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In order to screen the disease-related compounds of a traditional Chinese medicine
prescription in network pharmacology research accurately, a new virtual screening
method based on flexible neural tree (FNT) model, hybrid evolutionary method
and negative sample selection algorithm is proposed. A novel hybrid evolutionary
algorithm based on the Grammar-guided genetic programming and salp swarm
algorithm is proposed to infer the optimal FNT. According to hypertension, diabetes,
and Corona Virus Disease 2019, disease-related compounds are collected from the
up-to-date literatures. The unrelated compounds are chosen by negative sample
selection algorithm. ECFP6, MACCS, Macrocycle, and RDKit are utilized to numerically
characterize the chemical structure of each compound collected, respectively. The
experiment results show that our proposed method performs better than classical
classifiers [Support Vector Machine (SVM), random forest (RF), AdaBoost, decision tree
(DT), Gradient Boosting Decision Tree (GBDT), KNN, logic regression (LR), and Naive
Bayes (NB)], up-to-date classifier (gcForest), and deep learning method (forgeNet) in
terms of AUC, ROC, TPR, FPR, Precision, Specificity, and F1. MACCS method is
suitable for the maximum number of classifiers. All methods perform poorly with ECFP6
molecular descriptor.

Keywords: virtual screening, network pharmacology, flexible neural tree, grammar-guided genetic programming,
salp swarm algorithm

INTRODUCTION

Computer-aided drug design (CADD) has gradually become an indispensable emerging technology
in the research and development of a new drug (Leelananda and Steffen, 2016; Tong et al., 2019;
Maia et al., 2020). CADD technology reduces the capital, time, and labor cost of drug development
and greatly improves the efficiency of the research and development of new drug (Gomeni et al.,
2001). Virtual screening is one of the important comprehensive technical means in CADD, which
is a process of discovering new ligands on the basis of biological structure based on the computer
methods (Guasch et al., 2016; Olubiyi et al., 2020; Rajguru et al., 2020). It is a new technology and
method for innovative drug research. By using the high-speed computing of computer, a small
number of potential active compounds are screened from a large number of candidate compounds,
so as to greatly reduce the blindness of subsequent experimental verification. In the future, virtual
screening technology will become an important means to explore the relevant biochemical space
because of its many advantages, such as high efficiency, high speed, low cost, and so on (Zaslavskiy
et al., 2019; Guo et al., 2021; Maddah et al., 2021; Selvaraj et al., 2021; Yang et al., 2021).

In the past decade, virtual screening has been applied to the medical and the pharmaceutical
researches widely (Meng et al., 2011; Bajusz et al., 2017). The most commonly used virtual screening
method is molecular docking, and the software involved contains AutoDock, SLIDE, DOCK,
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Flex X, etc. (Morris et al., 1996; Kellenberger et al., 2004; Taufer
et al., 2005). Fischer et al. (2021) utilized virtual screening
method to screen 25, 56, 750 compounds in order to make the
analysis about the binding of small molecules to translationally
controlled tumor protein. Baxter et al. (2000) utilized molecular
docking to screen ligand-receptor complexes in virtual database
and tabu search method was utilized to assist this work. Talluri
(2021) utilized Vina and SMINA to make molecular docking to
predict potential drugs for the treatment of Corona Virus Disease
2019 (COVID-19). Zhou et al. (2016) screened the compounds
of Chicory, which were bundled with concentrated nucleoside
transporter 2 (CNT2) in order to validate that CNT2 as the
potential target of chicory could reduce the absorption of purine
nucleosides in the intestine. Meenakumari et al. (2019) made
docking analysis between 17 coumarin derivatives and carbonic
anhydrase IX (CAIX) to screen the ligands. Thiyagarajan et al.
(2016) made molecular docking between the 3D structures of
focal adhesion kinase and S6 kinase and 60 natural compounds to
obtain the new specific inhibitors, and the findings could provide
help for the treatment of tumorigenesis and metastasis.

