SCIENTIFIC REPORT

ADOPTED: 8 July 2019 doi: 10.2903/j.efsa.2019.5797

Scientific support for preparing an EU position in the 51st Session of the Codex Committee on Pesticide Residues (CCPR)

European Food Safety Authority (EFSA)

Abstract

In accordance with Article 43 of Regulation (EC) 396/2005, EFSA received a request from the European Commission to provide support for the preparation of the EU position for 51st session of the Codex Committee on Pesticide Residues (CCPR). In 2018, JMPR evaluated 15 active substances regarding the setting of toxicological reference values to be used in consumer risk assessment (chlorfenapyr, ethiprole, fenpicoxamid, fluazinam, fluxapyroxad, imazalil, kresoxim-methyl, lambda-cyhalothrin, mandestrobin, mandipropamid, norflurazon, pydiflumetofen, pyraclostrobin, pyriofenone, tioxazafen) and 27 active substances regarding the setting of maximum residue limits (MRLs) (abamectin, bentazone, chlorfenapyr, cyantraniliprole, cyazofamid, diquat, ethiprole, fenpicoxamid, fenpyroximate, fluazinam, fludioxonil, fluxapyroxad, imazalil, kresoxim-methyl, lufenuron, mandipropamid, norflurazon, oxathiapiproline, profenofos, propamocarb, pydiflumetofen, pyraclostrobin, pyriofenone, pyriofenone, pyriproxyfen, sulfoxaflor and tioxazafen); EFSA prepared comments on the Codex MRL proposals and the proposed toxicological reference values. In addition, EFSA provided comments on follow-up assessments of JMPR on pesticides where specific concerns were raised in the previous CCPR meetings. The current report should serve as the basis for deriving the EU position for the CCPR meeting.

© 2019 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: consumer risk assessment, toxicological evaluation, residue definitions, MRL setting, CCPR meeting 2019

Requestor: European Commission

Question numbers: EFSA-Q-2018-00956, EFSA-Q-2018-00957, EFSA-Q-2018-00958, EFSA-Q-2018-00959, EFSA-Q-2019-00193, EFSA-Q-2018-00960, EFSA-Q-2018-00961, EFSA-Q-2018-00962, EFSA-Q-2018-00963, EFSA-Q-2018-00964, EFSA-Q-2018-00965, EFSA-Q-2018-00966, EFSA-Q-2018-00967, EFSA-Q-2018-00968, EFSA-Q-2018-00969, EFSA-Q-2018-00970, EFSA-Q-2018-00971, EFSA-Q-2018-00972, EFSA-Q-2018-00973, EFSA-Q-2018-00974, EFSA-Q-2018-00975, EFSA-Q-2018-00976, EFSA-Q-2018-00977, EFSA-Q-2018-00978, EFSA-Q-2018-00979, EFSA-Q-2018-00980, EFSA-Q-2018-00981, EFSA-Q-2018-00982, EFSA-Q-2018-00983, EFSA-Q-2018-00984, EFSA-Q-2018-00985, EFSA-Q-2018-00986, EFSA-Q-2018-00988, EFSA-Q-2018-00988

Correspondence: pesticides.mrl@efsa.europa.eu

Suggested citation: EFSA (European Food Safety Authority), 2019. Scientific Report on scientific support for preparing an EU position in the 51st Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2019;17(7):5797, 243 pp. https://doi.org/10.2903/j.efsa.2019.5797

ISSN: 1831-4732

© 2019 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.

Summary

For the preparation of the 51st session of the Codex Committee on Pesticide Residues (CCPR meeting), the European Commission asked the European Food Safety Authority (EFSA) to provide comments on the individual active substances assessed in the 2018 Joint FAO/WHO Meeting on Pesticide Residues (JMPR), in particular on the recommended toxicological reference values and the proposed MRLs at steps 3 and 6 of the Codex procedure.

In 2018, JMPR evaluated 15 active substances regarding the setting of toxicological reference values to be used in consumer risk assessment (chlorfenapyr, ethiprole, fenpicoxamid, fluazinam, fluxapyroxad, imazalil, kresoxim-methyl, lambda-cyhalothrin, mandestrobin, mandipropamid, norflurazon, pydiflumetofen, pyraclostrobin, pyriofenone, tioxazafen). EFSA compared the acceptable daily intake (ADI) and acute reference dose (ARfD) values derived by JMPR with the values derived at EU level and, in case differences were identified, EFSA provided further explanations for the reasons of the differences.

As regards the setting of maximum residue limits (MRLs), JMPR assessed 27 active substances (abamectin, bentazone, chlorfenapyr, cyantraniliprole, cyazofamid, diquat, ethiprole, fenpicoxamid, fenpyroximate, fluazinam, fludioxonil, fluxapyroxad, imazalil, isofetamid, kresoxim-methyl, lufenuron, mandipropamid, norflurazon, oxathiapiproline, profenofos, propamocarb, pydiflumetofen, pyraclostrobin, pyriofenone, pyriproxyfen, sulfoxaflor and tioxazafen).

EFSA provided comments on the proposed Codex MRLs as well as on active substances that were re-assessed by JMPR following specific concerns raised in the previous years or other requests to perform a follow-up evaluation (benzovindiflupyr, bromopropylate, fenpyroximate, fluopyram, oxamyl, spinetoram, cyprodinil, propiconazole, 2,4-D, phosphonic acid, picoxystrobin, quinclorac) and on general issues discussed in the 2018 JMPR meeting.

It is highlighted that the JMPR report summarising the recommendations of the 2018 JMPR meeting was published on 11 January 2019. The full evaluations were published on 11 March 2019, thus after the deadline for the preparation of the draft EFSA report. Due to the limited details available and the short timelines for providing the comments, an in-depth analysis taking into account the detailed information provided in the JMPR evaluation could not always be performed. The conclusions reached in this report should be considered as indicative and might have to be reconsidered in a more detailed assessment when needed. The comments presented in this report have to be seen in the context of the currently applicable guidance documents and the MRL legislation applicable at the time of commenting. The comments may not be valid any more or may have to be modified, if the legal or scientific framework changes.

Table of contents

Abstrac	t	1
Summa	ary	3
1.	Introduction	8
1.1.	Background	8
1.2.	Terms of Reference	9
2.	Assessment	10
3.	General consideration	11
3.1.	Toxicological profiling of compounds and less-than lifetime dietary exposure assessment	11
3.2.	Need for sponsors to submit all requested data	12
3.3.	Hazard characterisation in the 21st century: assessing data generated using new mechanism-based	
0.0.	approaches for JMPR evaluations.	12
3.4.	Update on the revision of principles and methods for risk assessment of chemicals in food (EHC 240)	12
3.5.	Microbiological effects.	13
3.6.	Transparency of JMPR procedures	13
3.7.	Review of the large portion data used for IESTI equation	13
3.8.	Update of the IEDI and IESTI models used for the calculation of dietary exposure: commodity	13
5.0.		13
2.0	grouping according to the revised codex classification and new large portion data	13
3.9.	Recommendations for (sub) group maximum residue levels for fruiting vegetables, other than	10
2.4.0	cucurbits revisited	13
3.10.	Preliminary results for probabilistic modelling of acute dietary exposure to evaluate the IESTI equation	14
4.	EFSA Comments on JMPR report chapter 3 (Responses to specific concerns raised by the Codex	
	Committee on Pesticide Residues	14
4.1.	Benzovindiflupyr (261)	14
4.2.	Bromopropylate (070)	14
4.3.	Crop groups – reconsideration of maximum residue estimations made by the 2017 JMPR for	
	fenpyroximate (193), fluopyram (243), oxamyl (126) and spinetoram (233)	15
4.4.	Cyprodinil (207) and propiconazole (160) post-harvest uses	
4.5.	2,4-D (020)	15
4.6.	Fluopyram (243)	15
4.7.	Phosphonic acid (301)/Fosetyl-Aluminium (302)	15
4.8.	Picoxystrobin (258)	
4.9.	Quinclorac (287)	
5.	Comments on JMPR report chapter 5 (individual substances assessed)	
5.1.	Diquat (31) R	
5.1.1.	Background information	
5.1.2.	Toxicological reference values	
5.1.3.		
5.1.4.		
5.1.5.	Consumer risk assessment	
5.2.	Imazalil (110) R,T	
5.2.1.	Background information	
	Toxicological reference values.	20
	Residue definitions	22
		22
5.2.4. 5.2.5.		
	Consumer risk assessment	26
5.3.	Lambda-cyhalothrin (146) T	26
5.3.1.	Background information	26
5.3.2.	Toxicological reference values	27
5.3.3.		27
5.3.4.	Codex MRL proposals	28
5.3.5.	Consumer risk assessment	28
5.4.	Propamocarb (148) R	28
5.4.1.	Background information	28
5.4.2.	Toxicological reference values	29
5.4.3.		29
5.4.4.	Codex MRL proposals	30
5.4.5.	Consumer risk assessment	31
5.5.	Propiconazole (160) R	
5.5.1.	Background information	31

5.5.2.	Toxicological reference values	
5.5.3.	Residue definitions	
5.5.4.	Codex MRL proposals	
5.5.5.	Consumer risk assessment	35
5.6.	Profenofos (171) R	36
5.6.1.	Background information	36
5.6.2.	Toxicological reference values	37
5.6.3.	Residue definitions	37
	Codex MRL proposals	
	Consumer risk assessment	
5.7.	Bentazone (172) R	
5.7.1.	Background information	
5.7.2.	Toxicological reference values	
5.7.3.	Residue definitions	
5.7.4.	Codex MRL proposals	
5.7.5.	Consumer risk assessment	42
5.8.	Abamectin (177) R	
5.8.1.	Background information	
5.8.2.	Toxicological reference values	
5.8.3.	Residue definitions	
5.8.4.	Codex MRL proposals	
	Consumer risk assessment	
5.9.	Fenpyroximate (193) R	49
5.9.1.	Background information	
5.9.2.	Toxicological reference values	
5.9.3.	Residue definitions	
5.9.4.	Codex MRL proposals	
	Consumer risk assessment	
5.10.	Kresoxim-methyl (199) R,T	
	Background information	
5.10.1.	Toxicological reference values	53
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.11.	Pyriproxyfen (200) R	
	Background information	
	Toxicological reference values.	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Cyprodinil (207) R	
	Background information	63
	Toxicological reference values	64
	Residue definitions	65
	Codex MRL proposals	66
	Consumer risk assessment	66
5.13.	Pyraclostrobin (210) R,T	67
	Background information	67
	Toxicological reference values	68
	Residue definitions	68
	Codex MRL proposals	69
	Consumer risk assessment	73
	Fludioxonil (211) R	74
	Background information	74
	Toxicological reference values	75
	Residue definitions	75
5.14.4.	Codex MRL proposals	76
5.14.5.	Consumer risk assessment	79
5.15.	Mandipropamid (231) T/R	80
	Background information	80
	Toxicological reference values	80
5.15.3.	Residue definitions	81

	Codex MRL proposals	
5.15.5.	Consumer risk assessment	83
5.16.	Fluopyram (243) R	84
5.16.1.	Background information	84
5.16.2.	Toxicological reference values	85
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.17.		
	Background information	
5.17.2	Toxicological reference values	88
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.18.		
	Background information	
5.10.1.	Toxicological reference values.	92 93
5.10.2. E 10 2	Residue definitions	93
	Codex MRL proposals	
	Consumer risk assessment	
5.19.		
5.19.1.	Background information	98
5.19.2.	Toxicological reference values	98
	Residue definitions	
	Codex MRL proposals	
5.19.5.	Consumer risk assessment	
5.20.	Benzovindiflupyr (261) R	
5.20.1.	Background information	103
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Cyantraniliprole (263) R	
5.21.1.	Background information	106
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Cyazofamid (281) R	
5.22.1.	Background information	110
5.22.2.	Toxicological reference values	110
5.22.3.	Residue definitions	111
5.22.4.	Codex MRL proposals	112
5.22.5.	Consumer risk assessment	113
	Lufenuron (286) R	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.24.		
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.24.5.	Oxathiapiproline (291) R	
	Background information	
	Toxicological reference values	
	Residue definitions Codex MRL proposals	
5.25.5.	Consumer risk assessment	τζΩ

5.26.	Ethiprole (304) R,T	129
5.26.1.	Background information	
	Toxicological reference values	
	Residue definitions	
5.26.4.	Codex MRL proposals	131
	Consumer risk assessment	
5.27.	Fenpicoxamid (XDE-777) (305) R,T	
	Background information	
5.27.2.	Toxicological reference values	133
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Fluazinam (306) R,T	
5.28.1.	Background information	136
	Toxicological reference values	
5.28.3.	Residue definitions	137
5.28.4.	Codex MRL proposals	137
	Consumer risk assessment	
	Norflurazon (308) R,T	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Mandestrobin (307) T	
	Background information	
5.30.2.	Toxicological reference values	144
	Pydiflumetofen (309)R,T	
	Background information	
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	Pyriofenone (310) R,T	
5.32.1.	Background information	149
	Toxicological reference values	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
5.33.	Tioxazafen (311) R,T	
	Background information	
	Toxicological reference values.	
	Residue definitions	
	Codex MRL proposals	
	Consumer risk assessment	
	nces	
	iations	
	lix A – Calculations of Consumer exposure with Pesticide Residue Intake Model (Primo) lix B – Comments on draft Codex MRL proposals maintained at step 4 or 7	
Append	IN D - Comments on that Codex MRE proposals maintained at step 4 of 7	200

1. Introduction

1.1. Background

Manufacturers of pesticides who are interested in the setting of Codex Maximum Residue Limits (CXLs) submit data to the Joint FAO/WHO meeting on pesticide residues (JMPR) for assessment. The most recent JMPR evaluations of the toxicological data and the residue studies are summarised in the JMPR 2018 Report (FAO, 2018).

