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Abstract: CpG methylation in transposons, exons, introns and intergenic regions is important for long-
term silencing, silencing of parasitic sequences and alternative promoters, regulating imprinted gene
expression and determining X chromosome inactivation. Promoter CpG islands, although rich in CpG
dinucleotides, are unmethylated and remain so during all phases of mammalian embryogenesis and
development, except in specific cases. The biological mechanisms that contribute to the maintenance
of the unmethylated state of CpG islands remain elusive, but the modification of established DNA
methylation patterns is a common feature in all types of tumors and is considered as an event that
intrinsically, or in association with genetic lesions, feeds carcinogenesis. In this review, we focus on
the latest results describing the role that the levels of H3K4 trimethylation may have in determining
the aberrant hypermethylation of CpG islands in tumors.
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1. Histone Lysine Methylation

Epigenetic landscapes functionally define the chromatin architecture and they are
shaped by the coordinated activity of “writers”, “readers” and “erasers”. “Writers” intro-
duce covalent chemical modifications into DNA and histone tails, the “erasers” modulate
the amount of these modifications and the “readers” recognize and bind the chemical
modifications which induce functional effects in the chromatin architecture and DNA bind-
ing of transcription factors (TFs). Among the writers, histone methyltransferases catalyze
the introduction of methyl groups in specific lysine and arginine residues at the amino
terminal ends of the histone core [1], mainly at histones H3 and H4. Lysine methylation
involves the ε-amine group of lysine at different positions of H3. Methylation events at K4,
K9, K27, K36 and K79 are the most studied and characterized. Lysine can be mono-, di-
or trimethylated. The level and state of histone lysine methylation depends not only on
the activity of histone methyltransferases (KMTs) but also on the counteracting activity of
histone lysine demethylases (KDMs). The variety of methylation sites and differentially
methylated states describes the level of complexity of signaling mediated by histone lysine
methylation, which is involved in transcription regulation, gene silencing, genome stability
and RNA processing.

2. Histone Lysine 4 Methyltransferases

The enzymes responsible for histone lysine methylation (KMTs) contain a common
active domain known as Su(var)3–9, Enhancer of zeste and Trithorax (SET), originally
identified in yeast (SET1). Three SET1 homologs were subsequently identified in Drosophila
melanogaster, including dSet1, Trithorax (Trx) and Trithorax-related [2], and 23 canonical
SET-containing histone KMTs and one seven-beta-strand (7βS)-containing domain KMT
(hDOT1L) with proven methyltransferase activity in mammals [3–5]. Some KMTs are
highly selective. Each KMT methylates a specific lysine but not others located at different
positions in the H3 polypeptide chain. For instance, the KMT that methylates H3K36 does
not methylate H3K4, and the only KMT able to methylate H3K79 is hDOT1L [6–10]. In
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addition, a lysine can be specifically targeted by multiple enzymes. This redundancy allows
specific activities to occur in a context-dependent manner. For instance, the same lysine
may be modified by a different enzyme as a function of the histone’s genomic localiza-
tion (enhancer versus promoter regions) but also to generate different methylation states
(dimethylation versus trimethylation). KMT activity depends also on the specific lysine
methylation state to add new methyl groups [11–15]. H3K4 methylation is one of the most
studied and characterized histone lysine methylations. H3K4 can be mono-(H3K4me1),
di-(H3K4me2) or tri-(H3K4me3). In mammals, H3K4 methylation is catalyzed by six
SET domain-containing KMTs, namely SET1A/KMT2F, SET1B/KMT2G, MLL1/KMT2A,
MLL2/KMT2B, MLL3/KMT2C and MLL4/KMT2D. Each of these enzymes is a component
of multimeric complexes that may or may not contain other proteins such as WDR5, RbBP5,
ASH2L and DPY30 [3]. These complexes are not redundant, as their activity marks H3K4
not only at functionally distinct loci but also at specific target genes determining different
methylation states related to the recruitment of distinct “readers” [16,17]. For instance, mul-
timeric complexes containing MLL1 and MLL2 trimethylate H3K4 at the promoter region
of Hox gene clusters, which require the correct transcriptional regulation for hematopoietic
development [18,19]. MLL2 is responsible for the tri-methylation of H3K4 of bivalent
domains which is necessary for a mechanism aiming to maintain a paused transcriptional
state in a targeted gene [20,21]. MLL3 and MLL4 monomethylate H3K4 located at the
enhancer regions involved in cell type-specific gene expression [22–25]. Recent studies
have revealed that the activity of KMT complexes is stimulated by the monoubiquitylation
of histone H2B, and that distinct subunits components may have a role in determining the
levels and state of H3K4 methylation [26–28].

