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Characterizing entanglement of an artificial atom
and a cavity cat state with Bell’s inequality
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The Schrodinger’s cat thought experiment highlights the counterintuitive concept of entan-

glement in macroscopically distinguishable systems. The hallmark of entanglement is the

detection of strong correlations between systems, most starkly demonstrated by the violation

of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled

with a superposition of coherent states, known as a cat state. Here we use the Clauser–

Horne–Shimony–Holt formulation of a Bell test to characterize entanglement between an

artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity

measurements and real-time feedback, we detect correlations that surpass the classical

maximum of the Bell inequality. We investigate the influence of decoherence with states up to

16 photons in size and characterize the system by introducing joint Wigner tomography. Such

techniques demonstrate that information stored in superpositions of coherent states can be

extracted efficiently, a crucial requirement for quantum computing with resonators.
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Q
uantum information processing necessitates the creation
and detection of complex entangled states. Many physical
implementations aim to encode quantum information

into large registers of entangled two-level systems, or qubits.
Although originally proposed to investigate local hidden variable
theory1, a Bell inequality can be used to benchmark the ability to
entangle and extract information from an entangled two-qubit
system2. Using the Clauser–Horne–Shimony–Holt (CHSH)
variant3 of the Bell test, this violation has been demonstrated
with photons4,5, atoms6,7, solid-state spins8 and artificial atoms in
superconducting circuits9,10. However, quantum computation
necessitates the entanglement of large numbers of qubits. To
perform tasks such as quantum error correction, a physical
implementation must be capable of high-fidelity multi-qubit
entanglement, as well as the efficient detection multi-qubit
observables. For these larger, more distinguishable states,
creating and preserving entanglement becomes increasingly
difficult due to the rapid onset of decoherence11. Alternative
encoding schemes that use coherent state superpositions, known
as cat states12, take advantage of a cavity resonators much larger
Hilbert space, as compared with that of a two-level system. This
architecture allows redundant qubit encodings that can simplify
the operations needed to initialize, manipulate and measure the
encoded information13–15. For such a system to be viable as a
quantum computing platform, efficient measurement of such
encoded qubit observables must be possible. Using a circuit
quantum electrodynamics architecture16, we show efficient, high-
fidelity measurements of an encoded cat state qubit and
demonstrate this technology by detecting a violation of the
CHSH Bell inequality between the encoded cat state qubit and a
superconducting transmon qubit17. Furthermore, by the use of
coherent states in this composite system, we can investigate the
effects of decoherence by continuously varying the size of
prepared entangled states18,19, something unachievable with
discrete systems. These techniques provide an important set of
analytical tools for quantum systems composed of entangled
qubits and resonators14,19–23, and demonstrate that one can
exploit coherent state superpositions in resonators without
sacrificing measurement efficiency.

A resonator state can be completely described by direct
measurements in the continuous variable basis with the cavity
state Wigner function24. We extend this concept to express an
entangled qubit–cavity state in what we call the joint Wigner
representation. We construct this representation by performing a
sequence of two quantum non-demolition measurements (Fig. 1),
where a qubit state measurement is correlated with a subsequent
cavity state measurement. However, complete cavity state
tomography need not be required, and in fact many fewer
measurements could be used to characterize a state when
operating in a smaller, encoded subspace. By choosing an
encoding scheme where states of a quantum bit are mapped
onto a superposition of coherent states bj i and �bj i, we can
condense the joint Wigner representation down to just 16
correlations, equivalent to a two-qubit measurement set. Using
direct fidelity estimation (DFE)25,26 and CHSH Bell witnesses27,28

within this logical basis, we investigate this systems susceptibility
to decoherence by continuously increasing the cat state amplitude
b. We measure a range in which correlations surpass the Bell
inequality threshold and observe its reduction due to
decoherence, benchmarking the efficiency of our encoding and
detection schemes with cat state qubits.

Results
Creating the Bell-cat state. This experiment utilizes a circuit
quantum electrodynamics architecture16,17 consisting of two
waveguide cavities coupled to a single transmon qubit22,29.