In order to improve the time and accuracy of virtual screening,
some machine learning methods have been utilized to assist or
replace molecular docking (Berishvili et al., 2018; Zaki et al.,
2021). Wang et al. (2016) proposed a new virtual screening
based on ensemble learning and SVM to tackle with protein-
ligand in action fingerprint. Zhang Y. et al. (2019) investigated
the performances of 8 classifiers containing decision tree (DT),
KNN, SVM, random forest (RF), extremely randomizer tree,
AdaBoost, gradient boosting tree, and XGBoost with ACC
inhibitor data for the researches of drug design and discovery.
Zhang et al. (2017) proposed a new scoring function based on
machine learning to screen the compounds targeting the viral
neuraminidase protein so as to make anti-influenza therapy.
Chen et al. (2011) proposed a ligand screening algorithm
based SVM to discovery lead compounds. Bustamam et al.
(2021) proposed a dipeptidyl peptidase-4 (DPP-4) inhibitors
identification method based on Rotation Forest and Deep Neural
Network with the fingerprint datasets for the treatment of
type 2 diabetes mellitus. Zheng et al. (2020) utilized Naïve
Bayesian and recursive partitioning to select the important active
chemical components from many compounds in Xiaoshuan
Tongluo formula with ECFP_6 and MACCS feature sets for
treating stroke.

Virtual screening of disease-related compounds can narrow
the scope of analysis in network pharmacology research. In
this paper a new virtual screening method based on flexible
neural tree (FNT) model is proposed to screen the disease-
related active compounds. A novel hybrid evolutionary algorithm
based on Grammar-guided genetic programming and salp swarm
algorithm is proposed to infer the structure and parameters
in each FNT model. The 3 diseases (hypertension, diabetes,
and COVID-19) related compounds are searched from the up-
to-date literatures. The unrelated compounds are selected by
negative sample selection algorithm from DUD-E website. About
4 kinds of molecular descriptors (ECFP6, MACCS, Macrocycle,
and RDKit) are utilized to numerically characterize the chemical
structures of related and unrelated compounds of diseases,

FIGURE 1 | An example of flexible neural tree.

FIGURE 2 | A flexible neuron operator.

respectively. We make the investigation about the performances
of these 4 molecular descriptors.

MATERIALS AND METHODS

Flexible Neural Tree Model
In order to solve the automatic design problem of artificial
neural network, FNT was proposed, which is a hierarchical,
multilayer, and irregular artificial neural network (Chen et al.,
2012). FNT can transform a single and fixed neural network
model into a special tree model that can change flexibly between
various levels. It could overcome the difficulty of structural
optimization of common neural network, have strong adaptive
ability for various classification and prediction problems, and
obtain high classification and prediction accuracy. In this paper,
FNT is proposed to predict active disease-related compounds.
An example of structure of FNT model is showed in Figure 1.
AFNT includes input layer, several hidden layers and output
layer. The nodes in the input layer are created randomly from
terminal set T = {x1, x2, . . . , xn}. The nodes in the hidden
layers are selected randomly from terminal set and operator set
F = {+2,+3, . . . ,+n}. The output layer contains one node.

In FNT, each layer is randomly generated according to the
operation set and terminal set. The maximum depth of tree is set
in advance. If an operator instruction +n is selected, n branches
are created randomly from set T and F, which are terminal
variables and operators. And n weights are generated randomly.
If a terminal variable is selected, the corresponding branch is
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FIGURE 3 | The flowchart of screening disease-related compounds algorithm.

terminated. When FNT is created randomly, the depth of FNT
could not exceed the maximum depth.+n is depicted in Figure 2
and is calculated as follows.

netn =

n∑
j=1

wjxj. (1)

The final output of +n is calculated by activation function,
which is given as follows.

y = f (netn, an, bn) = e−( netn−an
bn

)2
. (2)

Where an and bn are parameters of activation function.

Model Optimization Algorithm
Grammar-Guided Genetic Programming
Grammar-guided genetic programming (GGGP) was proposed
in order to overcome the shortcomings of genetic programming
(Wu and Chen, 2007). In this paper, GGGP is utilized to search
the optimal structure of FNT model. In GGGP, context-free
grammar (CFG) model is utilized to guide the evolutionary
process of GP in order to search the optimal solution faster.

The CFG model contains a quadruple, which is represented
as G = {N, T, P,

∑
}, where N is non-terminal symbol

set, T is terminal symbol set, P is production rule set
and

∑
is beginning symbol set. The 4 sets satisfy the

conditions: N
⋂

T = φ and
∑
∈ N. An element in

production rule set is represented as x→ y, where x ∈ N,
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FIGURE 4 | AUC performances of 11 methods with hypertension dataset.

FIGURE 5 | AUC performances of 11 methods with diabetes dataset.

