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The possible visual functions of microsaccades have long been debated1–3. Proposed 

functions range from contributions to the prevention of image fading, the gradual 

disappearance of the visual percept experienced in the absence of retinal image motion4–6, 

to participation in the oculomotor strategy by which the eye maintains precise fixation on a 

cue7,8. An interesting hypothesis is that microsaccades may contribute to visual tasks that 

require high acuity9. According to this proposal, microsaccades serve the same function as 

larger saccades: as the visual system uses saccades to explore the scene, microsaccades 

enable exploration of a narrow region around the point of fixation when necessary.

Experimental data have not supported this proposal. A seminal study, which examined 

microsaccades while observers aimed and shot a rifle and threaded a sewing needle, found 

that, in both conditions, microsaccade rates decrease just before the end of a trial, even when 

the task is successfully performed10. Furthermore, microsaccades are, on average, less 

frequent during these tasks than during maintained fixation on a small cue10. Similar results 

were also reported by a second study11. On the basis of these findings, it was concluded that 

microsaccades are detrimental and, therefore, suppressed during the execution of finely 

guided visuomotor tasks and/or tasks that require high visual acuity.

While the previous experiments show that some high-acuity judgments can be accomplished 

without microsaccades, a few observations caution against concluding that microsaccades 

are not used for exploring small regions within the scene. First, sustained fixation on a 

marker-the condition used as control reference by previous studies– might not provide an 

adequate baseline for comparing changes in microsaccade frequency. Many microsaccades 

performed under this condition might originate from the very requirement of maintaining 

precise fixation and, thus, serve a different function than the microsaccades that occur when 

accurate fixation is not demanded7,12,13. Second, a reduction in the rate of microsaccades 

at the end of an experimental trial may reflect a change in the subject's attention and does 
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not necessarily entail that microsaccades were detrimental for perceptual judgments. These 

judgments could have benefited from information acquired by means of microsaccades 

occurring at earlier times during a trial.

In order to reexamine the role of microsaccades in fine spatial vision, we recorded eye 

movements in human observers while they were threading a needle in a virtual environment. 

Recent advances in gaze-contingent display technology14,15 now enable accurate 

localization of the portion of the scene examined with the preferred retinal region, as well as 

precise analysis of the timing of occurrence of microsaccades relative to adjustments in the 

thread-needle alignment. Our results show that microsaccades moved the preferred retinal 

location back and forth between the tip of the thread and the eye of the needle and were 

generated in order to evaluate the relative alignment of these two objects.

Results

As illustrated in Figure 1a, participants were asked to insert a horizontal bar (the thread) into 

a small aperture at the center of a stationary vertical bar (the needle). Both bars were 

displayed on a CRT monitor and embedded in a noisy background. This task enabled 

replication of the results reported by previous studies. Figure 1b shows data obtained under 

conditions similar to those of Bridgeman and Palca. As in this previous study, subjects had 

no control over the thread's position. They were asked to maintain accurate fixation on the 

eye of the needle, while the thread approached the needle with constant velocity and stopped 

at a fixed distance. In agreement with previous results, the mean frequency of microsaccades 

at the end of the trial was significantly lower than at the beginning of the trial. Thus, 

microsaccades appear to be suppressed at the time of high-acuity judgments.

Figure 1c shows data obtained under conditions similar to those of Winterson and Collewijn. 

In this experiment, subjects were free to move their eyes normally and fully controlled the 

position of the thread. Each trial ended when the thread successfully passed through the eye 

of the needle. Again, the rate of microsaccades dropped significantly at the end of the trial, 

as previously reported10. Thus, microsaccades also appear to be suppressed during finely-

guided visuomotor tasks.