One long-lived cavity (relaxation time ts¼ 55 mms) is used for
quantum information storage, while the other cavity, with fast
field decay (relaxation time tr¼ 30 ns), is used to realize repeated
measurements. A transmon qubit (relaxation and decoherence
times T1, T2E10 ms) is coupled to both cavity modes and
mediates entanglement and measurement of the storage cavity
state. All modes have transition frequencies between 5–8 GHz
and are off-resonantly coupled. The storage cavity and qubit
mode are well described by the dispersive Hamiltonian:

H=‘ ¼ osa
yaþ oq� waya

� �
ej i eh j ð1Þ

where a is the storage cavity ladder operator, ej i eh j is the excited
state qubit projector, os and oq are the storage cavity and qubit
transition frequencies, and w is the dispersive interaction strength
between the two modes (1.4 MHz). This interaction creates a shift
in the transition frequency of one mode dependent on the other’s
excitation number, resulting in qubit–cavity entanglement30.
As described in Fig. 1, the system is first prepared in a product
state cj i ¼ 1ffiffi

2
p gj i þ ej ið Þ � bj i, where gj i and ej i are the ground

and excited states of the qubit, and bj i is a coherent state of the
cavity mode. Under the dispersive interaction, we allow the
system to evolve for a time t ¼ p

w, creating the entangled state:

cBj i ¼ 1ffiffi
2
p g; bj i þ e; �bj ið Þ; ð2Þ

which we call a Bell-cat state22,29,30, mirroring the form of a two-
qubit Bell state (for example, cj i ¼ 1ffiffi

2
p ggj i þ eej ið Þ).

Correlating sequential high-fidelity measurements of the qubit
and cavity allows state tomography of this composite system. We
use a Josephson bifurcation amplifier31 in a double-pumped
configuration in combination32,33 with a dispersive readout to
perform repeated quantum non-demolition measurements with
qubit detection fidelity of 98.0% at a minimum of 800 ns between
measurements. With this sequence of two measurements, we
characterize the efficacy of our entangling scheme and efficiency
of measuring qubit–cavity observables with joint Wigner
tomography, DFE and a CHSH inequality. The results of these
tests illustrate our ability to recast the state encoded in the cavity
as one that has a small, simple set of observables that directly
mirrors that of the physical qubit.

Joint Wigner tomography. The first measurement detects the
qubit along one of its basis vectors {X, Y, Z}. This value is
recorded and the qubit is reset to gj i using real-time feedback.
The displaced photon number parity observable Pa of the cavity is
subsequently mapped onto the qubit using Ramsey inter-
ferometry24 before a second qubit state detection. The cavity
observable Pa ¼ DaPDw

a, where Da is the displacement operator
and P the photon number parity operator, is detected with 95.5%
fidelity. The Wigner function W að Þ ¼ 2

p Pah i is constructed from
an ensemble of such measurements with different displacement
amplitudes a. The correlations between the qubit and cavity states
make up what we refer to as the joint Wigner functions:

Wi að Þ ¼ 2
p siPah i; ð3Þ

where si is an observable in the qubit Pauli set {I, X, Y, Z}. These
four distributions are a complete representation of the combined
qubit–cavity quantum state (Fig. 2). While other representations
exist for similar systems34–37, Wi(a) is directly measured with this
detection scheme and does not require a density matrix
reconstruction. By an overlap integral (Supplementary Note 4),
we determine the fidelity to a target state F ¼ cBh jr cBj i
¼ p

2

P
i

R
WB

i að ÞWi að Þd2a, where WB
i að Þ are the joint Wigner

functions of the ideal state, cBj i and Wi(a) are the measured
joint Wigner functions (normalized), yielding a state fidelity
F ¼ 87 � 2ð Þ % for a displacement amplitude b ¼

ffiffiffi
3
p

. This
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amplitude was chosen to ensure orthogonality between logical
states bh j � bij j2¼ 6�10� 5 � 1 with minimal tradeoff due to
photon loss. Furthermore, the efficiency of our detection scheme
can be quantified by the visibility of the unnormalized
joint Wigner measurements V ¼ 2

p

R
IPah id2a ¼ 85 � 1ð Þ% .

Visibility V is primarily limited by measurement fidelity and
qubit decoherence between detection events (Supplementary
Note 5). The parameters F and V represent critical
benchmarks for creating and retrieving information from
entangled states.

