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Abstract A computational study into the motion per-
ception dynamics of a multistable psychophysics stimu-
lus is presented. A diagonally drifting grating viewed
through a square aperture is perceived as moving in
the actual grating direction or in line with the aper-
ture edges (horizontally or vertically). The different
percepts are the product of interplay between am-
biguous contour cues and specific terminator cues. We
present a dynamical model of motion integration that
performs direction selection for such a stimulus and
link the different percepts to coexisting steady states
of the underlying equations. We apply the powerful
tools of bifurcation analysis and numerical continua-
tion to study changes to the model’s solution structure
under the variation of parameters. Indeed, we apply
these tools in a systematic way, taking into account
biological and mathematical constraints, in order to
fix model parameters. A region of parameter space is
identified for which the model reproduces the qualita-
tive behaviour observed in experiments. The temporal
dynamics of motion integration are studied within this
region; specifically, the effect of varying the stimulus
gain is studied, which allows for qualitative predictions
to be made.
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1 Introduction

The interesting and long-studied aperture problem con-
stitutes an important ambiguity that must be resolved
by the visual system in order to attribute an accurate
direction of motion to moving objects (Wallach 1935;
Wuerger et al. 1996). The motion of a uniform contour
is consistent with many possible directions in the ab-
sence of terminator information provided by line end-
ings. The ambiguous contour information is referred to
as a 1D cue and the specific terminator information,
which can be intrinsic to the object or produced by an
occluding aperture, is referred to as a 2D cue.

In this article, we focus on a classical psychophysics
stimulus used to probe the interactions between 1D
and 2D motion cues, the so-called “barber pole” illu-
sion (Hildreth 1983, Chapter 4). A a diagonally drift-
ing grating viewed through an elongated rectangular
aperture is perceived as drifting in the direction of the
long edge of the aperture. The illusion is generated by
the larger number of unambiguous (but misleading) 2D
cues parallel to the long edges of the aperture. Miti-
gating the effect of the 2D cues can break the illusion
as demonstrated in experiments by introducing a depth
separation between grating and aperture (Shimojo et al.
1989), or, by introducing indentations on the aperture
edges (Kooi 1993). More interesting is the fact that for
certain stimulus parameters, the barber pole can elicit
a multistable perceptual response. The effect of the
ratio of the lengths of the aperture edges, or terminator
ratio, was investigated in Castet et al. (1999) and Fisher
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and Zanker (2001). For large ratios the direction of the
long aperture edge dominates perception. However, for
ratios close to 1:1 the stimulus is multistable with a tri-
modal response for the perceived direction; the main
percepts either agree with the direction perpendicular
to the grating’s orientation or with one of the two
aperture edge directions. Another interesting aspect in
resolving the aperture problem is the temporal dynam-
ics of the integration of 1D and 2D cues. The barber
pole illusion was studied in ocular following experi-
ments (Masson et al. 2000); early tracking responses
were shown to be initiated in the contour direction
with a later response in the direction of the long axis
of the aperture. The existence of an early response
dominated by 1D cues, which is later refined when 2D
cues are processed is supported by further studies in oc-
ular following Barthélemy et al. (2010), psychophysics
(Lorenceau et al. 1993) and physiology (Pack and Born
2001).

The middle temporal area (MT) of the visual path-
way, that receives the majority of its synaptic inputs
from the primary visual cortex (V1), plays a key role in
the perception of moving objects and, more specifically,
the solution of the aperture problem. MT is charac-
terised by direction-selective neurons that are organ-
ised in a columnar fashion, similar to the organisation of
orientation-selective neurons in V1 (Diogo et al. 2003).
For an extensive discussion of the function of MT, see
the following review articles (Britten 2003; Born and
Bradley 2005). Cortical responses of MT have been
linked specifically to perception of motion; see again
the review article (Britten 2003) and, more recently, the
paper (Serences and Boynton 2007).

Several models of motion integration have been
proposed in the literature to solve the aperture prob-
lem, providing some insights into the underlying neural
mechanisms. Building on the first linear/non-linear
models (Chey et al. 1997; Simoncelli and Heeger 1998),
several approaches added extensions to modulate the
motion integration stages: feedback between hierarchi-
cal layers (Grossberg et al. 2001; Bayerl and Neumann
2004), inclusion of input form cues (Berzhanskaya et al.
2007; Bayerl and Neumann 2007), luminance diffusion
gating (Tlapale et al. 2010b), or depth cues (Beck and
Neumann 2010). Although these models reproduce the
predominant percepts in a wide range of stimuli, in
none of the articles describing them are multistable re-
sults depicted. Furthermore, although they show some
limited individual case of dynamical behaviour just on
the level of simulations, there is no rigorous analysis of
the dynamical behaviour and no comprehensive para-
meter studies that fully explore all possible dynamical
behaviour. In summary, the questions of what mech-
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anisms are behind multistable motion perception and
what dynamical processes are involved have largely
been overlooked from the modelling point of view.

The focus of this paper will be the analysis of a
mathematical model of motion integration with an in-
put that generates a multistable perceptual response.
To do so, we study cortical behaviour at the population
level; see Pouget et al. (2000) for a discussion of how
information can be encoded at a population level. We
work within the neural fields formalism, a mathematical
framework that was originally studied in Wilson and
Cowan (1972) and Amari (1971, 1972); see Ermentrout
and Terman (2010, Chapter 11) for various derivations
of the equations. Instead of looking at the spiking
behaviour of individual, interconnected neurons, the
neural field approximation represents the mean firing
rate of a neural population at the continuum limit and
activity levels are represented in a spatially continuous
way. Neural fields equations have been successfully ap-
plied to the study of motion in, e.g., Giese (1998), Deco
and Roland (2010) and Tlapale et al. (2010a). In the
later, the complex model presented, describing behav-
iour of multiple cortical layers and their feedforward
and feedback connections, was capable of performing
motion integration on both natural image sequences
and classical psychophysics presentations. In terms of
multistable stimuli, the 1:1 barber pole discussed above
lead to coexisting steady states in the model, but the
temporal dynamics of multistable perception were not
investigated. We aim to develop a tractable model of
manageable complexity that allows for a detailed study
of the temporal dynamics of multistable motion per-
ception using powerful tools from dynamical systems
theory.

A natural tool for the study of dynamical systems
for which multiple steady-state solutions co-exist is
bifurcation analysis. Throughout the manuscript when
the term solution is used this refers to a steady-state
solution. In dynamical systems theory, a bifurcation
is a critical point encountered under the variation of
one or more parameters at which there is a change in
the stability and number of solutions. Indeed, under
the variation of a parameter a solution of a dynamical
system will vary in state space; when the solution is
plotted in terms of some norm against the parameter, it
lies on a solution branch. A dynamical system may have
multiple solution branches that are characterised by,
for example, different spatial and stability properties.
At special points when varying a parameter, solution
branches can meet and bifurcate from each other. At
these so-called bifurcation points, the number of solu-
tions and their stability changes. In order to know what
type of behaviour a model can produce it is necessary
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to gain full understanding of the type of bifurcations
that occur, the types of solutions that are involved and
at which parameter values. For a general introduction
to bifurcation analysis of finite dimensional systems see
Strogatz (1994) and Kuznetsov (1998), and of infinite
dimensional systems with symmetries see Chossat and
Lauterbach (2000) and Haragus and Iooss (2010). Bi-
furcation analysis has been used to study pattern forma-
tion in a number of different settings (Ermentrout and
Cowan 1980; Bressloff and Kilpatrick 2008; Coombes
and Owen 2005). More specifically, a spatialised model
of V1 has been used to investigate hallucinatory visual
patterns (Bressloff et al. 2001; Golubitsky et al. 2003;
Bressloff and Kilpatrick 2008), localised patterns have
been studied in models of working memory (Laing et al.
2002; Guo and Chow 2005; Faye et al. 2012) and in a
model of texture perception (Faye et al. 2011). In all of
these studies only spontaneous activity is studied, that
is, in the absence of any cortical input.