3. Histone Lysine 4 Demethylases

To date, more than 30 KDM family members have been reported, and most of them
contain a Jumonji domain, with the exception of KDM1A and KDM1B [29]. As for KMTs,
KDMs target methylated lysines in H3, mainly at K4, K27, K9, K36 and K56, and in H4
at K20. KDMs demethylate specific lysines and not others located in different positions
of the histone polypeptide chain. For instance, H3K27me3 is demethylated by KDM6B,
which is not able to demethylate H3K4me3. KDMs may have distinct genomic localiza-
tion and biological effects [30]. In mammals, H3K4 demethylation is catalyzed by the
Jumonji, AT-rich interactive domain 1 (KDM5) and lysine-specific histone demethylase
(KDM1) protein families. The KDM5 family is composed of four members designated
KDM5A–D, and these enzymes are 2-oxoglutarate-dependent dioxygenases which require
Fe2+ and O2 for their function in order to undergo the hydroxylation necessary to remove
methyl groups [31]. All members contain conserved domains of five types: the ARID
(DNA-binding domain), C5HC2 zinc finger, Jumonji C (JmjC), Jumonji N (JmjN) and plant
homeodomain finger (PHD) (histone-binding domain) domains [32]. The KDM1 family
is composed of the KDM1A member and its homolog, KDM1B, which are both Flavin
Adenine Dinucleotide (FAD) -dependent histone lysine demethylases [33,34]. The KDM1A
consists of three domains: the amine oxidase domain, the FAD binding domain and the
SWIRM domain. In particular, the FAD binding domain consists of a Tower domain, which
interacts with RE1-Silencing Transcription factor (REST), a transcription factor essential
for demethylation activity [35]. KDM1B, however, does not bind REST [36,37]. KDM5A-D
and KDM1A-B proteins have histone demethylases activity towards particular histone
H3K4 methylation states; for instance, KDM5A demethylates H3K4me3/2 and proces-
sively H3K4me1, and KDM1 demethylates H3K4me1/2, with KDM1A also demethylating
H3K9 [38–44]. KDM5A, KDM5C and KDM1A proteins form complexes with transcrip-
tional repressors such as REST and KMTs establishing repressive chromatin marks [45,46].
Members of the KDM5 andKDM1 families may differ in their functions and biological
effects. The KDM5A-D proteins are associated with transcriptional repression, as H3K4me3
is considered to be a transcriptional activating signal, since it is globally distributed, mainly
at the promoters of the transcribed genes, and seems fundamental for recruiting the preini-