FIGURE 6 | AUC performances of 11 methods with COVID-19 dataset.
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TABLE 1 | Prediction performances of 11 methods with hypertension dataset.

Molecular descriptors Methods TPR FPR Precision Specificity F1

ECFP6 Our method 0.985075 0.022222 0.956522 0.977778 0.970588
gcForest 0.955224 0.155556 0.752941 0.844444 0.842105
forgeNet 0.895522 0 1 1 0.944882

SVM 0.880597 0.007407 0.983333 0.992593 0.929134
RF 0.880597 0 1 1 0.936508

AdaBoost 0.835821 0.037037 0.918033 0.962963 0.875
DT 0.835821 0.044444 0.903226 0.955556 0.868217

GBDT 0.850746 0.051852 0.890625 0.948148 0.870229
KNN 0.686567 0 1 1 0.814159
LR 0.970149 0.311111 0.607477 0.688889 0.747126
NB 0.731343 0.096296 0.790323 0.903704 0.75969

MACCS Our method 1 0.007407 0.985294 0.992593 0.992593
gcForest 0.970149 0.051852 0.902778 0.948148 0.935252
forgeNet 0.925373 0.018587 0.96124 0.981413 0.942966

SVM 0.940299 0.02963 0.940299 0.97037 0.940299
RF 0.940299 0.014815 0.969231 0.985185 0.954545

AdaBoost 0.895522 0.044444 0.909091 0.955556 0.902256
DT 0.895522 0.051852 0.895522 0.948148 0.895522

GBDT 0.925373 0.014815 0.96875 0.985185 0.946565
KNN 0.925373 0.02963 0.939394 0.97037 0.932331
LR 0.970149 0.066667 0.878378 0.933333 0.921986
NB 0.940299 0.192593 0.707865 0.807407 0.807692

Macrocycle Our method 0.984375 0 1 1 0.992126
gcForest 0.9375 0.09009 0.857143 0.90991 0.895522
forgeNet 0.921875 0.018018 0.967213 0.981982 0.944

SVM 0.890625 0.027027 0.95 0.972973 0.919355
RF 0.90625 0.027027 0.95082 0.972973 0.928

AdaBoost 0.953125 0.027027 0.953125 0.972973 0.953125
DT 0.921875 0.072072 0.880597 0.927928 0.900763

GBDT 0.90625 0.036036 0.935484 0.963964 0.920635
KNN 0.921875 0.072072 0.880597 0.927928 0.900763
LR 0.9375 0.153153 0.779221 0.846847 0.851064
NB 0.9375 0.09009 0.857143 0.90991 0.895522

RDKit Our method 0.985075 0 1 1 0.992481
gcForest 0.955224 0.02963 0.941176 0.97037 0.948148
forgeNet 0.895522 0.022222 0.952381 0.977778 0.923077

SVM 0.940299 0.014815 0.969231 0.985185 0.954545
RF 0.865672 0.014815 0.966667 0.985185 0.913386

AdaBoost 0.925373 0.014815 0.96875 0.985185 0.946565
DT 0.873134 0.055762 0.886364 0.944238 0.879699

GBDT 0.895522 0.02963 0.9375 0.97037 0.916031
KNN 0.865672 0.044444 0.90625 0.955556 0.885496
LR 0.955224 0.02963 0.941176 0.97037 0.948148
NB 0.895522 0.214815 0.674157 0.785185 0.769231

Bold values denote the best performances.

and y ∈ N
⋃

T. Assuming that terminal set and operator
set are set as T = {x1, x2, . . . , xn}, and F = {+2,+3}, 4 sets
of CFG model are defined:N = {s, exp, var, op2, op3},
T = {+2, +3, x1, x2, . . . , xn},

∑
= {s}, and P is represented

with Eq. (3) or Eq. (4).

s→ exp
exp→ exp op2 exp
exp→ op3 exp exp exp
exp→ var
op2→+2
op3→+3
var→ x1|x2| . . . |xn

(3)

s→ exp
exp→ op2 exp exp
exp→ op3 exp exp exp
exp→ var
op2→+2
op3→+3
var→ x1|x2| . . . |xn

(4)

Generate the initial population randomly. When generating
each individual tree, the non-terminal node S is started with.
Then the subtree of each non-terminal node is derived in top-
down and left-right order according to the rules of the syntax
model. When all non-terminal nodes in the tree have sub-trees,
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TABLE 2 | Prediction performances of 11 methods with diabetes dataset.