In this article, we propose a spatialised ring model of
direction selection, where the connectivity in the direc-
tion space and physical space is closely related to the
Mexican-hat type connectivity typically used in the ring
model of V1 (Ben-Yishai et al. 1995; Somers et al. 1995;
Hansel and Sompolinsky 1997). We apply analytical
tools such as stability analysis and normal form compu-
tations in order to identify and categorise bifurcations
in our model. These tools have been used successfully
to study the neural field equations, see, for example
Curtu and Ermentrout (2004), Coombes et al. (2007)
and Roxina and Montbriéa (2011). However, in the
presence of an input to the model, these analytical tools
are no longer applicable; although certain perturbation-
type methods can be applied if the input is considered
to have a specific, simple spatial structure and to be
small (Veltz and Faugeras 2010; Ermentrout et al. 2010;
Kilpatrick and Ermentrout 2012). Note that in the study
(Veltz and Faugeras 2010), large inputs with a simple
spatial structure were also studied with numerical con-
tinuation. In this paper, we first investigate the model’s
behaviour in the absence of an input using analytical
techniques. Then building on the knowledge gained
we apply the tool of numerical continuation to track
solution branches under parameter variation and detect
bifurcation points; effectively continuation provides a
computational tool for performing bifurcation analy-
sis. For an introduction to continuation algorithms see
Krauskopf et al. (2007). For the problem we study here
the continuation module LOCA of the numerical tools
package Trilinos is well suited (Heroux et al. 2005). Nu-
merical bifurcation tools have not previously been used
to study a neural fields model in the presence of a large,
spatially complex input. Furthermore, the application

of bifurcation analysis and numerical continuation to
the study of a model of motion integration is new.
These methods allow us to build a complete picture of
the model’s possible dynamics in terms of parameter
regions exhibiting qualitatively different behaviour and
to identify the boundaries between these regions. In
this way, we are able to ensure that parameter regions
in which a desired behaviour is present are not isolated
and that the behaviour is robust with respect to small
changes in the model set up. The typical approach of
a simple numerical search in parameter space often
misses important parameter regions and does not pro-
vide information about robustness of behaviour with
respect to parameter variation. The technical parts of
this paper form the basis of the strategy employed to
fix model parameters based on biological and math-
ematical constraints. We perform a systematic study
of the model’s solution structure depending on key
parameters including the stimulus strength and identify
a parameter region for which the model has steady-
state solutions corresponding to the three predominant
percepts (diagonal, horizontal, vertical) observed in ex-
periment (Fisher and Zanker 2001). An extended study
of the system’s temporal dynamics allows for experi-
mental predictions to be made regarding the distribu-
tions of the different percepts seen for different length
presentations. In particular we predict that for long
enough presentations only the horizontal and vertical
percepts should be seen.

2 Model of direction selection

The model described here uses a neural fields descrip-
tion of the firing-rate activity of a population of neurons
in middle temporal area (MT) over a physical (cortical)
space and a feature space of motion direction. Two
essential mechanisms are represented by the model:
direction selectivity in the feature space and spatial
diffusion of activity across the physical space. Stimulus
input to the model is represented as preprocessed mo-
tion direction signals from V1 complex cells. Such a rep-
resentation is comparable to classic motion detectors
such as the output of elaborated Reichardt detectors
(Van Santen and Sperling 1984; Bayerl and Neumann
2004) or of motion filters. The output of the model is
the time evolution of activity levels across the physical-
direction space.

The functionality of the model is encoded by the
connectivity across direction-space and physical-space,
which is processed by a nonlinearity. In the direction
space, the connectivity is based on a narrowly tuned
excitation with broadly tuned inhibition, as described
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for MT in Grunewald and Lankheet (1996). Such a
Mexican-hat-type connectivity in the orientation-space
has been used previously for the ring model of orienta-
tion selection (Ben-Yishai et al. 1995; Bressloff et al.
2001). Here, we assume that the inhibition tuning in
MT is broad enough to be approximated by uniform
lateral inhibition; with uniform lateral inhibition when
cells selective for a particular direction are active, cells
selective for the opposite direction are inhibited. This is
consistent with known direction selectivity properties
of MT (Albright 1984; Diogo et al. 2003) and with
recordings from MT with transparent drifting dot pat-
terns moving in opposite directions (Snowden et al.
1991). Furthermore, the uniform lateral inhibition con-
nectivity has the convenient property of fixing the first
non-trivial Fourier mode of the connectivity to be the
largest, which is necessary for the model to produce
tuning-curve solutions. In the physical space, diffusion
is captured by an inverted Mexican hat connectivity,
which has been used in a number of neural fields
models with delays; see, for example, Hutt et al. (2003),
Venkov et al. (2007) and Veltz (2011, Chapter 6). As
motivated in Venkov et al. (2007), for cortical tissue
the principal pyramidal cells are often surrounded by
inhibitory interneurons and their long range connec-
tions are typically excitatory (Gilbert et al. 1996; Salin
and Bullier 1995; McGuire et al. 1991). The inverted
Mexican hat connectivity propagates activity outwards
from stimulated regions and is consistent with a model
output that describes a coherent motion across the
physical space.

2.1 Representation of the stimulus

The stimulus that we consider here is a single drifting
grating viewed through a square aperture, which has
been shown to exhibit multistability of the viewer’s per-
cept during the first 2 seconds of presentation (Castet
et al. 1999; Fisher and Zanker 2001). For longer pre-
sentations, the stimulus is known to exhibit perceptual
switching of the kind studied in, for example, binocular
rivalry experiments (Blake 2001). However, the focus
in this article will be the early dynamics after onset of
the stimulus. The stimulus is shown in Fig. 1(a) and the
three dominant percepts are labelled as diagonal D (the
direction perpendicular to the grating’s orientation at
0°), horizontal H (in line with the horizontal aperture
edge at —45°) or vertical V (in line with the vertical
aperture edge at 45°). Note that here in the description
of the stimulus and later in the numerical results of
Section 4 we give angles in degrees; however, for ease
of presentation in the technical parts that follow in this
section and in Section 3 angles are given in radians.
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One of the most significant simplifications in the model
is that we consider a 1D approximation of the cortex
for physical space, which restricts the way in which
the stimulus can be represented as input to the model,
as discussed below. We consider the different cues at
different points on a 1D cut across the stimulus, as
shown in Fig. 1(b). On the interior of the aperture the
input is directionally ambiguous because 1D motion
cues centred around the direction of the drifting grating
are received. At the aperture edges the input is specific
because 2D motion cues parallel to the aperture edges
are received. It is the interplay between these two
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<« Fig. 1 Description of the model stimulus. (a) A sinusoidal lumi-

nance grating viewed through a square aperture (grey); a large ar-
row indicates the diagonal grating direction D (v = 0°). Indicated
by small arrows are the horizontal H (v = 45°) and vertical V
(v = —45°) directions corresponding to the aperture edges. (b) A
cut across the aperture is used to represent the stimulus in the
1D physical space x (black line). At points on the interior of the
aperture (black line is dashed) many directions are stimulated, on
the edges of the aperture a single direction is stimulated parallel
to the edge (black points) and outside the aperture no direction is
stimulated (black line is solid). (¢) Representation of the stimulus
Iext in physical-direction space (x, v); at each point x each of the
possible directions v € (—180°, 180°) is either stimulated (white)
or not stimulated (black). Multiple directions are stimulated on
the interior of the aperture x € (—0.75, 0.75), unique directions
are stimulated at the aperture edges x = —0.75 and x = 0.75.
Note that the 1D cut in panel (b) is illustrative and the actual
interior and exterior regions used in the model are those shown
in panel (c)

types of competing motion signals that produces the
multistable percept. In this paper, we use the terms
stable and unstable in the sense of dynamical systems
theory to reflect whether a solution is attracting or re-
pelling in state-space; the term multistable refers to the
coexistence of different possible percepts for a visual
stimulus.

The inclusion of 2D physical space would allow for
many variations to the stimulus to be considered. How-
ever, there are a number modifications that are pos-
sible with the present 1D representation that we now
discuss. For example, rectangular apertures are often
considered with a specific ratio between the different
edges (Fisher and Zanker 2001) and by taking a 1D
cut across the stimulus this information would be lost.
However, a similar effect could be achieved by giv-
ing a stronger weighting to the longer aperture edge.
Another feature often investigated in psychophysics
experiments is the angle of the grating with respect to
the aperture edges (Castet et al. 1999). Again, although
certain information is lost in the 1D cut, such a change
to the stimulus could be considered by placing the 2D
elements as shown in Fig. 1(c) asymmetrically about
v = 0 (but still orthogonal to each other). Furthermore,
the choice of the cut made Fig. 1(b) is quite arbitrary.
For example, moving the cut closer to the line between
the top left and bottom right corners would widen the
stimulated region in x; in terms of the models response,
we would expect the further separation of the 2D cue
elements to delay the time it takes for the 2D cues to
affect on the dynamics. The specific case where a cut
is taken between two corners of the aperture would
result in there being competition between 2D different
cues at the aperture edge points. The stimulus shown
in Fig. 1(c) could be modified to incorporate this by

adding points at both v = +45° at each aperture edge
x = =%0.75 as opposed to v =45° at x = —0.75 and
v = —45° at x = 0.75 as is currently the case. Overall
the 1D approximation used here is well suited to the
specific stimulus studied with its particular symmetry
properties, that is, with a square aperture and a grating
that forms an equal angle with each aperture edge.