On 12 November 2018, the European Commission requested the European Food Safety Authority (EFSA) to provide support for the preparation of the EU-coordinated position for the 51st session of the Codex Committee on Pesticide Residues (CCPR) in April 2019 in China. In particular, EFSA was asked to give advice and to provide comments on the recommendations of the 2018 Joint FAO/WHO meeting on pesticide residues (JMPR). Additionally, the European Commission requested EFSA to give its comments on other proposed Codex MRLs that were retained at step 4 or 7, respectively, in previous years and are likely to be discussed in the 51st CCPR meeting, in case that such new advice from EFSA is needed and appropriate.

Furthermore, the European Commission asked for comments on the general chapters of the JMPR 2018 report, where relevant for risk assessment as well as other comments on the proposed crop groupings, the JMPR priority list and documents related to the revision of the international estimated of short-term intake (IESTI) equation.

For reasons of transparency and traceability, EFSA has created separate questions for each of the active substances covered by the mandate in the EFSA Register of Questions with the following reference numbers and subjects:

Question number	Subject
EFSA-Q-2018-00956	Abamectin (177) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00957	Bentazone (172) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00983	Benzovindiflupyr (261) - EFSA comments on the follow-up assessment by JMPR in 2018
EFSA-Q-2018-00958	Chlorfenapyr (254) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00959	Cyantraniliprole (263) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2019-00193	Cyazofamid – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00984	Cyprodinil (207) – EFSA comments on the follow-up assessment by JMPR in 2018
EFSA-Q-2018-00960	Diquat (031) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00971	Ethiprole (304) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00972	Fenpicoxamid (XDE-777) (307) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00985	Fenpyroximate (193) – EFSA comments on the follow-up assessment and the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00973	Fluazinam (306) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00961	Fludioxonil (211) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00986	Fluopyram (243) – EFSA comments on the follow-up assessment of JMPR in 2018
EFSA-Q-2018-00962	Fluxapyroxad (256) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00974	Imazalil (1108) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00963	Isofetamid (290) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00975	Kresoxim-methyl (199) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018

Question number	Subject
EFSA-Q-2018-00964	Lambda-cyhalothrin (146) – EFSA comments on the toxicological reference values evaluated by JMPR in 2018
EFSA-Q-2018-00965	Lufenuron (286) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00976	Mandestrobin (307) – EFSA comments on the toxicological reference values evaluated by JMPR in 2018
EFSA-Q-2018-00966	Mandipropamid (231) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00977	Norflurazon (308) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00967	Oxathia piproline (291) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00968	Profenofos (171) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00969	Propamocarb (148) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00987	Propiconazole (160) – EFSA comments on the follow-up assessment by JMPR in 2018
EFSA-Q-2018-00978	Pydiflumetofen (309) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00979	Pyraclostrobin (210) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00980	Pyriofenone (310) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00970	Pyriproxyfen (200) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00981	Sulfoxaflor (252) – EFSA comments on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00982	Tioxazafen (311) – EFSA comments on the toxicological reference values and on the proposed Codex MRLs evaluated by JMPR in 2018
EFSA-Q-2018-00988	EFSA comments on the general considerations provided by JMPR in 2018 and other follow-up assessments

MRL: maximum residue level; JMPR: Joint FAO/WHO Meeting on Pesticide Residues.

The draft scientific report was submitted for commenting to the EU Member State experts and European Commission on 19 February 2019. The comments provided by Member States were uploaded on EFSA Document Management System (DMS). All the comments received were addressed either directly in the final EFSA scientific report or though discussion during the Council Working Party meetings for the preparation of the 51st Session of the Codex Committee on Pesticide Residues.

1.2. Terms of Reference

The requested advice and comments on the recommendations of the 2018 Joint FAO/WHO meeting on pesticides residues (JMPR) and, where appropriate, on other proposed Codex MRLs, retained in the step procedure and reviewed by JMPR in previous years, should contain the following information:

- Background information on all active substances under discussion regarding the status of the active substance at EU level (approval status of the active substance, availability of EFSA conclusions and availability of EFSA reasoned opinions on MRL applications or MRL review);
- In case new toxicological reference values were proposed by JMPR, a comparison of the proposed reference values with agreed EU reference values and an evaluation of the reasons for possible differences;
- As regard the proposed draft Codex MRLs for discussion in CCPR 2019, EFSA should provide any relevant comments on the proposed MRLs and specifically address the following questions:
 - Whether the residue definitions derived by JMPR are comparable with the existing EU residue definitions,
 - Whether the proposed draft Codex MRLs are comparable with the existing EU MRLs,

- Whether the proposed draft Codex MRLs are sufficiently supported by data,
- Whether the proposed Codex draft MRLs are appropriate in terms of the data that have been used to establish them and in terms of the method used for their calculation,
- Whether the proposed draft Codex MRLs are safe for European consumers with regard to chronic, and where relevant, acute exposure.

The requested comments to the general chapters of the JMPR 2018 report relevant for risk assessment as well as comments on the JMPR priority list can be provided as contribution to the EU coordinated positions when these are discussed with the Member States and do not need to be covered by the scientific report.

(Terms of reference as provided by the European Commission in the Mandate of 12 November 2018)

EFSA agreed with the European Commission to respond to this request with a scientific report. The first draft report should be shared with the European Commission and Member States on 15 February 2019, inviting Member States to provide comments.

After discussion between EFSA and the requestor, the deadline for the first draft report was extended to 19 February 2019 to allow the presentation of a complete document.

The final draft addressing the Member State comments should be completed in time to be discussed in the second Council meeting scheduled for 25 March 2019. It was agreed with the requestor that the report is published by 31 July 2019.

2. Assessment

EFSA provided the requested background information regarding the toxicological reference values (second bullet point of the Terms of Reference) by comparing the assessments performed by JMPR with the assessments performed at EU level in the framework of the peer review under Regulation (EC) No 1107/2009¹. The sources of information used are the EFSA conclusions available for the active substances under consideration, the review reports, draft assessment reports (DARs) prepared by the rapporteur Member States and other sources of information if available.

For deriving the comments on the third bullet point in the Terms of Reference (comments on the Codex MRL proposals), EFSA compared the levels of the Codex MRL proposals and the enforcement residue definition derived by JMPR with the MRLs and the residue definition established in the EU legislation (Regulation (EC) No 396/2005) or the legislation under preparation. The EU residue definitions for risk assessment were retrieved from the EFSA conclusions, EFSA reasoned opinions on MRL review under Article 12 of Regulation 396/2005² or, where these documents are not available, the reports prepared by the European Commission in the framework of the peer review of active substances or Member State evaluations in DARs. The comparison of the existing EU MRLs and the proposed Codex MRLs are presented in tabular form. Codex MRL proposals that are higher than the existing EU MRLs are printed in bold. In line with the presentation of MRLs in the EU legislation, limit of quantification (LOQ) MRLs are indicated by adding an asterisk ('*') after the value.

For assessing whether the draft Codex MRL proposals are sufficiently supported by data, EFSA took into account the currently valid EU guidance documents for consumer risk assessment and the agreed EU policies (European Commission, 1996, 1997a,b,c,d,e,f,g, 2000, 2010a, 2011a; OECD, 2011, 2013) as well as the JMPR risk assessment methodologies and policies agreed in previous CCPR meetings. It is noted that due to the different data requirements and policies in JMPR (FAO, 2016), the assessment of identical residue data sets submitted in support of a EU MRL and Codex MRL request may result in different recommendations at EU level and by JMPR. In this report EFSA provides background information on the reasons for these differences. For calculating the numerical MRL value, EFSA used the same methodology as JMPR (OECD calculator) (OECD, 2011).

To assess the Codex MRL proposals for food of animal origin, EFSA focussed mainly on the consumer risk assessment and the validity of feeding studies and animal metabolism studies. For Codex MRL proposals for animal commodities, a full assessment of the expected dietary burden at EU

¹ Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. *OJ L 309, 24.11.2009*, p. 1–50.

² Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC (1). *OJ L 70, 16.3.2005*, p. 1–16.

level is not possible in the framework of this report because relevant information is not available to EFSA (e.g. use of the active substance on all feed items in the EU and in Third Countries).

It should be highlighted that due to the limited information available in the JMPR reports, EFSA cannot assess the following aspects of studies that are normally assessed in detail when MRL applications are submitted in the framework of Art. 10 of Regulation (EC) No 396/2005:

- the appropriateness of analytical methods provided by the manufacturer to be used for MRL enforcement, including method validation data, confirmatory data and independent laboratory validation (ILV);
- storage stability of residues;
- the duration and the conditions of storage for samples derived from supervised field trials prior to their analysis;
- independence of residue trials;
- details of processing studies.

For the assessment of the safety of the draft Codex MRL proposals, EFSA used the EFSA PRIMo rev. 3 (EFSA, 2018e). For assessing the acute consumer risk, EFSA applied the standard EU methodology, including the agreed EU variability factors and the ARfD agreed at EU level. For the assessment of the long-term consumer risk, EFSA calculated the exposure resulting from the existing EU MRLs, taking into account the most recent information on supervised trials median residues (STMRs) and including the STMR values derived by JMPR for commodities where the proposed Codex MRLs are higher than the existing EU MRLs. This approach is likely to overestimate the actual exposure, because normally the food items consumed do not all contain residues at the maximum level allowed in the European legislation; thus, this approach is a sufficiently conservative risk assessment screening. For active substances where the MRL review has not yet been completed, a less refined calculation was performed for the commodities where the EU MRL is higher than the proposed Codex MRL, using the EU MRL as input values for the risk assessment. The contribution of the individual crops under consideration in the CCPR meeting was calculated separately. The exposure assessments are usually based on the EU toxicological reference values, unless it is specifically mentioned that the JMPR values were used. In Appendix A of the report, the summary of the risk assessment calculations are provided.

For pesticides where the EU and JMPR residue definitions for risk assessment are not comparable, EFSA calculated indicative risk assessment scenarios. The assumptions and uncertainties of these scenarios are described individually.

The information related to draft Codex MRL proposals currently at step 4 or 7 is summarised in Appendix B.

It is highlighted that the JMPR report summarising the recommendations of the 2018 JMPR meeting was published on 11 January 2019. The full evaluations were published on 11 March 2019. Thus, due to the limited time available for providing the comments, an in-depth analysis could not always be performed. Thus, the conclusions reached in this report should be considered as indicative and might have to be reconsidered in a more detailed assessment, when needed. The comments presented in this report have to be seen in the context of the currently applicable guidance documents and the MRL legislation valid at the time of commenting. Thus, the comments may not be valid any more or may have to be modified, if the legal or scientific framework changes.

3. General consideration

3.1. Toxicological profiling of compounds and less-than lifetime dietary exposure assessment

In general, the initiative to critically review the currently used concepts for dietary exposure assessment and to develop a new methodology for less-than-lifetime exposure is fully supported by the EU, considering that the approaches for chronic and acute exposure assessments have been developed more than 20 years ago and are substantially unchanged, while in the meantime substantial progress has been made in the field of toxicology and with regard to availability and quality of food consumption data.

However, before the new methodology is developed, a dialogue with risk managers is necessary to define the regulatory question that should be addressed with this new exposure methodology. In particular, the following aspects should be clearly defined:

- Which period is considered as 'less-than-lifetime'?
- Which are the age groups (and the period) that are considered relevant?
- Definition of protection goal.

Toxicological considerations:

For the derivation of a short-term health-based guidance value (corresponding to a 'dietary' acceptable operator exposure level – AOEL – in the EU peer review of pesticidal active substances), similar qualitative considerations are given to those described in the text. Considering the decision-tree (page 7 of the JMPR report), the proposed factor of 3 is currently not taken into account when comparing developmental toxicity and systemic toxicity; however, it is noted that, according to the recent EFSA opinion on pesticides in foods for infants and young children (EFSA PPR Panel, 2018), pending on the completeness of the dossier (whether the active substance was sufficiently investigated, for instance through an extended one-generation reproductive toxicity study), an additional uncertainty factor of 3 may be considered in deriving the toxicological reference values to protect infant and young children > 16 weeks of age and additional considerations have to be made for infant < 16 weeks of age. This approach is not specific for less-than-lifetime exposures but would be relevant to derive any health-based guidance value.

Dietary exposure considerations:

The methodologies to estimate the chronic and acute exposure have been developed in the late nineties of the last century, making best use of food consumption data available at that time. It is acknowledged that the international estimated daily intake (IEDI) and the IESTI methodology are not sufficiently addressing the fact that within a certain developmental phase (e.g. infancy/childhood/ pregnancy) exposure to pesticide residues may exceed repeatedly the exposure calculated according to the IEDI. The frequency of these events, the extent of the exposure above the IEDI and the possible consumer risk related to these exposure peaks is not captured by the currently used risk assessment methodologies.

Before a new methodology is developed, it would be appropriate to perform an analysis of the exposure with regard to seasonal variations, variations for different subgroups of the population and to identify the relevant parameters and to develop a model that will address these aspects in the best way. The outcome of the project on the probabilistic modelling for the IESTI equations (see point 2.10) will be a useful source of information to identify the variabilities of exposure across individuals and should be used to underpin the model development for less-than-lifetime exposure.

3.2. Need for sponsors to submit all requested data

The EU supports the reminder of JMPR that all data and studies have to be submitted to JMPR within the agreed deadlines. In the interest to efficiency, JMPR should not waste time in assessing incomplete dossiers submitted by sponsors.

3.3. Hazard characterisation in the 21st century: assessing data generated using new mechanism-based approaches for JMPR evaluations

In the EU Regulation No 283/2013³, describing the data requirements, it is recommended to undertake tests on vertebrate animals only when no other validated methods are available, and it is also noted that alternative methods to be considered shall include *in vitro* methods and *in silico* methods. The list of test methods and guidance documents relevant to the implementation of this Regulation has been published and should be regularly updated.

3.4. Update on the revision of principles and methods for risk assessment of chemicals in food (EHC 240)

An EFSA update on the use of the benchmark dose (BMD) approach in risk assessment has been published in January 2017 (EFSA Scientific Committee, 2017), and concludes that the BMD approach is

³ Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market Text with EEA relevance. OJ L 93, 3.4.2013, p. 1–84.

applicable to all chemicals in food for the establishment of health-based guidance values or to calculate margins of exposure. Its practical implementation in the EU peer review of pesticides still needs further development and harmonisation.

