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P2Y receptors, including eight subtypes, are G protein-coupled receptors that can be
activated by extracellular nucleotides. Nearly all P2Y receptors are expressed in bone
cells, suggesting their involvements in bone physiology and pathology. However, their
exact roles in bone homeostasis are not entirely clear. Therefore, this mini review
summarizes new research developments regarding individual P2Y receptors and their
roles in bone biology, particularly detailing those which execute both anabolic and
catabolic functions. This dual function has highlighted the conundrum of
pharmacologically targeting these P2Y receptors in bone-wasting diseases. Further
research in finding more precise targeting strategy, such as promoting anabolic effects
via combining with physical exercise, should be prioritized.
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INTRODUCTION

Extracellular nucleotides, whether they are adenosine 5′-triphosphate (ATP), uridine 5’-
triphosphate (UTP), or their hydrolysate adenosine adenosine 5′-diphosphate (ADP), uridine-5′-
diphosphate (UDP) and UDP-sugars, have been identified as an essential class of signal molecules
which can activate the purinergic signalling in diverse types of cells and tissues, thereby mediating
biological events (1). Currently, extracellular nucleotides have been found to play key roles in a
variety of physiological processes such as tissue homeostasis, wound healing, neurodegeneration,
immunity, inflammation, and tumor metastasis (2). Importantly in bone, P2 receptors, purinergic
receptors that bind nucleotides, can finely regulate bone cell physiology and modulate bone
remodeling (3).

It was not until 1985 that P2 receptors were firstly distinguished into two purinoceptor subtypes
based on their pharmacological characteristics: P2X and P2Y receptors (4), followed by further new
subtypes such as P2T, P2Z, and P2U receptors (5, 6). In the following decade, to provide a more
organized basis, P2 receptors had been re-categorized based on their transduction mechanisms and
topology into two major families: the P2X family of ligand-gated ion channel receptors and the P2Y
family of G protein-coupled receptors (GPCRs) (7).

To date, seven P2X receptor (P2XR1-7) members have been identified in human. As ligand-
gated ion channel receptors, their physiological agonists are mainly ATP. P2XRs were shown to
form functional trimers with three ATP binding sites, all of which need to be occupied to trigger the
channel opening and subsequently mediate selective permeability to cations, such as Ca2+, Na+, K+

(8, 9). In contrast, the GPCR P2YRs can be activated by adenine and uridine nucleotides. GPCRs
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have been found as therapeutic targets for a variety of human
diseases and more than 40% of modern drugs are GPCRs based
(10). Herein, we focus on the recent advances in our
understanding of the involvement of P2Y receptors (P2YRs) in
bone physiology and pathology.
P2Y RECEPTORS

There are eight members of P2YRs and can be divided into two
subgroups based on their structure similarities: P2Y1-like GPCRs
including P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11; and P2Y12-like
GPCRs including P2Y12, P2Y13 and P2Y14. In addition, there
are also two non-mammalian p2y8 and tp2y receptors (11).
ADP, ATP, UDP, UTP and UDP-sugars have all been identified
as agonists for P2YR (12). P2YRs are located on the cell
membrane and consists of an extracellular N-terminus, an
in t r ace l lu l a r C- t e rminus and seven hydrophob i c
transmembrane helices connecting three intracellular and
extracellular loops. Signaling via diverse G proteins activates or
inhibits different pathways. The Gq alpha subunit (Gq/
11proteins) and Gs alpha subunit (Gas proteins) are
stimulated through binding of extracellular nucleotides to
P2Y1-like GPCRs, thereby leading to downstream signal
cascade: the activation of phospholipase C/inositol 1,4,5-
trisphosphate (PLC/IP3) and adenylyl cyclase (AC) pathway,
respectively. Compared with P2Y1-like GPCRs, P2Y12-like
GPCRs bind to Gi protein alpha subunit (Gi/Go proteins)
inhibiting AC pathway resulting in decreased accumulation of
cyclic adenosine monophosphate (cAMP) and cAMP-dependent
protein kinase (PKA) (Figure 1) (13). P2YRs can form
multimers in certain circumstances as P2XRs do, but their
peptides show lower sequence homology (19-55%) compared
to P2XR. Thus, P2YRs have a greater diversity in their
pharmacological and operational profiles (8, 14).
P2YRs IN BONE