2.2 Neural field equation

We now introduce the neural field equation that de-
scribes the neuronal population’s activity, detailing how
the different elements discussed so far enter into the
model. The firing rate activity of a single population of
neurons in MT is denoted

p:(x,v,)eQxV xR — p(x,v,1) e RT, €))

where Q is the spatial domain (a bounded subset of
R) and V =R/2nZ is the direction space. Note that
we impose the restriction that p > 0, because it is not
physically relevant to have a negative firing rate. We
assume that x and v are independent variables: every
direction v is represented at each physical position x.
The neural field equation is given by

ap

—_— = S| J T+ kloy]),

Py up + S( [p—l— + t]) o)
px,v,0) = po(x,v),

where p is the decay rate, J is the connectivity operator,
k is the input gain (analogous to contrast) for the
stimulus Zey (Fig. 1(c)) and T is the constant threshold
parameter. The parameter A is the stiffness (slope at
x = 0) of the sigmoid nonlinearity S(x) = H—e+p(—x)' The
choice of a sigmoid function, which is smooth and
infinitely differentiable, facilitates the study of steady-
state behaviour and allows for the application of nu-
merical continuation (Veltz and Faugeras 2010). The
initial condition at t = 0 is py(x, v). The connectivity J
has the following form

Jp =vi(GEg*x p) —va(Gr* p) — v3p. (3)

The first two terms represent a difference of 2D
Gaussian functions Gg and Gy , where v; and v, rep-
resent the relative strength of excitation and inhibi-
tion, respectively. The convolutions Ggx and Gx are
defined by:

Gepxp= f f gfx — y)gfw — w)p(y, w, ndwdy,
QJV

4)
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Gixp= / / gfc(x — y)bé(v —w)p(y, w, )dwdy,
QJv

®)
! x| E

2
where gi(x) = s—exp(—3) for of =0/ 0 and
X

x

similarly for g£(v). In physical space, we have an in-
verted Mexican hat type connectivity so 0. > 0. The
width of excitation in direction space is set by oF
and the uniform lateral inhibition is represented by
the box-function bg(v) = % In order to illustrate the
shape of the connectivity function across (x, v)-space
we first plot in Fig. 2(a) the function M,(x) = v;gf —
vgl with oF > o and v, > v, along with its Fourier
transform M, ( j). Similarly in panel (b) we plot M, (v) =
v1gE — v,b! and its Fourier transform M, (k). Further-
more, the full connectivity M(x, v) = vigEf(x)gf(v) —
v2gl(x)b!(v) is plotted in panel (c); functions with the
shape of M, and M, are recovered by taking 1D slices
across this surface. The parameter v; is ignored here
as this serves only to shift the surface up or down.
Restrictions on the choice of parameters describing the
connectivity function are discussed in Section 3.2.

An additional linear threshold term v;p is used to
tune the maximum firing rate of direction-selected solu-
tions, whereas the constant threshold 7 is used to tune

Fig. 2 Profile of the connectivity function. (a) Form of the con-
nectivity M, in x-space and the corresponding Fourier transform
M,. (b) Form of the connectivity M, in v-space and the corre-
sponding Fourier transform M,. (¢) Full, coupled connectivity M.
The functions M, and M, correspond to the 1D slices at v =0
(black curve) and x = 0 (white curve), respectively
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the firing rate of homogeneous, non-direction-selected
solutions. It is convenient to include the linear thresh-
old term in the connectivity operator as this simplifies
the stability computations in Section 3.2. The choice of
all parameters is discussed in Section 4.

3 Analytic results in the absence of stimulus, kK = 0

In this section we discuss inherent properties of Eq. (2)
and its solutions without a stimulus input. The results
we obtain analytically provide a foundation of knowl-
edge about the different types of solution the model can
produce, the role of key parameters and a means to set
appropriate values of parameters based on mathemati-
cal and biological constraints.

We begin our study by looking at the symmetry prop-
erties satisfied by the connectivity and the governing
equation in Section 3.1. We show that Eq. (2) with the
connectivity J as described above is equivariant with
respect to a certain symmetry group. This important
property dictates the types of solution that can be
produced by the model. Furthermore, it determines the
type of bifurcations that occur.

In the single population model that we consider
here, the only types of solutions that we encounter
are steady states (or, persistent states). Given an initial
condition py, the time evolution of the equations can
be computed numerically; the particular initial condi-
tion chosen will determine which steady-state solution
the system converges to. It is important to note that
the transient dynamics encountered before the system
converges to a steady state can also be greatly affected
by the initial condition. In Section 3.2 we calculate
analytically the steady states that have the additional
property of being independent of both the physical
and direction space. For these spatially independent
solutions a constant level of activity persists across
(x, v)-space; this type of solution can be thought of as
the baseline activity that we would see in the absence
of a stimulus (or below the contrast threshold). We
give an expression that allows us to compute these
solutions depending on the system parameters. Also
in Section 3.2, we compute the eigenvalues and eigen-
vectors of the connectivity operator J (a spatial-mode
decomposition), which allows us in turn to compute the
stability of the steady-state solutions dependent on the
nonlinearity stiffness . We show that for small enough
A the steady-state solutions are stable. As A is increased,
the most destabilising mode of J, as determined by
its largest eigenvalue will become unstable at a critical
value of A. This critical value is the system’s principal
bifurcation point.
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We determine the type of the principal bifurcation
in Section 3.3. Furthermore, given the mode of J that
loses stability in this bifurcation, and given the symme-
try properties of the governing equation, we are able to
characterise the spatially dependent solutions produced
by the model. A normal form computation determines
the way in which the transition from spatially homoge-
neous solutions to spatially dependent solutions occurs
in the model.

3.1 Symmetry group

Here we discuss the symmetry properties of Eq. (2),
which will play an important role in determining the
type of bifurcation that the model produces. The
general concept is to specify the group of transla-
tions and reflections for which the governing equation
is equivariant. The same group of translations and
reflections, when applied to a solution of the equations,
will produce coexisting solutions; for example, we will
see in Section 3.3 that translational invariance in v
means that a direction-selected solution associated with
one specific direction can be translated by any angle
to give direction-selected solutions associated with all
other possible directions. Note that when a stimulus is
introduced, the symmetry group of the equations will
be in some way reduced and it is, therefore, important
to first identify the full symmetry group before its
introduction.

In order to simplify subsequent calculations we im-
pose periodicity on the spatial domain so that Q =
R/cZ for some ¢ € R; this simplification does not affect
the stability properties of the system (Faugeras et al.
2008). Let us consider the group, denoted I', of trans-
lations of R/cZ: a one parameter group parametrised
by a € R/cZ. An element I', of this group acts in the
following way on the variables (x, v, #):

Iy-(x,v,0)=x+a,v,0). (6)

In general the action of the group I" on the function p is

F-peo, )€ p (', v, 0), 7)
and more specifically for a translation in x:
Iy px,v,t)=pkx—a,v,l). 8
Let
F(p(x,v,10) = w +up(x,v,0)

—SIp(x, v, 1) + T); )

it can be shown that F is equivariant with respect to the
group I or, equivalently I'y, F(p) = F(I'y p).

Furthermore, the function F is equivariant with re-
spect to the reflection group generated by R which has
the following action on the variables and activity:

R-(x,v,t) = (—x,v,1), (10)
R-p(x,v,t) = p(—x,v,1). (11)

If we denote H, the group generated by I and R and
since we have

'y Lo, =T i4a, VYoai,02, € R/CZ,
R, =T_,R v R/cZ,
aeR/c (12)
I'y=1Id,
R*=1d,

the group H, is isomorphic to O(2), the group of two-
dimensional orthogonal transformations. Furthermore,
the equation F is equivariant with respect to the sim-
ilarly defined group H, generated by translation and
reflection in v. Therefore, F is equivariant under the
action of the symmetry group H = H, x H, which is
isomorphic to O(2) x O(2).

3.2 Spatially homogeneous solutions and their stability

Steady-state solutions are those for which %—’t’ =0. We
first consider solutions that are independent in both the
physical space x and velocity space v and the level of
activity across the population p is equal to a constant
value p € R*. To find these solutions we set the right
hand side of Eq. (2) equal to 0 and, thus, search for

solutions p to the following equation
up=SA[Ip+T]).

Given that for the normalised Gaussian functions we
have Ggx p = p and G; x p = p, we can further write

Mﬁ:S(A[(vl—vz—V3)ﬁ+T]), (13)

an implicit expression for p.

Next, we wish to determine the linear stability of
Eq. (2) at the solution p depending on system parame-
ters. The first task is to compute the spectrum of the
operator J. In order to do this we decompose J into
Fourier modes by obtaining its eigenvalues and the as-
sociated eigenvectors; this information will determine
exactly which (Fourier) modes of J have the greatest
destabilising effect. The eigenvalues ¢(;x) of J are given
by the following relation:

Cim =vgEG) gEU) — v 8L b1 (k) — w3, (14)
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where g£(j), gE(k) and gL(j) are Fourier coefficients
of the respective periodically extended Gaussian func-
tions. The coefficients b i(k) are defined as follows:

1 fork=0,
0 otherwise.

Eﬁm={ (15)
Due to the functions g£, g/, ¢£ and b being even, their
Fourier coefficients are real positive and even. Hence
we have fej ) = k-

The dimension of the eigenspace E(;x) associated
with each eigenvalue ¢(;x) depends on the indices jand
k. Here we let the indices (j, k) be positive numbers.
The eigenvectors x;x) are given by:

{1 j=0,k=0,
{eikv’ efikv} j: 0,k >0,
e
e ¢ ,e ¢

{ei(hfuk”) ei(@ k)

j>0,k=0,

Xk = (16)

k] 3

ei(k”_ifﬁ) e_i(ztj“rkv)} j>0,k>0.

’

The eigenvectors could equivalently be represented as
combinations of sin and cos functions.

