manoharan et al., 2016), to autoimmune-mediated loss
of myelin and axonal damage (Jones et al., 2017), etc. Numerous
bioactive phytochemicals have gained special attention as
potential neuroprotective agents that help in mitigating such
associated pathologies. For example, Curcumin (present in
turmeric) exhibits multitude of benefits including antioxidant,
β-amyloid inhibition property (Tang and Taghibiglou, 2017;
Su et al., 2020; Utomo et al., 2021), ROS scavenging (Cao
et al., 2008; Barzegar and Moosavi-Movahedi, 2011), alleviating
mitochondrial damage (Ramires Júnior et al., 2021). Similarly,
AGN has shown usefulness through anti-inflammatory and free
radical scavenging activities, which in turn clear α-synuclein
accumulation (Anusha et al., 2017). Mitochondrial function
improvement has been reported using Resveratrol (Price et al.,
2012; Lin et al., 2018; Corpas et al., 2019; Nair et al., 2019), AGN
(Wiik, 2016), Curcumin (Ramires Júnior et al., 2021), Apigenin
(Anusha et al., 2017), Curcumin (Cao et al., 2008; Barzegar and
Moosavi-Movahedi, 2011), Quercetin (Madiha et al., 2021) are
the most commonly investigated compounds showing strong
anti-oxidant properties.

Other than pharmacological therapeutic interventions, efforts
are also underway to provide a solution to tackle some of

the significant motor challenges associated with neuro-disorders
through VR and wearable devices. Both this class of devices
performs real-time analysis of body movements (including gait)
and generates various forms of countermeasure signals. The
major benefit such approach offers is it provides a way for
motor and cognitive learning, thereby ensuring effective and
long-term rehabilitation.

FUTURE DIRECTION

For over two decades, tremendous efforts in wearable gait
analysis have shown some fruitful results and translation
to commercial products like XSENS F-Scan. Currently, such
systems are parallelly used along with the gold standards like
force and motion capture systems. However, these systems’
broad and consensual clinical applicability demands further work
and improvements. As a takeaway from the literature review
performed, below are some of the critical suggestions presented
by the authors toward effective, easy-to-use WS devices for
regular use in clinical practice.

Firstly, the non-uniformity of WS-based measurement
methods and outcome measures needs to be addressed. There
is no consensus concerning the number of sensors, position,
placement on the body, resultant gait feature set, etc. Such an
approach hinders scaling up for general and broad applicability.
Measurement devices need to generate reliable and reproducible
output for clinical and research use.

Secondly, there is a need to develop intelligent and intelligent
algorithms, especially concerning the umbrella of disorders
diagnosis. Most reported works (algorithms) exploit certain traits
associated with a particular disease, making them disease-specific
and less efficient with other disorders. However, the system
needs to cater to the broader population group for clinical
applicability. Moreover, most of the reported literature deals with
binary (sometimes 3–4) classification, i.e., targeted to identifying
a selected disorder. Classification of conditions based on the
severity, i.e., grading the disease, is still an area that needs broader
investigation for acceptance in clinical usability. An objective,
automated process of quantifying and classifying gait data can
allow clinicians to invest their resources and time in prescribing
better, more effective, and more targeted treatments in actual
clinical practice. More penetration of AI, ML, and deep learning
techniques can bridge the gap.

And thirdly, the exploitation of smartphones as a tool for
movement analysis requires more focus. Given the broad reach
of smartphone devices for extensive use, such mobile-based
technologies can cater to a large population with limited access
to quantified gait analysis. Moreover, accurate life data from all
daily activities can open up newer avenues in this direction.

CONCLUSION

This article highlights significant recent works toward assessing
neurodegenerative gait disorders using wearable sensing
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techniques. Some recent progress reported toward non-
pharmacological therapeutic intervention toward mitigating gait
and balance disorders originating from neuro-degeneration.
Reported sensing methods for studying gait kinematics,
kinetics, spatiotemporal, and postural balance through inertial,
footswitches, pressure sensors, ultrasound sensors, proximity
sensors, plantar pressure sensors, electromyography, etc., have
extensively been discussed. The IS-based measurements correlate
well with kinematics and other qualitative and quantitative
measures corresponding to gait and activity monitoring. IMUs,
owing to distinct advantages, offer the most promising alternative
to laboratory-based gait analysis covering almost all spectrum of
clinical gait analysis. The wide availability of IMU integrated
devices is undoubtedly a positive aspect of translating such
technologies for clinical benefit. However, specific challenges still
need to be addressed toward achieving that goal, mainly deriving
a common technology consensus and guideline conforming
to its use. The wearable biofeedback systems and VR-based
technology offer a promising solution toward rehabilitation and
assistance of neuro-impaired gait symptoms, such as in the case
of freezing of gait episodes postural imbalance. Similarly, various
phytochemical compounds such as BBR FA have shown few
positive outcomes in mitigating movement and balance-related
impairments in cellular and rodent models. However, research in
this domain is still pre-infancy and demands a widescale effort
to reach a firm conclusion concerning their benefit in tackling
neurodegenerative gait disorders in humans.
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