Molecular descriptors Methods TPR FPR Precision Specificity F1

ECFP6 Our method 0.991935 0.012048 0.97619 0.987952 0.984
gcForest 0.967742 0.124498 0.794702 0.875502 0.872727
forgeNet 0.916031 0.007605 0.983607 0.992395 0.948617

SVM 0.935484 0.02008 0.958678 0.97992 0.946939
RF 0.862903 0.008032 0.981651 0.991968 0.918455

AdaBoost 0.879032 0.036145 0.923729 0.963855 0.900826
DT 0.806452 0.100402 0.8 0.899598 0.803213

GBDT 0.854839 0.02008 0.954955 0.97992 0.902128
KNN 1 0.939759 0.346369 0.060241 0.514523
LR 0.967742 0.15261 0.759494 0.84739 0.851064
NB 0.604839 0.052209 0.852273 0.947791 0.707547

MACCS Our method 0.975806 0 1 1 0.987755
gcForest 0.975806 0.02008 0.960317 0.97992 0.968
forgeNet 0.951613 0.024096 0.951613 0.975904 0.951613

SVM 0.935484 0.024096 0.95082 0.975904 0.943089
RF 0.943548 0.012048 0.975 0.987952 0.959016

AdaBoost 0.943548 0.032129 0.936 0.967871 0.939759
DT 0.951613 0.040161 0.921875 0.959839 0.936508

GBDT 0.975806 0.02008 0.960317 0.97992 0.968
KNN 0.951613 0.044177 0.914729 0.955823 0.932806
LR 0.975806 0.02008 0.960317 0.97992 0.968
NB 0.967742 0.417671 0.535714 0.582329 0.689655

Macrocycle Our method 0.991453 0 1 1 0.995708
gcForest 0.982906 0.028037 0.950413 0.971963 0.966387

forgeNet 0.957265 0.009346 0.982456 0.990654 0.969697

SVM 0.974359 0.018692 0.966102 0.981308 0.970213

RF 0.957265 0.014019 0.973913 0.985981 0.965517

AdaBoost 0.957265 0.018692 0.965517 0.981308 0.961373

DT 0.91453 0.037383 0.930435 0.962617 0.922414

GBDT 0.965812 0.046729 0.918699 0.953271 0.941667

KNN 0.923077 0.018692 0.964286 0.981308 0.943231

LR 0.982906 0.042056 0.927419 0.957944 0.954357

NB 0.974359 0.042056 0.926829 0.957944 0.95

RDKit Our method 0.959677 0 1 1 0.979424

gcForest 0.959677 0.02008 0.959677 0.97992 0.959677

forgeNet 0.967742 0.012048 0.97561 0.987952 0.97166

SVM 0.951613 0.008032 0.983333 0.991968 0.967213

RF 0.935484 0.012048 0.97479 0.987952 0.954733

AdaBoost 0.943548 0.016064 0.966942 0.983936 0.955102

DT 0.943548 0.028112 0.943548 0.971888 0.943548

GBDT 0.943548 0.008032 0.983193 0.991968 0.962963

KNN 0.903226 0.012048 0.973913 0.987952 0.937238

LR 0.959677 0.024096 0.952 0.975904 0.955823

NB 0.951613 0.204819 0.698225 0.795181 0.805461

stop the derivation process of the tree, and then judge the depth
of the tree. If the depth is greater than the predefined maximum
depth, the tree is considered invalid, and a tree is regenerated after
deletion. If the depth is less than the maximum depth, the tree is
considered and can be saved to the population. Then 3 genetic
operators (replication, crossover, and mutation) are utilized to
generate a new population in the iteration process.

Salp Swarm Algorithm
The Salp swarm algorithm (SSA) is a new swarm optimization
algorithm proposed by Mirjalili et al. (2017). The main idea
of SSA comes from simulating the group behavior of salp

chain (Babaei et al., 2020; Ren et al., 2021). In this algorithm,
salp chain is divided into 2 groups: leader and follower. The
leader is at the head of the salp chain, and the followers are
at the back of the chain. In each iteration, the leader directs
the followers to move in a chain toward the food. In the
process of moving, the leader makes global search, while the
follower makes full local search, which greatly avoid falling into
local optimization. The leader’s leadership role for the followers
behind will be weaker and weaker. The followers behind will
not blindly move toward the leader, which could maintain the
diversity of the population. Therefore, this movement mode
makes the salp chain have a strong ability of global search and
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local development. Because of its simple implementation, fast
convergence speed, and easy computer implementation, SSA is
utilized to optimize the parameters of FNT model. The SSA is
given as follows in detailed.