Using the modal decomposition of J, we can obtain
an expression for the eigenvalues associated with the
solution p, for each Fourier mode of J. The sign of
the eigenvalue for each mode will tell us whether it is
stable (—) or unstable (4). We define S, to be the linear
coefficient in the Taylor expansion of § at the fixed
point p; note that we Taylor expand about A[(v; — v, —
v3) p + T]and S, depends on the values of several other
system parameters. By linearising about the solution p
of Eq. (2), we obtain the following expression for the
eigenvalues

(17)

By identifying the mode of J with the largest eigenvalue
(k> we can find the smallest value A for which p is
unstable. Indeed for small enough A the solutions are
stable as o(;x) ~ 0. For the values of o, o/ and of
used in this paper (see Table 1) and imposing certain re-
strictions on the values of vy, v, and v3;, we can identify
exactly which modes (j, k) are the most destabilising.
If we impose v; > 0, 0 < v; < v; and v, > v; then the
following properties hold:

QGky = =M+ AS183k-

e The mode (0, 0) is stable because .0y = vi — v2 —
vy < 0.
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Table 1 Default parameter values used in the numerical studies
in Sections 4.3 and 4.4

Parameter Default value Description

m 2 Decay rate

T -2 Constant threshold

V1 3 Diffusion coefficient
v 66 Inhibition coefficient
V3 1.5 Linear threshold

ol 0.5 Width of diffusion in x
a? 0.16 Width of inhibition in x
o) 0.16 Width of diffusion in v
A Free parameter Nonlinearity stiffness
k Free parameter Input gain

e The v gl()) l;ﬁ (k) term ensures that all modes for
which k& = 0 are stable.

e The positive v g£ () gE (k) term produces the desta-
bilising contribution, which is greatest for j = 0.

e Further, this destabilising contribution is greatest
for k closest to 0 and then diminishes for increas-
ing k.

Therefore, the largest eigenvalue ¢(; ) of J corresponds
to the mode (0, 1) followed by the subsequent modes
with increasing k. Accordingly, in the analysis that
follows it is convenient to drop the subscript j and to
assume that it is zero, such that ¢ = ¢ ). The largest
eigenvalue is ¢;; therefore, the smallest value of A for
which g« = 01is given by

I

Ae = —.
S1¢

(18)
This value A, is the system’s principal bifurcation point,
which we study in the next section. The term S; de-
pends on A and p, but values of A, can be found by
solving the following system for the pair (p., Ac):

o S ()"c [(])1 — V= VS)[)C + T])

c — ’

“w
" (19)

T Sk [ = v —v3)pe+ TP

By taking advantage of the equality &' = S(1 —9), it
was proved in Veltz and Faugeras (2010) that given
¢ < 0and ¢ > 0, the pair (p., A¢) is unique. These two
inequalities for the eigenvalues hold given the restric-
tions on vy, v, and v3 discussed above.

Bifurcation points associated with other modes that
occur as A is increased beyond A, can be found in a
similar fashion, however, it is the branch of solutions
that are born from the principal bifurcation that will
determine the types of spatially dependent solutions
that the model will produce.

C
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3.3 Normal form of the principal bifurcation point

In this section we classify the principal bifurcation point
by first, applying the center manifold theorem and sec-
ondly, giving the appropriate change of variables to re-
duce the system’s dynamics into a normal form; we now
introduce these concepts. In the previous section we
performed a modal decomposition of the connectivity
and computed the linear stability of Eq. (2) with respect
to perturbations in the different modal components.
For the different modal components, or eigenvectors
Xk (Eq. (16)), the sign of the associated eigenvalue
ok (Eq. (17)) gives the linear stability. In the case
when o(;x = 0 the stability is neutral; the parameter
value for which this occurs is the bifurcation point. At
this bifurcation point it is necessary to also consider
nonlinear terms in some parameter neighbourhood in
order to capture the local dynamics. A center manifold
reduction allows us to compute these nonlinear terms
by means of a leading order Taylor approximation; the
center manifold theorem allows us to prove rigorously
that the computed reduced system accurately captures
the local dynamics. A normal form computation is a
change of variables that classifies the type of bifurcation
present in our system and allows for the dynamics
local to the bifurcation point to be seen clearly. The
coefficients found in the normal form computation pro-
vide important information about the direction of bifur-
cating branches in terms of the bifurcation parameter
and the stability of these branches.

We prove in Appendix A that the relevant hypothe-
ses for the centre manifold hold in our case. This com-
putation depends both on the symmetry properties dis-
cussed in Section 3.1 and the fixed point stability analy-
sis from Section 3.2. Indeed, in the previous section
we identified the system’s principal bifurcation point as
given by the pair (p., A.), solutions to the system (19).
We now define respectively the first, second and third
order coefficients in the Taylor expansion of S at p,.
to be Sy, S and S;. We drop the subscript notation
for the eigenvectors x = € and ¥ = ™", which span
the two-dimensional eigenspace E; associated with the
eigenvalue ¢;. The eigenvalues ¢, (for the homogeneous
mode) and ¢, (for the j=0, k =2 mode) will also
appear in the analysis that follows.

Here we define a centre manifold on the two dimen-
sional eigenspace of ¢;. This centre manifold will be
independent of physical space x, therefore, the mani-
fold must be equivariant with respect to the reduced
symmetry group H,, which is isomorphic to O(2). Here
we introduce P the real valued solutions on the center

manifold, which it is convenient to express in terms
of a complex variable w. We decompose P into linear
components on the eigenspace E; and nonlinear com-
ponents orthogonal to E;. We set

Pzp_C+w'X+w.7+\p(w7wv)“_)"c)v w(t)ecv

(20)

where W is a grouping of nonlinear terms called the
center manifold correction. A simple change of coor-
dinates can be used to eliminate the constant term p,.
From (Haragus and Iooss 2010, Chapter 2), we have in
this case a pitchfork bifurcation with O(2) symmetry
and the reduced equation for the dynamics of w has the
following normal form equation

d
d—'f = aw(h — o) + bwlwl? + O(w|(A — A2 + [w]*),

1)

together with the complex conjugated equation for w.
Indeed, due to the fact that the reduced equation for
the dynamics of w must also be O(2)-equivariant, even
powered terms in the reduced equation are prohibited.
We define the parameter dependent linear operator
L, = —pld + A8, J, which represents the linearisation
of the right hand side of Eq. (2) at p.. The linear
coefficient a can be determined by considering the
action of L, on the eigenvector x (equivalently, on
the linear terms of P) at the bifurcation point given by
Eq. (18):

Ly-x=Fpn+2r850)x,

=(—u+Ar851%) - x,

"

= (— +)\’— s

(—n kc) X
n

==X X,

Ac( X

which, by comparing with Eq. (21), gives a = - > 0.
The fact that a is positive means that the principal
solution branch is stable before the bifurcation point.
Note that the linear term disappears at the bifurcation
point A = A. and it is necessary to consider higher order
terms in order to quantify the dynamics. The sign of
the cubic coefficient b determines the direction of the
bifurcating branch; see Fig. 3 for the two possibilities
when a > 0. We now use the expression for solutions
P on the center manifold to determine the coefficient
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b in terms of our model parameters. Substituting the
expression (20) for P into Eq. (2) we obtain

dpP AZS
o = CHA RSP~ po) + 2(J(P = po)
t —_— 2
Ly,
23S
+=% S(J(P = po))’ + O(PY), (22)

where J(P — p.) = Qiw - x + {iw - ¥ + JV and the lin-
ear terms are collected in the operator L, . Higher
order terms in the Taylor expansion may be neglected
given the form of Eq. (21) assuming that a and b are
non-zero. It remains to determine the coefficient and b
by matching terms between Egs. (21) and (22).

In order to compute b we Taylor expand W at A = A.:

[o.¢]
W(w,w,0) = Y Ypgwfu,
p.q=2

where the coefficients /,, are orthogonal to the eigen-
vectors x and . We identify terms with common
powers in the Taylor expansion in order to obtain the
following equation to be solved for b:

)\‘2

S
L, Wy + 62 2QJU G + 20Ws00 )

A3 S, _
+ CT3§13X2X =by.

After some calculations given in Appendix B, we obtain
the following expression for b:

b= )\34‘13 & + )"CS% 4—0 + ;2

RN CONIE

(23)

As we can see from Eq. (23), the criticality of the
pitchfork bifurcation, as determined by the sign of b,
depends on all system parameters in a complex way. We
briefly discuss the implications of this criticality in our
model.

e )b < 0: The bifurcation is supercritical (Haragus and
Tooss 2010). The new branch of solutions exist
after the bifurcation, i.e. for A > A.. Furthermore
the branch of solutions will be stable (attracting)
local to the bifurcation. In our model, for increas-
ing A passing the bifurcation point, there would
be smooth transition (smooth change in activity
levels) from spatially homogeneous solutions to a
direction-selected solution.
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e )b > 0 The bifurcation is subcritical (Haragus and
Tooss 2010). The new branch of solutions exist be-
fore the bifurcation, i.e. for A < A.. Furthermore the
branch of solutions will be unstable (repelling) local
to the bifurcation. In our model, for increasing
passing the bifurcation point, there would be non-
continuous transition (jump in activity levels) from
spatially homogeneous solutions to a direction-
selected solution (see below for explanation).