Biomolecules 2021, 11, 143 3 of 18

tiation factor Transcription Factor IID (TFIID) to certain gene promoters, even if loss of
H3K4me3 does not always affect gene transcription [47]. However, KDM5A and B pro-
teins may interact with different partners or complexes with transcriptional repressive
functions such as Polycomb Repressive Complex 2 [46,48]. KDM5A interacts with the
SIN3B-containing deacetylase and the nucleosome remodeling and deacetylase (NuRD)
complexes [49]. KDM5B interacts with NuRD and KDM1A [50,51], whereas KDM5C inter-
acts with the repressive H3K9 and H3K27 methyltransferase G9a in complex with histone
deacetylases (HDACs) and REST [52]. Moreover, KDM5B protein may interact directly
with HDACs mediating their recruitment to specific sites [53]. However, the activity of
KDM5A–D also seems related, in some cases, to transcriptional activation, although it is
not clear if this effect depends on demethylase activity or not [54,55]. As for the KDM5
protein family, KDM1 demethylase activity is also related to transcriptional repression.
However, KDM1A, as it can demethylate H3K9, may be associated with transcriptional
activation [56–58]. For instance, when KDM1A interacts with androgen and estrogen
nuclear hormone receptors (AR and ER), it can demethylate H3K9me1/2, thus facilitating
gene transcription [59,60]. Moreover, a neuron-specific isoform of KDM1An (also known
as LSD1n) can target H3K20me2 controlling transcriptional elongation of a neuronal gene
network [61]. Garcia-Bassets et al. [62] reported that 80% of the promoters occupied by
KDM1A were bound to RNA polymerase II, suggesting that KDM1A was associated more
often with active genes rather than the inactive genes. The formation of a protein complex
including KDM1A, Rest corepressor (CoREST) and Growth factor independence (GFI) 1
proteins is also noteworthy [63]. This complex target represses a gene regulatory network
that is necessary for normal hematopoiesis. KDM1A–GFI interaction may be disrupted by
pharmacological molecules rescuing blast cell differentiation in acute myeloid leukemia
with MLL translocations [64] and restoring the normal H3K4me3 state at targeted gene
promoters. KDM1A is also found to be associated with long non-coding RNAs (LncR-
NAs) such as HOX Transcript Antisense RNA(HOTAIR), TElomeric Repeat-containing
RNA (TERRA) and Steroid receptor RNA activator (SRA) [65]. Several non-histone pro-
teins have been recognized as targets of KDM1A activity such as p53 [66], MYPT1 [67],
E2F1 [68], and HIF-1α [69], which determine different effects on protein stability. JARID1
and LSD demethylases are involved in various cellular processes, including cell prolifera-
tion, embryonic mesenchymal transition, stemness, differentiation, cell motility, autophagy
and senescence [70,71], and their dysregulation is also closely associated with embryonic
development [72], human cancer development and other diseases [73].

4. K4 Methylated Histone H3’s Genomic Distribution and Function

The genomic distribution of methylated H3K4 has been studied both in simple eukary-
otes, such as yeast, and in higher eukaryotes. In both cases, the distribution of methylated
H3K4 is tightly associated with the state of methylation. In budding yeast, H3K4me3
localizes at gene promoter regions, H3K4me2 is mainly distributed within gene bodies
and H3K4me1 tends to accumulate towards the 3’ end of genes [74]. In multicellular
eukaryotes, genome-wide analyses of methylated H3K4 distribution show that H3K4me3
is predominantly localized at gene promoter regions, centered on the transcriptional start
sites [75–79], while H3K4me2 tends to localize downstream of the H3K4me3 peak, and
H3K4me1 is considered a marker of enhancer regions [80–86], although there is increasing
evidence of H3K4me1’s role at gene promoters. H3K4me3 marks actively transcribed
genes [75,87,88], in addition genes marked by the “broadest H3K4me3 domains” show
increased transcriptional consistency [89]. Based on the observations described above,
H3K4me3 has been proposed to sustain gene transcription [90,91]. However, the specific
state of H3K4 methylation seems to have a role in involving distinct effectors regulating
gene expression with different effects. For instance, Sims et al. [92] showed that the ATP-
remodeling enzyme CHD1, which recruits the Spt-Ada-Gcn5 acetyltransferase (SAGA)
complex [93] and sustains RNA polymerase II activity, recognizes H3K4me3. The bromod-
omain PHD finger transcription factor (BPTF), which is a component of the Nucleosome
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Remodeling Factor (NURF) complex, also recognizes and binds H3K4me3 [94]. Transcrip-
tion factor IID (TFIID), through its PHD domain-containing TAF3 subunit, is recruited by
H3K4me3, allowing more efficient preinitiation complex formation [95]. Several histone
acetyltransferase-containing complexes such as SAGA, NuA3 and HBO1 may be recruited
by H3K4me3 [96,97]. On the other hand, H3K4me2 was shown to bind to the Set3 complex.
The Set3 complex induces histone deacetylation in 5’ transcribed regions. The resulting
deacetylation slows gene activation. Set3C may repress internal cryptic promoters, but
in different regions of genes from the Set2/Rpd3S pathway. In addition, Set3C induces
transcription of some genes by repressing an overlapping antagonistic anti-sense transcript.
Set3C histone deacetylase activity can combine with ncRNA transcription to delay or
attenuate gene activation [98]. Although, as previously reported, H3K4me1 marks active
enhancer regions when associated with H3K27ac, H3K4me1 at gene promoters has been
shown to constrain the recruitment of H3K4me3-interacting reader proteins regulating the
activity of corresponding genes [85].