Findings of microsaccade suppression similar to those shown in Figure 1b and c suggest that 

microsaccades are detrimental in tasks that require high visual acuity. However, a reduction 

in microsaccade rate before perceptual reports (Fig. 1b) and at the completion of the 

visuomotor task (Fig. 1c) does not imply that microsaccades were not helpful at earlier times 

during the course of the trial, when perceptual judgments were formed. In the conditions of 

Figure 1b, the requirement for sustained fixation could have influenced microsaccade 

production. In the conditions of Figure 1c, the probability of correcting the vertical position 

of the thread also decreased together with the microsaccade frequency at the end of the trial. 

That is, microsaccade rates reached their minimum at a time at which observers no longer 

adjusted the position of the thread.

To further investigate the possible contributions of microsaccades in high-acuity vision, we 

simulated threading under conditions intermediate to those of the experiments in Figure 1b 
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and c. Subjects were allowed to freely move their eyes and control the thread's position, but 

the trial ended when the thread and the needle were at a distance at which evaluation of their 

correct alignment was still difficult. In order to ensure that modifications in the thread 

position were always the result of perceived misalignment between the thread and the 

needle, we restricted control of the thread to the vertical axis only. On the horizontal axis, 

the thread approached the needle at a constant velocity (1.4'/s).

Figure 2 compares the saccades measured in this experiment to those recorded from the 

same observers during prolonged fixation on a stationary marker, and during free viewing of 

images of natural scenes. As shown by these data, both the frequency and amplitude of 

saccades varied greatly with the task. Amplitude distributions were very similar during 

threading and sustained fixation. In both cases, the median was around 20'. In contrast, the 

amplitudes of saccades were spread more uniformly in free viewing, a condition in which 

saccades were more frequent than in the threading task (saccade rate during free viewing: 

2.49 ± 0.46; threading: 1.56 ± 0.25; p=0.002, paired t-test). In agreement with previous 

reports, the rate of microsaccades was on average lower during threading than during 

sustained fixation, even though this difference fell short of statistical significance (p=0.074; 

one-tailed paired t-test). This rate was, however, five times higher than the rate measured 

during free viewing of natural images. Thus, the condition chosen as comparison plays a 

critical role in evaluating microsaccade frequency.

Unlike during fixation on a stationary marker and free viewing of static pictures, the 

stimulus displayed during threading changed dynamically according to the subject's 

commands. We examined whether these changes in the stimulus modulated the 

characteristics of saccades. As shown in Figure 3, the frequency of microsaccades increased 

during the course of a trial. Both saccades smaller than 20' and 10' were significantly more 

frequent during the final 2.5 s of a trial than during the initial 2.5 s. This increment in 

microsaccade rate coincided with a decrement in the mean amplitude across all saccades 

(see Fig. 3c). That is, saccades became progressively smaller during the course of a trial, a 

change which reflected the narrowing of the separation between the thread and the needle. 

This effect was not a consequence of background noise, which could have forced subjects to 

look for points in which the thread and the needle were more visible. Indeed, highly similar 

results were obtained in the absence of background noise, when the thread and the needle 

were clearly visible.

The data in Figure 3 suggest that the visual system calibrated saccades on the basis of the 

distance between the thread and the needle: the closer the tip of the thread to the needle, the 

smaller was the saccade. This dependence might originate from an oculomotor strategy in 

which microsaccades relocate the line of sight back and forth between the two objects. To 

determine whether this was indeed the case, we examined the spatial distribution of fixations 

during a trial.

In the periods in between successive saccades, slow movements keep the eye continually in 

motion. With the low velocity of the thread used in this study, no sign of pursuit was present 

in the recorded data. Ocular drift was highly similar to that measured during sustained 

fixation on a marker and kept the eye within a region with mean radius 6' ± 3'. Because of 
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this motion, we classified each intersaccadic interval as a fixation on the thread, on the 

needle, or on the background according to the location of the mean position of the eye's 

trajectory during the considered interval (Fig. 4a).