Sketches of the bifurcation diagrams for the two cases
are shown in Fig. 3. In the second case, and from
the analysis in Veltz and Faugeras (2010), we know
that the unstable branch existing for A < A, must also
have a fold bifurcation Ay at some point 0 < X < A..
Thus the unstable branch of solutions existing for A <
Ac will change direction and stability at A ;. For Ay <
A < A. there are coexisting stable solutions and for
A > A, the direction-selected solution is the only stable
one. Therefore, passing the bifurcation at XA, results
in a jump from spatially homogeneous solutions to a
direction-selected solution.

Ultimately we need to choose a value of A such that

1. In the absence of a stimulus there are no direction
selected solutions;

2. When a stimulus is introduced a solution is selected
that is intrinsically present in the model.

For A too large the model will produce direction-
selected solutions in the absence of a stimulus. For A too
small the solutions will be purely driven by the stimulus
once it is introduced, the connectivity that dictates the
solutions intrinsically present in the model will not play
a role. Therefore, for the case b < 0 we must choose a
value close to but still less than A.. For the case b > 0
we must choose a value close to but still less than A f.

||b<0 (a)||b>0 (b)
)‘c A )1f I)\c A

Fig. 3 Sketch of bifurcation diagrams in A for some norm |.| of
a (a) supercritical or (b) subcritical pitchfork. Lower solution
branch corresponds to spatially homogeneous solutions, upper
solution branch corresponds to direction-selected solutions; sta-
ble parts are black, unstable parts are grey. Pitchfork occurs at
Ac and in (b) there is a fold bifurcation on the direction-selected
branch A ¢; arrows indicate temporal dynamics when passing A,
on the lower branch
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The bifurcating branch of solutions is characterised
by the mode involved ((j, k) = (0, 1)), that is, the so-
lutions will be uniform in physical space and will have
a single maximum in v-space; we can think of the
maximal point as being centred at a selected direction.
Hence, we refer to solutions on the bifurcated branch
as direction-selected solutions. Secondly, due to the
O(2) symmetry in the absence of a stimulus, taking
a direction-selected solution, we know that it will still
be a solution under any angular translation in v; i.e.
there continuum (or ring) of solutions representing all
possible selected directions.

4 Numerical results

In order to progress in the study of our model, we
make use of computational tools. In Section 4.1 we take
advantage of the analytical results from Section 3 in
order to explore properties of the model dependent
on parameters and to determine relevant ranges of
the parameters. In Section 4.2 we build on the normal
form computation from Section 3.3 by computing the
bifurcated branch of solutions using numerical con-
tinuation. We compute the relationship between the
activity levels along the bifurcated branch and certain
parameters in order to fix their values. An in depth
study of the solution structure of the model varying two
parameters is given in Section 4.3. We identify a region
of interest in parameters space, which we study in more
detail in Section 4.4. In particular we investigate the
temporal dynamics of the model which provides insight
into the relation between the model’s solution structure
and different stimulus driven responses.

The default parameter values that we use in Sections
4.3 and 4.4 are given in Table 1. We can arbitrarily
set the decay parameter to u =2 and the diffusion
parameter to v; = 3. Equally, these could be set to
equal 1, however, the chosen values lead to all system
parameters being of roughly the same order of magni-
tude, which facilitates the computations with Trilinos.

The activity levels for steady states of Eq. (2) are
bounded by [0, i]. In order to simplify the presentation
of the results it is convenient to give activity levels in
terms of either the max-norm pp,,x or Lp-norm |p| as
a percentage of the maximum value ﬁ For the spatial
connectivity, the surround width is set by o! which is
three times that of the centre width region o? (Tadin
et al. 2003). The spatial extent of the stimulus is roughly
1.5 times larger than the surround width. The width of
the excitation in direction space is set by ! to be about

20°. This relatively tight tuning allows for the model
to produce direction selected solutions (tuning curves)
of widths appropriate for distinguishing between the
main percepts H, V and D; tuning widths are discussed
further in Section 4.2. Finally, it remains to set values
for T, v, and v3, which we do in Sections 4.1 and 4.2.

4.1 Parameter tuning

Ultimately, we will operate the model at a value of X
close to the either A, or A ¢, depending on the coefficient
b, as discussed in Section 3.3. We wish to determine an
appropriate firing rate for the spontaneous activity. We
do this by investigating the value of p., which will be
approximately the same as the activity before the bifur-
cation. In the experimental study (Sclar et al. 1990) the
contrast response curves of neurons at various stages of
visual processing, including MT, were found. The data
were fitted with the standard Naka—Rushton function
characterising low responsiveness at low contrast, fol-
lowed by a region of high sensitivity where the firing
increases rapidly, which eventually plateaus out at some
maximal firing rate. From this data it appears that at
very low contrast (in the absence of a stimulus), the
firing rate is at approximately 5-20% of the maximum
firing rate. It is therefore appropriate to set model para-
meters such that 5% < p. < 20%. Figure 4(a) and (b)
show the dependence of p. and b on the threshold
parameter T, used to set the spontaneous activity level,
and v, the inhibition strength; all other parameters are
set to the values in Table 1. Note that for each value
of p. there is an associated unique value of A, given by
Eq. (19); it is possible vary T and v, linearly such that
the argument of S in the first equation is fixed, which
explains the affine relationship in Fig. 4(a). The same
property carries through to the Taylor coefficients S,
and S3 and to the values of b given by Eq. (23).

For a given value of v, Fig. 4(a) provides the nec-
essary range of T for which we have 5% < p. < 20%.
Furthermore, for values of (v, T) in this range, we
always have the case b > 0 corresponding to a sub-
critical pitchfork bifurcation; this implies that it will be
necessary to operate the model close to Ay. In order
to set the final values of 7, v, and v, it is necessary
to consider the level of activity and tuning width of
the direction selected branch of solutions. In the next
section we use the information presented here, along
with the dependence of these solution properties on v,
and v; to determine the final values of the parameters
used.
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(a) Pc
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(5%,20%) WIS

b<0
1percritical

20 40 60 80 Vo 100
0 — 50
(b) b
° {40
T
(5%, 20%) 1%°
E 120

b<0
supercritical

20 40 60 80 1, 100

Fig. 4 Tuning the parameters 7 and v. (a) Grey scale map of
activity level p. at bifurcation point A.; plotted in both panels
are the contours 5% and 20% (grey) along with the contour 99%
(dashed black). (b) Grey scale map of the normal form coefficient
b as given by Eq. (23); plotted in both panels are the contours b =
0 (black); positive values correspond to a subcritical bifurcation
and negative values to a supercritical bifurcation. For |7| large
(white region in bottom left of (a), grey region in bottom left of (b))
the activity level is saturated at p. = 100% and b ~ 0 because the
Taylor coefficients S, ~ 0

4.2 Solution structure in the absence of stimulus

We now look at numerically computed solutions in the
absence of stimulus (k = 0). In Section 3.3 it was shown
that the system’s principal bifurcation is a pitchfork
with O(2)-symmetry; furthermore, it was shown in the
previous section that this pitchfork bifurcation is sub-
critical for the parameter values specified in Table 1.
We now employ numerical continuation to compute
directly the bifurcated solution branch under the varia-
tion of L. We use the continuation package LOCA, part
of the Trilinos package of numerical tools. We use a
discretisation of 37 points for both the physical space
x and direction space v, verifying that the integrals
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involved in the solution of the equations satisfy suitable
error bounds; such a discretisation gives rise to a system
of 1369 ordinary differential equations (ODEs), which
resulted in manageable computations with Trilinos. In-
creasing the discretisation further results in a drastic
increase in computation times.

Figure 5(a) shows a bifurcation diagram in the para-
meter A in the absence of a stimulus. As predicted from
the analytical results herein and Veltz and Faugeras
(2010), the pitchfork bifurcation P; from the homo-
geneous (lower) branch of solutions is subcritical and
the bifurcated (upper) branch undergoes a fold bifur-
cation at F;. Here we have A, =22.1 and Ay =15.4.
Therefore, it will be necessary to operate the model
with A < 15.4 such that direction selected solutions do
not exist in the absence of a stimulus. Due to the O(2)-
symmetry properties of the solutions on the bifurcated
branch, the direction selected solutions are invariant
to translations in v (there is a continuum, or ring,
of solutions corresponding to all possible directions).