(1) Initialize the population. Suppose that population
size is m, the dimension is n, the upper bound of the
search space is Xmax = {X1

max, X2
max, . . . , Xn

max}, the lower
bound is Xmin = {X1

min, X2
min, . . . , Xn

min}. The positions of salp
population are created randomly by the following equation.

Xi = rand()× (Xmax − Xmin)+ Xmin. (5)

(2) Give the fitness values of population according to the
fitness function defined in advanced. In the iteration process,
the position of the food is not clear, so the fitness values of all
individual salps are calculated and sorted. And the position of
salp with the optimal fitness value is set as the current food
position, which is set as F = {F1, F2, . . . , Fn

}.
(3) Positions of leader and followers are updated. The leader

is responsible for searching food to lead the moving direction of
the whole group. The position of the leader is updated as follows
(Chen and Mu, 2021).

Xi
1 =

{
Fi
+ c1 × ((Xi

max − Xi
min)× c2 + Xi

min) c3 ≥ 0.5,

Fi
− c1 × ((Xi

max − Xi
min)× c2 + Xi

min) c3 < 0.5.
(6)

Where Xi
1 and Fi are the i-th positions of leader (the first salp)

and food. c2 and c3 are random number. c1 is the convergence
factor in SSA, which could play the role of balancing global search
and local development. c1 is calculated as follows.

c1 = 2e−( 4t
T )2

. (7)

Where t is the current generation and T is the
maximum generation.

The positions of the followers are updated according to
Newton’s laws of motion, which is defined as follows.

Xj
i = 0.5× at2

+ v0t. (8)

a = vfinal−v0
Mt ,

vfinal =
Xj

i−Xj−1
i

Mt .
(9)

Where a is acceleration. The difference between two adjacent
iterations is 1 and v0 = 0, so Eq. (8) could be defined as follows.

X
′j
i =

Xj
i − Xj−1

i
2

. (10)

(4) Update the fitness values of new population and the
position of food. If the end condition is satisfied, algorithm is
stopped; otherwise go to step (3).

Screen Disease-Related Compounds by
Our Proposed Method
Virtual screening is needed in the research of network
pharmacology to select the disease-related compounds. In this
paper, a novel virtual screening method based on FNT, hybrid

evolutionary method and negative sample selection algorithm is
proposed, which is depicted in Figure 3.

(1) Disease-related compound dataset collection. Search the
up-to-date literatures for treating diseases according to the name
of disease. By consulting these literatures with data mining
method, the active compounds for the treatment of the disease
are collected as the positive compound samples. In order to
generate the unrelated compounds, the positive compounds
are input into DUD-E database to generate the corresponding
decoys, which are set as negative samples (Mysinger et al.,
2012). There are too many decoys generated compared to the
number of positive samples. In order to balance the proportion
of positive samples and negative samples, negative sample
selection based on Tanimoto index (Algorithm 1) is presented
to choose a certain number of decoys that are quite different
from the positive sample set. Tanimoto index could measure
the distance between the 2 compounds, which can measure
the similarity between 2 sets (Klekota et al., 2005), which
can solve the relationship between 0 and 1 well. The greater
Tanimoto index is, the higher the similarity of 2 sets is. The
Tanimoto index of 2 sets A and B is calculated as followed.

T(A, B) =
A ∩ B
A ∪ B

. (11)

Algorithm 1: Negative sample selection algorithm.