Bone is a specialized connective tissue that provides internal
support in all higher vertebrates. It makes up the skeletal system,
together with cartilage (15, 16). In bone, extracellular matrix and
cells are the fundamental constituents. The organic matrix is
mainly composed of Type I collagen. This matrix is strengthened
by inorganic component, mainly carbonated hydroxyapatite.
Bone is composed of four different cell types: osteoblast,
osteoclast, osteocyte and bone lining cells. Those bone cells
together play essential roles in the process of bone modeling
and remodeling (16).

The investigation of the role of P2YRs in bone cells can be
traced back to early 1990s. Evidence was found for the presence of
P2 purinoceptors on both rat and human osteoblast-like cells (17,
18), and P2YRs were shown to mediate the non-selective cation
channels and Ca2+ dependent K+ channels in rat osteoclasts (19).
Since then, an increasing number of purinoceptor subtypes were
found existing in human bone related cells, by means of
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immunocytochemistry, in situ hybridization, and RT-PCR (20).
In the bone microenvironment, nucleotides are intracellularly
presented at a normal concentration of 2-5mM but released into
extracellular under mechanical stimulation, tissue injury or
inflammation situations (21). These extracellular nucleotides are
then able to regulate bone remodeling as extracellular signaling
molecules, such as functioning as mitogens for osteoblasts and
osteoclasts, via binding to P2 receptors. Activation of P2Y
receptors will couple to downstream signal transduction
cascades, including cAMP/PKA pathway and/or IP3 hydrolysis
by PLC and subsequent release of Ca2+ from endoplasmic
reticulum (ER) (3). The high concentration of Ca2+ will induce
the activation of the mitogen-activated protein kinase (MAPK)
pathway via phosphorylation of extracellular signal-regulated
kinase (ERK), especially ERK 1/2 (22).

However, due to the variability of P2YR subtypes, different
subtypes play different roles during bone homeostasis, which
correlate to their native agonists, binding G protein type, and
expression in different bone cells (Table 1). Based on the last
comprehensive review by Orriss et al. in 2012 (20), we will next
review most recent research progress in roles of each individual
P2YR subtypes in bone cell biology and bone homeostasis.

P2Y1-Like Receptors
The Gq/11-coupled P2Y1 receptor is predominantly activated by
ADP, whilst ATP can act as its antagonist or partial agonist (51).
P2Y1Rs were initially found to be mainly involved in the
regulation of osteoclast-mediated bone loss. 2-MethylthioADP
(2-MeSADP) was developed as a highly selective P2Y1R agonist
FIGURE 1 | The structure and signaling pathway of P2YRs in bone. P2Y1-like
and P2Y12-like receptors are expressed in most types of bone cells (expression
status of P2YRs in bone lining cells is current unknown) and are activated by
extracellular nucleotides present in the microenvironment. The topological
characteristics of P2YRs are: an extracellular N-terminus and an intracellular C-
terminus; seven transmembrane domains forming the ligand docking pocket;
the C-terminus has the protein kinases binding motif and influence the degree
of P2Y subtypes coupling with Gq/G11, Gas and Gi/Go proteins via intracellular
loop structural diversity. Binding of different G proteins leads to downstream
signaling cascades including calcium signaling transduction and regulation of
AC/cAMP pathway (Figure was created with Biorender).
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which mimic ADP and lead to P2Y1R-mediated cell responses
(52). This agonist can stimulate osteoclast formation and
resorptive activity at a concentration of only 0.1-10 mM
(26). Meanwhile, P2Y1Rs were found to be expressed at
transcriptional and translational levels in both osteoblasts and
osteoclasts. P2Y1R is reported to modulate osteoblastic responses
to systemic factors such as parathyroid hormone (PTH) through
up-regulating the phosphorylation of cAMP response element-
binding protein and c-fos expression (23). ATP acts as the locally
released costimulant to enhance Ca2+ release in response to PTH,
through activation of P2Y1R (3, 23). Besides, another study
suggested that P2Y1R was stimulated by ATP released from
osteoblasts after ultrasound induction, which acts in an autocrine
manner to induce osteoblastogenesis (24). Further in vivo studies
underscored the important role of P2Y1R in osteoblastic biology
owing to the availability of P2Y1 knockout (KO) mice. Two-
month-old global P2Y1R KO mice showed 5-14% decrease in
bone mineral density (BMD) and bone mineral content (BMC)
determined using DEXA scan. Significant decreases in
trabecular parameters were detected through Micro-CT
analysis (25). These findings indicate that, although
predominantly plays a pro-osteogenic role, the P2Y1R may
also regulate osteoclast differentiation.