Fy

0

15 20 25 30

0 5 10\
(v) ©
D 80 C
90 p 8o
v 60 60
0

-90 20 20
-1 0 x 1 0 0

-90 0 v 9

Fig. 5 Model solutions in absence of stimulus. (a) A bifurcation
diagram varying A for k = 0 and the parameter values given in
Table 1, where the solution norm is | p|; branches of steady-state
solutions are plotted with stable sections black and with unstable
sections grey. The lower branch of solutions are spatially uniform
in both x and v; for increasing A the branch loses stability in
a subcritical pitchfork bifurcation at P;. The bifurcated branch
represents direction-selected solutions (modulated in v but still
uniform in x); a change in stability occurs at the fold bifurcation
F;. (b) Activity p plotted over the (x, v)-plane for the direction
selected solution indicated by a diamond marker on the upper
branch in panel (a). (¢) Cross section in v at an arbitrary value of
x from panel (b)
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Panels (b) and (c) show a direction-selected solution
from the upper branch centred at an arbitrary direction;
the same solution exists for any translation in v. These
direction-selected solutions are modulated in v, but are
still uniform in physical space x; it is only later, with
the introduction of an input, that the model produces
responses that are also modulated in x (see Fig. 8).

In order to set values of the parameters v, and vs
we investigate how certain properties of the direction-
selected solutions change with respect to these parame-
ters. Firstly, the solutions should have a suitable tuning
width in v-space and, secondly, the activity should not
be close to saturation. Given that we will operate the
model at a value of A close to Ay, it is convenient to
study these properties at the fold point Fi, as shown in
Fig. 5(a), and how they change under variation of the
v, and v3. Note that as we vary either v, or vs, the value
of A for which the fold bifurcation occurs also changes.
Therefore, we perform two-parameter continuation in
A and k, varying one parameter to satisfy the condition
that the system be at a steady state and a second
parameter to satisfy the condition that the system also
be at a fold bifurcation.

We define wi to be the tuning width in v of the direc-
tion selected solutions at half-height. Figure 6(a) shows
the variation of w, at the fold point F; with respect
to vy, for convenience of presentation we do not show
the variation of A. As v, is increased (greater lateral
inhibition) the tuning width decreases. Introducing the
linear threshold term (v3 = 1.5) does not change this
characteristic, but shifts the curves up. It is necessary to
set a value of v, such that the tuning width is less than
45° in order to make the distinction between solutions
moving diagonally or vertically/horizontally as shown
in Fig. 1. At v, = 66, which gives w1 € (30°, 40°), the
maximum level of activity for the direction-selected
solution is shown in Fig. 6(b). Imposing the condition
that pmax < 50% at F), the system should still exhibit
suitable sensitivity to changes in the input gain when

100

w1 (a) | Pmax (b)
20
40 ¥ 5 \
30
20

0
40 60 80 15 100 0 0.5 1 15 p32
Fig. 6 Tuning of parameters v, and vs. (a) Dependence of

velocity tuning half-width w 1 on 1 at fold point Fy; black
curve computed for vz =0, g}ey curve computed for vz = 1.5.
(b) Dependence of maximum activity level for direction-selected
solutions pmax on v3 computed for v, = 66

the stimulus is introduced. We arrive at a choice of
(v2, v3) = (66, 1.5), which gives wi A~ 40° and pmax &
48%.

Overall, in the last two sections, we have explored
the relationship between the three parameters 7', v, and
v3 and properties of the homogeneous and direction-
selected solutions. This has allowed us to set suitable
values of these parameters such that the solutions pro-
duced by the model satisfy important biological and
mathematical constraints; refer back to Table 1 for the
parameter values used in the subsequent sections.

4.3 Introduction of stimulus and two-parameter
analysis

From the results presented in the previous section we
know that the sigmoidal slope A should be set at a
value for which the model cannot spontaneously pro-
duce direction-selected solutions. This gives rise to the
requirement that A < 15.4 so as to be at a A-value less
than the first fold point labelled F; in Fig. 5. We now
investigate the solutions when a stimulus is introduced
to the model by increasing the stimulus gain parameter
k from O; this is analogous to increasing the stimulus
contrast. Recall that the stimulus described in Section 1
has the form shown in Fig. 1(c) when represented in the
(x, v)-plane.

Figure 7 shows one-parameter bifurcations diagrams
in k initialised at the values of X indicated in the pan-
els. In order to see the solution structure clearly the
diagrams are shown with k on a logarithmic scale. In
panels (a), (b) and (c) solutions are plotted in terms
of the the norm |p|; note that in panel (c) this allows
the main solution branch at a lower activity level to be
distinguished from the solution branch associated with
the percept D. In panel (d) we plot solutions in terms
of the average direction v in order to distinguish be-
tween the solutions associated the percepts H and V.

At ) = 12.5, as shown in panel (a), there is a single
branch of stable solutions on which no bifurcations are
encountered. The solutions effectively mimic the input
stimulus along the solution branch and the level of
activity increases with k.

At A = 13, for increasing k bifurcations are encoun-
tered at the fold points labelled F and F}, the sub-
critical pitchfork P; and the supercritical pitchfork
P,. With the introduction of the stimulus, the O(2)-
symmetry of the pitchfork for k = 0, as discussed in the
previous section, is broken. We now find that the pitch-
fork bifurcation at P; gives rise to a pair of direction-
selected-solution branches, as opposed to a continuum
of solutions at all possible directions when k = 0 as dis-
cussed in Section 4.2. The two branches are associated
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’4‘0 (a) <« Fig. 7 Branches of steady-state solutions are plotted for vary-
]1;5- ing bifurcation parameter k (shown on a logarithmic scale) as

with the directions H and V and the branches undergo
a fold bifurcations F' and F), respectively. These two
fold points coincide when plotted in terms of the solu-
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computed for different values of A; stable sections of solution
branches are black and unstable sections are grey. Changes in
stability occur at fold bifurcations (black points) and pitchfork
bifurcations (black stars). In panels (a), (b) and (c) solutions are
plotted in terms of the L,-norm of the solution vector |p| for
A = {12.5, 13, 14}, respectively. The inset in panel (c¢) shows the
largest eigenvalue {max along the two upper solution branches
from the main panel over the range of k as indicated by vertical
dashed lines. Panel (d) shows the same solution branches as in
panel (c¢), but in terms of the average direction v

tion norm |p|. The pair of direction-selected branches
reconnect at the supercritical (for k& decreasing) pitch-
fork P,. The main solution branch (that mimics the
input stimulus and has a lower level of activity than
the bifurcated branch) is unstable between P; and Py;
it coexists with the direction-selected solutions.

At & = 14, as shown in Fig. 7(c), the same bifurca-
tions are encountered as for A = 13, but with F{I, F!
and P, at lower values of k, and P, at a larger value
of k. The significant difference is the introduction of
two pairs of fold bifurcations F,, F3 and Fy, Fs on
the main unstable branch of solutions. This series of
bifurcations gives rise to an unstable direction-selected
solution between F, and Fs. For values of k between
F, and F;s the inset shows the largest eigenvalue on the
unstable direction-selected branch (grey) and the two
symmetrical direction-selected branches (black). Close
to F,, the largest eigenvalue is positive but very close
to zero implying that the solution is weakly unstable in
this region. Figure 7(d) shows the pair of symmetrical
direction-selected branches with average direction v
as the solution measure. The unstable solution corre-
sponding to D (v = 0°) is shown in Fig. 8(a) and the
stable solutions corresponding to V (v ~ 45°) and H
(v ~ —45°) are shown in Fig. 8(b) and (c), respectively.
We note that a slightly elevated level activity persists
outside of the aperture (stimulated region), which is
a consequence of the underlying solutions encoded by
the connectivity as shown in Fig. 5 that have a single
direction selected across the entire physical space. It is
suggested that this (subthresold) activity could facilitate
further recruitment of direction selection beyond the
aperture edges. See, for example, Shimojo et al. (1989)
where experiments were carried out using gratings
masked by multiple apertures.

The pitchfork and fold bifurcations encountered in
the one-parameter bifurcation diagrams presented thus
far are codimension-one bifurcations that lie on curves
in the parameter plane and, can therefore, be tracked
under variation of two parameters. Indeed, the neces-
sary routines to achieve this are implemented in the
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Fig. 8 Three possible direction-selected solutions. Panels (a),
(b) and (c¢) show, for A = 14, k = 0.3, three possible direction-
selected solutions corresponding to the unstable diagonal
(D), stable vertical (V) and stable horizontal (H) percepts,
respectively

package Trilinos. Figure 9 shows the locus of pitchfork
bifurcation P and the loci of fold bifurcation Fy, Fy,
Fp and Fr over the (1, k)-plane; note that Fy and Fy
coincide and that Fp is associated with the unstable
D solution. In order to illustrate how solutions are
organised we consider three one-parameter slices of the
parameter plane. Indicated by vertical dashed lines in
Fig. 9, the slices correspond to the three one-parameter
cases shown in Fig. 7. Firstly, for the trivial case at A =
12.5 the corresponding slice in Fig. 9 does not intersect

0.1

0.01¢

12.5 13 13.5 14y

Fig. 9 A two-parameter bifurcation diagram is shown in the
(A, k)-plane where the locus of pitchfork bifurcation P is a black
curve and the loci of fold bifurcations Fp y, Fp and Fr are a
grey curves. The point where the coinciding fold curves Fp v
terminate at an intersection with the pitchfork curve P is indi-
cated by black point. One-parameter slices indicated by vertical
dashed lines correspond to the bifurcation diagrams for fixed
A and varying k shown in Fig. 7; the labels along these slices
correspond with the bifurcation points in Fig. 7

the pitchfork or fold curves. At A = 13, for increasing k
the first (simultaneous) intersection is with Fy; i (corre-
sponding to F and F)), followed by P (corresponding
to P;), and P again (corresponding to P,); compare
Figs. 9 and 7(b). Finally, at A = 14, for increasing k the
intersections occur in the following order Fg vy, Fp, P,
Fr, Fr, Fp and P; these intersections correspond to
the bifurcation points FlH’V, P, F,, F5, F4, Fs and P,
in Fig. 7(c). We are now able to summarise the type
of solutions that exist in different regions of the (1, k)-
plane. Outside of the region bounded by P and below
Fp v, there are no direction selected solutions. One can
think of Fy v representing a contrast threshold in & that
changes with respect to A. For A too small, the solutions
are purely stimulus driven. In the region between Fp y
and P the homogeneous solution is stable and coexists
with the two direction selected solutions. Inside the
area bounded by P, the system’s homogeneous solu-
tions are unstable and there are always two direction
selected solutions corresponding to H and V. For points
in the region bounded by P and also to the right of
Fp, there exists stable solutions associated with H and
V, and an unstable solution associated with D. We
identify this as a region of interest for which we expect
the model to qualitatively reproduce the behaviour
observed in experiment.