Input: disease-related compound set [c1, c2, . . . , cm] (m is the number of
compounds),

the generated decoy set [g1, g2, . . . , gn] (n is the number of decoys)

Output: the selection negative compound set [n1, n2, . . . , n2m]

for i = 1; i ≤ n; i ++ do

sumi = 0;

for j = 1; j ≤ m; j ++ do

Tij = Tanimotoindex(gi, cj);

sumi = sumi + Tij;

End

End

Sort the decoy set according to [sum1, sum2, . . . , sumn];

Select the decoys with 2m smallest Tanimoto indexes as negative compound
set;

(2) Screening process. The related and unrelated molecules
collected are all chemical structures. To facilitate the compounds
collected inputting into flexible neural tree model, 4 kinds
of molecular descriptors (ECFP6, MACCS, Macrocycle, and
RDKit) are utilized to numerically characterize the chemical
structure of each compound (Todeschini and Consonni, 2009).
ECFP6 contains 2,048 features, which denotes all possible
molecular routes retrieved from the atom according to radius
3 and each bit denotes whether the special stator structure
exists. MACCS contains 166 molecular characteristic sites,
such as ISOTOPE, ATOMIC NO, 4M RING, and GROUP
VIII. Macrocycle contains 1,613 features, which refer the
information about the ring-size, sugars, and ester functional
groups. RDK it contains 208 features, such as number of
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TABLE 3 | Prediction performances of 11 methods with COVID-19 dataset.

Molecular descriptors Methods TPR FPR Precision Specificity F1

ECFP6 Our method 0.965909 0 1 1 0.982659
gcForest 0.965909 0.101695 0.825243 0.898305 0.890052
forgeNet 0.931818 0.00565 0.987952 0.99435 0.959064

SVM 0.920455 0.011299 0.975904 0.988701 0.947368
RF 0.931818 0 1 1 0.964706

AdaBoost 0.896226 0.025882 0.945274 0.974118 0.920097
DT 0.909091 0.045198 0.909091 0.954802 0.909091

GBDT 0.886364 0.028249 0.939759 0.971751 0.912281
KNN 0.897727 0.435028 0.50641 0.564972 0.647541
LR 0.988636 0.214689 0.696 0.785311 0.816901
NB 0.636364 0.062147 0.835821 0.937853 0.722581

MACCS Our method 1 0 1 1 1
gcForest 0.954545 0.011299 0.976744 0.988701 0.965517
forgeNet 0.943182 0.008499 0.982249 0.991501 0.962319

SVM 0.931818 0.011299 0.97619 0.988701 0.953488
RF 0.954545 0 1 1 0.976744

AdaBoost 0.886364 0.016949 0.962963 0.983051 0.923077

DT 0.931818 0.033898 0.931818 0.966102 0.931818
GBDT 0.931818 0.00565 0.987952 0.99435 0.959064
KNN 0.954545 0.028249 0.94382 0.971751 0.949153
LR 0.954545 0.016949 0.965517 0.983051 0.96
NB 0.863636 0.090395 0.826087 0.909605 0.844444

Macrocycle Our method 0.965517 0 1 1 0.982456

gcForest 0.954023 0.006536 0.988095 0.993464 0.97076
forgeNet 0.954023 0 1 1 0.976471

SVM 0.942529 0.006536 0.987952 0.993464 0.964706

RF 0.942529 0.006536 0.987952 0.993464 0.964706

AdaBoost 0.954023 0 1 1 0.976471

DT 0.908046 0.039216 0.929412 0.960784 0.918605

GBDT 0.896552 0.03268 0.939759 0.96732 0.917647

KNN 0.931034 0.019608 0.964286 0.980392 0.947368

LR 0.954023 0.026144 0.954023 0.973856 0.954023

NB 0.885057 0.039216 0.927711 0.960784 0.905882

RDKit Our method 0.965909 0 1 1 0.982659

gcForest 0.943182 0.022599 0.954023 0.977401 0.948571

forgeNet 0.943182 0.011299 0.976471 0.988701 0.959538

SVM 0.943182 0.011299 0.976471 0.988701 0.959538

RF 0.931818 0.00565 0.987952 0.99435 0.959064

AdaBoost 0.931818 0.016949 0.964706 0.983051 0.947977

DT 0.943182 0.011299 0.976471 0.988701 0.959538

GBDT 0.943182 0.011299 0.976471 0.988701 0.959538

KNN 0.954545 0.016949 0.965517 0.983051 0.96

LR 0.943182 0.028249 0.943182 0.971751 0.943182

NB 0.897727 0.112994 0.79798 0.887006 0.84492

Bold values denote the best performances.

valence electros, number of radical electrons, charge information,
and number of Aliphatic Carbocycles. Cross-validation method
is utilized to divide the training and testing datasets to test
the performance of our proposed method. With the feature
vector of each compound in the training dataset as the input,
flexible neural tree model is utilized to train with the feature
datasets. A hybrid evolutionary method based on grammar-
guided genetic programming and salp swarm algorithm is
proposed to search the optimal structure and parameters of
FNT model. For the unknown compounds of testing dataset,
the feature vectors are used as the input of the optimal FNT

model to obtain the output results. If the result is higher than
0.5, the compound is identified to be disease-related; otherwise,
it is unrelated.

