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Cardioviruses are members of the Picornaviridae family and infect a variety of mammals,
from mice to humans. Replication of cardioviruses produces double stranded RNA
that is detected by helicases in the RIG-I-like receptor family and leads to a signaling
cascade to produce type I interferon. Like other viruses within Picornaviridae, however,
cardioviruses have evolved several mechanisms to inhibit interferon production. In this
review, we summarize recent findings that have uncovered several proteins enabling
efficient detection of cardiovirus dsRNA and discuss which cell types may be most
important for interferon production in vivo. Additionally, we describe how cardiovirus
proteins L, 3C and L∗ disrupt interferon production and antagonize the antiviral activity
of interferon effector molecules.
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INTRODUCTION

Picornaviridae is an important family of single-stranded, positive-polarity RNA viruses that
includes >30 genera with over 75 species (Zell et al., 2017). Within Picornaviridae, the genus
Cardiovirus includes encephalomyocarditis virus (EMCV), Theiler’s murine encephalomyelitis
virus (TMEV) and Saffold viruses (SAFV). Although EMCV has been described as a potential
zoonotic agent, SAFVs are the only cardioviruses known to regularly infect humans, with the vast
majority of people showing evidence of infection (Zoll et al., 2009; Carocci and Bakkali-Kassimi,
2012). EMCV has been found to infect over 30 host species and contains one serotype, Mengo
virus, which was isolated in 1948 in the Mengo district of Uganda (Dick et al., 1948). TMEV was
discovered in 1937 by Max Theiler and is found in wild mice and rats worldwide. TMEV can cause
different diseases, depending on the virus strain and host genetics, ranging from fatal encephalitis
to a chronic demyelinating disease that has served as a model for multiple sclerosis (Brahic et al.,
2005).

The genome of cardioviruses is approximately 7.8–8.5 kb and contains 5′ and 3′ untranslated
regions (Figure 1). Translation of the genome gives rise to a polyprotein that is cleaved by the
3C protease, leading to the production of 12 proteins. Two additional proteins, L∗ and 2B∗, are
expressed from alternate open reading frames. L∗ is only expressed by TMEV and is important for
infection of macrophages, persistence of the virus in mice and inhibiting RNase L (van Eyll and
Michiels, 2000; Sorgeloos et al., 2013), 2B∗ results from a frameshifting mechanism conserved in
cardioviruses that regulates the ratio of structural and non-structural proteins translated over time.
Protein 2B∗ itself is only thought to be important for replication of EMCV, as mutants that abolish
its expression had a small plaque phenotype. 2B∗ in TMEV and SAFV is unlikely to act as a protein
as it is predicted to encode a peptide of 14 amino acids (Loughran et al., 2011).
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FIGURE 1 | Genomes of representative members of the genus Cardiovirus. All members of the genus Cardiovirus encode a related leader (L) protein formed by the
N-terminal part of the polyprotein. Theiler’s murine encephalomyelitis virus (TMEV) expresses an additional 18 kD protein called L∗ from an alternative ORF. TMEV and
Saffold virus (SAFV) form the Theilovirus species. These viruses possess a frameshifting site in 2B but the 2B∗ ORF is only 14–15 codons in length. EMCV encodes a
128–129 residue-long 2B∗ protein. IRES, internal ribosome entry site; CRE, cis-replication element; FS, frameshifting site. 5′/3′UTR, 5′/3′untranslated region.

In this review, we focus on the ways in which cardioviruses
trigger the innate immune response and the efficient mechanisms
that they have evolved to suppress these signaling pathways. We
consider which cell types may be most important for production
of interferon (IFN) in vivo, and also describe how cardioviruses
disrupt the functions of interferon effectors.

INDUCTION OF INTERFERON

Double-stranded RNA (dsRNA) is a necessary product of
picornavirus replication, as positive-stranded genome is copied
to produce a negative-stranded, full-length template, which
is in turn used to produce additional genomes. dsRNA is
recognized by several sensor proteins within the cell and triggers
a signal transduction pathway that results in transcription of
the type I IFN (IFN-α/β) genes, as well as IFN-λ. In the
endosome, dsRNA is detected by Toll-like receptor 3 (TLR3),
which signals through the adaptor protein TRIF to activate
IFN regulatory factor 3 (IRF-3) and nuclear factor kappa
B (NF-κB) (Yamamoto et al., 2003). Cytoplasmic dsRNA is
detected by the RIG-I-like receptor (RLR) family of proteins,
which includes RIG-I (retinoic acid-induced gene I) and MDA5

(melanoma differentiation-associated gene 5). Upon recognition
of dsRNA, these proteins undergo a conformational change
that exposes N-terminal caspase activation and recruitment
domains (CARDs). The RLRs are then capable of stimulating
the mitochondrial antiviral signaling (MAVS) protein, also
known as IPS-1, Cardif, and VISA, which in turn activates
Tank-binding kinase-1 (TBK1), inducible I-κB kinase (IKK-ε)
and IRF-3, which then translocates to the nucleus to facilitate
transcription of IFN genes (reviewed in Gebhardt et al.,
2017).