EFSA has also overarching working groups on BMD and genotoxicity, both working groups (WG) dealing with specific questions from the EFSA panels, including from the pesticides Unit on request.

3.5. Microbiological effects

No comments.

3.6. Transparency of JMPR procedures

At EU level, transparency is a key requirement for risk assessment for pesticides. It is essential to describe the source of the data used, the validity of the studies, the results of studies and the assessment of the data leading to conclusions as well as the potential conflict of interest of assessors. Any initiative to increase transparency is supported.

3.7. Review of the large portion data used for IESTI equation

The EU fully supports the update of food consumption data to be used in acute exposure assessment. The EU would like to offer support to collaborate with FAO/WHO in the preparation of the guidance how to calculate the large portions; in the EU a lot of experience has been gained on the compilation and aggregation of food consumption data provided by different data providers. This experience might be of value for FAO/WHO.

3.8. Update of the IEDI and IESTI models used for the calculation of dietary exposure: commodity grouping according to the revised codex classification and new large portion data

The work done by National Institute for Public Health and the Environment (RIVM) to develop and maintain the calculation spreadsheets for IEDI and IESTI calculations is highly appreciated, in particular the efforts made to integrate the large portion (LP) data used in the EU dietary risk assessment tool (EFSA PRIMo revision 3). It should be noted that also at EU level new diets will be incorporated in future revisions of the EFSA PRIMo. Thus, to maintain a high level of consistency of the EU tool and the IEDI/IESTI models used by JMPR, the EU will keep FAO/WHO informed on progress made in the update of the EU diets.

3.9. Recommendations for (sub) group maximum residue levels for fruiting vegetables, other than cucurbits revisited

The EU appreciates the re-evaluation of the extrapolation approach for the fruiting vegetables group by JMPR. The use of normalised initial residue concentrations can give valuable indications whether the residue behaviour in different crops is comparable.

<u>Subgroup of tomatoes</u>: The extrapolation of residue data from tomatoes (any variety) to other crops belonging to the subgroup of tomatoes bears the risk that the MRL may not cover small varieties, such as cherry tomatoes or goji berries, which usually contain higher residues than varieties with bigger fruit size.

It is noted that for cape gooseberries the CXLs are applicable to the commodity after removal of the husk. Thus, for this crop, the CXL proposal derived from tomatoes may be too high. However, risk managers may agree on a pragmatic approach, considering that the OECD calculator implements a statistical approach that accommodates for a certain level of variability. Regarding consumer exposure, it is important that for the commodities with the highest consumption within the subgroup the risk assessment values (highest residue (HR) and STMR values) are reliable.

<u>Subgroup of peppers</u>: Based on the data presented in the JMPR report, it seems plausible not to accept extrapolations from peppers to okra, because pepper data are expected to underestimate the residues occurring in okra. This type of extrapolation is currently also accepted in the EU but may have to be reconsidered. The restriction proposed by JMPR to extrapolate from bell peppers and non-bell peppers to the subgroup of peppers except okra, seems plausible; as regards martynia and roselle,

considering the low relevance of these commodities in diet, a more pragmatic approach may be decided by risk managers, allowing extrapolation from peppers. Also, in chili peppers, higher residues are expected compared to bell and non-bell peppers. A case-by-case decision may be necessary to decide whether the MRL for peppers can be applied to chili peppers.

<u>Subgroup of eggplants</u>: At EU level, the extrapolation from tomatoes to eggplants is acceptable. Considering that the normalised initial residue concentrations in eggplants are higher than in tomatoes, trials in bell peppers may be more appropriate to derive the MRL for eggplants than residue trials in tomatoes. However, it needs to be born in mind that the growth stage of the crop at the time of treatment and the PHI are parameters that may influence the residues in the harvested product. The growth rate of eggplants is expected to be higher, leading to a higher dilution of residues compared to tomatoes or peppers. Thus, if the last application is close to harvest, the use of pepper data might be more appropriate, while in the case of earlier applications, depending on the residue decline of the pesticide, the tomato data might be also valid.

3.10. Preliminary results for probabilistic modelling of acute dietary exposure to evaluate the IESTI equation

The outcome of the probabilistic modelling of acute dietary exposure is expected with great interest and the EU is prepared to provide comments once the results are made available. This exercise is an important milestone in the project on reviewing the currently used IESTI equation and to provide answers to the question whether the currently used IESTI equations are sufficiently conservative to ensure that MRLs are set at levels that are protective for the consumers.

4. EFSA Comments on JMPR report chapter 3 (Responses to specific concerns raised by the Codex Committee on Pesticide Residues)

4.1. Benzovindiflupyr (261)

See comments in Section 5.20.

4.2. Bromopropylate (070)

The EU has submitted a concern form because the toxicological assessments are outdated (last toxicological assessment was performed in 1993; the setting of an ARfD was not yet standard practice at that time). The following arguments were provided in support of the concern form:

The active substance was first included in 1973 and re-evaluated in 1993, but not since. In the evaluation of 1993 an ADI was set at 0.03 mg/kg bw/d but no ARfD. Since no ARfD was ever set and data for evaluation are missing (supervised field trials, processing studies), the MRLs should be re-evaluated after 41 years. Since in 1993 it was not yet common practice to set an ARfD, EFSA used the ADI to assess the acute effects in the short term intake. A risk assessment was performed using the EFSA PRIMo including the existing CXLs for citrus fruits, pome fruits and grapes. The highest chronic exposure was calculated for the German child, representing 124% of the ADI. Since there were no supervised field trials complying with the critical GAP or reliable processing studies, the intake could not be further refined. The acute intake assessment (using the ADI-value) shows exceedance of the toxicological reference value for citrus fruits (884% for oranges, 594% for grapefruit, 371% for mandarins, 230% for lemons, and 134% for limes), pome fruits (653% for apples, 607% for pears), table grapes (437%) and wine grapes (158%).

JMPR recognised that the assessment is outdated, but since no new data were made available, and considering that no evidence was provided that triggered the setting of an ARfD, JMPR was of the opinion that bromopropylate was unlikely to present a major, acute health concern and therefore no further action was taken.

Considering that in 2018 CCPR bromopropylate was added to the list of unsupported compounds, since no data package was presented for the 2018 periodic review, CCPR should discuss appropriate risk management actions, e.g. deletion of the existing CXLs.

4.3. Crop groups – reconsideration of maximum residue estimations made by the 2017 JMPR for fenpyroximate (193), fluopyram (243), oxamyl (126) and spinetoram (233)

In 2017, JMPR assessed the uses on tomatoes and peppers. Reconsidering the policy for extrapolation in the subgroups of tomatoes and peppers, JMPR reviewed the previously derived MRL proposals.

The revised proposals for fenpyroximate and fluopyram are reported in Sections 5.9 and 5.16. For oxamyl (126) and spinetoram (233), the previous MRL proposals were confirmed since the Good Agricultural Practice (GAP) referred only to tomatoes and peppers and not to other crops listed in the subgroup.

4.4. Cyprodinil (207) and propiconazole (160) post-harvest uses

See Sections 5.12(cyprodinil) and 5.5 (propiconazole).

4.5. 2,4-D (020)

USA submitted a concern form requesting clarification on the conclusion of 2017 JMPR regarding the lack of stability of residues in cotton seed in frozen storage, noting that a storage stability study on soya beans indicated stability of 2,4-D in soya beans under frozen conditions.

JMPR confirmed the previous view that due to limited storage stability observed in cotton seed the residue data were considered inadequate for estimating an MRL for 2,4-D in genetically modified maize.

It is noted that in an EU import tolerance application for genetically modified maize the available data were found sufficient to demonstrate stability of parent 2,4-D.

For cotton, no import tolerance request was submitted so far to the EU. Application for authorisation of genetically modified cotton DAS-81910-7 for food and feed uses, import and processing under Regulation (EC) No 1829/2003⁴ by Dow AgroSciences (EFSA-GMO-NL-2016-136) has been submitted to EFSA. The DAS-81910-7 cotton has been genetically modified to express the AAD-12 and PAT proteins. The expression of AAD-12 and PAT proteins confers tolerance to application of 2,4-D and glufosinate-ammonium herbicides, respectively.

4.6. Fluopyram (243)

See Section 5.16.

4.7. Phosphonic acid (301)/Fosetyl-Aluminium (302)

JMPR concluded that phosphonic acid is toxicologically similar to fosetyl-aluminium and is covered by the ADI for fosetyl-aluminium (1 mg/kg body weight (bw) per day).

In the EU peer review (renewal of the approval for fosetyl-aluminium), an ADI of 1 mg/kg bw per day was derived. An ARfD was not considered necessary. Since phosphonic acid is a major metabolite in rat (73% in the urine), its toxicity (including developmental and reproductive toxicity (DART)) is considered covered by the studies performed with fosetyl-Al (EFSA, 2018k).

4.8. Picoxystrobin (258)

A concern form was submitted by USA, requesting a clear explanation why the JMPR concluded that there were an inadequate number of MOR (magnitude of residue) trials for rapeseed available for review to recommend a maximum residue level for picoxystrobin on oilseed rape.

JMPR clarified that the submitted trials did not match the critical US GAP.

No further comments required.

4.9. **Quinclorac (287)**

The EU submitted a concern form asking to reconsider the residue definition because quinclorac methyl ester, which is ten times more toxic than quinclorac was not included in the residue definition for enforcement.

⁴ Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed. OJ L 268, 18.10.2003, p. 1–23.

In 2017 and 2018, JMPR confirmed the residue definition for enforcement, concluding that quinclorac plus quinclorac conjugates are appropriate marker residues and taking into account the overall low exposure. Since no new arguments were put forward by JMPR, the previous EU position should be maintained.

5. Comments on JMPR report chapter 5 (individual substances assessed)

In the following sections, the active substances assessed by JMPR in the most recent assessment are presented (FAO, 2018). The terms in brackets after the name of the active substance in the header of the sections refer to the code number used by JMPR; the second parenthesis provides information whether the substance was assessed for toxicological properties (T) and/or for residues (R). The substances are sorted according to the codex number.

5.1. Diquat (31) R

5.1.1. Background information

Table 1:	Background information	
----------	------------------------	--

		Comments, references
Type of JMPR evaluation	New use	Last periodic review was performed by 2013 JMPR
RMS	UK	SE accepted to take over from UK
Approval status	Not approved	Commission Implementing Regulation (EU) 2018/1532 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2015r)
MRL review	Yes, see comments	EFSA (2015a)
MRL applications	No	No RO issued after art 12 review; MRL application for hops under preparation (DE EMS)
Others		EFSA (2018a) (statement on non-dietary exposure)
 Cut-off criteria: Mutagen cat. 1A or 1B Caringogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonised classification for CMR –Annex VI: no entry for CMR EU Peer Review proposal for CMR: toxic for reproduction cat. 2.; ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; CMR: Carcinogenic, Mutagenic or Toxic for Reproduction.

- (a): Commission Implementing Regulation (EU) 2018/1532 of 12 October 2018 concerning the non-renewal of approval of the active substance diquat, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. OJ L 257, 15.10.2018, p. 10–12.
- (b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.1.2. Toxicological reference values

Table 2:	Comparison of toxicological	reference values (TRV	/) derived by	/ JMPR and at EU level

	JMPR	JMPR evaluation		EU evaluation	
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	0.006 mg/kg bw per day	JMPR (2013)	0.002 mg/ kg bw per day (diquat ion)	European Commission (2001) confirmed in EFSA (2015r) (2-year study in rats with uncertainty factor of 100)	No
ARfD	0.8 mg/kg bw	JMPR (2013)	0.01 mg/kg bw	EFSA (2015r) (developmental toxicity study in rabbits with uncertainty factor of 100); ARfD formally not approved	No

	JMPR	evaluation		EU evaluation	TDV
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
Conclusion/ comment	assessment, a set in the 2-y The basis for JMPR the basis the ARfD basis 3 mg/kg bw p was applied. Under the MF as confirmatory RMS, EFSA and considered the concern. The a conservative In the EFSA of monopyridom taken, it is ur monopyridom legislation, the JMPR did not	a lower NOAEL of 0 year study in rats co setting the ARfD w sis was the acute ne red on the NOAEL of per day in the deve The reference value RL review, toxicolog ory data (deadline for data for Diquat (da nd the EU COM on at this was not nece applicant proposed re approach. These conclusion (EFSA, 20 e and dipyridone. C hlikely that the requ e and dipyridone. H is open point should assess the toxicolo	.2 mg diquat mpared to 0. as different in eurotoxicity st f 1 mg/kg bw lopmental tox es as agreed of ical data for t or submission ata gaps Articl 20 June 2018 essary since i l use a conver confirmatory 015r), toxicolo ionsidering the ested toxicolo lowever, beford d be addresse gical profile o	e 12 assessment) were submitted to g. No new data on TOPPS was avail n their opinion TOPPS is of no toxico sion factor of 1.5 for TOPPS to diquidata data have not yet been evaluated by ogical information was also requested at in October 2018 a decision on no ogical data will be provided for diquate re new Codex MRLs are taken over it	cataracts) was sessment ereas in the propriate to set ain observed at ain observed at factor of 100 d ere requested o the RMS, co- able. Syngenta ological lat residues, as y UK ed for diquat n-approval was at in the EU re considered as

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; RMS: rapporteur Member State; MRL: maximum residue level.