5. H3K4me3 and H3K27me3 Overlapping: Genomic Distribution and Function

In the last two decades, the genomic distribution of modified histones has been exten-
sively investigated, especially in relation to functionally distinct genomic compartments.
The methodological approaches differ, and the continuous development of techniques capa-
ble of large-scale analysis has made it possible to obtain a precise picture of the distribution
of modified histones in functionally different genomic regions. However, the functional
consequences of these different distributions are still debated, so that more in-depth studies
are necessary. For the purposes of this review, we will analyze the distribution and related
functions of H3K4 and H3K27 methylation. In 2005, Bernstein et al. [81] and Kim et al. [99]
conducted pioneering studies on genomic H3K4me2/3 distribution using human cancer
cell lines and mouse fibroblasts cell lines. However, a year later, Bernstein et al. [100]
observed that in mouse embryonic stem cells (mESCs), the majority of transcriptional
start sites were found to be marked by H3K4me3. In the same study, they showed that
H3K27me3 had a broader distribution but 75% of the H3K27me3 sites spanning transcrip-
tional start sites (TSSs) were also marked by H3K4me3. These genomic locations were
defined as bivalent domains. Genes that were marked by a bivalent domain at their 5’ end
were found to be expressed at low levels, despite the presence of H3K4me3. Bernstein
et al. also showed that by promoting differentiation toward the neuronal lineage, some
bivalent genes became expressed and lost the H3K27me3 mark. These observations are
fundamental to a model in which mainly developmental genes are marked by bivalent do-
mains to pause or activate, or even permanently inactivate transcription as differentiation
proceeds. Similar results were obtained in the work of Azaura et al. [101], which exploited
replication timing as a surrogate for chromatin accessibility and the transcriptional status of
genes. Mikkelsen et al. [102] combined the Chromatin Immunoprecipitation (ChIP) assay
with next-generation sequencing (ChIP-seq) to analyze the genome-wide distribution of
H3K4me3 and H3K27me3, and found that virtually all promoters with high CpG density
(CpG islands) in mouse embryonic stem cells (ES) were marked by H3K4me3 and that a
percentage of these promoters also exhibited H3K27me3. In addition, Mikkelsen et al. [102],
and later Mohn et al. [103], showed that bivalent domains are not exclusive features of
mouse embryonic stem cells (mESCs) but they also exist in differentiated cells, although to
a lesser extent, as, during differentiation, bivalent domains are resolved in one direction or
the other. Pan et al. [104], Zhao et al. [105] and Cui et al. [106] showed that bivalent domains
were also present in cultured human embryonic stem cells (hESCs) and that the resolution
of bivalency is required for lineage restriction [107,108]. However, stem cells in developing
embryos are only transiently pluripotent, raising the question as to whether bivalency and
other characteristics of embryonic stem cell chromatin are present in developing organisms
as well. Bivalent domains also exist in pluripotent epiblast cells of early post-implantation
embryos in mice [109]. However, one possibility is that bivalent domains might reflect the
cellular heterogeneity of the samples analyzed rather than co-occurrence on individual
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nucleosomes or H3 histones. Several studies [104,110–113] suggest that bivalent domains
exist and are not an artefact arising from culture conditions or heterogeneous samples.