Although RIG-I and MDA5 both detect dsRNA within the
cytosol, their functions are non-redundant. RIG-I recognizes
relatively short dsRNA species (<1 kb) with 5′ppp or 5′pp,
which are produced in certain virus infections (Hornung et al.,
2006; Pichlmair et al., 2006). In contrast, MDA5 recognizes
long dsRNA, which is present during picornavirus replication
(Kato et al., 2008; Pichlmair et al., 2009). Thus, while RIG-I
is activated during infection with flaviviruses, paramyxoviruses,
influenza, and others, MDA5 is responsible for detection of
picornaviruses (Gitlin et al., 2006; Kato et al., 2006; Pichlmair
et al., 2009; Wang et al., 2010; Feng et al., 2012). The importance
of MDA5 for control of cardioviruses was demonstrated in
MDA5-deficient mice, which failed to control EMCV infection
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and did not efficiently produce IFN (Gitlin et al., 2006; Kato et al.,
2006).

In addition to RIG-like helicases described above, which
activate the MAVS pathway, another IFN-inducible RNA
helicase, Moloney leukemia virus 10 homolog (MOV10) was
reported to enhance IFN induction (Cuevas et al., 2016).
MOV10 expression in HEK293 cells restricted EMCV replication.
Interestingly, MOV10 acts through IRF-3 activation, in a RLR
and MAVS-independent way and signals require IKK-ε but not
TBK1. Such MAVS-independent pathways are likely not critical
for global IFN production in EMCV infected mice, given the
major impact of MDA5 or MAVS deficiency in mice, but they
may be important in specific cell types or in conditions where the
other pathways may be less potent.

ACTIVATION OF MDA5 BY
CARDIOVIRUSES

Laboratory of genetics and physiology 2 (LGP2), also known
as Dhx58, is also a member of the RLR family but lacks a
CARD domain (Yoneyama et al., 2005). Given its structural
similarity and lack of a CARD domain, LGP2 was initially
thought to negatively regulate dsRNA recognition by RIG-I, as
its overexpression limited IFN induction by Sendai virus and
Newcastle disease virus (Rothenfusser et al., 2005). However,
although the negative effect of LGP2 on RIG-I remained
controversial, later studies have established that LGP2 acts as a
co-activator of MDA5. Mice deficient for LGP2 were impaired
in responding to RNA ligands for MDA5 or to EMCV infection
(Venkataraman et al., 2007; Satoh et al., 2010). LGP2 was
also shown to increase the rate of MDA5 interaction with
RNA and downstream signaling by facilitating the formation
of numerous, shorter MDA5 filaments (Bruns et al., 2014).
Thus, it appears that LGP2 can act as both a positive and
negative regulator of RLR signaling, with the outcome likely
dependent on the concentration of LGP2 (Bruns and Horvath,
2015). However, recombinant MDA5 was directly activated as
measured by an ATP hydrolysis assay by the replicative form of
dsRNA coxsackievirus B3, showing that LGP2 is not essential for
activation of MDA5 in vitro by dsRNA (Feng et al., 2012).

Both LGP2 and MDA5 are important for detecting cardiovirus
replication. MEFs deficient for either protein produce lower
amounts of IFN-β when infected with EMCV (Deddouche et al.,
2014). Intriguingly, LGP2 may enhance activation of MDA5
during EMCV infection by binding to RNA complementary to
the Leader (L) gene and forming a complex with MDA5. This
RNA sequence from L was also shown to be a potent activator of
MDA5 in the absence of virus infection (Deddouche et al., 2014).

Although dsRNA can bind and activate recombinant MDA5
in the absence of other proteins, it is likely that additional
partners are required for efficient activation of MDA5 in vivo. For
example, MDA5 is phosphorylated in resting cells, and requires
dephosporylation by PP1α/γ (Wies et al., 2013; Takashima
et al., 2015). Additional proteins that participate in recognition
of cardiovirus dsRNA have recently been described, including
a study showing that TAR RNA binding protein (TRBP)

interacts with LGP2 in a yeast two-hybrid screen (Komuro
et al., 2016). LGP2 was found to interact with TRBP in
co-immunoprecipitation experiments and depletion of TRBP by
siRNA reduced interferon production induced by TMEV and
EMCV. Moreover, TRBP enhanced IFN induction by TMEV and
EMCV when overexpressed. Depletion of TRBP did not affect
induction of IFN by Sendai virus, which is recognized by RIG-I.
This study establishes that TRBP participates in detection of
cardiovirus dsRNA by LGP2/MDA5 but the mechanism and its
importance in vivo remain to be elucidated.