Fixations were clustered around the eye of the needle and the tip of the thread (see examples 

in Fig. 4b). Very few fixations fell far from these two regions. Notably, the distributions of 

fixations covered the path followed by the thread during the course of the trial, suggesting 

that subjects precisely calibrated microsaccades in order to fixate on the moving thread. As 

shown in Figure 4c, subjects fixated more often on the thread than on any other part in the 

image; more than 50% of fixations were on the thread. This preference is understandable, 

given that the thread was the only component of the stimulus that changed position during a 

trial. Subjects also fixated often on the eye of the needle, with approximately one every three 

fixations in this area of the image. This distribution of fixation locations remained constant 

during the course of the trial (Fig. 4d).

We then examined how microsaccades contributed to oculomotor strategies. Microsaccades 

were often used to relocate the line of sight across objects (Fig. 5a). While fixating on the 

needle, microsaccades most often moved the line of sight to the thread. While fixating on the 

thread, however, microsaccades had a higher probability of maintaining fixation on the 

thread. This difference occurred because subjects made multiple consecutive fixations on the 

thread and spent longer time looking at this object before moving their gaze, via a 

microsaccade, to another region of the image (median interval consecutively spent on the 

thread: 876 ms; on the needle: 578 ms). It should be observed that these probability 

distributions might underestimate the number of relocations of gaze between the thread and 

the needle, particularly toward the end of the trial, when the two objects were very close to 

each other. As shown in Figure 5b, during the last 2.5 s in each trial, the horizontal direction 

of a microsaccade was very likely to be opposite to that of the previous microsaccade.

We wondered whether microsaccades contributed to the estimation of the alignment 

between the thread and the needle. To this end, we first determined during which fixations 

subjects were more likely to adjust the position of the thread. Figure 6a shows the 

probability of realigning the thread during fixation on different regions of the scene. Not 

surprisingly, adjustments were more likely to occur while subjects fixated on the thread than 

other parts of the image. This result was, however, a consequence of the uneven 

distributions of fixations within the scene, since most fixations were also dedicated to the 

thread (see Fig. 4c). Indeed, the mean rates of adjustments, i.e., the mean numbers of 

corrections per fixation, were actually quite similar during fixations on the thread and the 

needle (Fig. 6b).

The two bottom rows of Figure 6 show the oculomotor strategies preceding and following 

adjustments in the thread's position. The data in Figure 6c and d represent the probability of 

changing the position of the thread immediately after different types of microsaccades. 

Subjects were more likely to correct the thread's position after executing a microsaccade 

which moved the preferred retinal location from one object (the thread or the needle) to the 

other, than after prolonged fixation on the same object. This effect occurred for 

microsaccades of all amplitudes, but was particularly pronounced after microsaccades 
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smaller than 10' (Fig. 6d). In contrast, after performing an adjustment, microsaccades were 

likely to move the preferred retinal location toward the thread (Fig. 6e and f). That is, the 

first microsaccade following an adjustment had a high probability of (a) moving the line of 

sight onto the thread when the subject performed the adjustment while fixating on the 

needle, and (b) keeping the center of gaze on the thread when the correction was performed 

during fixation on the thread. Thus, microsaccades were used to either look back or gain a 

new view of the moving thread after realigning its position.

These data, together with the different patterns of eye movements observed in successful 

and unsuccessful trials (see Supplementary Results and Supplementary Fig. 1), show that 

microsaccades were part of the oculomotor strategy by which subjects acquired information 

about the alignment between the thread and the eye of the needle.

Discussion

Although microsaccades have attracted considerable interest since their first quantitative 

measurements16,17, their visual functions have remained subject of controversy2,3. In our 

experiments, saccades smaller than 20' precisely relocated the line of sight according to the 

ongoing demands of the task. These results contradict the widespread assumption that 

microsaccades are suppressed during high-acuity judgments and support the proposal that 

microsaccades are exploratory movements like larger saccades9,12.