Bernstein et al. [100] provided the first evidence that bivalent domains strongly corre-
late with CpG islands (CGI) in embryonic stem cells. CGI are a common feature of gene
promoters in vertebrate genomes. They are defined by an elevated GC content, a ratio
of observed to expected CpG dinucleotides of more than 0.6, 1 kb of length on average
in promoter regions, and an unmethylated state in contrast to the methylated state of
the vast majority of intragenic and intergenic CpG dinucleotides. Seventy percent of all
promoters contain CGI [114–116], and all H3K4me3s mark CGI, whereas H3K27me3 show
a broader distribution [102,104] with not all H3K27me3s marking CGI. These observations
support the hypothesis that CGI may have a role in the establishment of bivalent domains.
Artificially introduced CGI are able to recruit H3K4 and -27’s methylation activities [117].
The ability of histone K4 methyl transferases to target unmethylated CpGs depends on the
presence of a CXXC domain or zinc finger CXXC (ZF-CXXC) DNA-binding domain. This
domain characterizes MLLs [118,119], whereas it is absent in SET1A/B KMTs. However, in
this case, the ability to target unmethylated CGI is mediated by a CXXC-containing protein
called CFP1 (CXXC finger protein 1) [117,120,121], which is a component of SET1A/B KMT
complexes. In addition, Eberl et al. [122] showed that the plant homeodomain finger (PHD)
contained in CFP11 may target H3K4me3, favoring a mechanism that is able to sustain the
accumulation of H3K4me3 at specific sites. An alternative mechanism for KMT recruit-
ment to CGI is suggested by studies showing that Host cell factor 1, a component of KMT
complexes, binds O-linked b-N-acetylglucosamine (O-GlcNAc) transferase (OGT) [123].
The transferase, in turn, interacts with the Ten–Eleven Trans-location (TET) family of pro-
teins [124], which includes well-known players in maintaining the unmethyated state of
CpG dinucleotides. Histone variants which are expressed throughout the cell cycle and
deposited independently of DNA replication might also play a role in the establishment of
bivalent marks at the gene promoter CpGi [125,126]. CGI may also guide the recruitment
of the H3K27 methylating enzyme. In embryonic stem cells, H3K27me3-associated CGI are
bivalent [102,127]. Polycomb repressive complex 2 (PRC2), through the EZH2 component,
is responsible for H3K27 methylation. However, PRC2 components do not contain DNA-
binding domains. Several authors [128–134] have shown that different proteins, such as
Jarid2, PHF1 and MTF2, might be responsible for the recruitment of the PRC2 complex,
and thus of EZH2, to GC-rich sequences. In addition, EZH2 and other PRC2 complexes
interact with long ncRNAs [135] and short ncRNAs originating in proximity to or spanning
CGI promoters [108–136].

6. CpG Dinucleotide: Unmethylated and Methylated Status

The human genome contains ∼29 million CpG dinucleotides, each of which may exist
in the methylated or unmethylated state. Introns, 3′ untranslated regions and intergenic
sequences are severely depleted in CpGs, whereas coding exons have a relatively higher
density [137]. In contrast, CpG dinucleotides tend to form clusters in correspondence with
mammalian gene promoters. These clusters are defined as CpG islands (CGI) and cover
almost 75% of all genes, whereas the remaining 25% of genes are characterized as CpG-poor
promoters. Whole genome methylation profiles [138–140] have shown that tandem and
dispersed transposons tend to be heavily methylated, and exons, introns and intergenic
regions tend to be heterogeneously methylated within a population of cells, while CpG-rich
promoter regions are almost exclusively unmethylated in all tissue types.