5.1.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant	Diquat	EU Reg. 2016/1002: Diquat	Yes
	products	cation	MRL Review (EFSA, 2015a):	
			Sum of diquat and its salts, expressed as diquat Peer-review (EFSA, 2015r): Diquat	
	Animal	Diquat	EU Reg. 2016/1002: Diquat	Yes (for
	products cation The resid is not fat soluble	The residue	MRL Review (EFSA, 2015a): Sum of diquat and its salts, expressed as diquat	existing RD)
			Peer-review (EFSA, 2015r): Ruminant tissues and milk: Diquat dipyridone Poultry tissues and eggs: Diquat The residue is not fat soluble	
RD-RA	Plant	Diquat	MRL Review (EFSA, 2015a):	Yes, except
	products cation	cation	Peer-review (EFSA, 2015r):	for desiccant use
			Herbicide uses: Diquat; Desiccant uses:	use
			 Diquat & TOPPS, to be considered separately 	
			(insufficient data to conclude on the toxicological profile of TOPPS)	

Table 3: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
	Animal products	Diquat cation	MRL Review (EFSA, 2015a): Sum of diquat, its salts and TOPPS expressed as diquat (tentative)	No	
	Sum of diquat, its salts and TOPPS expressed as diquat (tentative) Neer-review (EFSA, 2015r): Diquat, diquat monopyridone and diquat dipyridone Whether residues of the two metabolites can be expressed as diquat is pending a conclusion on the toxicological properties of diquat monopyridone and diquat dipyridone				
Conclusion/ comments	/ The current EU enforcement residue definitions implemented in the MRL legislation are compared with the residue definitions of Codex. For risk assessment, the EU residue definitions are broader; however, in the EU, toxicological or are still missing for the metabolites TOPPS, diquat monopyridone, diquat dipyridone to concluse that they have toxicity comparable with the parent compound. Thus, at EU level, the data gap related to the metabolites need to be addressed, before new MRLs are established				

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; RMS: rapporteur Member State; MRL: maximum residue level.

5.1.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Barley	5	0.02*	Critical GAP: AU, 600 g a.i./ha, no PHI defined, but worst case would be harvest after 4 days Number of trials: 1 trial matching the GAP, 5 trials where residue concentration was interpolated from different PHIs Sufficiently supported by data: No Specific comments/observations: For barley at least 8 trials would be required Conclusion: The proposed Codex MRL is not acceptable because of insufficient number of trials. The risk assessment value derived by JMPR does not reflect the EU residue definition
Barley straw and fodder, dry	40 (dw)	_	In the EU, MRLs are not established for feed items The proposed Codex MRL was derived from the combined data set of trials in barley, oat and wheat (17 trials), reflecting the use of 600 g/ha shortly before harvest
Beans, dry			The existing CXL is proposed to be withdrawn and to be replaced by the proposed Codex MRL for dry beans, subgroup
Chick-pea (dry) 0.9 0.3 (peas dry)			Critical GAP: CA, 408 g a.i./ha for preharvest desiccation, no PHI defined, but worst case would be harvest after 4–5 days Number of trials: 9 Sufficiently supported by data: Yes Specific comments/observations: The samples were analysed only for diquat; no information on the amount of TOPPS Conclusion: The proposed Codex MRL is acceptable. However, the risk assessment values derived by JMPR do not reflect the EU residue definition

Table 4: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Dry beans, Subgroup of (includes all commodities in this subgroup)	0.4	Beans dry: 0.2; Soya bean: 0.3	Critical GAP: CA, 552 g a.i./ha for preharvest desiccation; no PHI defined, but worst case would be harvest after 4–5 days Number of trials: 24 trials for beans and 3 trials in soya beans Sufficiently supported by data: No Specific comments/observations: Additional trials in soybeans (major crop) would be required. The samples were analysed only for diquat; no information on the amount of TOPPS Conclusion: The proposed Codex MRL is not acceptable. However, the risk assessment values derived by JMPR do not reflect the EU residue definition
Dry peas, Subgroup of (except chick- pea (dry))	0.9	0.3	Critical GAP: CA, 552 g a.i./ha for preharvest desiccation, no PHI defined, but worst case would be harvest after 4–5 days. Number of trials: 8 trials in lentils, 21 trials in peas (dry). Since residue trials in lentils and peas differed significantly, the MRL proposal was derived from the lentil trials only Sufficiently supported by data: Yes Specific comments/observations: The samples were analysed only for diquat; no information on the amount of TOPPS Conclusion: The proposed Codex MRL is acceptable. However, the risk assessment values derived by JMPR do not reflect the EU residue definition
Mammalian fats (except milk fats)	0.01*	0.05* (ft)	From feeding studies performed with exaggerated dose rates JMPR concluded that no residues are expected in fat Conclusion: The proposed Codex MRL is acceptable
Peas (dry)	W	0.3	The existing CXL for pea of 0.3 mg/kg will be replaced by the proposed MRL for peas dry, subgroup (0.9 mg/kg)
Poultry fats	0.01*	0.05* (ft)	From feeding studies performed with exaggerated dose rates, JMPR concluded that no residues are expected in fat Conclusion: The proposed Codex MRL is acceptable
Rye	1.5	0.02*	Critical GAP: 600 g a.i./ha, PHI not defined Number of trials: 6 trials in wheat; residues measured 2-4 days after application Sufficiently supported by data: Yes Specific comments/observations: For rye, 5 trials are sufficient according to JMPR rules; extrapolation from wheat to rye is acceptable. At EU level, 8 trials would be required Conclusion: The proposed Codex MRL is sufficiently supported by residue trials. The risk assessment value derived by JMPR does not reflect the EU residue definition. A chronic consumer intake concern was identified for rye
Rye straw and fodder, dry	40 (dw)	_	See comments on barley straw
Soya bean (dry)	W		The existing CXL for soya beans of 0.3 mg/kg will be replaced by the proposed MRL for beans dry, subgroup (0.4 mg/kg)
Soya bean hulls	1.5	-	PF of 3.1 derived from two processing studies
Triticale	1.5	Wheat: 0.02*	Critical GAP: 600 g a.i./ha, PHI not defined Number of trials: 6 trials in wheat; residues measured 2–4 days after application Sufficiently supported by data: Yes Specific comments/observations: For triticale, 5 trials are sufficient according to JMPR rules; extrapolation from wheat to triticale is acceptable Conclusion: The proposed Codex MRL is sufficiently supported by residue trials. The risk assessment value derived by JMPR does not reflect the EU residue definition
Triticale straw and fodder, dry	40 (dw)		See comments on barley straw

Commodity	Codex MRL EU proposal	U MRL	Comment
General comments	wheat flour ar provided, the 2018 JMPR co other than ma	and whea e CXL sho onfirmed aarine ma	JMPR recommended withdrawal of the CXL for barley, wheat, wheat bran, at wholemeal. Since no sufficiently supported alternative GAPs were build be withdrawn in 2019 CCPR I the draft MRLs for edible offal (mammalian) eggs, meat (from mammals ammals), milks, poultry meat, poultry edible offal which were maintained RL proposals are advanced, the old CXLs for these commodities should be

a.i.: active ingredient; PHI: preharvest interval; MRL: maximum residue limit; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; GAP: Good Agricultural Practice.

*: Indicates that the input value is proposed at the limit of quantification.

5.1.5. Consumer risk assessment

	Table 5:	Summary	of the	consumer	risk	assessment
--	----------	---------	--------	----------	------	------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was performed for the unprocessed food commodities for which Codex MRLs were proposed The risk assessment is indicative because information on the occurrence of TOPPS and toxicological data for TOPPs is not available The EU ARfD was used	RA assumptions: The most recent long-term risk assessment (EFSA, 2015a) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for the commodities for which the Codex MRLs are higher than the existing EU MRLs. Animal products were not included in the calculation, considering that according to the feeding studies no diquat residues are expected to occur in animal products The risk assessment is indicative because information on the occurrence of TOPPS and toxicological data for TOPPs is not available The EU ADI was used	Specific comments:
Results: No short-term exposure concern was identified for the food products for which Codex MRLs were proposed (maximum 87% of the ARfD for barley)	Results: A long-term consumer health risk was identified The overall chronic exposure accounted for 193% of the ADI The contribution of rye to the exposure was 139% of the ADI (Danish children)	Results: Long-term exposure: 30% of the ADI Short-term exposure: Maximum of 10% of the ARfD

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; ARfD: acute reference dose; ADI: acceptable daily intake; RA: risk assessment.

5.2. Imazalil (110) R,T

5.2.1. Background information

Table 6:Background information

		Comments, references
Type of JMPR evaluation	Periodic review	
RMS	NL	
Approval status	Approved	Commission Implementing Regulation (EU) No 705/2011 ^(a)
EFSA conclusion	Yes, see comments	EFSA PPR Panel (2007) EFSA (2010a)
MRL review	Yes, see comments	EFSA (2017h) EFSA (2018o)

		Comments, references
MRL applications	Yes, see comments	EFSA (2018j) (Art.43)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonised classification and labelling for CMR – Annex VI: Carc. 2 ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not finalised

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State.

(a): Commission Implementing Regulation (EU) No 705/2011 of 20 July 2011 approving the active substance imazalil, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 190, 21.7.2011, p. 43–49.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.2.2. Toxicological reference values

IDUC / CUMPANSUM OF LOXICOLOGICAL FERENCE VALUES (TRV) DELIVED BY JMFR AND ALLO IE	Table 7:	Comparison of toxicological reference values	(TRV) derived by JMPR and at EU level
---	----------	--	---------------------------------------

	JMPR e	evaluation		EU evaluation					
	Value	Comments (source, study)ValueComments (source, study)TRV compara							
ADI	0.03 mg/kg bw per day	JMPR (2018)	0.025 mg/kg bw per day	EFSA (2010a) European Commission (2011b)	No				
ARfD	0.05 mg/kg bw	JMPR (2018)	0.05 mg/kg bw	EFSA PPR Panel (2007)	Yes				
Conclusion/ comment	It seems that addendum to RMS, most o e.g. acute to studies are n	Studies with parent imazalil assessed by JMPR: It seems that not all of the studies reported in the JMPR report have been evaluated in the RAR or addendum to the RAR of imazalil (to be verified in the JMPR evaluation). However, according to the RMS, most of the new studies are not expected to influence the outcome of the evaluation in the RAR: e.g. acute tox results are in line with studies RAR and lead to same classification category; genotoxicity studies are negative, confirming the studies and conclusions reached in the RAR; mechanistic studies demonstrating liver enzyme induction and a CAR-dependent mechanism for liver effects							
Assessment of metabolites: The JMPR Meeting concluded that, based on the structure of R014821, its acute toxicity well as its detection in rats at significant levels, this metabolite would be covered by the hea guidance values for the parent compound. As regards R061000 (FK-772) JMPR was of the of the toxicity would be covered by the parent compound, given its toxicity profile as well as it in rats at significant levels. For R043449 (FK-284) JMPR considered that the expected expo- below the threshold Cramer Class III In the JMPR evaluation, all <i>in vitro</i> genotoxicity assays were concluded to be negative									
	In 2018, EFSA concluded that insufficient data are available to conclude on the toxicological profile of metabolites formed in plants after post-harvest treatment (R014821) and observed in animal metabolism (FK-772 and FK-284) (EFSA, 2018j,o). In the EU evaluation, one study for metabolite R14821 and one study for metabolite FK772 was considered to give equivocal results, as the findings did not comply to either negative or positive outcome as defined in the respective OECD guidelines. Furthermore, the genotoxic endpoint of aneugenicity was not sufficiently addressed for any of the metabolites as the <i>in vitro</i> studies provided are not specifically designed to address this endpoint. Therefore, it was concluded that additional data are required regarding genotoxicity. Furthermore, EFSA set a data gap for a repeated dose study to be able to set specific reference values for these three metabolites								
	Although the same studies were available for the metabolites, different conclusions were derived by JMPR and at EU level								

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; RAR: renewal assessment report; OECD: Organisation for Economic Co-operation and Development.

5.2.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable			
RD enf	Plant Imazalil products		Reg. (EU) No 750/2010: Yes Imazalil				
			EFSA (2018j,o): Imazalil (any ratio of constituent isomers)				
	Animal products	Imazalil	Reg. (EU) No 750/2010: Imazalil	JMPR RD is comparable with			
			EFSA (2017h): Sum of imazalil and metabolite FK-772 (any ratio of constituent isomers), expressed as imazalil (tentative, pending full assessment of toxicological properties of FK- 772) (not implemented in MRL legislation)	the currently implemented RD, but comparison not appropriate with recent proposals			
		The residue is not fat soluble	EFSA (2018j,o): Open				
	The residue is not fat soluble						
RD-RA	Plant Free and conjugated imazalil products		EFSA (2018j,o): Open for post- harvest use	See comment below			
			Imazalil (any ratio of constituent isomers) for foliar treatment and seed treatment				
	Animal productsSum of imazalil and the metabolite R061000 (FK-772) ((RS)-3-[2-(2,4- dichlorophenyl)-2-(2,3- dihydroxypropoxy) ethyl] imidazolidine- 2,4-dione (+)- 1-[2-(2,4-dichlorophenyl)-2- [(2,3-dihydroxypropyl)oxy] ethyl]- dihydroxypropyl)oxy] ethyl]- dihydroxypropyl)oxy] ethyl]-2,5-imidazolidinedione), expressed as imazalil equivalentsEFSA (2018j,o): OpenSee comment below						
Conclusion/ comments	equivalents It should be noted that the last EFSA recommendations derived under Article 43 (i.e. no residue definition for risk assessment can be derived for post-harvest uses and for livestock commodities) will be discussed at PAFF meeting of February 2019 For all plant commodities for which the critical GAP is a post-harvest use as well as for animal commodities, a comparison of the residue definition for risk assessment derived by JMPR with the EU residue definition is not appropriate, as long as the toxicological information requested for R014821, and FK-772 and FK-284 is not available The RMS proposed to discuss with MS in the PAFF committee (February 2019) to set the residue definition for risk assessment (plant commodities) tentatively as the sum of imazalil and R014821, expressed as imazalil. For animal products, the RMS proposed to set the residue definition for risk assessment as the sum of imazalil and all identified/characterised metabolites observed in the goat metabolism study. CF from enforcement to risk assessment can be derived tentatively from the metabolism study						

Table 8: Comparison of the residue definitions derived by JMPR and at EU level

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MS: Member State; RMS: rapporteur Member State; MRL: maximum residue level.