The proposal that microsaccades differ from saccades in amplitude but not in function is 

consistent with multiple experimental observations. It is known that the area of preferred 

target location in the retina is small, with a standard deviation of only 3.4'18,19. Thus, 

targets displaced by more than a few minutes of arc are likely to fall outside this region, and 

the line of sight may need to be reoriented in order to ensure optimal vision. For example, 

under the assumption that the probability of target location is uniformly distributed within 

the preferred retinal region, a stimulus located only 5' away from the current fixation would 

fall outside of the preferred retinal region in more than 50% of the cases. Furthermore, 

microsaccades and saccades exhibit similar motor characteristics and share a common neural 

substrate20. In fact, there is no clear distinction between the two types of movements, and 

their amplitudes form a continuum (see Fig. 2c). It is also known that saccades with 

amplitudes within the range of microsaccades can be voluntarily executed both to track 

small displacements of a fixated target21 and to look away from a stimulus22. Thus, our 

findings are consistent with the observations that (a) relocations of the line of sight of a few 

minutes of arc are sometimes necessary in order to ensure optimal vision, and (b) the 

oculomotor system is capable of performing such relocations by means of microsaccades.

The conclusions of the present study conflict with prior reports; the results of the prior 

reports were confirmed (Fig. 1b,c) but now subject to a very different interpretation. The 

observation that microsaccades are rare immediately before shooting a rifle or threading a 

needle10, two tasks in which shifts of attention between small details would be expected to 

be crucial, has been taken to imply that microsaccades are detrimental in tasks that require 

high visual acuity. However, a similar reduction in microsaccade frequency is also to be 

expected if microsaccades contribute information about the stimulus. Microsaccades might 
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no longer be needed at the end of the trial, when the positions of the thread and needle 

practically overlap on the retina and their alignment can be assessed comfortably without the 

need for relocating the line of sight. In fact, a decrement in microsaccade rate also occurred 

in our experiments when the thread was allowed to reach and go through the needle (see Fig. 

1c). However, the frequency of microsaccades only dropped when the distance between the 

tip of the thread and the needle was smaller than 5'. In contrast, microsaccades occurred 

frequently at earlier times, when the thread was farther from the needle, and subjects still 

adjusted the thread/needle alignment.

It is also known that the mean rates of microsaccades during threading and shooting are 

lower than during sustained fixation on a marker10. Across the five naive subjects who 

participated in this previous study, the mean rate decreased by approximately 30%, a value 

similar to that measured in our experiments (26% for saccades smaller than 20'). Again, this 

reduction does not imply that microsaccades are not helpful in high-acuity tasks. In our 

experiments, the mean rate of microsaccades measured during threading was lower than that 

observed during fixation, but also substantially higher than that measured during free 

viewing of natural images. This task-dependence of microsaccades emphasizes the difficulty 

of choosing a control condition to use as baseline.

The results of this study stress the need for distinguishing between different types of 

microsaccades23,24. As previously reported in the literature11 and confirmed in our 

experiments (see Fig. 1b), a reduction in microsaccade rate occurs when subjects are asked 

to maintain fixation on the eye of the needle and passively observe the motion of the thread. 

This effect is probably caused by a change in the accuracy of fixation control during the 

course of the experiment. Most (but not all) observers perform frequent microsaccades while 

attempting to maintain steady fixation on a marker, even if no stimulus other than the 

fixation cue is displayed. These fixational saccades appear to serve a different function from 

the exploratory microsaccades observed when subjects are free to move their eyes. 

Fixational saccades can be voluntarily suppressed12 and their frequency depends on the 

precision of intended fixation13. In the experiment of Figure 1b, a suppression of fixational 

saccades is to be expected at the time of perceptual judgments, as these saccades are not 

pertinent to the task and may impair performance. Exploratory microsaccades and fixational 

saccades can hardly be distinguished in experiments in which stimuli are observed while 

maintaining accurate fixation on a marker. Confusion between these two types of eye 

movements has probably contributed to the long-standing controversy over the visual 

functions of microsaccades.