As TRBP is a component of the RNAi machinery
(Chendrimada et al., 2005; Haase et al., 2005), other molecules
involved in RNAi were assessed for their role in dsRNA
detection and protein activator of PKR (PACT) was found to
also participate in activation of IFN signaling by cardioviruses.
When PACT was depleted by siRNA, interferon production
was decreased during infection of both TMEV and EMCV.
Overexpression of PACT also increased IFN activation
when LGP2 was co-expressed with MDA5. Intriguingly,
single-stranded TMEV genome enhanced the association of
LGP2 and PACT, which suggests that a secondary structure in
the TMEV genome might facilitate this interaction (Miyamoto
and Komuro, 2017). In a separate report, PACT was shown
to be required for induction of IFN by EMCV but not Sendai
virus. This study also demonstrated that PACT and MDA5 were
recruited to dsRNA (poly(I:C)) but not single stranded RNA,
and that PACT expression increased the amount of MDA5
oligomerization (Lui et al., 2017). Both TRBP and PACT have
also been reported to bind to double stranded RNA-dependent
protein kinase (PKR), and PACT can bind RIG-I (Park et al.,
1994; Patel and Sen, 1998; Kok et al., 2011). At the present time,
it is not clear if these interactions are important for mediating
recognition of cardioviruses.

Yet another partner in detecting dsRNA in cardiovirus
infection was recently uncovered. A cDNA screen to identify
genes involved in regulating IFN signaling revealed that DHX29
expression increased transcription of an IFN-β reporter plasmid
in response to high molecular weight (HMW) poly(I:C) (Zhu
et al., 2018). Depletion of DHX29 resulted in decreased
phosphorylation of TBK1 and IRF-3 in response to HMW
poly(I:C) and EMCV as well as decreased production of IFN-β.
The authors also show that DHX29 binds to MDA5 but not
MAVS or RIG-I, and binding could only be detected when MDA5
was activated by EMCV or HMW poly(I:C). Mechanistically,
this study demonstrated that DHX29 mediated RNA binding of
MDA5 by interacting with MDA5 through its N-terminus and
RNA through its DEXD and helicase domains, and that DHX29
promotes formation of MDA5 filaments, which are required for
activation (Zhu et al., 2018). DHX29 was also independently
described to interact with RIG-I (Sugimoto et al., 2014), although
it may be of greater importance for activation of MDA5 (Zhu
et al., 2018).

Together, these studies show that multiple proteins facilitate
recognition of dsRNA by MDA5 during cardiovirus infection
(Figure 2). Thus far, these proteins include LGP2, DHX29, PACT
and TRBP. Additional helicases are also likely to participate in
RLR-dsRNA complex formation but their activities remain to
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FIGURE 2 | Detection of Cardiovirus dsRNA by MDA5. (Left) After genome delivery into cells, the 3B/VPg protein (closed circle) is cleaved from the 5′end of the
RNA. The replicative form (RF) results from synthesis of the negative strand. The newly synthesized negative strand is then used as a template to generate new
genomes, via the formation of replicative intermediates (RI). (Right) MDA5 was shown to detect the RF. After dsRNA recognition, MDA5 molecules oligomerize on
the dsRNA molecule, exposing their N-terminal CARD domains, which oligomerize and trigger IFN transcription through MAVS activation. Several co-factors,
including LGP2 and PKR, were identified that enhance Cardiovirus dsRNA recognition by MDA5, possibly by facilitating initial dsRNA recognition.

be clarified (Oshiumi et al., 2016). Moreover, recent discoveries
have identified a novel role for PKR in recognition of dsRNA
and activation of MDA5, which will be discussed below. As the
number of proteins mediating MDA5 activation grows, so does
the number of questions about how this pathway functions. For
example, what role does each of the proteins play and how do
they work together mechanistically to activate MDA5? Do they
play non-redundant roles, or do they function in the same way
but in different cell types? Resolving these questions will allow for
deeper understanding of the first line of immune defense against
RNA viruses.

THE ROLE OF PKR IN ANTIVIRAL
RESPONSES TO CARDIOVIRUSES

Upon recognition of dsRNA, PKR controls virus infection by
phosphorylating eukaryotic initiation factor 2 (eIF2α), which
inhibits translation (Farrell et al., 1977). In this way, an infected
cell can suppress production of viral proteins. Phosphorylation
of eIF2α also leads to stress granule formation and induces
autophagy, and both pathways are commonly observed during
virus infection (Paul and Munz, 2016; Poblete-Duran et al., 2016).
Not surprisingly, many viruses have evolved strategies to inhibit
the activation or function of PKR (reviewed in Garcia et al., 2007),
as evidenced by the fact that PKR-deficiency did not modify the
survival time of EMCV infected mice (Yang et al., 1995).

In addition to its role in inhibiting translation, recent evidence
has emerged to show that PKR participates in production of
IFN. For example, PKR appears to be important for nuclear
translocation of IRF-3 following MDA5 activation (Pham et al.,
2016). PKR was found to bind to MDA5 and this interaction
was not disrupted by nuclease treatment, indicating that binding

does not depend on the presence of RNA. In PKR-deficient
cells, EMCV infection failed to induce IRF-3 translocation to
the nucleus. Moreover, a constitutively active mutant of PKR
induced IFN through MAVS. The effect of PKR on induction
of IFN required its catalytic activity but did not depend on
phosphorylation of eIF2α (Pham et al., 2016). In a separate report,
PKR was shown to be important for normal processing of IFN-β
mRNA, suggesting that PKR may function at multiple points in
the IFN pathway (Schulz et al., 2010). Additionally, activation
of PKR by HMW poly(I:C) was shown to be inhibited in cells
depleted of MDA5 and MAVS, suggesting that MAVS influences
activation of PKR. Moreover, MAVS and PKR were found to
interact in co-IP experiments, and the interaction depended on
the CARD domain in MAVS and the dsRNA binding domain of
PKR (Zhang et al., 2014). Together, these studies clearly indicate
a role for PKR in MDA5-dependent IFN induction, although
several mechanisms may be involved, which require clarification.