Direct fidelity estimation. The number of measurement settings
required to perform cavity state tomography can be resource
intensive. Restricting to an encoded qubit subspace, only four

values of the cavity Wigner function W(a) are required to
reconstruct the state, known as a DFE25,26. For large cat states
bh j �bij j2� 1, the encoded state observables map to cavity

observables as:

Xc ¼ P0 Ic ¼ PbþP�b

Yc ¼ Pjp
8b

Zc ¼ Pb� P�b
; ð4Þ

where {Ic, Xc, Yc, Zc} form the Pauli set for the encoded qubit state
in the cavity (Supplementary Note 8). Cuts in the joint Wigner
function (Fig. 3) show these observables and their correlations to
the qubit as a function of cat state size. As the superposition state
is made larger, interference fringe oscillations increase, while
fringe amplitude decreases due to photon loss. For a state cBj i
with bj j ¼

ffiffiffi
3
p

, we estimate a direct fidelity FDFE ¼ 1
4 IIch iþð
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Figure 2 | Joint Wigner tomography of a Bell-cat state. (a) The set of joint Wigner functions Wi að Þ ¼ 2
psiPa represents the state of a qubit–cavity system

with correlations between the qubit observables si¼ {I, X, Y, Z} and cavity observable Pa reported for a state cBj i and displacement amplitude b ¼
ffiffiffi
3
p

.

Shown are measurements comprised of four panels IPa, XPa, YPa and ZPa of 6,500 correlations each between the qubit and cavity states. Interference

fringes in XPa and YPa reveal quantum coherence in the entangled state. (b) From the set of joint Wigner functions, we performed a density matrix

reconstruction to show the combined qubit–cavity state r in the Fock state basis. (c) Projecting r onto the logical basis F ¼ bj i bh j þ �bj i � bh j, produces

the reduced, unnormalized density matrix r0 ¼FrFw in the form of a traditional Bell state. The reduction in contrast of the off-diagonal components in r0 is

due to decoherence in the physical system during preparation and measurement.
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Figure 1 | Sequential detection for entanglement characterization. (a) A quantum circuit outlines the method to prepare and measure entanglement

between a qubit and cavity state using sequential detection. State preparation is performed by first creating a product state cj i ¼ 1ffiffi
2
p gj iþ ej ið Þ � bj i with a

cavity displacement Db of amplitude b and a qubit gate Rŷ
p
2

corresponding to a p
2 rotation around the ŷ axis. A conditional gate using the dispersive interaction

produces the entangled state cBj i ¼ 1ffiffi
2
p g; bj i þ e; � bj ið Þ. Tomography is performed by measuring an observable of both the qubit and cavity with

sequential quantum non-demolition measurements. A pre-rotation Ri allows qubit detection along one of three basis vectors X, Y and Z. The qubit is reset

and a cavity observable Pa is mapped to the qubit for a subsequent measurement, where Pa ¼ DaPDw
a is the displaced photon number parity operator.

Sequential detections are binary results compared shot-by-shot to determine qubit–cavity correlations. (b) The space spanned by the superposition of

quasi-orthogonal coherent states bj i; �bj i constitutes an encoded quantum bit in the cavity. While the cavity state can be represented by its Wigner

function, this logical state is also described by a vector within its encoded Bloch sphere. Shown is the encoded qubit bloch sphere denoting the þXc, þYc

and þ Zc encoded states; a diagram of the cavity Wigner function accompanies each of these three states. For well-separated coherent state

superpositions, the entangled state cBj i is then equivalent to a two-qubit Bell state.
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XXch i� YYch iþ ZZch iÞ ¼ 72 � 2ð Þ% putting a fidelity bound
on the target state with no corrections for visibility. This estimate
is related to the benchmarks reported above FDFE � V�F and
far surpasses the 50% threshold for a classically correlated
state. This indicates both high-fidelity state preparation and
measurement, and demonstrates that strong correlations are
directly detectable using joint Wigner tomography.

Bell inequality measurements. To place a stricter bound on
observed entanglement, we perform a Bell test on the measured
state. Although proposed to investigate local hidden variable
theory, the Bell test here serves to benchmark the performance of
a system that creates and measures entangled states8,9,10. Bell tests
using homodyne measurements have been proposed38,39;
however, here we choose the CHSH Bell test which states that
the sum of four classical correlations will be bounded such that:

� 2 � O ¼ AAch iþ ABch i� BAch iþ BBch i � 2 ð5Þ

where, in this experiment, A and B are two qubit observables and
Ac and Bc are two cavity observables. We perform two Bell tests
(Fig. 4) with correlations taken shot by shot with no post selection

or compensation for detector inefficiencies. In the first, we take
observables X(y)¼Xcos(y/2)þZsin(y/2), Z(y)¼Zcos(y/2)�
Xsin(y/2), Xc, Zc and sweep both qubit detector angle y
(Supplementary Note 11) and cat state amplitude b. We
observe a Bell signal with a maximal value O1 ¼ 2:30 � 0:04
at y ¼ � p

4 for b¼ 1. We witness a Bell signal surpassing
bounded values up to cat states of size b� � bð Þj j2¼ 16
photons19,29.