In our experiments, the probability of correcting the thread's position was significantly 

higher after a microsaccade shifted the line of sight from one object to the other than during 

prolonged fixation, a finding reminiscent of the way saccades precede hand movements in 

manipulation tasks25–28. The precision by which microsaccades relocated the line of sight 

between the thread and the needle suggests that these movements contributed to visual 

acuity. Such a contribution would also provide an explanation for previously reported 

improvements in fine spatial discrimination measured in the presence of microsaccades29. 

Our findings, however, do not exclude other hypotheses, including possible enhancements in 

contrast sensitivity following microsaccades. Further studies are needed to distinguish 
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among hypotheses and investigate the physiological mechanisms by which microsaccades 

enhance the perception of fine detail.

Methods

Participants

Ten subjects with normal vision participated in the experiments of this study. Six subjects 

participated in the main experiment (Figs. 2–6), with three of them also taking part in the 

control experiments of Figure 1. Five subjects participated in the experiment of Figure 7. 

With the exception of one experienced observer, all subjects were naive about the purposes 

of the experiments and were paid to participate. Informed consent was obtained from all 

participants following the procedures approved by the Boston University Charles River 

Campus Institutional Review Board.

Apparatus

Stimuli were displayed on a fast phosphor CRT monitor (Iyama HM204DT) at a resolution 

of 800x600 pixels and vertical refresh rate of 200 Hz in a dimly-illuminated room. A dental 

imprint bite bar and a head rest prevented movements of the head and kept subjects at a 

distance of 126 cm from the monitor. Stimuli were observed monocularly with the right eye, 

while the left eye was patched. Stimuli were rendered by means of EyeRIS14, a hardware/

software system for gaze-contingent display control which enables precise synchronization 

between eye movement data and the refresh of the image on the monitor, as well as accurate 

spatial localization of the line of sight. Vertical and horizontal eye position data were 

sampled at 1 kHz and recorded for subsequent analysis. Subjects used different buttons on a 

joypad to control the x and y coordinates of the thread on the screen. Adjustments occurred 

in discrete steps; each button press moved the thread by 1.4'.

Stimuli and Procedure

Data were collected in separate experimental sessions, each of approximately 20 minutes. 

Every experimental session started with preliminary setup operations that lasted a few 

minutes and allowed the subject to adapt to the low level of light in the room. These 

preliminary operations included: (a) positioning the subject optimally and comfortably in the 

apparatus; (b) tuning the eyetracker; and (c) calibrating EyeRIS. Subjects were never 

constrained in the experimental setup for more than 30 minutes consecutively.

Accurate localization of the line of sight is necessary in order to examine the way eye 

movements scan the scene during high-acuity judgments. To optimize the transformation of 

the eye position measurements given by the eyetracker into screen coordinates, a dual-step 

calibration procedure, in which the subject observed and refined the estimated position of 

the preferred retinal location, preceded each block of trials. In the first phase of the 

calibration, the subject sequentially fixated on nine points evenly spaced within the working 

area of the display, as in standard calibration routines. For each point, the mean output 

voltage from the eye tracker was estimated over a period of 3.5 s. The mapping from eye-

position coordinates to degrees of visual angle was determined by bilinear interpolation over 

the mean eye positions measured at these nine points. This transformation was made 
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possible by virtue of the highly linear behavior of the DPI eyetracker within the central 

region of the visual field. In the second phase of the calibration procedure, subjects fine-

tuned the gaze-to-pixel mapping using a gaze-contingent display technique. In this phase, 

subjects adjusted the position of a cross, displayed in real time on the screen at the estimated 

preferred retinal location, while sequentially fixating again on the nine points of the 

calibration grid. Subjects used the buttons on EyeRIS' joypad to finely adjust the position of 

the cross at each of these fixation points. These refinements were then incorporated into the 

offsets and gains of the bilinear interpolation. This method effectively reduces the dispersion 

of eye position measurements during calibration and improves the precision of the voltage-

to-pixel mapping.