EXPERIMENT RESULTS AND
DISCUSSION

In order to test the effectiveness of our method, the important
compounds were collected, which were involved in the
treatment of hypertension, diabetes, and COVID-19. The
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related compounds of these 3 diseases are regarded as positive
samples and the numbers of samples are 67, 124, and 88,
respectively. Negative sample selection method is utilized to
select the inactive compounds about hypertension, diabetes and
COVID-19, and the numbers of negative samples are 134, 248,
and 176, respectively. The 4 kinds of molecular descriptors
(ECFP6, MACCS, Macrocycle, and RDKit) are utilized to
numerically characterize related and unrelated compounds of
diseases, respectively.

The 10-cross validation method is utilized to test the
performance of our method. SVM (Hearst et al., 1998), RF
(Breiman, 2001), AdaBoost (Collins et al., 2002), decision tree
(DT) (Safavian and Landgrebe, 1991), GBDT (Zhang B. et al.,
2019), KNN, logical regression (LR) (Collins et al., 2002), gc
Forest (Zhou and Feng, 2017), forgeNet (Kong and Yu, 2020), and
Naive Bayes (NB) (Kim et al., 2006)are also utilized to identify
disease-related compounds of three diseases. In our method,
operator set is set as F = {+2,+3,+4,+5}, population size is
set as 30 and the maximum depth of tree is set as 5. In SVM,
linear kernel function is selected. In RF, the number of trees
is set as 100. In GBDT, the number of regression trees is set
as 200. In DT, CART algorithm is utilized. The parameters of
other algorithms are set by default. The AUC performances
of 11 methods with the datasets about hypertension, diabetes,
and COVID-19 are shown in Figures 4–6, respectively. From
Figure 4, it could be seen that with ECFP6, Macrocycle, and
RDKit methods, our method has the highest AUC performances
among 11 methods. With MACCS method, the AUC values
obtained by our method and RF are very close to 1.0, which are
0.999889 and 0.997772, respectively. For Figure 5, in terms of
AUC, it could be clearly seen that our method performs best with
ECFP6, MACCS, and RDKit methods. With Macrocycle feature
method, our method, gcForest, and SVM could obtain the better
AUC values than other 8 methods, which are 1, 0.99803, and
0.998435, respectively. By the comparison of these 3 methods,
our method performs best, which show that our method is a
good classifier for disease-compound identification problem. For
Figure 6, with ECFP6molecular descriptor, our method and SVM
could obtain the higher AUC values than other 9 methods, which
are 0.996901 and 0.99703. With other molecular descriptors, our
method could obtain the better performances, which are equal to
or very close to 1.0.

TPR, FPR, Precision, Specificity, and F1 are also utilized to
test the performances of 11 methods for compound identification
about 3 diseases. TPR denotes the ratio of true disease-
related compounds identified against all true disease-related
ones. FPR denotes the ratio of disease-related compounds
identified erroneously against all true disease-unrelated ones.
Precision denotes the ratio of true disease-related compounds
identified against all disease-related ones identified. Specificity
is the ratio of true disease-unrelated compounds identified
against all true disease-unrelated ones. F1 could evaluate a
classifier comprehensively with Precision and Recall. TPR, FPR,
Precision, Specificity, and F1performances of11 methods with
the datasets about hypertension, diabetes and COVID-19 are
listed in Tables 1–3, respectively. In Table 1, with ECFP6
method, our method has the highest TPR performance among

TABLE 4 | Averaged ranking scores of 11 methods with 3 datasets.

ECFP6 MACCS Macrocycle RDKit

Our method 3.33 1.67 2 2.67

gcForest 3.67 1.83 2.33 2.17

forgeNet 2.5 2.17 2.33 3

SVM 2.83 2.5 2.5 2.17

RF 2.83 1.33 2.5 3.17

AdaBoost 3.5 2.5 1.83 2.17

DT 4 1.83 2.5 1.67

GBDT 3.5 1.33 2.83 2.33

KNN 4 1.83 1.67 2.5

LR 3.83 1.17 2.83 2.17

NB 3.67 2.83 1 2.33

11 classifiers, which shows that our method could identify more
true disease-related compounds. In terms of FPR, Precision and
Specificity, forgeNet and RF perform best, which reveal that all
the true disease-unrelated compounds are identified. But our
method could obtain the highest F1 performance. Overall our
method could obtain the more accurate identification results.
With MACCS, Macrocycle, and RDKit, our method could obtain
the best performances of TPR, FPR, Precision, Specificity, and F1.