4.4 Temporal dynamics

By means of an in-depth, two-parameter bifurcation
analysis we have identified a region of interest in pa-
rameter space for which the model produces two sta-
ble direction-selected solutions corresponding to the
horizontal (H) and vertical (V) percepts, and one un-
stable direction-selected solution corresponding to the
diagonal (D) percept. We know that in this parameter
region the system will converge to one of the stable
percepts; in this section we study how the unstable
solution D plays a role in the temporal dynamics. At
the chosen parameter values in Table 1 with » = 14, the
model produces a low level of homogeneous activity
in the absence of stimulus k£ = 0. We take this homo-
geneous state as an initial condition for simulations
with a random perturbation drawn from a standard
uniform distribution in order to introduce a stochastic
element. The equations remain deterministic, but we
introduce variability in the initial conditions for each
simulation. First, we present an example simulation and
define some quantities that characterise the temporal
dynamics; next, we study how the temporal dynamics
change with respect to the strength of the input gain
k. The reader may find it helpful to refer back to the
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bifurcation diagrams Fig. 7(c) and (d), which show the
solution branches corresponding to H, D and V.
Figure 10 shows an example of the temporal dynam-
ics produced by the model in the region of parameter
space with solutions corresponding to H, D and V, (see
Section 4.3). The behaviour can be broken into three
phases: (1) initially no specific direction is selected but
there is a slightly higher level of activity for stimulated
directions, (2) the first direction-selected solution to
appear corresponds to D but the system diverges from
this unstable solution, (3) the final direction-selected
solution corresponds to either H or V and the system

—100

180

0
-180 -135 -90 -45 vO 45 90 135 180

] (b)
p
20 tl :t2
107——J
O i
0 50 t 100 150 200
11
_ C
o . ©
—\ tQ
L A - 4
0 50 t 100 150 200

Fig. 10 Example of temporal dynamics for (1, k) = (14, 0.3) ini-
tialised from random initial conditions. (a) Grey scale map show-
ing the evolution activity levels p(x, v, t) with time on the vertical
axis. The state vector p is indexed locally by position in physical
space x and globally by position in direction space v and it is,
therefore, convenient to show v-position on the horizontal axis.
At the time-point labelled ¢; (horizontal white dashed line, star in
panels (b) and (¢)) there is a transition to the diagonal direction-
selected solution. At the time-point labelled #, (horizontal white
line, point in panels (b) and (c)) there is a transition to the final
steady-state, direction-selected solution. (b) Time-evolution of
|pl; the time-mark #; is the point of steepest increase for |p|.
(¢) Time evolution of the average direction v with horizontal
dashed black lines indicating the two possible final steady-state
solutions. The time-mark #, is taken as the first point where the v
is within 3° of the final selected direction
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will remain at this stable solution after convergence.
The point in time of the transition from phase 1 to
phase 2 is denoted ¢, phase 2 to phase 3 is denoted
t, (see panels (b), (c¢) and accompanying caption for
definition of #; and f,. The time-mark #; coincides with
the first appearance of a direction-selected solution,
in this case D. The time-mark ¢, coincides with the
convergence of the solution to either H or V. These two
quantities characterise the temporal dynamics of the
system as transitions are made between the solutions
associated with the different percepts.

We now investigate the way in which the charac-
teristic quantities #; and #, vary depending on initial
conditions; as such we study their distribution in time
based on many simulations initiated with random initial
conditions. Furthermore, we study the dependence of
these distributions on the parameter k. For a range of
discrete values of k € {0.2, 0.7}, we run at each k-value
N =500 simulations. Figure 11 shows a summary of
the statistics of the distributions of ¢, and ¢, depending
on k. The results show that as k increases, the mean
value of #; decreases (D is perceived sooner) as does
the mean value of 5,-t; (the switch from D to either

400f : : : : —
t (a)

300f 1
200f

100f

0.2 0.3 0.4 0.5
400f : ; ;

¢ (b)
300} 1

k 0.6 0.7

200f

100f

02 0.3 0. 05 k 0.6 0.7
k=0.25 k=0.5

100 ()] 100 (d)

50 50

0 0
0 100 ¢ 200 0

100 ¢ 200

Fig. 11 Variability and skewness of the time-marks #; and 7
dependent on the parameter k. At each k-value the data from
N =500 simulations with random initial conditions is shown.
(a) Mean value of ¢ is plotted in black and of f, in grey over a
range of values of k with error bars showing the standard devia-
tion. (b) Similarly, the median is plotted with error bars showing
the first and third quartile of the distributions. (¢), (d) Example
histograms of #; in black and 1, in grey for k = 0.25 and k = 0.5,
respectively
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H or V occurs sooner). Another important property
is that for smaller values of k, there is a large spread
for t, with a long tail extending off to large values of
t. This can be explained from the bifurcation results
presented earlier, specifically, the unstable branch of
solutions corresponding to D and the pair of stable
solution branches corresponding to H and V as shown
in Fig. 7(c), (d). The inset of Fig. 7(c) shows the
largest eigenvalues along the solution branches for the
parameter values considered here. For the unstable
solution corresponding to D the largest eigenvalue is
indeed positive, but still very close to 0. Therefore,
very long transients can be observed resulting in a large
time being spent at the D solution. As k increases the
eigenvalue increases and the transient times decrease
resulting in less time being spent near D. Finally, for
large values of k the D solution is barely seen at all,
there is convergence directly to H or V.

We now look more closely at how the unstable so-
lution D affects the dynamics at £k = 0.2 and k = 0.5,
in particular in terms of the distributions of the average
direction v taken at different time snapshots. At k = 0.2
the average f; = 280 and at k = 0.5 the average 1, = 34;
these two average times represent when the rate of
change of the system’s activity is greatest. Figure 12
shows histograms of v for time snapshots before #; (first
row) at f; (second row) and after #; (third row). In
the first case k = 0.2 there is a tri-modal short-term
response dominated by D (panel (a)), there is a tri-
modal medium-term response spread between H, D
and V (panel (c)) and there is a late-term tri-modal
response dominated by H and V (panel (e)). In the
second case k = 0.5, we see a shift from a uni-modal,

Case: k=0.2 Case: k=0.5
W21 t=200 ()| 2™ t=24 (b)
100 100
" "ol
0 0
40 20 0 20340 40 20 0 20 40
W20 =280 (o] 2 t=34 (d)
100 100
50 50
0 0
40 20 0 20340 <40 20 0 20 40
200 200
1s0f ¢ = 360 ( 150f =44 (f)
100 100
50 50
0 —~=flo 0
720 20 0 20340 40 20 0 204 40

Fig. 12 Histograms of the average direction v taken at three
different time snapshots for the two cases k = 0.2 and k = 0.5 for
N =500 trials

short-term response (panel (b)), that becomes a bi-
modal response for the medium- and late-term with no
peak at ¥ = 0 (panels (d), (f)). In the second case the
unstable solution D does not have an distinguishable
effect on the dynamics, there is a rapid convergence to
one of the two stable solutions.

5 Discussion

In this paper we presented a spatialised model of di-
rection selection that was used to study the dynamical
behaviour of multistable responses to the 1:1 ratio bar-
ber pole (a diagonally drifting grating viewed through
a square aperture). The aim was to reproduce, at the
cortical level, firing rate activity that can be related
to qualitative behaviour observed in psychophysics ex-
periments: the stimulus exhibits multistability of per-
ception for short presentations where the dominant
percepts are either (1) the diagonal direction of the
grating (D) (2) in agreement with horizontal (H) aper-
ture edge, or (3) in agreement with the vertical (V)
aperture edge (Castet et al. 1999; Fisher and Zanker
2001). The model reproduced this multistable behav-
iour, where the percepts H and V correspond to stable
solutions and the percept D to an unstable solution. The
temporal dynamics were investigated and it was shown
that early responses were dominated by the diagonal
percept, midterm responses were tri-modal between
the three percepts and later responses were dominated
by the two stable percepts H and V. This behaviour
is consistent with experimental findings that show an
early response dominated by 1D cues, which is later
refined by 2D cues (Barthélemy et al. 2010; Lorenceau
et al. 1993; Pack and Born 2001). One of the main
predictions to be made from these results is that the
percept D is only seen as a transient behaviour; for long
term presentations on the order of seconds either H or
V will be seen or perceived.