In contrast to P2Y1R, P2Y2R has initially been suggested to
play an inhibitory role in bone mineralization (28), as the
activation of P2Y2R was shown to strongly inhibit bone
nodule formation and mineralization of primary rat
osteoblasts, without affecting the production of fibrous or
soluble collagen (29, 30). Recent studies have shown that UTP
inhibited osteogenic differentiation by activating P2Y2R in bone
marrow-derived stromal cells via ERK1/2 pathway (31).
Consistently, Orriss et al. showed increased bone formation by
osteoblasts from P2Y2-KO mice which supported the notion of
P2Y2R as a negative regulator of bone mineralization. They also
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found that defective resorption and decreased basal ATP release
level in osteoclasts were present in P2Y2-KO mice (32). In
contrast, a study using P2Y2R-KO mice on a different genetic
background (SV129) showed an anti-osteogenic phenotype (34),
whilst in a rat model, P2Y2R overexpression led to altered bone
remodeling but mix phenotype, including enhanced bone length
and strength but reduced trabecular thickness (53). Interestingly,
this inconsistence was also evidenced in single nucleotide
polymorphisms (SNPs) human cohort studies which clear
associations between P2Y2R SNPs and bone mineral density
(BMD) was established. In a Danish osteoporosis prevention
study cohort, gain-of-function P2Y2R Arg312Ser SNP is
correlated with higher BMD (54), while in a cohort of Dutch
fracture patients, this correlation was not observed (55).
Nevertheless, despite of these discrepancies, there is a
consensus that the primary action of P2Y2R regulates
mechanotransduction and extracellular ATP levels in bone.
P2Y2R was first discovered to mediate the propagation of
intercellular Ca2+ waves in osteoblasts in an autocrine manner
after mechanical stimulation (33). Mechanistically, activation of
P2Y2R in osteoblasts was found to sensitize mechanical stress-
activated calcium influx as well as fast activation of multiple
intracellular signaling pathways, including ERK1/2 and p38/
MAPK, protein kinase C (PKC), RhoA GTPase and c-Jun N-
terminal kinases (JNK1) (56–60). Using P2Y2R KO murine cells,
Xing et al. demonstrated that KO-osteoblasts had reduced
response, in terms of ERK1/2 phosphorylation, to both ATP
and mechanical stimulation (34). In osteoclast, P2Y2R
activation, whether acute or long-term, both promoted the
release of ATP from osteoclasts, which indicates that the
P2Y2R possibly regulate osteoclast function indirectly by
promoting ATP release (32). In short, although the role of
P2Y2R in bone homeostasis is possibly genetic background or
species dependent, it has a primary role of regulating
TABLE 1 | Distribution and characteristics of P2 receptors in bone.

Receptor Native Agonists Binding G
protein type

Main distribution in bone Functional effects

P2Y1 ADP>ATP Gq/11 Osteoblasts and osteoclasts Enhance PTH-induced Ca2+ signaling and ultrasound-induced osteoblast proliferation
(3, 23–25).
Increase the osteoclast formation and resorption (26).
Involve in the mechanotransduction (27).