The role of PKR in IFN production after cardiovirus infection
remains to be resolved. In one study that examined Mengo virus
infection, knockdown of PKR led to decreased induction of IFN-β
in Hela cells, suggesting that PKR may play a role in the MDA5
pathway during cardiovirus infection (Langereis et al., 2013).
This observation fits with the model proposed by Onomoto et al.
(2012), which was based on Influenza virus infection and suggests
that PKR triggers the formation of “antiviral stress granules”
that serve as a recruitment platform for dsRNA and RIG-like
helicases, thereby enhancing IFN production. PKR is, however,
not essential for IFN production in cardiovirus-infected cells
because Mengo virus possessing a deletion in the zinc-finger
of L, which abrogates its functions as an interferon antagonist,
was found to induce interferon in the cells lacking PKR and
RNase L (Feng et al., 2012). Cardioviruses may also inhibit PKR
through activity of the L protein, as stress granule formation was
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prevented by the L protein of Mengo, TMEV, and SAFV-2 during
virus infection (Borghese and Michiels, 2011). However, direct
inhibition of PKR by L remains to be demonstrated.

DETECTION OF EXTRACELLULAR
dsRNA

During infection, viral dsRNA can also be released into
the extracellular milieu, either non-specifically during lysis
of infected cells or possibly intentionally by exocytosis to
trigger innate immunity by uninfected cells. dsRNA can then
be endocytosed by neighboring cells and infiltrating immune
cells and lead to IFN production. TLR3 recognizes dsRNA in
endosomes and signals through TRIF to activate IRF-3 and
NF-κB. The importance of TLR3 in context of cardiovirus
infection may depend on the model of infection. For example,
mice deficient for MyD88 or TLR3 were not significantly more
susceptible than wild-type mice to EMCV infection (Kato et al.,
2006). In a separate report, however, TLR3-deficient mice had
higher viral loads in the liver and heart and were more susceptible
to infection (Hardarson et al., 2007). Also, a study that evaluated
the role of TLR3 in controlling a strain of EMCV with tropism
for β cells of the pancreas found that TLR3 protected mice from
a fatal infection and that TLR3-deficent mice produced less IFN-
β early in infection (15 and 18 h post-infection). However, this
deficiency was transient and mice lacking TLR3 produced levels
of IFN-β equivalent to wild-type animals at 24 h post-infection.
In the same experiments, the authors demonstrated that mice
lacking MDA5 succumbed to the infection more rapidly than
TLR3-deficient mice and produced less IFN-β at 24 h post-
infection (McCartney et al., 2011). Finally, a recent report using
intracerebral inoculation of the GDVII strain of TMEV evaluated
the importance of these molecules for control of virus replication
and induction of IFN. Trif-/-, MyD88-/-, and mice lacking both
Trif and MyD88 showed wild-type levels of IFN induction, while
MAVS-deficient animals were slightly but significantly impaired.
When Trif, MyD88 and MAVS were all depleted, however, mice
were unable to induce IFN. Only mice lacking MyD88 and Trif,
or mice lacking MyD88, Trif and MAVS showed increased titers
of GDVII in the brain (Pfefferkorn et al., 2016). Thus, both
TLR3 and RLRs contribute to controlling virus replication in vivo,
although the relative importance of these pathways may depend
on the virus and route of inoculation.

Surprisingly, MDA5 is also responsible for the vast majority
of IFN produced from extracellular dsRNA in vivo. Mice
deficient for MDA5 produced substantially less IFN when
administered polyI:C, whereas TLR3-deficient mice responded
like wild-type (Gitlin et al., 2006). These results raise the
question of how dsRNA taken up through endocytosis could
gain access to the cytoplasm. The mechanism by which dsRNA
could be internalized and then access the cytoplasmic RLRs
has been unresolved until a recent discovery identified SIDT2,
the mammalian ortholog of the SID-1 dsRNA transporter in
Caenorhabditis elegans, as a transporter of dsRNA from the
endosome to the cytoplasm. SIDT2 was shown to be important
for mediating detection of dsRNA in the context of EMCV

infection in vivo. Mice that were deficient for SIDT2 failed
to control replication, produced less IFN-β, and succumbed to
infection (Nguyen et al., 2017). These data suggest that a crucial
pathway for innate signaling in EMCV infection is release of viral
RNA into the extracellular milieu, endocytosis, and subsequent
transfer of viral RNA to the cytoplasm to access MDA5.

INHIBITION OF INTERFERON
PRODUCTION BY CARDIOVIRUSES

Two proteins encoded by cardioviruses were shown to counteract
IFN production in infected cells: protease 3C, which is
responsible for the processing of the virus-encoded polyprotein,
and the leader protein (L), which corresponds to the N-terminal
peptide of the polyprotein.