5.2.4. Codex MRL proposals

Table 9:	Comparison of Coo	lex MRL proposals o	derived by JMPR and	EU MRLs
----------	-------------------	---------------------	---------------------	---------

Commodity	Codex MRL proposal	EU MRL/ proposed MRL (Art. 43, EFSA, 2018o,j)	Comment
Citrus fruit	W 5Po	5/	JMPR proposed to withdraw the existing CXL and to replace it with MRLs for the subgroup of lemons and limes and oranges
Lemons and limes, Subgroup of (includes all commodities in this subgroup)	15Po	5/-	Critical GAP: USA, post-harvest application (dip or drench) at 0.075 kg a.i./hl + post-harvest wax application at 0.2 kg a.i./hl (total: 0.275 kg a.i./hl); withholding period: 0 day Number of trials: 9 on lemons Sufficiently supported by data: Yes Specific comments/observations: See general comment for post- harvest applications and RMS proposal to re-discuss the residue definitions Conclusion: The proposed Codex MRL is not acceptable because the toxicity of metabolite R014821 (released after post-harvest treatment) is not sufficiently addressed
Oranges, sweet, sour, Subgroup of (includes all commodities in this subgroup)	8Po	5/-	USA, post-harvest application (dip or drench) at 0.075 kg a.i./hl + post-harvest wax application at 0.2 kg a.i./hl (total: 0.275 kg a.i./hl); withholding period: 0 day Number of trials: 12 on oranges Sufficiently supported by data: Yes Specific comments/observations: See general comment for post- harvest applications Conclusion: The proposed Codex MRL is not acceptable because the toxicity of metabolite R014821 (released after post-harvest treatment) is not addressed See also proposal of RMS below (General comments)
Pome fruits	5W	2/-	JMPR proposed to withdraw the existing CXL because not supported any longer by the manufacturer
Banana	ЗРо	2/-	<u>Critical GAP</u> : FR, post-harvest dip application at 0.0375 kg a.i./hl; withholding period: 0 day Number of trials: 13 trials available Sufficiently supported by data: Yes Specific comments/observations: See general comment for post- harvest applications. It is expected that following the recent EFSA assessment under Art. 43, the French GAP will be withdrawn Conclusion: The proposed Codex MRL is not acceptable because the toxicity of metabolite R014821 (released after post-harvest treatment) is not addressed
Raspberries, red and black	W2	0.05*	JMPR proposed to withdraw the existing CXL because not supported any longer by the manufacturer
Strawberry	W2	0.05*	JMPR proposed to withdraw the existing CXL because not supported any longer by the manufacturer

Commodity	Codex MRL proposal	EU MRL/ proposed MRL (Art. 43, EFSA, 2018o,j)	Comment
Potato	9Po	3/0.01*	Critical GAP: EU post-harvest application at 0.015 kg a.i./tonne; with-holding period of 0 day Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: In the framework of the MRL review, EFSA assessed the post-harvest use reported to JMPR, resulting in a similar MRL proposal (9 mg/kg). However, since intake concerns were identified, the EU MRL was derived for an alternative GAP; thus the GAP assessed by JMPR is no longer valid in the EU. See general comment for post-harvest applications. See also results of acute risk assessment Conclusion: The proposed Codex MRL is not acceptable because it is based on a GAP that is no longer valid for the EU and because of acute intake concerns. In addition, the comments regarding the toxicity of metabolite R014821 (released after post-harvest treatment) are not addressed
Persimmon, Japanese	W 2Po	0.05*/-	JMPR proposed to withdraw the existing CXL because not supported any longer by the manufacturer
Tomato	0.3	0.5/0.3	Critical GAP: Belgium, foliar (indoor) 3×0.02 kg a.i./hL; PHI 1 day (corresponding to 3×300 g a.i./ha assuming 1,500 L water/ha is applied) Number of trials: 6 Sufficiently supported by data: No Specific comments/observations: 2 additional trials would be required. However, in the EU assessment (art. 43), the critical EU use (indoor, 3×300 g /ha, PHI 1 day) was fully supported by data and lead to similar MRL. It is noted that for the EU assessment in total 8 trials were provided Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs
Cucumber	W 0.5	0.2/0.5	JMPR proposed to withdraw the existing CXL because of insufficient data to support critical GAP or alternative GAP
Gherkins	W 0.5	0.2/0.5	JMPR proposed to withdraw the existing CXL because not supported any longer by the manufacturer
Melons, except Watermelon	W 2Po	2/-	JMPR proposed to withdraw the existing CXL because not supported any longer by the manufacturer
Barley	0.01*	0.05*/0.01*	Critical GAP: seed treatment at 0.1 kg a.i./tonnes Number of trials: 5 trials on barley (all < LOQ) + 5-fold overdosed metabolism study on spring wheat (all < LOQ) Sufficiently supported by data: Yes Specific comments/observations: acceptable as no-residue situation is expected Conclusion: The proposed Codex MRL is acceptable
Triticale	0.01*	0.05*/0.01*	See barley
Barley straw and fodder (dry)	0.01	0.05*	Critical GAP: seed treatment at 0.1 kg a.i./tonnes Number of trials: 5 on barley (all < LOQ) Sufficiently supported by data: Yes Specific comments/observations: acceptable as no-residue situation is expected and similar residue behaviour expected in barley and wheat straw Conclusion: The proposed Codex MRL is acceptable
Wheat straw and fodder (dry)	0.01	0.05*	See barley straw

Commodity	Codex MRL proposal	EU MRL/ proposed MRL (Art. 43, EFSA, 2018o,j)	Comment		
Triticale straw and fodder (dry)	0.01	0.05*	See barley straw		
Meat (from mammals other than marine mammals)	0.02*	0.05*	Max estimated burden for beef cattle: 28.9 ppm (EU) Feeding study available that covers the estimated burden for imazalil; samples were analysed for parent, R043449 and R061000 Sufficiently supported by data: Yes Specific comments/observations: The feeding studies seem acceptable. See also general comment Conclusion: The proposed Codex MRL is acceptable		
Mammalian fats (except milk fats)	0.02*	0.05*	Conclusion: The proposed Codex MRL is not acceptable becaus of the lack of toxicological studies for metabolite FK-772 and FK-284 The RMS proposed to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs		
Edible offal (mammalian)	0.3	0.05*	See Mammalian fats (except milk fats)		
Milks	0.02*	0.05*	See Mammalian fats (except milk fats)		
Poultry meat	0.02*	0.05*	Max estimated burden for poultry: 2.3 ppm (EU) Feeding study available that covers the estimated burden for imazalil; samples were analysed for parent, R042639 (FK-284), R043449 (FK-772) and R044085 Sufficiently supported by data: Yes Specific comments/observations: The feeding studies seem acceptable Conclusion: The proposed Codex MRL is acceptable		
Poultry fats	0.02*	0.05*	See poultry meat		
Poultry, edible offal	0.02*	0.05*	See poultry meat		
Eggs	0.01*	0.05*	See poultry meat		
General comments	The proposed Codex MRLs for post-harvest uses are not acceptable because the toxicity of metabolite R014821 (formed after post-harvest treatment) is not sufficiently addressed. This recommendation is in line with the recommendations derived in the recently published reasoned opinions of EFSA (2018j,o) which were supported by MS in a MS consultation The RMS proposed to discuss with MS whether the proposed Codex MRLs are compatible with the EU policy on setting MRLs although the toxicity of metabolite R014821 is not sufficiently addressed. The recommendations to be updated for lemons, oranges, bananas, after the PAFF meeting Although toxicological data for metabolites expected in animal commodities are also missing, the Codex MRL proposals for livestock commodities except edible offal might be acceptable, considering that at the relevant feed levels the total imazalil residues (sum of imazalil, R061000 (FK-772) and R043449 (FK-284) in animal matrices (except liver and kidney) were below the LOQ. The MRL proposal for edible offal mammalian is not supported since the occurrence of FK-772 and FK-284 cannot be excluded				

PHI: preharvest interval; MRL: maximum residue limit; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; GAP: Good Agricultural Practice; CXL: Codex Maximum Residue Limit; LOQ: limit of quantification; RMS: rapporteur Member State; MS: Member State.

*: Indicates that the input value is proposed at the limit of quantification.

5.2.5. Consumer risk assessment

Table 10: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: An indicative short-term dietary risk assessment was performed for all commodities for which JMPR has derived MRL proposals higher than the existing EU MRLs. The risk assessment is indicative, because the residue definitions for risk assessment could not be finalised for all MRLs derived from a post-harvest uses The EU ARfD was used	RA assumptions: The most recent long-term risk assessment (EFSA, 2018o) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for all commodities for which an MRL was derived by JMPR. The risk assessment is indicative, because the residue definitions for risk assessment could not be finalised for all MRLs derived from a post-harvest uses	Specific comments: JMPR calculated acute risk assessment for potatoes, using the HR and a PF for baked potatoes (with peel), resulting in a HR-p of 2.8. The exposure accounted for 60% of the ARfD. JMPR should be asked to explain why the risk assessment was not performed with the processing factor derived for microwaved potatoes with peel (HR-p = 6.5)
Results: Short-term exposure concern was identified for potatoes (1,415% of the ARfD), noting that for this commodity EFSA does not support any proposal due to the open issues regarding the residue definition for risk assessment	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 61% of the ADI	Results: Long-term exposure: 2–40% of the ADI Short-term exposure: 0–40% of the ARfD (children) 0-90% ARfD (adults)

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; ARfD: acute reference dose; ADI: acceptable daily intake; RA: risk assessment.

5.3. Lambda-cyhalothrin (146) T

5.3.1. Background information

Table 11:Background information

		Comments, references
Type of JMPR evaluation	Other evaluation, see comment	New toxicological data was submitted to JMPR
RMS	SE	
Approval status	Renewal of the approval	Commission Implementing Regulation (EU) 2016/146 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2014c)
MRL review	Yes, see comments	EFSA (2014a) EFSA (2015t) (Art.43) EFSA (2017g) (Art.43)
MRL applications	Yes, see comments	EFSA (2019a) (celeries, fennel and rice)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonized classification and labelling for CMR – Annex VI: no classification ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not finalised

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State.

(a): Commission Implementing Regulation (EU) 2016/146 of 4 February 2016 renewing the approval of the active substance lambda-cyhalothrin, as a candidate for substitution, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011. OJ L 30, 5.2.2016, p. 7–11.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.3.2. Toxicological reference values

	JMPR	evaluation		EU evaluation			
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable		
ADI	0.02 mg/kg bw per day	JMPR (2007)	0.0025 mg/kg bw per day	Multigeneration rat study (cyhalothrin), EFSA (2014a) confirmed in European Commission (2015c)	No		
ARfD	0.02 mg/kg bw	JMPR (2007)	0.005 mg/kg bw	1-year dog, EFSA (2014a) confirmed in European Commission (2015c)	No		
Conclusion/ comment	per dayEFSA (2014a) confirmed in European Commission (2015c)0.02 mg/kgJMPR (2007)0.005 mg/kg bw1-year dog, EFSA (2014a) confirmed in European Commission (2015c)No						

	<u> </u>	c	с I	(TD) ()		
Table 12:	Comparison of	f toxicological	reference values	(IRV)	derived by	y JMPR and at EU level

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; RMS: rapporteur Member State; MRL: maximum residue level.

5.3.3. Residue definitions

Table 13:	Comparison of the residue definitions derived by JMPR and at EU level
-----------	---

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Cyhalothrin (sum of all	EU Reg. 2019/50:	Yes
	Animal products	isomers).	lambda-cyhalothrin	Yes
		The residue is fat soluble	Art. 43 (EFSA, 2017g): lambda- cyhalothrin	
			The residue is fat soluble	
RD-RA	Plant products		Art. 43 (EFSA, 2017g):	Yes
	Animal products		Lambda-cyhalothrin	Yes

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
Conclusion/ comments	lambda-cyhalothrin	was included. However, the Core, the JMPR residue definition	isomers of cyhalothrin, while in the codex MRLs refer to the use of lan on has been considered in the past	nbda-

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.3.4. Codex MRL proposals

No new codex MRL proposals were derived by 2018 JMPR.

5.3.5. Consumer risk assessment

Not relevant since no new Codex MRL proposals were derived.

5.4. **Propamocarb** (148) R

5.4.1. Background information

Table 14:Background information

		Comments, references
Type of JMPR evaluation	Other evaluation, see comment	A new livestock feeding study was provided to JMPR
RMS	PT	
Approval status	Renewal of the approval	Commission Directive 2007/25/EC ^(a) as amended by Commission Implementing Regulation (EU) 2018/917 ^(b)
EFSA conclusion	Yes, see comments	EFSA (2006b) Renewal peer-review ongoing
MRL review	Yes, see comments	EFSA (2013d)
MRL applications	Yes, see comments	EFSA (2013e) (rocket and leek) EFSA (2014f) (spring onions and cabbage) EFSA (2015j) (bulb vegetables and leeks) EFSA (2015s) (various corps) EFSA (2017l) (chards/beet leaves) Art.10 on poppy seeds (ongoing, currently on clock-stop)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Cut-off criteria not met according to the Draft RAR -> To be discussed in April experts' meeting	Harmonised classification and labelling for CMR – Annex VI: no entry in Annex VI Peer review ongoing – Experts' meeting in April 2019

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Directive 2007/25/EC of 23 April 2007 amending Council Directive 91/414/EEC to include dimethoate, dimethomorph, glufosinate, metribuzin, phosmet and propamocarb as active substances. OJ L 106, 24.4.2007, p. 34–42.

⁽b): Commission Implementing Regulation (EU) 2018/917 of 27 June 2018 amending Implementing Regulation (EU) No 540/2011 as regards the extension of the approval periods of the active substances alpha-cypermethrin, beflubutamid, benalaxyl, benthiavalicarb, bifenazate, boscalid, bromoxynil, captan, carvone, chlorpropham, cyazofamid, desmedipham, dimethoate, dimethomorph, diquat, ethephon, ethoprophos, etoxazole, famoxadone, fenamidone, fenamiphos, flumioxazine, fluoxastrobin, folpet, foramsulfuron, formetanate, *Gliocladium catenulatum* strain: J1446, isoxaflutole, metalaxyl-m, methiocarb, methoxyfenozide, metribuzin, milbemectin, oxasulfuron, *Paecilomyces lilacinus* strain 251, phenmedipham, phosmet, pirimiphos-methyl, propamocarb, prothioconazole, pymetrozine and s-metolachlor. OJ L 163, 28.6.2018, p. 13–16.