P2Y2 UTP=>ATP Gq/11 Osteoblasts, osteoclasts
and osteocytes.

Inhibit differentiation and mineralization of osteoblasts (28–32).
Induce bone resorption from osteoclasts (32).
Propagation of intercellular Ca2+ waves (33) and involve in mechanotransduction (27, 34).

P2Y4 UTP=>ATP Gq/11 Osteoblasts and
osteocytes.

Play a ‘off-switch’ role during bone formation with P2Y2R (35).

P2Y6 UDP>UTP>>ATP Gq/11 Osteoblasts, osteoclasts
and osteocytes.

Contribute to osteoclast resorption (36) and enhance osteoclast survival (37).
Induce osteogenic differentiation from BMSCs (38).
Involve in mechanotransduction (27).

P2Y11 ATP/UTP Gq/11 and Gas Osteoclasts Inhibit cell migration and bone metastasis in breast cancer (39).
P2Y12 ADP>>ATP Gi/Go Osteoblasts, osteoclasts

and osteocytes.
Induce osteoblastogenesis and avoid osteoclasts formation (40, 41) but others
suggested maintaining osteoclasts activity (42).

P2Y13 ADP>>ATP Gi/Go Osteoblasts, osteoclasts
and osteocytes.

Induce osteoblasts differentiation and osteoclastogenesis (43–47).
involve in mechanotransduction (27).

P2Y14 UDP-sugar/UDP Gi/Go Osteoblasts and osteoclasts Promote osteoclastogenesis (48, 49).
Promote osteoblast proliferation (50).
Involved in mechanotransduction (27).
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mechanotransduction and extracellular ATP release in
bone cells.

Unlike P2Y2R, the molecular mechanisms of P2Y4R
involvement in regulating bone cells are still unclear, despite
both P2YRs are Gq/11 coupled receptors activated by UTP. It
was only suggested that P2Y4R may play a ‘off-switch’ role
during bone formation with redundancy of function of
P2Y2R (35).

P2Y6R, which is selectively stimulated by UDP, has been
found to be expressed in osteoclasts. UDP, released from
mechanical stimulation or inflammation, can act through
P2Y6R to induces the translocation and activation of NFkB in
osteoclasts and their precursors, preventing apoptosis induced by
TNFa pathway (37). To further investigate the role of P2Y6R in
osteoclasts, Orriss et al. found functional defects in osteoclasts
derived from P2Y6R-KO mice. The histomorphometric analysis
showed that surfaces of endocortical and trabecular bone tissue
occupied by osteoclasts were reduced in P2Y6R-KO mice (36).
However, in another study, selective activation of P2Y6R by the
UDP analog PSB0474 promoted the osteogenic differentiation
from human bone marrow stromal cells (BMSCs) in
postmenopausal women. After selectively blocking P2Y6R,
decreased osteogenic differentiation were found at all culture
time points. This suggests that targeting P2Y6R may cause harm
to osteoblasts and subsequently lead to more bone loss in
postmenopausal osteoporosis (38).

Currently, very limited studies have been done to investigate
the involvement of P2Y11R in bone. P2Y11R has been so far
identified to be expressed in human osteoclasts, but its molecular
mechanism and functions are still not clear (61). More recently,
P2Y11R has been found to be involved in breast cancer bone
metastasis. Liu et al. suggested that ATP released from osteocytes
hemichannels bound P2Y11R thereby suppressing the
expression of chemokine receptor CXCR4, resulting in the
inhibition of cell migration and bone metastasis of breast
cancer (39). In fact, the most common skeletal complication of
breast cancer is osteolytic bone metastasis mediated by
osteoclasts (62). This could underscore the connection between
P2Y11R’s expression in osteoclasts and the osteoclast-oriented
formation of pre-metastasis niche and bone tropism of cancer
cells, which warrant further investigation.
P2Y12-Like Receptors
P2Y12-like receptors have long been in the focus of skeletal
disease as they mediate more key regulatory genes in the context
of bone. Abnormal function of P2Y12-like receptors causes
distinct bone phenotype like bone loss.