One of the main advantages of the model used
here is its simplicity; the philosophy was to reproduce
interesting behaviour observed in experiments with a
minimalistic set of features to perform motion inte-
gration. Given the particular stimulus studied in this
paper and its inherent symmetry properties, it was
important to utilise a framework, such as neural fields,
where these symmetry properties can be preserved.
Another positive aspect of working with a relatively
simple model is the small set of parameters that must be
determined, in contrast to, for example, the study Chey
et al. (1997) where a huge number of parameters must
be determined heuristically. The strategy employed for
setting model parameters took into account a number
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of important biological and mathematical constraints.
One of the main ideas was to ensure that the model
is operating close to its principal bifurcation where it
will be most sensitive to subtleties of the stimulus input
(Veltz 2011); the bifurcation analysis and other analyt-
ical results helped to ensure the model was operated in
the right parameter regime. For the remaining parame-
ters, we used numerical continuation to study the re-
lationships between a given parameter and biologically
relevant properties of the model’s solutions. We looked
at these relationships over a wide range of parameter
values and ensured that appropriate values were set.
The general principles applied to tune parameters are
applicable to a broad class of models that covers the
various possible extensions proposed below. In existing
studies of motion integration, behaviour was studied
at fixed parameters (Chey et al. 1997; Simoncelli and
Heeger 1998; Bayerl and Neumann 2004; Tlapale et al.
2010b); in certain cases the influence of a single term
is tested by setting its weight to zero. Here the two-
parameter continuation analysis allow us to determine
an entire region of interest in parameter space. Further,
the extended investigation in this region looked at the
dynamical behaviour taking into account the effect of
changing initial conditions. The two-parameter inves-
tigation also tells us that the behaviour produced is
robust over entire regions of parameter space.

An important question in studies of motion percep-
tion is identifying exactly what happens in the first
few hundred milliseconds of presentation. The most
insightful work so far has come from ocular following
experiments (Masson et al. 2000) and physiological
recordings from individual neurons (Pack and Born
2001). In order to support the results in this paper we
propose a psychophysics experiment that investigates
the same stimulus described in this paper with incre-
mentally increasing short presentation time in order to
identify the qualitative change in percept distributions
that were found in our model. We found a uni-modal
distribution in the short-term dynamics and a tri-modal
distribution for the medium-term dynamics. Further-
more, we predict that the D percept can only be seen
as a transient and for long enough presentation times
only the percepts H or V would be seen.

The model and results presented here not only cap-
tures a number of important aspects seen in experi-
ment, but also forms a solid basis for further study of
motion integration. One natural extension would be to
lift the one dimensional approximation of the physical
space. This would first of all allow for the validity of the
original approximation to be tested, further, it would
allow for other stimulus parameters such as the ter-
minator ratio to be tested for further comparison with
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the results of Fisher and Zanker (2001). More complex
aperture arrangements could also be considered such as
the cross-shaped stimulus studied in Castet and Zanker
(1999). A directional bias that varied from subject to
subject but generally towards the horizontal (Fisher
and Zanker 2001) is a feature of experimental results
that was not captured by our model. The most straight-
forward way to investigate this would be to consider an
asymmetry in the model’s input that assumes stronger
(or more numerous) inputs at the preferred direction.
The model in Tlapale et al. (2010b), implemented in a
similar framework to the one studied here, considers
a much more detailed description taking into account
filtering stages applied to the input along with feedfor-
ward and feedback interactions between MT and V1.
The methods used in this paper would be applicable to
models of much greater complexity though at the cost
of increasing the intricacy of analytical computations
and scale of numerical computations. The focus of this
article was multistable perception in the first few sec-
onds after stimulus onset, a similar model and stimulus
could be used to study perceptual switches that are
known to occur for extended presentations by consid-
ering an adaptation dynamic on a slow timescale such
as the one studied in Curtu and Ermentrout (2004).
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Appendix A: Centre manifold

Here, we show that the necessary hypotheses are sat-
isfied in order to apply the centre manifold theorem
as given in Haragus and Iooss (2010, Chapter 2). We
introduce some functional spaces in which the problem
defined by Eq. (2) is well-posed. We note F the Hilbert
space L*(Q x V,R), where Q = R/cZ and V = R/27Z,
endowed with the usual inner product

dx dv
c 2n’

c/2 T
(P1, P2)F Z/ / P1(x,v) pa(x, v)
—c/2J—m
We also note G the space L*(Q2 x V,R) C F. It is
then easy to show, using techniques similar to those
in Faugeras et al. (2008) and Veltz (2011, Chapter 4),
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that for any initial condition py(x,v) € F there is a
unique solution p(x, v, ), defined for all times ¢ > 0 and
continuously differentiable with respect to ¢ for all ¢ > 0.

Regarding the applicability of the parameter de-
pendent centre manifold theorem (Haragus and Iooss
2010, Theorem 3.3, Chapter 2), we consider the linear
operator L; defined in Eq. (22):

We note that J can be written K — v31d, where K is a
convolution operator (in effect a linear combination of
two convolutions with bounded convolution kernels).
From these remarks it follows that L; is in £(G, F),
the set of linear continuous operators from G to F, and
that it is a compact operator, hence that its spectrum is
discrete and the eigenvalues have finite multiplicity.

It is also not difficult to prove that ||(ia)Id —
L) e <= |w| and || (iold — L;) iz < m for w
large enough.

The next technical step is to do the change of vari-
ables p = p. + P, A = A, + n and to write an equation
for P as a function of the parameter 7. In detail we have

P _dp
ot ot
=—puPc+P)+S(c+n[J(pc+P)+T)).

We subtract from this equation

0= _:u'ﬁc + S()\c[-]ﬁc + T])v

to obtain

P _

i —uP+S(Ge+n[J(pe+ P)+T))
=S [Jpc+T)).

We then write

P _

5= Ly, P+S(Gc+m[J(pe+ P)+T))
=S [Jpe+T]) — AeS1JP.

If we define G(p, ») = S(A[Jp + T]), it should be clear
that A.S\JP = D,G(p;, A) P. From this follows the
fact that

R(P,n) =S((Ae+n)[J(pc+ P+ T))
=S [Jpe+T]) = AS1TP
= G(Pc+P,)»c+77)—G(ﬁc,)»c)

- DPG([]U )"c) Pv

is such that (use first order Taylor’s expansion with
integral remainder)

R(0,0) =0, D,R(0,0) =0,

and R is infinitely differentiable, because the sigmoid
S'is.

Therefore, all hypotheses necessary for applying
the parameter dependent centre manifold theorem
(Haragus and Iooss 2010) are satisfied and the compu-
tation of the normal form Eq. (21) is justified.

Appendix B: Normal form coefficient

In order to compute b we need to solve:

2

3;“3 X =bx. (24)

It is first necessary to obtain expressions for W;; and
W, by solving the following equations:

L, Wy + 51 =0, (25)

LAC“I’III —|— )\'CSZCI X7=O (26)

In order to solve Eq. (25) we decompose Wy, into
components on the eigenspace E;

‘I/‘glo = 00X + 020X

for some arbitrary coefficients oy and o9, and compo-
nents orthogonal to the eigenspace

\11'2_() — Z Ukeikv
Ikl #1

for coefficients vy to be determined. From

)\. S2
Ly Wy = ———=¢1x2,

we find that v, = 0 for k # £2 and that

A2So¢t

e TS WS )

The ¢, coefficient comes from the action of J on W.
Finally we have a general expression for Wy:

)“g S2§12 £i2v

Wy = ——<22L
T T2t AeSi100)

+ axx +a0X.

We obtain a similar expression for W;:

22852

V) =—-——
—n+ )\cslg()

+anx +anx.
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The ¢ coefficient comes from the action of J on W.
These expressions are further simplified by the fact that

at the bifurcation point ¢; = )\MSI , SO we have:
)\'352{2 i2v —_—
Uy = —lcelz +ax +a@0X, (27)
2(1-£)
A28y¢ _
U = —2L o +ang. (28)
1= %
“( 41)

Now to solve for b we take the inner product of Eq. (24)
with  which gives

b = (LW, %) +228:0 (W10, %) + (JWa0X, X))
B e

=0
)»2S3 o
+9 xR X) -
——

=1

Evaluating the remaining inner products we have

08t
(JUnox. %) = =L (627, %)
2u(l - &) —==

+ a0 (XX X) + 00 (X% X)
N —’

— —
=0 =0
S}
- &
2u(l = 2)
o LoAStd
(JUxT) = =2 (L)
pu(l — g) T
oy (X2 %) + @ (XX X)
—— ~——
=0 =0
_ QM2 828t
n( =)

Finally, we obtain the expression for b given in
Eq. (23).
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