In Table 2, with ECFP6 method, KNN has the highest TPR
performance among 11 classifiers, which is 1.0. The result shows
that KNN could identify all true disease-related compounds.
In terms of FPR, Precision, and Specificity, forgeNet perform
better than other 10 methods. But our method could also
obtain the highest F1 performance. Overall our method could
obtain the more accurate identification results. With MACCS
and Macrocycle, our method could obtain the best performances
of TPR, FPR, Precision, Specificity, and F1. With RDKit, our
method performs best in terms of FPR, Precision, Specificity,
and F1, while forgeNet could obtain the best TPR performance.
For Table 3, our method performs best with 4 kinds of
molecular descriptors in terms of 5 criterions. All results show
that our method could predict disease-related compounds more
accurately than gcForest, forgeNet, SVM, RF, AdaBoost, DT,
GBDT, KNN, LR, and NB.

According to the performances of 11 methods with the
datasets from 3 diseases and 4 molecular descriptors, 11 methods
are ranked. For each molecular descriptor, the averaged ranking
results of each method are listed in Table 4. From Table 4,
we can see that our method, gcforest, forgenet, RF, GDBT, and
LR perform best with MACCS feature set, while SVM and
DT perform best with RDKit feature set. AdaBoost, KNN and
NB perform better with Mordred feature set than the other 3
feature sets. All methods perform poorly with ECFP6 molecular
descriptor. The results also show that the different molecular
descriptors of compounds are suitable for the different classifiers
and the ranking results can provide the guidance for each
classifier to choose the appropriate molecular descriptor to solve
the problem in the future. On the whole, MACCS method
is suitable for the maximum number of classifiers. In future
research, MACCS method can be preferred for a new classifier.
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FIGURE 7 | Performances of our method with COVID-19 dataset and the different ratios of positive and negative samples.

We investigate the performances of our method with different
ratios of positive and negative samples. The 8 kinds of ratios (1:1,
1:2, 1:3, 1:4, 1:5, 1:6, 1:8, and 1:10) are selected and COVID-19
dataset is utilized. The identification results are depicted in
Figure 7. From Figure 7, it could be seen that when the ratios are
1:1, 1:2, 1:3, and 1:4, our method could have the better ROC and
AUC performances. The excessive imbalance of data may affect
the classification performance of the algorithm.

CONCLUSION

In order to sort the candidate compounds in a traditional Chinese
medicine prescription and narrow the scope of analysis in
network pharmacology research accurately, this paper proposes
a new virtual screening method based on flexible neural
tree (FNT) model, hybrid evolutionary method, and negative
sample selection algorithm to screen the disease-related active
compounds. 3 diseases (hypertension, diabetes, and Corona Virus
Disease 2019) related compounds are collected from the up-
to-date literatures. The unrelated compounds are selected by
negative sample selection algorithm from DUD-E website. 4
kinds of molecular descriptors (ECFP6, MACCS, Macrocycle,
and RDKit) are utilized to characterize the features of related and
unrelated compounds of diseases, respectively. The experiment
results show that our proposed method performs better than
classical classifiers (SVM, RF, AdaBoost, DT, GBDT, KNN, LR,
and NB), up-to-date classifier (gcForest) and deep learning

method (forgeNet) in terms of AUC, ROC, TPR, FPR, Precision,
Specificity, and F1.

We also investigate the performances of 11 methods with
4 kinds of molecular descriptors. The results show that our
method, gcforest, forgenet, RF, GDBT, and LR perform best
with MACCS feature set, while SVM and DT perform best
with RDKit feature set, AdaBoost, KNN and NB perform best
with Mordred feature set. With ECFP6 molecular descriptor all
methods perform poorly.

In the paper, our proposed method has been successfully
applied to hypertension, diabetes, and Corona Virus Disease. In
the future, our method will be utilized to identify other chronic
disorders related compounds, such as cancers, coronary heart
disease, and rheumatoid disease.
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