The Gi/Go-coupled receptor P2Y12R has been found to be
expressed in both osteoblasts and osteoclasts. Syberg et al.
demonstrated that clopidogrel, an antagonist of P2Y12R, not
only inhibited osteoblastogenesis, but also reduced the bone
mass and strength by ~20% in mice (40). This was further
confirmed in a patient cohort study in which treatment with
clopidogrel led to a 60% increase in risk of fractures (41).
However, conflicted results were shown by Su et al. In this
Frontiers in Endocrinology | www.frontiersin.org 4
study, mice treated with clopidogrel were protected from
pathologic osteolysis. P2Y12R-KO mice were partially
protected from age-related and pathological bone loss with
reduced osteoclast function, suggesting a pro-resorption role of
P2Y12R possibly via the Ras-related protein (RAP1) signaling
(42, 63). Therefore, whether the predominant function of
P2Y12R in bone is pro-formation or pro-resorption remains to
be investigated.

As another Gi/Go-coupled receptor, P2Y13R has high affinity
for ADP. In the past decades, more functions of P2Y13R in
maintaining bone homeostasis have been gradually revealed,
confirming its potential role in the process of fighting bone
diseases. The expression of P2Y13R in osteoblasts and
osteoclasts were firstly confirmed in 2010 (24). Its downstream
signaling pathway involves Ras homolog gene family member A
(RhoA)/Rho-associated and coiled-coil containing protein kinase
I (ROCK I) signaling, which were inhibited after P2Y13 depletion
and in turn reduced the MAPK/ERK signaling pathway and
osteoblasts differentiation (43, 44). Consistent with these
findings, Biver et al. showed that ADP stimulated the activity of
transcription factor Runx2 via the RhoA/ROCK1 signaling
pathway in a P2Y13R-dependent way, thereby stimulating the
differentiation of pre-osteoblasts to osteoblasts. P2Y13R was
proposed as the main receptor mediating the balance of
osteoblast and adipocyte terminal differentiation from bone
marrow progenitors (45). Further studies using P2Y13R KO
mice demonstrated that P2Y13R deficiency in mature mice
resulted in an abnormal bone phenotype, including less
trabecular bone but thicker cortical bone. This was a
consequence of reduced rates of bone turnover caused by
decreased number and function of both osteoblasts and
osteoclasts, confirmed by both in vivo and in vitro data (44). In
addition, KO mice showed a higher osteogenic response against
non-invasive axial mechanical loading due to the lack of a
P2Y13R-regulated negative feedback pathway for ATP release,
which was supported by in vitro evidence suggesting reduced
extracellular ATP degradation by ALP in KO primary osteoblasts.
More interestingly, KO mice also appeared to be protected from
estrogen-deficiency induced bone loss (46). These findings offer an
inspiring prospect for P2Y13R based osteoporosis therapy which
may combine anti-P2Y13 receptor drugs with exercise to provided
anti-resorptive and anabolic effects simultaneously. Furthermore,
P2Y13R also plays a critical role in skeletal development via
coordinating with hormonal regulators of phosphate homeostasis.
Increased osteoblasts and decreased osteoclasts were observed in 4-
weeks old youngmice, whilst mature mice (>10 weeks old) showed
an opposite phenotype. This age-dependent skeletal phenotype
change has been considered to be related to higher serum
fibroblast growth factor-23 (FGF-23) and phosphorus levels.
Thus, P2Y13R were thought to regulate bone development in two
differentways,which are the endocrine regulationofphosphate and
FGF23 homeostasis at younger ages and the direct regulation of
bone cells through bone remodeling at mature age (47). With
evidence mentioned above, it is plausible that the P2Y13R can not
only be considered as a potential pharmacological target for the
treatment of osteoporosis, but also provide a promising target for
January 2022 | Volume 12 | Article 818499
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treating phosphate metabolism-related bone diseases, including
hypo- and hyperphosphatemia.