3C is a cysteine proteinase with a trypsin-like serine
protease fold, responsible for most cleavages occuring during
the maturation of the viral polyprotein (Pelham, 1978). Like
3C proteases of other picornaviruses that were shown to target
critical factors involved in IFN induction such as RIG-I (Barral
et al., 2009), EMCV 3C was reported to cleave TRAF family
member-associated NF-kB activator (TANK) in infected cells,
thus disrupting the complex involving TBK1, IKKe and IRF3 and
limiting type I IFN production (Huang et al., 2017). Likewise,
EMCV 3C was shown to target MOV10, an RNA helicase that
acts in a MAVS-independent way, as a possible innate immune
evasion mechanism (Cuevas et al., 2016; Figure 3).

L is a small, multifunctional protein of 67–76 amino
acids expressed by all cardioviruses (Figure 1). L contains
an N-terminal zinc finger motif (Cys-His-Cys-Cys), an acidic
domain, a serine/threonine rich domain, and a C-terminal Theilo
domain, which is present in SAFV and TMEV but absent in
EMCV. L was shown to be dispensable for replication of TMEV
in cell culture but its loss inhibits spread in cells that have a
functional interferon response, like L929 cells, and also impairs
the viral persistence in vivo (van Pesch et al., 2001). L deletions in

FIGURE 3 | Interferon antagonism by the Cardiovirus 3C protease. The 3C
protease is responsible for cleavage of the Cardiovirus polyprotein produced
from translation of the genome. In addition, the Cardiovirus 3C protease
cleaves host proteins, such as TANK and MOV10, to prevent the cell from
producing IFN.
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EMCV prevent the virus from shutting off host protein synthesis
and enable interferon production (Zoll et al., 1996, 2002). Mengo
virus containing a mutation in the zinc finger of L failed to
inhibit IFN synthesis and its replication was inhibited during low
MOI infections in vitro. In mice lacking the IFN α/β receptor,
the mutant virus behaved as wild-type, but in wild-type mice,
replication of the L mutant virus was impaired and it failed
to cause disease, demonstrating that activity of L is important
for pathogenesis in vivo (Hato et al., 2007). Mutations in the
zinc finger domain or the Theilo domain of TMEV or SAFV L
inhibit its ability to antagonize interferon signaling (Ricour et al.,
2009).

A critical step in production of IFN following detection
of viral replication by MDA5 and other molecules is nuclear
translocation of IRF-3 and NF-κB. These proteins enable
transcription of the IFN genes to produce mRNA, which
must then be exported from the nucleus for translation. Since
picornaviruses do not replicate within the nucleus, many viruses
within this family disrupt nucleocytoplasmic trafficking, which
results in inhibition of IFN production and translocation of
nuclear proteins to the cytosol to benefit viral replication
(reviewed in Yarbrough et al., 2014; Flather and Semler, 2015).
The mechanism of how L interferes with IFN production may
be due to its abilities to disrupt nucleocytoplasmic trafficking,
activation of IRF-3, and assembly of stress granules in infected
cells (Figure 4). Each of these activities will be explored
below.

The L protein of cardioviruses perturbs the function of the
nuclear pore complex (NPC) (Porter et al., 2006). In mammals,
the NPC consists of approximately 30 different proteins, called
nucleoporins (Nups) and enables transit across the nuclear
membrane (Gorlich and Kutay, 1999; Wente and Rout, 2010).
While small molecules and ions are able to diffuse through the
NPC, molecules larger than approximately 20–40 kDa require
active transport, which is regulated by transport receptors called
karyopherins (Yarbrough et al., 2014). Transport into the nucleus
requires a short amino acid motif, called a nuclear localization
sequence (NLS) that can interact with either the α or β subtypes
of karyopherins, depending on the sequence of the protein’s
NLS. Binding and dissociation of NLS-containing proteins by
karyopherins is also regulated by small GTPase Ran. In the
cytosol, Ran is bound to GDP and can bind cargo proteins.
Once in the nucleus, however, Ran is converted to the GTP
bound form by the Ran guanine nucleotide exchange factor
(RanGEF) and dissociates from cargo. Export then requires
a nuclear export sequence (NES) that binds to karyopherins
bound to RanGTP, and dissociation of this complex occurs in
the cytoplasm when a Ran GTPase-activating protein (RanGAP)
hydrolyzes GTP to GDP. In this way, the RanGDP/GTP
gradient regulates directional transport into and out of the
nucleus.

Localization of L to the nucleus depends on expression of
2A, which contains a NLS in its C-terminus (Groppo et al.,
2011). Upon nuclear localization, L interacts with Ran with high
affinity and 2A is displaced as the binding sites for 2A and
Ran partially overlap (Petty et al., 2014). L from EMCV, TMEV,
and SAFV induce hyper-phosphorylation of Nups including

Nup62 and Nup98 (Ricour et al., 2009; Ciomperlik et al., 2015),
likely by recruiting and activating a kinase, which may be
facilitated by L binding of exportins Crm1 and CAS (Ciomperlik
et al., 2016). Chemical inhibition of ERK and p38 was able
to block L-mediated hyper-phosphorylation of Nups (Porter
et al., 2010). Additionally, L of EMCV is phosphorylated by
casein kinase 2 (CK2) and this phosphorylation is required for
Nup phosphorylation, although CK2 did not phosphorylate L
of SAFV or TMEV (Basta et al., 2014). It is possible, although
it remains to be shown, that these kinases also play a role in
inhibition of nucleocytoplasmic trafficking by L of TMEV and
SAFV.