5.4.2. Toxicological reference values

	JMPR evaluation			EU evaluation	701/		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable		
ADI	0.4 mg/kg bw per day	JMPR (2005) (1-year study in dogs, SF 100)	0.24 mg/kg bw per day	EFSA (2006b); European Commission (2007a) (52-week rat study, UF 100)	No		
ARfD	2 mg/kg bw	JMPR (2005) (acute neurotoxicity study, SF 100)	0.84 mg/kg bw	EFSA (2006b); European Commission (2007a) (28-day gavage study in rats, UF 100)	No		
Conclusion/ comment	UF 100) The currently agreed ADI and ARfD values reported in the table above were recalculated to propamocarb free base Peer review ongoing – The toxicological reference values proposed by the RMS will be discussed in April experts' meeting The proposed ADI from the draft RAR is 0.29 mg propamocarb hydrochloride/kg bw per day based on the NOAEL of 29 mg/kg bw per day from a 52-week rat study and a safety factor of 100 The proposed ARfD is 1.0 mg propamocarb hydrochloride/kg bw per day, based on the NOAEL of 100 mg/kg bw from a 28-day rat gavage study and a safety factor of 100 Also, the ADI and ARfD of JMPR are expressed for propamocarb free base In 2005, JMPR derived an ADI of 0.4 mg/kg bw per day is set based on a NOAEL of 39 mg/kg bw per day, on the basis of vacuolisation observed in a range of organs in a 52-week study in dogs,						
	and using a safety factor of 100. An ARfD of 2 mg/kg bw is set based on a NOAEL of 200 mg/kg bw, on the basis of a decreased in activity in rats 1 h after dosing from the rat acute neurotoxicity study and using a safety factor of 100						

	o · · · ·				
Table 15:	Comparison of toxic	cological reference '	values (TRV)	derived by	[,] JMPR and at EU level

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; RMS: rapporteur Member State; MRL: maximum residue level; UF: uncertainty factor.

5.4.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Propamocarb	EU Reg. 2018/832: Propamocarb (Sum of propamocarb and its salts, expressed as propamocarb)	Yes
	Animal products	Propamocarb The residue is not fat soluble	EU Reg. 2018/832: <i>N</i> -oxide propamocarb (products of animal origin, except poultry/birds eggs) <i>N</i> -desmethyl propamocarb (poultry, birds eggs)	No
			The residue is not fat soluble	
RD-RA	Plant products	Propamocarb	MRL review (EFSA, 2013e): Sum of propamocarb and its salts, expressed as propamocarb	Yes
	Animal products	Propamocarb	MRL review (EFSA, 2013e): Sum of propamocarb, <i>N</i> -oxide propamocarb, oxazolidin-2-one propamocarb and 2- hydroxypropamocarb, expressed as propamocarb (ruminants, pigs); Sum of propamocarb and <i>N</i> -desmethyl propamocarb, expressed as propamocarb (poultry)	No

Table 16: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
Conclusion/ comments	Plant commodities : The residue definition set for enforcement and risk assessment by JMPR and at EU level are substantially the same Animal commodities : The residue definition set for enforcement and risk assessment by JMPR and at EU level EU are quite different EFSA proposed to limit the residue definition for enforcement to the best marker compound, identified as <i>N</i> -oxide propamocarb in tissues of ruminants (and pigs) and in milks and as <i>N</i> - desmethyl propamocarb in poultry tissues and eggs (details are reported below as background information) For risk assessment, the EU residue definition is more comprehensive and includes the major plant and animal metabolites. Based on metabolism studies, tentative conversion factors for risk assessment were proposed during the MRL review (4.25 for milk; 2.2 for ruminant kidney, 1.7 for ruminant liver and muscle; 1 for ruminant fat; 1.3 for all poultry tissues and eggs)					
	Overall, the residue definitions for animal products derived at EU level and by JMPR are not compatible Both assessments concluded residues in products of animal origin are not fat soluble					
	predominant meta (49% TRR – 0.203 0.012 mg/kg). Oxa and milk (14–23% of the total residue in liver (5% TRR) muscle (0.005 mg, and 6.0% TRR in in In poultry, the pre- in eggs (45% TRR TRR) while the par- desmethyl propar	bolite of the total 8 mg/kg), muscle azolidine-2-one pr TRR; 0.014–0.09 es in milk (37.5% and kidney (13% /kg), 23.5% TRR milk (0.003 mg/kg dominant compou), liver (22% TRR rent compound oc locarb and <i>N</i> -oxid icant fraction of th	ind of the total residues was the <i>N</i> -desme), muscle (29% TRR) and to a minor exter courred at a lower level in all matrices (2– e propamocarb accounted for less than 1 ne radioactive residues remained unchara	244 mg/kg), liver milk (21% TRR – ts in kidney, liver e major metabolite ied at a lower level 24.6% TRR in er (0.026 mg/kg) ethyl propamocarb end in fat (6% .12% TRR). Bis 0% TRR. It is		

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; TRR: total radioactive residues.

5.4.4. Codex MRL proposals

Table 17:	Comparison of Co	odex MRL proposals	derived by JMPR	and EU MRLs
-----------	------------------	--------------------	-----------------	-------------

Commodity	Codex MRL proposal	EU MRL	Comment
Edible offal (Mammalian)	1.5	Edible offal, liver from – ruminants, equine, others: 0.2 –swine: 0.1 Kidney from – ruminants, equine, others: 0.05 – swine: 0.2	In 2014, JMPR calculated the maximum dietary burden using the OECD diets listed in the 2009 Edition of the FAO manual. The maximum and mean dietary burden was identified for Australian Dairy cattle (31.55 ppm DM and 10.7 ppm DM; the dietary burden is expressed as free base) In 2018, JMPR assessed a new feeding study with dairy cows administered propamocarb-HCl with feed levels equivalent to 13.6, 26.3 and 138 ppm propamocarb equivalents in feed The Codex MRL proposal refers to propamocarb residues only Conclusion: The proposed Codex MRL is not acceptable because it is not compatible with the EU residue definition for enforcement
Mammalian fats (except milk fats)	0.03	0.01 (ft)	See comment on mammalian edible offal Conclusion: The proposed Codex MRL is not acceptable because derived according to a different residue definition

Commodity	Codex MRL proposal	EU MRL	Comment	
Meat from mammals (other than marine mammals)	0.03	0.01 (ft)	See comment on mammalian edible offal Although Codex MRL proposal refers to meat, samples of muscle tissue were analysed Conclusion: The proposed Codex MRL is not acceptable because derived according to a different residue definition	
Milks	0.01*	0.01 (ft)	See comment on mammalian edible offal Conclusion: The proposed Codex MRL is not acceptable because derived according to a different residue definition	
General comments		ed Codex MRLs for tissues le residue definitions	and milks cannot be taken over in EU legislation because of	
	In 2014, the proposed Codex MRLs for cabbages, head and kale were retained on step 4, awaiting the livestock feeding study In 2014, JMPR also recommended withdrawal of the CXLs for animal products that were derived by Codex in 2007, (once the CXLs are replaced with new Codex MRL proposals)			

MRL: maximum residue limit; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; DM: dry matter; CXL: Codex Maximum Residue Limit.

*: Indicates that the input value is proposed at the limit of quantification. Ft: EFSA identified some information on analytical methods and a feeding study as unavailable. When re-viewing the MRL, the Commission will take into account the information referred to in the first sentence, if it is submitted by 22 March 2016 or, if that information is not submitted by that date, lack of it.

5.4.5. Consumer risk assessment

Considering that the residue definitions are not compatible, and currently reliable conversion factors could not be derived, EFSA did not perform a dietary risk assessment for the proposed Codex MRLs.

5.5. Propiconazole (160) R

5.5.1. Background information

Table 18:Background information

		Comments, references
Type of JMPR evaluation	Follow-up evaluation due to concern form	In 2018 CCPR, the EU raised a reservation: over the decision of the 2017 JMPR to use the CF*3 Mean to recommend the CXL for post-harvest uses (oranges, mandarins, lemons/limes, pumelo/grapefruit, peach, cherries, plums, pineapple); due to toxicological concerns with certain metabolites. (2018 JMPR followed up on 1)
RMS	FI	
Approval status	Not approved	Commission Implementing Regulation (EU) No 2018/1865 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2017e); EFSA (2018m) conclusion confirmatory data on TDMs
MRL review	Yes, see comments	EFSA (2015b)
MRL applications	No	UK is evaluating an import tolerance application from USA on behalf Finland (agreed at PAFF June 2018 meeting). The application concerns the following crops: barley, wheat, pineapple and peanuts
Cut-off criteria: • Mutagen cat. 1A or 1B • Carcinogen cat. 1A or 1B	Yes	Harmonised classification and labelling for CMR – Annex VI: Toxic for reproduction cat. 1B EU Peer Review proposal for CMR: Toxic for reproduction cat. 1B ED assessment according to ECHA/EFSA guidance (2018) and

	Comments, references
 Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level; TDMs: triazole-derivative metabolites.

(a): Commission Implementing Regulation (EU) 2018/1865 of 28 November 2018 concerning the non-renewal of approval of the active substance propiconazole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.5.2. Toxicological reference values

Table 19: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR evaluation			EU evaluation			
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable		
ADI	0.07 mg/kg bw per day	JMPR (2015)	0.04 mg/kg bw per day	EFSA (2017e) (chronic rat study with uncertainty factor of 100)	No		
ARfD	0.3 mg/kg bw	JMPR (2015)	0.1 mg/kg bw	EFSA (2017e) (developmental study in rat with uncertainty factor of 300)	No		
Conclusion/ comment	the new value Propiconazole Assessment C No 1272/2008	with uncertainty factor of 300)In the framework of the renewal of the approval (EFSA, 2017e), EFSA proposed to lower the ARfD; the new value is not yet formally adopted. The ADI has been confirmedPropiconazole is proposed to be classified as toxic for reproduction category 1B by the Risk Assessment Committee of ECHA (2016), in accordance with the provisions of Regulation (EC) No 1272/2008, and toxic effects on the endocrine organs have been observed in the available data Due to classification (ECHA, 2016), a non-approval decision was taken in 2018					

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose.

5.5.3. Residue definitions

Table 20:	Comparison of the	e residue definitions	derived by JMPR	and at EU level
-----------	-------------------	-----------------------	-----------------	-----------------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Propiconazole	EU Reg. 2017/626 and EFSA (2017e): Propiconazole (sum of isomers)	Yes
	Animal products	Propiconazole The residue is fat soluble	EU Reg. 2017/626: Propiconazole (sum of isomers) Peer review (EFSA, 2017e): CGA91305 (free and conjugated) ((1 <i>RS</i>)-1-(2,4- dichlorophenyl)-2-(1 <i>H</i> -1,2,4-triazol-1-yl) ethanol) The residue is fat soluble	Yes
RD-RA	Plant products	Propiconazole plus all metabolites convertible to 2,4-dichloro- benzoic acid,	the metabolites convertible to the 2,4- dichlorobenzoic acid, expressed as propiconazole	Yes

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
		expressed as propiconazole	 2) CGA 118244 (3,5-dideoxy-1,2-O-[(1RS)-1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl) ethylidene]-D,L-pentitol) free and glucoside conjugated Whether the parent compound and CGA 118244 have to be considered together or separately is pending upon the submission of toxicological data to address the toxicity profile on CGA118244) 3) TDMs (EFSA, 2018m) 		
	Animal products	Propiconazole plus all metabolites convertible to 2,4-dichloro- benzoic acid, expressed as propiconazole	Parent propiconazole and all the metabolites convertible to the 2,4-dichlorobenzoic acid,	Yes	
Conclusion/ comments	The enforcement RD for plants established in Reg. 2017/626 is comparable with the RD of JN For the risk assessment residue definitions, JMPR covers the common moiety (2,4-dichlorober acid); in the MRL review, the same risk assessment residue definitions were derived In the framework of the peer review, data gaps on the genotoxicity potential and toxicologica profile of metabolite CGA118244 and CGA91305 were identified				
	JMPR did not set specific residue definitions for the TDMs (TAA and TA). Due to the different risk assessment residue definitions for plant commodities and the open questions as regards the toxicological properties of some of the metabolites, only a tentative risk assessment can be performed				

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; TDMs: triazole-derivative metabolites.