Measurements along Zc require assumptions on the symmetry of
the prepared state (Supplementary Note 8); we can instead employ
an alternative Bell test. Using a scheme similar to ref. 28, and
choosing observables X;Y ;Xc að Þ ¼ DjaXcDw

ja;Yc að Þ ¼ DjaYcDw
ja,

where a is a displacement amplitude corresponding to a rotation of
the encoded cavity state detector (Supplementary Note 11), we
observe a maximal value O2 ¼ 2:14 � 0:03 for b¼ 1. A lower Bell
signal is observed in the second test due to its greater sensitivity to
photon loss, yet in both tests two regimes are evident. For small cat
state amplitudes, the initial Bell signal is limited by the non-
orthogonality of the coherent state superpositions (Supplementary
Note 7), while for large displacements the system’s sensitivity to
photon loss results in a reduction of the Bell signal. Larger, more
distinguishable states quickly devolve into a classical mixture due to
the onset of decoherence, corresponding to the resolution of
Schrödinger’s thought experiment. However, for intermediate cat
state sizes, we observe Bell signals surpassing classical predictions
larger than statistical uncertainties in both tests.

Discussion
In this letter, we have demonstrated the efficient detection of an
artificial atom and a cat state in a cavity mode. We determine the
entangled state using sequential detection with high-fidelity state
measurement and real-time feedback on the quantum state. We
benchmark the capabilities of this detection scheme with DFE
and Bell test witnesses, which both reveal non-classical correla-
tions of our system. Besides characterizing the high degree of
entanglement in our Bell-cat, the tests detailed above also
demonstrate that simple encoding techniques allow for the
efficient extraction of information from states stored in a cavity,
illustrating the viability of measuring redundantly encoded states
in multi-level systems13,14. Furthermore, this implementation
provides a resource for quantum state tomography and quantum
process tomography of continuous variable systems and creates a
platform for measurement-based quantum computation and
quantum error correction using superconducting cavity
resonators15. Finally, these features can extend to multi-cavity
systems27, which will require entanglement detection between
continuous variable degrees of freedom and entanglement
distribution of complex oscillator states.

Methods
Measurement set-up. Experiments are performed in a cryogen-free dilution
refrigerator at a base temperature of B10 mK. Our output signal amplification
chain consists of two stages. A Josephson bifurcation amplifier31 operating in a
double-pumping configuration32,33 serves as the first stage, which is followed by a
high electron mobility transistor amplifier.

Fabrication techniques of the transmon qubit and the design of storage and
readout resonators follow the methods described in ref. 29. The refrigerator wiring
(Fig. 5), including the filters and attenuators used, are similar to that of ref. 22, but
with the addition of a feedback system, the details of which are discussed in a
following section.

Qubit–cavity parameters. The two-cavity, single-qubit system is well described by
the approximate dispersive Hamiltonian:

H=‘ ¼ osays asþorayr arþoqbyb

� Ks
2 ay

2

s a2
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Figure 3 | Qubit–cavity correlations. (a) Correlations are measured for

entangled states cBj i with cat state amplitudes ranging from b¼0 to 2.

Cuts in joint Wigner functions IPa and ZPa at Im(a)¼0 show the increasing

separation of the coherent state superpositions. Cuts in the joint Wigner

functions XPa and YPa at Re(a)¼0 reveal the interference fringe oscillations

dependence on cat state size, which increase in frequency with increasing

cat state amplitude. (b) By viewing just single cuts at b ¼
ffiffiffi
3
p

, we see

single-shot correlations (crosses) as compared with what is expected from

an ideal system with perfect preparation and measurement (solid line).

From the cuts in b we see the individual measurement settings used to

determine joint encoded observables {IIc, XXc, YYc, ZZc}. While XXc and YYc

can be determined from a single measurement setting, IIc and ZZc are

determined from the sum and difference of two different settings. From

these four correlations, we immediately find a fidelity to an entangled state

FDFE ¼ 1
4 IIch iþ XXch i� YYch iþ ZZch ið Þ ¼ 72 � 2ð Þ% .
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Where os, or and oq are the storage, readout and qubit transition frequencies, as,
ar and b are the associated ladder operators, and K and w are the modal anhar-
monicities and dispersive shifts, respectively. Supplementary Table 1 details the
Hamiltonian parameters of our system. The resonant frequency of the readout
resonator or/2p is determined by transmission spectroscopy. The qubit frequency
os/2p and storage cavity frequencies oq/2p are found using two-tone spectroscopy.