In addition to its role in disrupting nucleocytoplasmic
trafficking, TMEV and Mengo L prevent production of
type I IFN in infected cells by interfering with IRF-3
dimerization and TMEV L also prevents export of mRNA
from the nucleus (Delhaye et al., 2004; Ricour et al.,
2009). For both TMEV and Mengo virus, dimerization
of IRF-3 was impaired despite the protein having been
phosphorylated. Inactivation of IRF-3 occurs despite reports
that it accumulates in the nucleus of infected cells (Delhaye
et al., 2004). These data suggest that dsRNA is detected in
cardiovirus infected cells leading to activation of MAVS and
downstream kinases, but that IRF-3 is unable to induce IFN
transcription.

Stress granules can form in cells during virus infection
and often result from inhibition of translation following
phosphorylation of eIF2α by PKR (White and Lloyd, 2012).
The L protein of Mengo, TMEV, and SAFV-2 inhibits stress
granule formation during infection and ectopic expression
of L was able to prevent thapsigargin- and arsenite-induced
stress granules (Borghese and Michiels, 2011). Stress granules
formed during infection with viruses containing deletions
in the zinc-finger domain or a mutation in the Theilo
domain of L, indicating that these motifs are also important
for inhibition of stress granules (Borghese and Michiels,
2011).

While L inhibits nucleocytoplasmic trafficking, stress granule
formation, and possibly PKR activation, it has not been possible
to uncouple these events using L mutants. When one function
of L is disrupted, all functions are simultaneously impaired.
Therefore, it remains possible that L inhibits IFN production by
blocking PKR activation, by interfering with IRF-3 dimerization
or nucleocytoplasmic trafficking, or through a combination of
these mechanisms (Figure 4).

The importance of these antiviral pathways in controlling
infection is underscored by the variety of mechanisms that
viruses have evolved to prevent their activity. For example,
the L protein of foot-and-mouth disease virus (FMDV), a
picornavirus in the genus Aphthovirus, has proteolytic activity
whereas the L protein of cardioviruses does not. Despite the
major differences in these proteins, they all still function
to inhibit induction of IFN. FMDV Lpro can cleave eIF4G
(Devaney et al., 1988; Kirchweger et al., 1994; Guarne et al.,
1998) and therefore reduce translation of cellular mRNAs,
and can also perturb IFN transcription by cleaving NF-κB
(de Los Santos et al., 2006, 2007, 2009). However, in the
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FIGURE 4 | Model for the multiple activities of the Cardiovirus L protein. L binds 2A with low-affinity and the complex may enter the nucleus due to a NLS in 2A.
Once in the nucleus, L interacts with high affinity with Ran GTPase, thus displacing 2A. The L-Ran complex would activate a kinase and trigger nucleoporin
hyper-phosphorylation, thereby leading to nuclear pore complex dismantling and to nucleocytoplasmic trafficking perturbation. On the other hand, L may inhibit PKR,
thus preventing translation arrest through eIF2α phosphorylation and therefore block assembly of stress granules. Inhibition of IFN gene transcription by L may result
from IRF-3 trafficking perturbation and/or from the absence of PKR-enhanced dsRNA detection by MDA5.

context of a chimeric Mengo virus infection, FMDV Lpro

was less effective at inhibiting IFN induction in vitro and
in vivo (Hato et al., 2010). Similar convergent evolution is
apparent when considering the 2A protein of picornaviruses.
Whereas 2A functions as a protease for most picornaviruses
and cleaves mediators of type I interferon signaling, this activity
is not present in cardioviruses. Nevertheless, L still targets
some of these same molecules for inactivation (Agol and
Gmyl, 2010). Additionally, both 2A of enteroviruses and L
of cardioviruses inhibit stress granule assembly (Yang et al.,
2018).

The functions of L appear to be sufficiently important to
the virus so that it maintains high levels of L expression
throughout infection. EMCV and TMEV undergo a frameshift
during translation later in infection by 2A binding to a stem-loop
structure in the genome (Napthine et al., 2017). This frameshift
decreases expression of non-structural proteins 2BC-3ABCD by
74–82% (Finch et al., 2015). A follow up study using metabolic
labeling estimated the frameshifting to be 46–76% efficient (Ling
and Firth, 2017). This mechanism may allow for cardioviruses,
and perhaps other picornaviruses, to increase the translation of
structural proteins later in infection. Due to its position in the
genome, however, L expression would remain high throughout
infection despite it not having a structural role for virus assembly.

Thus, it may be important for cardioviruses to express sufficient
levels of L to counteract the immune response throughout the
replication cycle.