P2Y14R is the only P2Y receptor that can be stimulated by
UDP-sugars but not ATP, UTP, and other naturally occurring
diphosphate or triphosphate nucleotides (64). Evidence
suggested that that extracellular UDP-sugars promoted
expression of bone marrow receptor activator of NF-kB ligand
(RANKL) and potentiated RANKL-induced osteoclastogenesis
(48, 49). Lee et al. also found that the expression of P2Y14R
can be select ively induced during RANKL-induced
osteoclastogenesis both at the transcriptional and translational
levels, while the protein expression of P2Y14R was
downregulated when MAPK pathway was inhibited. More
intriguingly, downregulation of P2Y14R by RNA interference
(RNAi) was shown to suppress osteoclastogenesis (48). These
data have clearly demonstrated a pro-osteoclastogenesis role for
P2Y14R, whilst more recent evidence also suggested the
involvement of P2Y14R in osteoblast biology. Using two
murine osteoblast cell models, Mikolajewicz et al. found that
P2Y14R negatively correlated with the efficiency of calcium
signaling in response to mechanical and purinergic
stimulation, but positively stimulated osteoblast proliferation
possibly via modulating P2Y14-dependent ERK1/2 and
AMPKa phosphorylation. Further data suggested that P2Y14R
was also involved in osteogenic differentiation but its exact role
needs further clarification (50). Although P2Y14R’s dual role in
promoting osteoclast formation and osteoblast proliferation
might dampen its potential as a therapeutic target for treating
bone wasting diseases, its involvement in osteoblastic
responsiveness to mechanical stimulation is still of great
scientific interest and may offer a prospective opportunity in
enhancing the anabolic effect of exercise in bone.
DISCUSSION

Although the molecular mechanisms of P2YRs’ involved in bone
biology still need further elucidation, it is plausible that
significant progress has been made in recent years. It is now
clear that most of P2YRs play a dual role of both anabolic and
catabolic functions during bone remodeling by affecting
osteoblast and osteoclast simultaneously. To further fully
understand the role of extracellular nucleotides-P2YRs
Frontiers in Endocrinology | www.frontiersin.org 5
signaling in the process of bone homeostasis, future research
should elucidate the specific contribution of individual P2YRs in
all types of bone cells including osteocytes and bone lining cells.
No studies have yet revealed the expression of P2YRs in bone
lining cells. Although P2Y2R, P2Y4R, P2Y6R, P2Y12R, and
P2Y13R have been shown to be expressed in osteocytes,
their roles in regulating the function of osteocytes are
still unclear (65). Osteocytes are not only the most abundant
type of bone cells but also the main mechanosensors within the
bone. With their ligands-extracellular nucleotides being one of
the main transduction signals of mechanical stimulation,
several P2YRs, mainly P2Y2R, P2Y6R, P2Y13R, and P2Y14R,
have being shown to be major players in regulating
mechanotransduction. Therefore, further clarifying P2YRs’
roles in osteocytes and mechanotransduction will bring in
potential scientific and clinical benefits, such as enhancing
the anabolic effect of exercise in bone via targeting P2Y2Rs.
Furthermore, the availability of global P2YR-KO rodent models
and specific antagonists have provided us powerful tools in
investigating P2YRs in bone. However, due to variable subtypes
of P2YRs existing on bone cells and their complex cell/tissue/
specie/age dependent functions, more specific research, such as
examining the dynamic interaction and redundancy among all
P2YRs and using tissue-specific conditional P2Y-KO murine
model with higher physiological relevance, are needed in the
future. In addition, more patient cohort studies, such as
research in P2YR SNPs and osteoporosis/fracture risks, are also
warranted to verify all pre-clinical findings in human settings
before candidate P2YRs based targets enter the long and costly
drug development pipelines. Finally, due to the nature of their
ligands being extracellular nucleotides, which are keys to
fundamental pathophysiological processes such as inflammation
and cancer, P2YRs should be further researched in other bone
diseases, particularly, osteoarthritis and cancer induced
bone disease.
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