Qubit anharmonicity Kq is measured using two-tone spectroscopy to observe
the 0–2 two-photon transition17. Storage cavity anharmonicity Ks is determined by
displacing the cavity with a coherent state and observing its time evolution with
Wigner tomography. The resulting dynamics are characterized by state
reconstruction and Ks is observed by the state’s quadratic dependence of phase on
photon number. Finally, we predict the readout cavity anharmonicity Kr using its
approximate dependence on the measured values of Kq and the qubit-readout
dispersive shift wqr (ref. 40).

The dispersive shift between the qubit and the readout resonator wqr is found by
taking the difference in frequency between the readout resonance when the qubit is
in the ground and excited state. The dispersive shift between the qubit and the
storage resonator wqs is found using two methods: photon number-dependent qubit
spectroscopy41, and observing qubit state revival using Ramsey interferometry29.
Finally, wrs is predicted using its approximate relationship between Ks and Kr

(ref. 40).

Lifetimes and thermal populations. The lifetime of the storage cavity is deter-
mined by displacing to a coherent state, waiting a variable length of time, and then
applying a qubit rotation conditioned on zero photons in the storage cavity. This
allows a measurement of the time-dependent overlap of the cavity state with its
ground state 0j i dependent on time. The lifetime of the readout cavity is found
from its line width. The thermal population of the qubit is determined from a
histogram of one million single-shot measurements of the qubit thermal state,
where the signal-to-noise ratio provided by the Josephson bifurcation amplifier
allows discrimination between gj i and all states not gj i. The thermal population of
the storage cavity is found by taking the difference between parity measurements of
the thermal and vacuum states of the cavity. A vacuum state is prepared by first
performing two parity measurements on the thermal state and then post-selecting

such that all results give even parity, projecting the thermal state onto 0j i. Finally,
the known thermal population of the readout cavity is bounded by the dephasing
rate Gf of the qubit: Gf ¼ �nthk, where �nth is the readout cavity’s thermal occu-
pation and k is the readout single-photon decay rate42. Coherence properties are
summarized in Supplementary Table 2.

Measurement fidelities. We define single-shot measurement fidelity as
Fq ¼ P g gjð Þþ P e ejð Þ

2 , where P(g|g) and P(e|e) are the probabilities to get gj i ej ið Þ,
knowing that we start with gj i ej ið Þ. The state gj i is prepared through purification
of the qubit thermal state with real-time feedback (see the following section).
Given a preparation of gj i, we have a 98.5% chance of measuring gj i again
(P(g|g)¼ 0.985). Likewise, we find P(e|e)¼ 0.975 by preparing gj i and rotating the
state to ej i. This gives a single-shot measurement fidelity of Fq¼ 98%. We find our
cavity parity measurement fidelity by purifying the storage cavity thermal state into
0j i then performing one of two kinds of parity measurement (Supplementary Figs 7

and 8; Supplementary Table 3). We report a parity measurement fidelity for n¼ 0
photons as Fc ¼ P g E1jð ÞþP e E2jð Þ

2 ¼ 95:5 % , where P(g|E1) and (P(e|E2)) are the
probabilities to measure gj i ej ið Þ, given that the parity is even for each of the two
measurement settings. We expect Fc to decrease with increasing numbers of
photons in the cavity due to single-photon loss during the measurement sequence.

Directly from these readout fidelities, the estimated visibility43 for correlated
observables Vest ¼ 2Fq � 1

� �
2Fc � 1ð Þ ¼ 87% . This allows us to predict the

maximum Bell violation possible given only measurement inefficiencies
Omax ¼ 2

ffiffiffi
2
p
Vest ¼ 2:47. In practice, V is directly related to the contrast of the joint

Wigner function (Supplementary Note 5), which we measure to be 85%. This
discrepancy is due to qubit decoherence, which is studied further in Supplementary
Note 2, and puts a more conservative estimate for the maximum Bell violation
achievable: Omax ¼ 2

ffiffiffi
2
p
V ¼ 2:40.