WHAT CELLS ARE MOST IMPORTANT
FOR IFN PRODUCTION DURING
CARDIOVIRUS INFECTION?

With effective ways to inhibit the production of interferon
during infection, control of cardioviruses likely depends on
nearby uninfected cells to produce interferon. Intriguingly, these
pathways seem to also depend on MDA5, although TLR3 may
also be important in certain cell types such as plasmacytoid
dendritic cells (Hornung et al., 2006). As discussed, recent data
suggest a model where viral dsRNA is released, endocytosed, and
then the RNA is translocated to the cytosol where it is detected by
MDA5.

In the CNS, astrocytes appear to be the primary producers
of IFN-β for several neurotropic viruses that preferentially
infect neurons, such as TMEV and La Crosse virus (Kallfass
et al., 2012; Pfefferkorn et al., 2016). Using transgenic mice
that expressed firefly luciferase under the control of the IFN-β
promoter restricted to different cell types, the authors were able
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to determine that 73% of IFN-β production during a neurotropic
TMEV infection was from astrocytes, whereas only 1% was from
neurons, which are the primary target of infection. In mice
lacking MAVS, IFN-β production was slightly but significantly
reduced, suggesting that the RLR pathway is active during
infection but may not be the only pathway activated by TMEV
in astrocytes. Intriguingly, mice deficient for MyD88 and Trif
did not show a significant decrease in IFN-β induction, although
induction of IFN-β was completely abrogated in mice deficient
for MAVS, MyD88 and Trif. Therefore, it appears that both RLR
and TLR signaling are important for IFN-β production after
TMEV infection of the CNS.

Astrocytes were also shown to be primary producers of IFN
during infection with rabies virus and vesicular stomatitis virus.
In the case of rabies virus, astrocytes are stimulated to produce
IFN by an abortive infection. That the virus is unable to replicate
fully may prevent expression of viral interferon antagonists and
allow for robust production of IFN. How viral replication is
prevented in these cells will be important to uncover and may
lead to novel insights about viral control in vivo. It is likely that
abortive infection of astrocytes occurs during infection by TMEV.
However, this remains to be demonstrated and viral RNA may
well be encountered by other means.

MDA5 is critical for induction of IFN against cardioviruses
in the periphery as well. Ex vivo, cells such as macrophages,
conventional dendritic cells and fibroblasts depend on MAVS
for production of IFN in response to dsRNA (Sun et al., 2006).

Similarly, MDA5 was shown to be essential in these cells for
type I IFN production after EMCV infection, in contrast to
pDCs which induce IFN production in a TLR-dependent fashion
(Gitlin et al., 2006; Kato et al., 2006). After EMCV infection of
mice, some IFN is produced through TLRs, likely by pDCs, but
most IFN was produced by MDA5 activation (Gitlin et al., 2006;
Kato et al., 2006). Levels of IFN-I were strongly decreased in
the serum of MDA5-deficient mice infected by EMCV. Whereas
MDA5 expression strongly influenced survival in response to
infection, the effect of MyD88 depletion had a modest effect and
loss of Trif or RIG-I did not affect survival (Kato et al., 2006).
Thus, MDA5 is essential for controlling EMCV infection in the
periphery.

CARDIOVIRUS INHIBITION OF IFN
EFFECTORS

Interferon secreted by infected cells binds to its receptor on
surrounding cells, activating a signaling cascade that leads
to expression of hundreds of interferon-stimulated genes
(ISGs). Two of these ISGs, PKR and oligoadenylate synthetases
(OAS) are part of the best-characterized interferon effector
pathways.

As described earlier, PKR is likely antagonized by the L
protein, as L inhibits PKR-induced stress granule assembly.
Moreover, a recent study reported increased SUMO3 conjugation

FIGURE 5 | Inhibition of RNase L activation by L∗ TMEV L∗ binds RNase L ankyrin repeats 1 and 2 (numbered) through a direct protein-protein interaction, thereby
preventing association of 2-5A with RNase L monomers and the consequent dimerization and activation of the enzyme.
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of PKR in EMCV-infected cells, which dampens PKR activation
and promotes caspase-dependent PKR degradation (Maarifi
et al., 2018).

Oligoadenylate synthetases are enzymes responsible for
RNase L activation. Cardioviruses have evolved two strategies
to interfere with the OAS-RNase L pathway. In an infected cell,
OAS are activated by dsRNA and produce 2′-5′ oligoadenylates
(2-5A). Binding of two 2-5A molecules to the ankyrin
domain of the latent endoribonuclease RNase L triggers
its dimerization and activation (Figure 5). Active RNase L
then cleaves viral and cellular ssRNA leading to decreased
viral replication and ultimately to apoptosis of the cell.
Interestingly, RNA fragments generated by RNase L can amplify
IFN production in a RIG-I, MDA5 and MAVS-dependent
way (Malathi et al., 2007). RNase L targets both viral
and cellular mRNA but is also predicted to cleave the
genome of ssRNA viruses, as reported for EMCV (Li et al.,
1998). In addition to 2′-phosphodiesterases and phosphatases
that tightly regulate the system by degrading 2-5A within
minutes of their synthesis, RNase L activity can be negatively
regulated by the RNase L inhibitor (RLI/ABCE) (Bisbal et al.,
1995).