5.5.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Cherries, Subgroup of (including all commodities in this subgroup)	ЗРо	0.01*	Critical GAP: US post-harvest GAP: 1×12.9 g a.s./100 L (in-line dip/drench) Number of trials: 5 Sufficiently supported by data: Cherries are a major crop according the JMPR and at EU level. Thus, additional residue trials would be required. Last year, the EU did not make a formal reservation on the lack of residue trials The recalculation of the MRL using mean residue + 4 SD resulted in the same MRL proposal as suggested last year Conclusion: It is recommended to discuss with MSs whether the proposed Codex MRL is acceptable considering the fact that propiconazole is proposed to be classified as toxic for reproduction category 1B in accordance with that Regulation. Commission Regulation (EU) 2018/1480
Lemons and limes (including citron) Subgroup of (including all	10Po	5 (ft)	Critical GAP: US post-harvest GAP: 2×52.7 g a.s./100 L (dip/drench) Number of trials: 16 Sufficiently supported by data: Yes Specific comments/observations: See assessment for the subgroup of oranges Conclusion: It is recommended to discuss with MSs whether the proposed Codex MRL is acceptable considering the fact that propiconazole is proposed

Commodity	Codex MRL proposal	EU MRL	Comment	
commodities in this subgroup)			to be classified as toxic for reproduction category 1B in accordance with that Regulation. Commission Regulation (EU) 2018/1480	
Mandarins 10Po 5 (ft) (including mandarin-like		5 (ft)	Critical GAP: US post-harvest GAP: 2 \times 52.7 g a.s./100 L (dip/drench) Number of trials: 16 Sufficiently supported by data: Yes	
hybrids) subgroup of (including all commodities in this subgroup)			Conclusion: It is recommended to discuss with MSs whether the proposed Codex MRL is acceptable considering the fact that propiconazole is proposed to be classified as toxic for reproduction category 1B in accordance with that Regulation. Commission Regulation (EU) 2018/1480	
Orange oil	1850		A single-processing study is available (PF 185). In the EU, no MRLs are set for processed products	
Oranges, 10Po Sweet, Sour (including orange-like hybrids) Subgroup of (including all commodities in		9	Critical GAP: USA, post-harvest GAP: 2 × 52.7 g a.s./100 L (dip/drench), Number of trials: 16 (8 trials on oranges, 4 trials on mandarins and 4 trials on lemons) Sufficiently supported by data: Yes Specific comments/observations: The CF for risk assessment was derived from residue trials in cherries. The validity of this extrapolation is not questionable, but formally the EU did not make a reservation on that point	
this subgroup)			Conclusion: It is recommended to discuss with MSs whether the proposed Codex MRL is acceptable considering the fact that propiconazole is proposed to be classified as toxic for reproduction category 1B in accordance with that Regulation. Commission Regulation (EU) 2018/1480	
Peach 0.7Po		5	Critical GAP: US post-harvest GAP: 1×0.54 g a.s./1,000 kg (in-line aqueous/fruit-coating spray) Number of trials: 3 Sufficiently supported by data: No Specific comments/observations: Peaches are a category 3 crop for JMPR; therefore, at least 5 trials would be required. Last year, the EU did not make a formal reservation on the lack of residue trials	
			Conclusion: It is recommended to discuss with MSs whether the proposed Codex MRL is acceptable considering the fact that propiconazole is proposed to be classified as toxic for reproduction category 1B in accordance with that Regulation. Commission Regulation (EU) 2018/1480. Furthermore, a acute intake concern was identified for peaches	
Pineapple	2Po	0.02*	Critical GAP: US post-harvest GAP: 1 \times 25.8 g a.s./100 L (drench) + 1 \times 25.8 g a.s./100 L (directed peduncle spray) Number of trials: 4	
			Specific comments/observations: According the JMPR, pineapples are a category 3 crop, thus, at least 5 residue trials would be required. Last year, the EU did not make a formal reservation on the lack of residue trials UK is evaluating an import tolerance application from USA on behalf Finland (agreed at PAFF June 2018 meeting). The application concerns also pineapples. The GAP and residue data for pineapple seems to be the same as the ones considered by JMPR	
			Conclusion: It is recommended to discuss with MSs whether the proposed Codex MRL is acceptable considering the fact that propiconazole is proposed to be classified as toxic for reproduction category 1B in accordance with that Regulation. Commission Regulation (EU) 2018/1480	
Plums, Subgroup of (includes all commodities in this subgroup)	0.4Po	0.01*	Critical GAP: US post-harvest GAP: 1 9 0.54 g a.s./1,000 kg (in-line aqueous/fruit-coating spray) Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: Sufficient number of trials according to JMPR rules, but at EU level 8 trials would be required	

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: It is recommended to discuss with MSs whether the proposed Codex MRL is acceptable considering the fact that propiconazole is proposed to be classified as toxic for reproduction category 1B in accordance with that Regulation. Commission Regulation (EU) 2018/1480
Pumelo and grapefruit (including	4Po	5 (ft)	Critical GAP: US post-harvest GAP: 2 9 52.7 g a.s./100 L (dip/drench) Number of trials: 4 Sufficiently supported by data: Yes
Shaddock-like hybrids) Subgroup of (including all commodities in this subgroup)			Conclusion: It is recommended to discuss with MSs whether the proposed Codex MRL is acceptable considering the fact that propiconazole is proposed to be classified as toxic for reproduction category 1B in accordance with that Regulation. Commission Regulation (EU) 2018/1480
General comments	harvest use by the 201 for estimat recommend	es consic 7 JMPR ing STM ded the	g agreed that more refined maximum residue levels are possible for the post- dered by the 2017 JMPR using the mean + 4 SD. The residue data assessed for post-harvest uses are suitable for estimating maximum residue levels, and R and HR for long-term and acute dietary exposure assessments. The Meeting following maximum residue levels based on the mean + 4 SD for the post- piconazole on the crops considered in the 2017 Meeting
	2017, the e the light of RD for RA. MRL review exceedance tomatoes. used in the implemente	existing I the new STMR, I v (EFSA, e for the In all case assessr ed in the	recent decision on non-approval of the a.s. and the lowering of the ARfD in EU MRLs should be reviewed. Finland has screened the existing EU MRLs in v toxicological reference values. The assessment was based on the existing HR and CFs were taken from the previous EFSA assessment on the complete 2015b) and JMPR reports. Calculations by PRIMO rev. 3 resulted in the ARfD following crops: oranges, peaches, grapefruits, mandarins, lemons and ses, the GAPs are based on post-harvest uses (consequently, a CF of 1 was nent). MRLs for orange, peach and tomatoes are based on CXLs, e EU legislation. The results of the screening exercise will be presented to the eting February 2019
	mandarins received ar studies on and new re cereals. Stu lemon, lime Evaluation	and gra n MRL ap the toxid esidue tr udies on es, mand of residu	ork of the MRL review, certain information was considered for lemons, lime, pefruit; deadline for submission of the missing data: 30 March 2018. Finland oplication concerning Art. 12 confirmatory data. The submission included cological properties of the metabolites convertible to 2,4-dichlorobenzoic acid ials on barley, wheat, maize and sugar beet; and a processing study on magnitude of residues were also requested to confirm MRLs for grapefruits, darins, apples, apricots, grapes, bananas and rice, but not submitted. ue data has not been started yet, but the tox. part is going to be finalised can be submitted earlier, if needed

GAP: Good Agricultural Practice; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue limit; MS: Member State; a.s.: active substance; CF: conversion factor; STMR: supervised trials median residue; HR: highest residue; ARfD: acute reference dose; RD: residue definition; RA: risk assessment; PRIMo: (EFSA) Pesticide Residues Intake Model; CXL: Codex Maximum Residue Limit.

*: Indicates that the input value is proposed at the limit of quantification.

5.5.5. Consumer risk assessment

Table 22: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions:	RA assumptions:	Specific comments:
The short-term dietary risk assessment was performed for crops under consideration in 2018 JMPR The EU ARfD was used	The most recent long-term risk assessment (EFSA, 2015b) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for rape seed	_

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
A tentative short-term dietary risk assessment was performed for parent propiconazole for citrus fruits with exception of grapefruits, cherries, peaches, plums and pineapples using the HR pulp value for citrus fruit, the HR whole fruit for peaches, cherries and plums and the HR-P for pineapple. For grapefruits, the STMR and HR derived by JMPR for the post-harvest use were included, because they were higher than the previously derived EU input values The risk assessment is considered tentative, because of the difference of residue definitions established at EU level and by JMPR. Additional uncertainties in the risk assessment are resulting from the lack of data on the residue concentration compliant with the residue definition for risk assessment for citrus and the lack of information on the possible impact of plant and livestock metabolism on the isomer ratio of propiconazole Risk management decision required how	fruits, the STMR whole fruit cherries, peaches, plums and the STMR-P for pineapple The EU ADI was used The risk assessment is considered tentative, because of the difference of residue definitions established at EU level and by JMPR	
to proceed with active substances that are not approved in the EU due non- compliance with cut-off criteria		
Results: A short-term exposure concern was identified (209% of the ARfD for peaches Furthermore, an acute intake concern was identified for the EU MRL for tomatoes due to the use of PRIMo 3	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 21% of the ADI (NL toddler). The contribution of apples and maize corn to the exposure was 3% each of the ADI	Results: Long-term exposure: 21% of the ADI (NL toddler) Short-term exposure: 209% of the ARfD for peaches 57% of the ARfD for oranges

ARfD: acute reference dose; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; STMR: supervised trials median residue; HR: highest residue; ADI: acceptable daily intake; MRL: maximum residue level; RA: risk assessment; PRIMo: (EFSA) Pesticide Residues Intake Model.

5.6. **Profenofos (171) R**

5.6.1. Background information

Table 23:	Background information
-----------	------------------------

		Comments, references
Type of JMPR evaluation	New use	Last periodic review 2008
RMS	-	RMS Germany: toxicological evaluation in the framework of setting MRLs
Approval status	Not approved	Commission Regulation (EC) No 2076/2002 ^(a)
EFSA conclusion	No	
MRL review	No	
MRL applications	No	
Cut-off criteria: • Mutagen cat. 1A or 1B • Carcinogen cat. 1A or 1B	Not met ED: No information	Harmonised classification and labelling for CMR – Annex VI: none

		Comments, references
Toxic for reproduction cat. 1A or 1BEndocrine disrupting (ED) potential	available as not approved in EU	

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Regulation (EC) No 2076/2002 of 20 November 2002 extending the time period referred to in Article 8(2) of Council Directive 91/414/EEC and concerning the non-inclusion of certain active substances in Annex I to that Directive and the withdrawal of authorisations for plant protection products containing these substances. OJ L 319, 23.11.2002, p. 3–11.

5.6.2. Toxicological reference values

Table 24:	Comparison of toxicological	reference values (TRV	/) derived by JM	IPR and at EU level
-----------	-----------------------------	-----------------------	------------------	---------------------

	JMPR e	evaluation		EU evaluation	TRV comparable	
	Value	Comments (source, study)	Value	Comments (source, study)		
ADI	0.03 mg/kg bw per day	JMPR (2007) (dog: 90 days, 6 months and 1 year studies)	0.0002 mg/kg bw per day	German evaluation of 2001 (dog 1-year study. Toxicological evaluation at EU level performed in the framework of setting MRLs under Council Directive 90/642/EEC ^(a))	No	
ARfD	1 mg/kg bw	JMPR (2007) (rat acute neurotoxicity)	0.005 mg/kg bw		No	
Conclusion/ comment	The German ADI is based on the LOAEL 1 mg/kg bw per day with an UF of 200 The ARfD is based on the NOAEL for the inhibition of brain cholinesterase activity					
	Due to the limited details available in the JMPR Report and the German evaluation, a final conclusion on the acceptability of the toxicological reference values derived by the two bodies cannot be made					

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; LOAEL: lowest observed adverse effect level; NOAEL: no observed adverse effect level; RMS: rapporteur Member State; MRL: maximum residue level; UF: uncertainty factor.

(a): Council Directive 90/642/EEC of 27 November 1990 on the fixing of maximum levels for pesticide residues in and on certain products of plant origin, including fruit and vegetables. OJ L 350, 14.12.1990, p. 71–79.

5.6.3. Residue definitions

Table 25:	Comparison of the	residue definitions	derived by JMPR	and at EU level
-----------	-------------------	---------------------	-----------------	-----------------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Profenofos	EU Reg. 2017/978: Profenofos	Yes
	Animal products	Profenofos The residue is not fat soluble	EU Reg. 2017/978: Profenofos The residue is fat soluble	Yes
RD-RA	Plant products	Profenofos	EU Reg. 2017/978: Profenofos	Yes
	Animal products		Yes	
Conclusion/ comments	The JMPR defines residues as fat sol		bluble, whereas the EU residue de	finition defines th

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues.

5.6.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Coffee bean	0.04	0.05*	Critical GAP: Brazil, 2 × 400 g/ha, 30-day interval, PHI 7 days Number of trials: 7 Sufficiently supported by data: No Specific comments/observations: According to the JMPR criteria, the number of trials is not sufficient because coffee beans are classified as a major crop and a minimum of 8 trials are normally required. The number of trials is not sufficient according to the EU data requirements. The limited number of trials is of low relevance since the Codex MRL proposal is lower than the current EU MRL at the LOQ of 0.05 mg/kg. Further consideration may be required in case the LOQ is in future lowered Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs. The long-term risk assessment indicated a potential consumer health risk in the scenario where the toxicological reference value (ADI) derived by the EU evaluation was used
General comments		rose pe	arried out between 2012 and 2015 show that residues of profenofos occur in tals and Commission Regulation (EU) 2017/978 extend the validity of EU MRLs ities

PHI: preharvest interval; MRL: maximum residue limit; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; GAP: Good Agricultural Practice; LOQ: limit of quantification; ADI: acceptable daily intake. *: Indicates that the input value is proposed at the limit of quantification.

5.6.5. Consumer risk assessment

Table 27:	Summary of the consumer risk assessment
-----------	---

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was performed for coffee beans using STMR derived by JMPR for coffee beans. EFSA calculated two scenarios because a conclusion on the acceptability of the toxicological reference	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Specific comments: None
values (ARfD) derived by the JMPR and the EU evaluation cannot be made on the basis of the available information. Scenario 1: The EU evaluation ARfD was used (German evaluation of 2001). Scenario 2: The JMPR ARfD was used	low contribution expected from the specific use on chili peppers. For other commodities, EFSA applied the MRLs established in the EU legislation according to the Corrigendum to Commission Regulation (EU) 2017/978 except for where the EU MRL is set at the LOQ (no use expected) and for animal commodities (contamination of imported feed items is not expected). EFSA calculated two scenarios because a conclusion on the acceptability of the toxicological reference values (ADI) derived by the JMPR and the EU evaluation cannot be made on the basis of the available information Scenario 1: The EU evaluation ADI was used (German evaluation of 2001) Scenario 2: The JMPR ADI was used	

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: No short-term exposure concern was identified <u>Scenario 1, EU</u> <u>evaluation ARfD:</u> The estimated short-term exposure from coffee beans accounted for < 0.3% of the ARfD <u>Scenario 2, JMPR ARfD:</u> The estimated short- term exposure from coffee beans accounted	risk in the scenario where the toxicological reference value (ADI) derived by the EU evaluation was used. No long-term consumer health risk was identified in the scenario where the toxicological reference value (ADI) derived by the JMPR was used <u>Scenario 1, EU evaluation ADI</u> : The overall chronic exposure accounted for 2,800% of the ADI (GEMS/Food G06). The diet with the highest contribution of coffee beans to the chronic exposure was 56% of the ADI for the FI adult diet. The main contributor to the exposure is tomatoes (2,327%) <u>Scenario 2, JMPR ADI</u> : The overall chronic exposure accounted for 19%	Results: Long-term exposure: 0–20% of the ADI Short-term exposure: 0% of the ARfD
for < 0.01% of the ARfD	coffee beans to the chronic exposure was 0.37% of the ADI for the FI adult diet	

RA: risk assessment; STMR: supervised trials median residue; ARfD: acute reference dose; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; LOQ: limit of quantification; ADI: acceptable daily intake.