CpG methylation in transposons, exons, introns and intergenic regions is important for
long-term silencing, silencing of parasitic sequences and alternative promoters, regulating
imprinted gene expression and determining X chromosome inactivation [141,142]. CGI,
although rich in CpG dinucleotides, are unmethylated and remain so during all phases
of mammalian embryogenesis and development, except in specific cases [143,144]. The
biological mechanisms that contribute to the maintenance of the unmethylated state of
CGI remain elusive, but the modification of established DNA methylation patterns is a
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common feature in all types of tumors and is considered as an event that intrinsically, or
in association with genetic lesions, feeds carcinogenesis. In tumors, methylation events
occur at promoter CGI, CpG shores, enhancers and insulators [145–149]. This aberrant
DNA hypermethylation of such regulatory genomic regions is generally correlated with the
repression of tumor suppressor [150–153], metastasis [154] and DNA repair genes [155,156],
leading to the conclusion that DNA hypermethylation is directly responsible for the ob-
served gene silencing [157–159]. However, recent experimental data on the characterization
of the methylome of normal tissues and derived cancer types suggested that aberrant DNA
hypermethylation represents a secondary event stabilizing gene inactivation, as most
aberrantly hypermethylated genes in cancer are already repressed in the tissue of ori-
gin [160–165]. Nevertheless, DNA hypermethylation represents a mechanism directly
affecting the expression of important tumor suppressor genes [166–172].

7. Mechanisms of the Protection of CpG Islands

The mechanisms that might generate a protective effect against CGI methylation are still not
clear. The prevalent view is that the frequency of CpG dinucleotides and the content of C and G
represent a key feature required to prevent methylation at CGI [117,173–176] (Figure 1). However,
these observations must be integrated with others showing that specific transcription factor
binding is linked to protection of the underlying DNA sequence [173,174,177–180] (Figure 1).
Sequence features and specific transcription factor binding may also determine the recruitment
of other proteins that might integrate their functions. In this view, all proteins containing a CXXC
domain, such as CFP1, MLL1, MLL2, KDM2A, KDM2B, TET1 and TET3 [181] (Figure 1), which
specifically targets them to CGI, might have a putative role in protecting CGI from methylation
per se or because they recruit effectors able to block DNA methylation, triggering additional
mechanisms. For instance, CFP1 recruits SET1A/B KMTs to CGI, which trimethylate H3K4, and
trimethylated H3K4 has a specific role in inhibiting DNA methyltrasferases. H3K4me3 tends to
be inversely correlated with DNA methylation [182–184]. The exclusive nature of this association
of H3K4me3 with CGI methylation is related to its role in regulating DNA methyltransferase
activity (Figure 1).
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on de novo DNA methyltranserases (DNMTs); (B): effect of transcription factors on de novo DNMTs;
(C): effect of CXXC domain containing protein on de novo DNMTs; (D): example of the effect pro-
duced by the recruitment oh histone H3K4 methyltransferases (K4MT) by CXXC domain containing
proteins (CFP1) on the activity of de novo DNMTs.

8. Mechanisms of CGI Hypermethylation in Cancer and the Role of H3K4me3

In cancer, CGI undergo methylation events defined as aberrant DNA hypermethyla-
tion. What causes the loss of the protective effect against methylation or, in other words,
what interrupts a mechanism that appears to be based on sequence identity? It has been
proposed that aberrant hypermethylation of CGI regions may be the consequence of the
modified activity of DNA methyltransferases (DNMTs) [185–191]; aberrant recruitment
of mutated transcription factors [192]; mutations in demethylating enzymes, such as ten-
eleven translocation enzymes (TETs) and their associated cofactor pathways (isocitrate
dehydrogenase; IDH1/2) [193–197]; and changes in chromatin architecture depending on
post-translational histone modifications. Specific, global and local histone modifications are
often associated with distinctive DNA methylation patterns [198]. Several studies investi-
gating the molecular basis of DNA hypermethylation propose an “instructive mechanism”
of aberrant DNA methylation in tumors that relies on histone modifications characterizing
chromatin in embryonic and adult stem cells. Accordingly, CGI prone to hypermethylation
in tumors are embedded in chromatin enriched in H3K27me3 only or H3K27me3 in associ-
ation with an H3K4me3 mark at the same locus (bivalent domain) in human embryonic
and adult stem cells [161,199–201]. This instructive model is supported by the observation
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that EZH1/2, a component of the PRC2 complex, is responsible for H3K27 methylation and
may recruit de novo DNA methyltransferases (DNMTs) [202,203]. However, in hESCs as
well as mESCs, H3K27me3 is mainly located in bivalent domains coinciding with unmethy-
lated CGI [102,199,204,205]. This observation might indicate that H3K27me3 and DNA
methylation are mutually exclusive. However, several independent studies have revealed
a causal association among PRC2 recruitment, H3K27me3 and DNA hypermethylation
during carcinogenesis [206–209]. A possible explanation for this apparent contradiction
arises from the observation that TET1 and TET2 have been found to be associated with
the PRC2 complex at CpGi in mESCs [210] and in cell lines overexpressing TETs 182]. TET
enzymes catalyze hydroxylation of 5-methylcytosine and the active demethylation process,
thus maintaining the unmethylated state of CGI.