RLI/ABCE expression is induced by EMCV and correlates
with RNase L inhibition (Martinand et al., 1999). Accordingly,
overexpression of RLI/ABCE inhibited the action of IFN
against EMCV (Bisbal et al., 1995). RNase L inhibition
by EMCV-induced RLI is, however, partial as RNase L
antiviral activity against EMCV was demonstrated in vitro
using dominant negative RNase L and OAS1 overexpression
(Chebath et al., 1987; Zhou et al., 1998) and in vivo, in
RNase L-deficient mice, which presented increased EMCV
infection and mortality compared to wild-type mice (Zhou et al.,
1997).

The L∗ protein of TMEV was found to potently inhibit
RNase L through a direct protein-protein interaction (Sorgeloos
et al., 2013). Mechanistically, L∗ binds to RNase L ankyrin
repeats 1 and 2, thereby preventing 2-5A binding to the
enzyme and further activation steps (Drappier et al., 2018;
Figure 5). In wild-type macrophages, replication of L∗-mutant
was significantly impaired as compared to that of the wild-type
virus (Sorgeloos et al., 2013). In contrast, L∗-mutant and wild-
type viruses replicated to the same level in RNase L-deficient
primary peritoneal macrophages. Moreover, L∗ was shown to
be active in vivo in the context of MHV chimeric viruses; L∗
could substitute for another viral RNase L inhibitor, namely the
ns2 phosphodiesterase of MHV, in the liver of infected mice
(Drappier et al., 2018). The fact that the virus devotes one of
its proteins to RNase L antagonism highlights the importance
of this antiviral pathway against TMEV. Interestingly RNase L
inhibition by L∗ is highly species-specific; L∗ of a mouse TMEV
strain inhibits mouse RNase L but not its orthologs from other
species including rat (Sorgeloos et al., 2013; Drappier et al., 2018).
Accordingly, L∗ of a rat TMEV strain inhibits rat but not mouse
RNase L.

Theiler’s murine encephalomyelitis virus is the only
cardiovirus expressing L∗, and thus the only cardiovirus known
to directly inhibit RNase L. This could stem from its tropism

for macrophages, which are the main TMEV target during
the chronic phase of infection and in which the OAS-RNase
L system is particularly active (Zhao et al., 2012). However,
macrophages were reported to play important roles in EMCV
pathogenesis, including for viral replication and dissemination
in piglets (Papaioannou et al., 2003) and as reservoir cells for
EMCV persistence in rats (Psalla et al., 2006). Since EMCV is
sensitive to RNase L activity, it is possible that another EMCV
protein will have developed some RNase L antagonistic activity,
which might be identified using the appropriate host-pathogen
context. Interactions between SAFVs and RNase L have yet to be
described, but it is also likely that these viruses have evolved ways
of inhibiting this pathway.

CONCLUSION AND FUTURE
PERSPECTIVES

Given the many ways that picornaviruses inhibit interferon
production and signaling in infected cells, it is not surprising
that the most important producers of IFN would be uninfected
or abortively infected cells. Indeed, cardioviruses efficiently block
IFN in infected cells but loss of MDA5 in mice causes them
to be more susceptible to virus infection. These data indicate
that detection of cytoplasmic dsRNA by MDA5 occurs in cells
that are not productively infected (Gitlin et al., 2006) and the
recent finding that SIDT2 mediates this process opens many
new exciting areas of research (Nguyen et al., 2017). Which
molecules might be important for release of viral RNA? Is
there a role for exosomes in this process? How might these
pathways be stimulated pharmacologically? Preventing release
of viral RNA and subsequent detection by uninfected cells may
represent selective pressure favoring non-lytic release. Given the
exquisite genetic malleability in response to natural selection
displayed by viruses, it is likely that viruses will have evolved
mechanisms of inhibiting detection of viral RNA by uninfected
cells, perhaps by restricting dsRNA release or by secreting
proteins that inhibit RNA transport into uninfected cells. It
will be exciting to see how discoveries unfold in this area of
research.

Several recent studies involving cardioviruses have revealed
a more complicated picture regarding initial detection of
replicating RNA and induction of IFN. While it is clear
that the helicases LGP2, DHX29, PACT and TRBP work in
concert with MDA5 for detection of dsRNA, it remains to
be determined how these molecules coordinate and interact
and whether they function in a cell-type specific manner.
It will also be important to resolve the way in which PKR
functions to activate IFN signaling. Future studies in this
area will likely have broad relevance for innate detection of
viruses.

Finally, the mechanisms by which L disrupts
nucleocytoplasmic trafficking, stress granule formation, and
interferon production clearly require further clarification.
Mutational analysis of L has revealed that these activities are
tightly coupled, suggesting that the L interacts with protein(s)
that can serve as a common node in each of these pathways.
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As IFN signaling and stress granules are important for a variety of
viral pathogens, answers to these questions may provide broadly
relevant insight into host-pathogen interactions.
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