Subjects threaded a needle in a simulated virtual environment. The “needle” consisted of 

two aligned vertical bars (each 68' × 7') with a 4' gap (the “eye of the needle”) in the center. 

A horizontal bar (68' × 1.4') served as “thread” (see Fig. 1). The needle always remained 

immobile at the center of the screen. The thread started from a random location to the right 

of the needle and moved following the subject's commands (the initial distance from the 

needle was always 31' on the x-axis). With the exception of the experiment in Figure 1c, 

subjects only controlled the vertical position of the thread; on the horizontal axis, the thread 

approached the needle with constant speed of 1.4'/s and stopped 7' from the needle, so that 

each trial lasted for 17.5 s. In the experiment of Figure 1b, the thread followed a previously 

recorded trajectory, which varied randomly across trials. Subjects evaluated whether or not 

the thread was correctly aligned with the eye of the needle after the thread stopped moving. 

In the experiment of Figure 1c, the thread went through the needle until its tip reached the 

needle's central axis.

The thread and the needle were displayed at the same contrast level over a noisy 

background. The spectral density of the background declined as 1/f2 with the spatial 

frequency f and was low-pass filtered with cut-off frequency at 5 cycles/deg. The mean 

luminance of the background was 16 cd/m2. To normalize the difficulty of the task across 

subjects, the contrast of the stimulus was adjusted individually for each subject so that 

successful completion of the task occurred in approximately 85% of the trials in the main 

experiment (Figs. 2–6) and 50% of the trials in the experiment of Supplementary Figure 1. 

Contrast values were selected during preliminary experimental sessions. Figure 3 also shows 

data collected in the absence of background noise, i.e., when the stimulus was displayed at 

maximum contrast over a uniformly gray field (luminance 16 cd/m2). In this condition the 

needle and the thread were clearly visible and subjects always successfully accomplished the 

task.

Figure 2 compares microsaccade rates measured during threading to those observed during 

sustained fixation and free viewing. In the sustained fixation condition, subjects maintained 

fixation on a black dot (4' × 4') on a homogeneous gray background for 17.5 s. In the free 

viewing condition, subjects freely explored gray-scale images of natural scenes extracted 

from a public domain database26. Each image subtended a visual angle of 18.1° × 13.6° and 

was displayed for 10 s.
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Data Analysis

Movements with maximum speed higher than 3°/s and amplitude larger than 1' were 

classified as saccades. Saccade amplitude was defined as the distance between the locations 

in which eye velocity became greater (saccade onset) and lower (saccade offset) than 2°/s. 

Classification of eye movements was performed automatically and then validated by human 

experts. Mean instantaneous rates and amplitudes were evaluated over consecutive, non-

overlapping bins of 2.5-s duration. Periods of blinks were automatically removed from data 

analysis.

The conditional probabilities of Figure 6c,d and the distributions of Supplementary Figure 

1d were calculated by selecting all the adjustments preceded by a microsaccade. To be 

included in the analysis, an adjustment had to occur within 1.5 s after the end of a 

microsaccade and no other saccade had to be present in between these two events. Similar 

criteria were applied to the interval between the time of an adjustment and the onset time of 

a later microsaccade in order to select microsaccades which followed adjustments and 

compute the conditional probabilities of Figure 6e,f.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Threading a virtual needle. (a) The arena in which all the threading experiments of this 

study were conducted. Subjects used a joypad to align a horizontal bar (the thread) with the 

gap in a vertical bar (the needle). The gray bars represent the positions of the thread at 

various times during the course of the trial. The actual stimulus on the display is shown in 

the right panels for two different times, t1 and tn. (Bottom Row) Results from two 

experiments with conditions similar to those of previous studies: (b) Bridgeman and Palca 

(1980), and (c) Winterson and Collewijn (1976). The two intervals refer to the initial 4 s 

(Start) and the last 0.5 s (End) in each trial. In (c), both the mean microsaccade rate and the 

frequency of adjustments in the thread's vertical position are shown. Significant differences 

between the initial and final periods are marked by * (p < 0.01; one-tailed t-test). In this and 

all the following figures, error-bars represent s.e.m..
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Figure 2. 
Comparison of saccade characteristics in three different tasks: threading, sustained fixation 

on a marker, and free viewing of natural images. (a–c) Distributions of saccade amplitudes. 