Recent studies also indicate that methylation of CGI is related to the methylation
status of H3K4 (Figure 2); the levels of methylated H3K4 (H3K4me3) tend to be inversely
correlated with DNA methylation [183,184].
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DNMT3L domain (ADD) in the de novo DNA methyltransferase (DNMT) DNMT3a, for 
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Figure 2. Effect of diminution of H3K4me3 levels on the activity of de novo methyltransferases
(DNMTs) in tumor cell. (A): Promoter CpG islands marked by H3K4me3 in normal cells are protected
by the H3K4me3 induced auto-inhibition of DNMTs. In tumor cell, the aberrant binding of repressive
complexes (REST or NuRD) at promoter regions and the consequent recruitment of H3K4me3
demethylases (K4DT) causes the demethylation of H3K4me3 restoring the activity of de novo DNMTs
and CpG island hypermethylation. (B): Promoter CpG islands marked by bivalent domains in normal
cells are protected by the H3K4me3 induced auto-inhibition of DNMTs. In tumor cell, the aberrant
recruitment of histone H3K4 demethylases (K4DT) by Polycomb Repressive Complexes (PRC2-PRC1)
at promoter regions causes the demethylation of H3K4me3 restoring the activity of de novo DNMTs
and CpG island hypermethylation.

This mutually exclusive nature of the association of H3K4me3 with CGI methylation
might be related to its role in regulating methyltransferase activity. The ATRX–DNMT3–
DNMT3L domain (ADD) in the de novo DNA methyltransferase (DNMT) DNMT3a,
for example, recognizes the unmethylated form of H3K4 (H3K4me0), which stimulates
methyltransferase activity [211]. Through structural and biochemical analyses, the ADD
domain of DNMT3a has been shown to also interact with its catalytic domain (CD), but
in the presence of H3K4me3, DNMT3a loses the ability to bind and methylate DNA [212].
Thus, H3K4me0 and H3K4me3 have opposite effects on DNMT3a activity [213]. However,
there is no evidence that an H3K4me3’s protective effect against aberrant methylation
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exists or is lost in tumors. Our studies [214] conducted on an acute myeloid leukemia
cancer model suggest a direct role of the deregulation of H3K4me3 levels in determining
the hypermethylation of the corresponding CGI.

In our study, we obtained, by Restriction Landmark Genome Scanning (RLGS) DNA
methylation profiles of acute myeloid leukemia samples from patients and acute myeloid
leukemia (AML) cell lines. We integrated methylation data with publicly available chro-
matin ChIP-seq data for H3K4me3 and H3K27me3 promoter CGI occupation in hESCs
or hematopoietic stem and/or progenitor cells (hHSC/MPP). We observed that, in most
cases, hypermethylated CGI in AML display H3K27me3 occupancy, even in the context of
a bivalent domain in hESCs and hHSC/MPP. However, the analyses of specific hyperme-
thylated CGI revealed a chromatin context characterized by a significant reduction in the
H3K4me3 signal, with a concomitant increase in unmethylated H3K4 levels as opposed to
a non-significant increase in the H3K27me3 mark, particularly in AML patient samples.
Thus, we concluded that the loss of the normal levels of H3K4me3 in favor of increased
levels of unmethylated H3K4 removes the de novo DNMTs auto-inhibition and promotes,
as a consequence, aberrant CpGi hypermethylation. We also showed that the diminution
of H3K4me3 levels is associated with the defective expression and recruitment patterns
of specific writers, erasers and readers to CGI. Our proposal of the critical role of main-
taining correct H3K4me3 levels to protect CGI from methylation was also suggested in
recent works by Clarck [215] and Meehan [216]. Skvortsova [215] analyzed the pattern of
H3K4me1 marked nucleosomes in embryonic stem cells and normal epithelial cells, and the
mode of promoter CpG island hypermethylation in cancer. They observed that depletion or
enrichment of H3K4me1 levels at the borders of CGI results in loss or gain of DNA methy-
lation encroachment, and that H3K4me3, in contrast to H3K4me1 and H3K27me3, is highly
enriched across the body of unmethylated CGI. In cancer cells, H3K4me3 is lost from DNA
hypermethylated islands and is notably absent from the internal borders of the islands
that undergo DNA methylation encroachment. Thus, relative enrichment of H3K4me1 and
H3K4me3 represent a critical interface in predicting CGI DNA hypermethylation in cancer.
The H3K4me1/H3K4me3 ratio was shown to be statistically significantly higher at CGI
that become hypermethylated in cancer compared with CGI that remain unmethylated.