I/O control parameters. As shown in Fig. 5, we employ a field-programmable
gate array (FPGA) to implement an active feedback scheme. We use an X6-1000M
board from Innovative Integration that contains two 1 GS/s analogue-to-digital
converters, two 1 GS/s digital-to-analogue converter channels and digital
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Figure 4 | Bell tests with a cat state. A CHSH Bell test between a qubit and cavity is the sum of four correlations O ¼ AAch iþ ABch i� BAch iþ BBch i,
where A and B are observables of the qubit, and Ac and Bc are observables of the cavity. (a) We use correlations between qubit state observables X(y)¼X

cos (y/2)þZ sin (y/2) and Z(y)¼Z cos (y/2)�X sin (y/2) and encoded state observables Xc and Zc to perform a CHSH Bell test as a function of qubit

detector angle y. Shown in a are four traces that are the result of every possible combination of X, Z, Xc and Zc. A maximum Bell signal is found at y ¼ � p
4.

(b) We report this maximum Bell signal for different cat state amplitudes b. Plotted points (black) are the average Bell signal for a given amplitude and

show the dependence of the entangled state with photon loss and detector visibility. Error bars denote the s.d. of the average signal due to random error as

a consequence of a limited sample size (N¼4,000). Solid lines describe the predicted trends given the measured cavity decay rate and detection visibility.

While the ideal behaviour (red) for an entangled state approaches O ¼ 2
ffiffiffi
2
p

, photon loss (green), detector visibility (blue) and their combined effects

(black) will ultimately limit the maximum Bell signal achieved. (c,d) Furthermore, we realize a second Bell test using qubit observables X and Y, and cavity

state observables Xc að Þ ¼ DjaXcDw
ja and Yc að Þ ¼ DjaYcDw

ja, where a corresponds to a tomography displacement amplitude serving as a rotation of the

effective cavity detector angle. There is a mismatch in the maxima obtained in the two different Bell tests due to increased susceptibility to photon loss in

the second test. (c,d) Both, however, show a violation at least four s.d.’s beyond the classical limit defined by the CHSH Bell inequality.
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(PC) for analysis. In this set-up, the top I/O board serves as the master, which accepts the readout signal, returns qubit state information, and using digital
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ŷ combined with an initial pre-displacement Da. This maps Pa to the qubit state, which is readout with a subsequent qubit

measurement. Correlations are reported as the product of detection events between measurements in c and d.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9970

6 NATURE COMMUNICATIONS | 6:8970 | DOI: 10.1038/ncomms9970 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


inputs/outputs all controlled by a Xilinx VIRTEX-6 FPGA loaded with custom
logic. We synchronize two such boards in a master/slave configuration to have IQ
control of both the qubit/storage cavity. IQ control over the readout cavity is
performed with a Tektronix AWG, which is triggered by the master board. The
readout and reference signals are routed to the analogue-to-digital converters on
the master board, whereafter the FPGA demodulates the signal and decides
whether the qubit is in gj i or ej i. The feedback latency of the FPGA logic (last in,
first out LIFO) is 320 ns. Additional delay for active feedback includes cable delay
(B100 ns) and readout pulse length with resonator decay time (320 ns). Thus, in
total, the qubit waits twait B740 ns between the time at which photons first enter
the readout resonator and the time at which the feedback pulse resets the qubit.

Implementations of feedback. Feedback is used three times during a single
iteration of the experiment. Before the state preparation (Fig. 6), we purify the
qubit state to gj i by measuring the qubit and applying a rotation Rp

ŷ if measured in
ej i. We succeed in preparing gj i with a probability of 99%. Second, when per-

forming qubit tomography we reset the qubit to gj i if it is measured to be in ej i.
Since we must wait twait before feedback can be applied, the cavity state will acquire
an additional phase wqstwait if the qubit is in ej i. In this case, in addition to resetting
the qubit, the FPGA applies an equivalent phase shift on the subsequent Wigner
tomography pulse. This feedback implementation does not close the ‘locality’
loophole for a CHSH Bell test and therefore cannot be used to test local realism.

Quantum measurement back action. The sequential measurement protocol
allows us to observe the result of quantum measurement back action of the qubit
on the cavity state. We prepare the system in a Bell-cat state as in equation (2) and
measure along one of the three qubit axes MqA{X, Y, Z}. For each measurement,
we observe one of two possible outcomes of the projected cavity state ccavj i:

Mq result 1 result 2
X N bj i þ bj ið Þ N bj i � bj ið Þ
Y N bj i � j bj ið Þ N bj i þ j bj ið Þ
Z bj i �bj i

ð7Þ

See Fig. 7 for each of these projective measurements on the Bell-cat state cBj i.
The method of using strong projective measurements for the create of cat states
has been demonstrated in previous works19. A second example of quantum
measurement back action using an entangled Fock state can be found in
Supplementary Fig. 9.
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