
Draft Genome Sequence of Pseudomonas nitrititolerans Strain
AGROB37, Isolated from a Sheep Dairy Farm in New Zealand

Tanushree B. Gupta,a Ruy Jauregui,b Alexis N. Risson,a Gale Brightwell,a Paul Macleanb

aFood Assurance Team, Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
bKnowledge and Analytics, Grasslands Research Centre, AgResearch, Palmerston North, New Zealand

ABSTRACT We report the draft genome sequence of a new Pseudomonas nitrititol-
erans strain, AGROB37, isolated from a sheep dairy farm environment in New Zea-
land. The genome is 4.19 Mbp long, with a GC content of 63.2%. The genome se-
quence was found to be closely related to that of the type strain Pseudomonas
nitrititolerans GL14.

The genus Pseudomonas, first proposed by Migula in 1894 (1), consists of about 254
species of Gram-negative, rod-shaped, non-spore-forming bacteria. These bacteria

are usually aerobic, but a few have been found to be facultative anaerobes (2–4).
Pseudomonas species are commonly present in environments such as soil, water, and
plants and can also be isolated from human skin and throat (5–9). While some
Pseudomonas species, such as Pseudomonas aeruginosa and P. syringae, are associated
with biofilm formation and human, animal, and plant pathogenicity, other species, such
as P. alcaligenes, P. putida, and P. stutzeri, have been applied as bioremediation agents
(9–14).

A new species of Pseudomonas, P. nitrititolerans (type strain GL14), was recently
isolated from a nitrification/denitrification bioreactor in a laboratory based in Beijing,
China. This species was found to be facultatively anaerobic, to utilize sodium nitrite as
a sole nitrogen source, and to be highly nitrite tolerant (4).

In the present study, we report the whole-genome sequence of a new Pseudomonas
nitrititolerans strain, AGROB37, isolated from a woodchip bedding sample collected
from a New Zealand sheep dairy farm. The sequences obtained will be used to
investigate pathogenic or beneficial traits of the new strain.

Samples were processed using the methodology, with slight modifications, de-
scribed in reference 15. Briefly, 25 g of woodchip bedding material was weighed in a
stomacher bag and suspended in 100 ml of phosphate buffer (PB). The suspended
sample was blended well and centrifuged at 3,466 � g for 1 h. The pellet was resus-
pended in 25 ml of PB, and 1 ml of the suspension was 10-fold serially diluted and
plated onto cetrimide-fucidin-cephalosporin (CFC) agar plates to isolate Pseudomonas
strain AGROB37 (16). Genomic DNA was extracted from these pure cultures grown in
tryptic soy broth (Fort Richard, New Zealand) using the phenol-chloroform extraction
method (17). Quality and concentration of DNA were determined using a Qubit 2.0
fluorometer (Thermo Fisher Scientific, USA).

The whole-genome sequence of Pseudomonas species strain AGROB37 was pre-
pared via the NuGEN Celero DNA enzymatic library kit and sequenced using the
Illumina MiSeq sequencing platform version 3 (Massey Genome Services, Palmerston
North, New Zealand) to produce 452,698 paired-end reads of 301 bp, giving a coverage
of roughly 65-fold. The reads were quality trimmed, filtered, and assembled via the
A5-miseq pipeline version 20160825 with default settings (18). The assembly produced
43 contigs with a total genome size of 4.2 Mb, an N50 value of 226 kb, and a GC content
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of 63.2%. A BUSCO version 3.0.2 (19) test using the bacterial reference produced a
completeness score of 100%.

A two-way average nucleotide identity test (http://enve-omics.ce.gatech.edu/ani/)
of the new Pseudomonas strain AGROB37 produced a 98% value matching with
Pseudomonas nitrititolerans GL14T (20). Furthermore, a comparative genomic analysis
was performed with the genome sequences of these organisms using in silico DNA-DNA
hybridization (dDDH) via the Type (strain) Genome Server (TYGS) (https://tygs.dsmz.de/)
(21). This analysis resulted in a dDDH (d6) value of 89.6%, indicating the same species
but with probable differences at the strain level. Further studies are required to
investigate these differences.

As part of the submission process, NCBI annotated the genomic scaffolds with
Prokaryotic Genome Annotation Pipeline (PGAP) (22), resulting in 4,003 genes being
annotated in total.

Data availability. This whole-genome shotgun project has been deposited in

DDBJ/ENA/GenBank under the accession number JABEVZ000000000. The version de-
scribed in this paper is version JABEVZ010000000. The raw sequencing data have been
deposited in the SRA under the accession number SRR11665885 and BioProject acces-
sion number PRJNA629605.
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