Moreover, H3K4me1-marked DNA exhibits low basal cytosine methylation in nor-
mal cells but a greater shift toward higher methylation levels in cancer cells in compar-
ison with H3K27me3-marked DNA. On the other hand, Dunican et al. [216], using the
concept of bivalent domains, revealed the existence in mESCs and hESCs of two sub-
groups of gene promoters, defined as HighBiv and LowBiv promoters, characterized by
a high ratio of H3K27me3/H3K4me3 (enrichment in H3K27me3) and by a low ratio of
H3K27me3/H3K4me3 (enrichment in H3K4me3), respectively. These two groups were as-
sociated with a different distribution of MLL2 that was enriched in LowBiv promoters, and
with a different expression pattern showing that LowBiv promoters are highly expressed,
although in the context of the typical reduced expression of bivalent domains. The analysis
of DNA methylation levels in HighBiv and LowBiv regions in breast and colon cancer
cell lines compared with normal cells showed that HighBiv promoters were more highly
methylated than LowBiv promoters in cancer cell lines. In addition, they found little evi-
dence of DNA hypermethylation at promoters that are characterized as H3K4me3-only or
H3K27me3-only. Dunican et al. [216] suggested that a possible explanation for these results
is that in LowBiv promoters, higher levels of H3K4me3 inhibit de novo methyltransferase
activity. Dunican et al. [216] concluded that it could be “useful to investigate whether there
is also a link between low level H3K4me3 and de novo DNA methylation at other discrete
sets of CGI in cancer”. In this context, our study provides evidence that H3K4me3 levels
play an important role in maintaining the unmethylated state of CGI in normal cells and
that the H3K4me3-methylation-dependent protection of CGI is altered in tumor cells.
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9. Conclusions and Perspectives

The modification of the H3K4 methylation state still represents an understudied event
among the hypotheses describing how the unmethylated state of CGI is maintained in a
normal cell or modified in a cancer cell, despite the fact that H3K4 methylation represents a
powerful determinant of the activity of DNMTs 211-213]. To date, the connection between
H3K4 trimethylation and the unmethylated state of CGI is derived from studies conducted
with the aim of evaluating its genomic distribution [81,99–106]. Although these studies
represent milestones in our understanding of the topography of the genomic distribution
of H3K4 trimethylation, they do not represent a proof of concept of the role that H3K4
trimethylation may have in protecting CGI. There is no direct evidence that H3K4me3’s
protective effect against aberrant methylation is lost in tumor cells. In our study, for the
first time, to our knowledge, we demonstrated that in AML patient samples and AML
cell lines, although based on a limited number of target CGI, DNA hypermethylation is
associated with the loss of H3K4me3 and the acquisition of unmethylated H3K4. However,
these results are not a proof of concept. Further studies need to be conducted to reveal,
the genome-wide genomic distribution of unmethylated H3K4 and the significance of its
association with hypermethylated CGI in cancer cells. In addition, a critical goal is to unveil
the mechanisms underlying a change in the methylation state of H3K4 and the activity
of DNMTs.
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