The triangles mark the medians of the distributions. The insert panel in (c) displays the 

range of small amplitudes. (d) Mean amplitudes of microsaccades, defined as saccades 

smaller than 20' (ANOVA with Scheffe post-hoc comparisons: (*) p = 0.009; (**) p = 

0.004). Movies of individual trials in the threading task can be found as Supplementary 
Videos 1 and 2.
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Figure 3. 
Modulation of saccade characteristics. (a, b) Mean instantaneous frequency of 

microsaccades, defined as: (a) saccades smaller than 20'; and (b) saccades smaller than 10'. 

(c) Mean instantaneous saccade amplitude. The two curves in each panel represent data 

obtained in the presence and absence of background noise. In this latter condition, the 

background was at a constant grey level and the stimulus was displayed at maximum 

contrast. Horizontal lines in each panel indicate mean values during sustained fixation 

(dashed line) and free viewing (dotted line). * marks conditions in which measured values 

were significantly higher during the last 2.5 s of a trial than during the initial 2.5 s (p < 0.04; 

one-tailed t-test in a, b and Wilcoxon signed-rank test in c).
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Figure 4. 
Analysis of fixation locations. (a) Each intersaccadic period was classified as a fixation on 

the eye of the needle, the thread, or the background according to the location of its centroid. 

The distance D between the needle and the thread varied during the course of the trial. (b) 

Two examples of spatial distributions of fixations. Each panel corresponds to a different 

experimental trial. Blue and green circles represent fixations on the thread and on the eye of 

the needle, respectively. Orange circles indicate fixations on the background. The red 

crosses mark the trajectory followed by the thread. The insert panels zoom in on the center 

of the display. (c) Mean probabilities of fixation locations. Differences across all conditions 

are significant (ANOVA with Scheffe post-hoc comparisons, p < 0.002). (d) Fixation 

probabilities at successive intervals during the course of the trial.
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Figure 5. 
Analysis of microsaccades. (a) Probabilities of various types of microsaccades during 

fixation on the needle and on the thread. Microsaccades are subdivided according to where 

they landed. Data refer to saccades smaller than 20'. (b) Influence of microsaccade direction 

on the direction of the following microsaccade. During the last 2.5 s in each trial, 

consecutive microsaccades possessed opposite directions on the horizontal axis. In both 

graphs, all differences within each group are statistically significant (paired z-test with 

Bonferroni corrections, p < 0.001).
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Figure 6. 
Interplay between microsaccades and corrections in the thread-needle alignment. (a) 

Probability distributions of adjustments to the thread's position as a function of the location 

of fixation during which they occurred. (b) Rates of adjustments. Data points represent the 

average numbers of changes in the thread's position per fixation. In both a and b, all 

differences are statistically significant (paired z-test with Bonferroni corrections, p < 0.01). 

(c–d) Conditional probabilities of adjustments following different types of microsaccades. 

The fixation in which the adjustment occurred (x-axis) is the target destination of the 

microsaccade. (e–f) Conditional probabilities of performing different types of microsaccades 

following an adjustment. The fixation in which the adjustment occurred (x-axis) is the origin 

of the microsaccade. Data are shown for both microsaccades smaller than 20' (c,e) and 10' 

(d,f). In c–f, microsaccades are arranged according to whether they maintained fixation on 

the same object (thread or needle) or moved the line of sight from one to the other. * marks 

significant differences (paired z-test with Bonferroni corrections, p < 0.05).
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