5.7. Bentazone (172) R

5.7.1. Background information

Table 28:Background information

		Comments, references
Type of JMPR evaluation	New use	
RMS	NL	
Approval status	Renewal of the approval	Commission Decision 2000/68/EC ^(a) amended by Commission Implementing Regulation (EU) 2018/660 ^(b)
EFSA conclusion	Yes, see comments	EFSA (2015i)
MRL review	Yes, see comments	EFSA (2012c)
MRL applications	Yes, see comments	EFSA (2011b) (legume vegetables and fresh herbs) In sweet corn (EFSA, 2010b)
		Confirmatory data following Art.12 under-finalisation Art. 10 MRLs in various commodities under-consideration
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonized classification and labelling for CMR – Annex VI: Toxic for reproduction cat. 2 ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(c)): not finalised

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): 2000/68/EC: Commission Directive 2000/68/EC of 23 October 2000 including an active substance (bentazone) in Annex I to Council Directive 91/414/EEC concerning the placing of plant protection products on the market. OJ L 276, 28.10.2000, p. 41–43.

(b): Commission Implementing Regulation (EU) 2018/660 of 26 April 2018 renewing the approval of the active substance bentazone in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 110, 30.4.2018, p. 122–126.

(c): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.7.2. Toxicological reference values

	JMPR evaluation			EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.09 mg/kg bw per day	JMPR (2016)	0.09 mg/kg bw per day	EFSA (2015i) (rat, 2-year study with an UF of 100) conformed in European Commission (2018c)	Yes	
ARfD	0.5 mg/kg bw	JMPR (2016)	1 mg/kg bw	EFSA (2015i) (rat developmental toxicity study, 100 UF) conformed in European Commission (2018c)	No	
comment	Regarding the setting of the ADI, both the JMPR and EU assessments are based on the same NOAEL of 9 mg/kg bw per day from the same two-year toxicity study in rats and applying an uncertainty factor of 100 The ARfD established by the JMPR is based on an acute neurotoxicity study in rats that was not available to the EU peer review; this study should be reviewed in the EU peer review to re-visit the established ARfD In the opinion of the EU peer review, the toxicological reference values of the parent, bentazone, are applicable to the metabolite 8-hydroxy-bentazone, however according to the EFSA conclusion, insufficient toxicological information is available to establish reference values for metabolite 6-hydroxy-bentazone					
	In the Review report for the active substance bentazone finalised in the Standing Committee, the following statement for the bentazone metabolites (6-OH and 8-OH bentazone) was made: According to the JMPR review of bentazone (Bentazone 31-98, JMPR 2012) the 8-hydroxy and 6-hydroxy metabolites of bentazone are of comparable toxicity by the oral route of administration and are both less toxic than the parent compound. In addition the RMS informed that even if 6-OH bentazone would not be regarded as toxicologically equivalent to 8-OH-bentazone, the consumer exposure falls below 1.5 μ g/kg bw/day (TTC Cramer Class III for non-genotoxic substances). The TTC approach was recommended in the Scientific Opinion (EFSA, 2012c)					
	The reference For the 8-hydrony and the reference consider this	According to the RMS NL, the EU Commission Review Report (2018c) closed the EFSA data gap. The reference values of the parent should also be applicable to 6-hydroxy-bentazone For the 8-hydroxy-bentazone, the peer review concluded that it is less toxic than parent compound and the reference values of parent can be applied to this metabolite. The peer review did not consider this metabolite relevant for the inclusion in the residue definitions. Actual levels of this metabolite in plants are low				
		e setting of an ARfD by J sible acute intake concerr		IMPR re-assessed the previously de	erived CXLs as	

Table 29:	Comparison of toxicological	reference values (TRV	/) derived by	1MPR and at FU level
	companison or conicological) acrived by	

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; TTC: threshold of toxicological concern; RMS: rapporteur Member State; CXL: Codex Maximum Residue Limit.

Table 30: Comparison of the residue definitions derived by JMPR and at E	:U level
---	----------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products		MRL review 2012c and Reg. (EC) No 1146/2014: Sum of bentazone, its salts and 6-hydroxy (free and conjugated) and 8-hydroxy bentazone (free and conjugated), expressed as bentazone Peer review (2015i) proposal: Bentazone	No
	Animal products		MRL review 2012c and Reg. (EC) No 1146/2014: Sum of bentazone, its salts and 6-hydroxy (free and conjugated), expressed as bentazone	No

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
		Not fat soluble			
			Peer review (2015i) (provisional): 6-hydroxy-bentazone, expressed as bentazone (all animal commodities, except milk) 6-hydroxy-bentazone (sulphate) conjugates, expressed as bentazone (milk only)		
RD-RA	Plant products		MRL review (2012c): same as RD for enforcement Peer review (2015i): Sum of bentazone,	No	
	Animal products		6-hydroxy-bentazone and its conjugates, expressed as bentazone (provisional)	No	
Conclusion/ comments	The EU and JMPR residue definitions for bentazone are not comparable. The metabolite 6-hydroxy- bentazone is included in the currently applicable enforcement and risk assessment residue definitions in the EU. For plant commodities, additionally, the 8-hydroxy-metabolite is included in the enforcement and risk assessment residue definitions. Thus, as long as the EU residue definitions are not modified, the Codex MRL proposals are not compatible with the EU enforcement residue definitions. Furthermore, a common understanding regarding the data gap on toxicological information for metabolite 6-hydroxy-bentazone should be derived (see Conclusion/comments on toxicological reference values)				
	The enforcement residue definition for plant commodities as proposed by the peer review enforced) complies with the residue definition derived by the JMPR, but this residue definition not yet implemented				

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.7.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Beans (dry)	W 0.04	0.1	Withdrawal on the basis of new CXL as extrapolated from dry peas (see comment below)
Dry beans, subgroup of (includes all commodities in this subgroup)	0.5	0.1 Soya beans: 0.03*	Critical GAP: USA, foliar, 2 × 1.12 kg/ha, PHI 30 days Number of trials: 8 Sufficiently supported by data: No Specific comments/observations: Extrapolation from peas. The Codex MRL proposal would also cover soya beans; residue trials on soybeans would be also required Conclusion: The proposed Codex MRL is not acceptable because the Codex residue definition is not compatible with the EU residue definition (occurrence of 6-hydroxy and 8-hydroxy-bentazone has not been investigated)
Dry peas, subgroup of (includes all commodities in this subgroup)	0.5	1	Critical GAP: USA, foliar, 2 × 1.12 kg/ha, PHI 30 days Number of trials: 8 Sufficiently supported by data: Yes Specific observations: The CXL derived in 1997 has been taken over in the EU. 2013 JMPR recommended withdrawal of this old CXL; since JMPR derived a new MRL proposal, the CXL for Field peas (dry) VD0561) should be withdrawn Conclusion: The proposed Codex MRL is not acceptable because the Codex residue definition is not compatible with the EU residue definition (occurrence of 6-hydroxy and 8-hydroxy-bentazone has not been investigated). Risk managers to discuss the replacement of the existing EU MRL, considering that the previous CXL will be withdrawn
Edible offal (Mammalian)	0.04	1 (ft) except swine	The Codex MRL proposal is based on the maximum dietary burden calculated by 2013 JMPR based on the OECD feeding tables of 2009, and the new cow feeding study submitted for the current meeting. The CXL for edible offal

Table 31: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment	
		with 0.15 (ft)	derived on the basis of estimated residues in kidney at the calculated DB The new use on beans/peas does not have an impact on the DB The existing EU MRL is currently assessed for the Article 12 confirmatory data. The same cow feeding study was provided in the EU assessment for the Article 12 confirmatory data gap/EU peer review data gap Considering the different residue definitions, the proposed Codex MRL would not be compatible with the EU legislation	
Mammalian fats (except milk fats)	0.01*	1 (ft) except swine 0.15 (ft)	See comments on edible offal (mammalian)	
Meat (from mammals other than marine mammals)	0.01*	0.02* (ft)	See comments on edible offal (mammalian)	
Milks	0.01*	0.02* (ft)	The CXL proposal is based on the maximum dietary burden calculated for Australian dairy cattle by the 2013 JMPR, and the new cow feeding study submitted for the current meeting. The new use on beans/peas does not have an impact on the DB The existing EU MRL is currently assessed for the Article 12 confirmatory data. The same cow feeding study was submitted for EU assessment. Considering the different residue definitions, the proposed Codex MRL would not be compatible with the EU legislation	
Soya bean	W 0.01*	0.03*	See comments on dry beans, subgroup of (includes all commodities in this subgroup)	
General comments	The Codex MRL proposals are not compatible with the EU residue definitions; in the residue trials assessed by JMPR the metabolites included in the EU residue definition are not reported/analysed			

CXL: Codex Maximum Residue Limit; GAP: Good Agricultural Practice; PHI: preharvest interval; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue limit; OECD: Organisation for Economic Co-operation and Development; DB: Dietary Burden.

5.7.5. Consumer risk assessment

 Table 32:
 Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was performed using PRIMo rev.3, considering all commodities for which the authorised uses were reported for the Article 12 MRL review and for which the MRL proposal was enforced in the Regulation (EU) No 1146/2014 The crops for which no uses were reported under Article 12 MRL review were excluded from the calculation. The Codex MRL proposal for dry beans and soya beans was included for an indicative calculation, noting that the RD of JMPR does not cover the metabolites included in the EU	RA assumptions: The long-term dietary risk assessment was performed using PRIMo rev.3, considering all commodities for which the authorised uses were reported for the Article 12 MRL review and for which the MRL proposal was enforced in the Regulation (EU) No 1146/2014 The crops for which no uses were reported under Article 12 MRL review were excluded from the calculation The Codex MRL proposal for dry beans and soya beans was included for an indicative calculation, noting that the RD of JMPR does not cover	Specific comments: The occurrence of 6-hydroxy and 8-hydroxy bentazone was not investigated by the JMPR. The exposure assessment was performed for the parent bentazone only The ARfD set by the JMPR for bentazone is lower (0.05 mg/kg bw) than the value established in the EU (1 mg/kg bw)

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RD The EU ARfD was used for the calculation	the metabolites included in the EU RD The EU ADI was used	
Results: No short-term exposure concern was identified	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for a maximum of 3% of the ADI	Results: Long-term exposure: 1% of the ADI Short-term exposure: 0% of the ARfD

RA: risk assessment; PRIMo: (EFSA) Pesticide Residues Intake Model; MRL: maximum residue level; RD: residue definition; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ADI: acceptable daily intake; ARfD: acute reference dose; bw: body weight.

5.8. Abamectin (177) R

5.8.1. Background information

Table 33:Background information

		Comments, references	
Type of JMPR evaluation	New use		
RMS	AT		
Approval status	Approved	Commission Implementing Regulation (EU) No 2017/438 ^(a)	
EFSA conclusion Yes, see comments		EFSA (2008b) (acaricide use) EFSA (2016d) (nematicide use) EFSA conclusions ongoing (AIR IV)	
MRL review	Yes, see comments	EFSA (2014h)	
MRL applications	Yes, see comments	EFSA (2015l) (various crop) EFSA (2017k) (banana) EFSA (2018g) (citrus fruits) Celery and fennel (ongoing, currently on clock-stop) Confirmatory data Art. 12 and Art 10 application on a number of crops (certain nuts, pomefruit, berries, papaya, radish, leafy vegetables, legume vegetables) (ongoing)	
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonized classification and labelling for CMR – Annex VI: Toxic for reproduction cat. 2 EU Peer Review proposal for CMR: Toxic for reproduction cat. 2 ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): no conducted	

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): 2017/438/EU: Commission Implementing Regulation (EU) 2017/438 of 13 March 2017 amending Implementing Regulation (EU) No 540/2011 as regards the conditions of approval of the active substance abamectin. OJ L 67, 14.3.2017, p. 67–69.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.8.2. Toxicological reference values

	JMPR evaluation					
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.001 mg/kg JMPR (2015) 0.0025 mg/kg EFSA (2008b); bw per day bw per day European Commission (2008) (18- and 53-week dog study, UF 100)				No	
ARfD	0.003 mg/kg bw	JMPR (2015)	0.005 mg/kg bw	EFSA (2008b); European Commission (2008) (acute neurotoxicity rat, UF 100)	No	
Conclusion/ comment	The toxicological reference values derived by JMPR are lower than the ones derived at EU level. It is noted that the ADI/ARfD of JMPR applies also to the 8,9-Z-isomer and the 24-hydroxymethyl metabolite of abamectin The developmental neurotoxicity study in rats was not peer reviewed by EFSA (2008b). EFSA would consider appropriate to use this study as a point of departure for setting the ADI. The use of the dog studies for setting the ARfD would be also consider appropriate since the effects described by JMPR were observed during the first week of treatment Regarding metabolites, EFSA (2008b) also concluded that 8,9-Z-isomer showed a similar profile to abamectin. EFSA (2008b) did not discuss the toxicological profile of 24-hydroxymethyl metabolite of abamectin; however, being a major rat metabolite as described by JMPR, EFSA would support the view that it could be considered covered by parent and then the reference values of					

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose.

5.8.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products	Avermectin B1a	EU Reg. 2018/1514: Abamectin (sum of avermectin B1a, avermectin B1b and delta-8,9-isomer of avermectin B1a, expressed as avermectin B1a)	No		
	Animal products	Avermectin B1a The residue is fat soluble	EU Reg. 2018/1514: Avermectin B1a (except honey; for honey, see plant RD) The residue is fat soluble	Yes		
RD-RA	Plant products	Avermectin B1a	Abamectin (sum of avermectin B1a, avermectin B1b and delta-8,9 isomer of avermectin B1a, expressed as avermectin B1a)	No		
	Animal products	Avermectin B1a	Abamectin (sum of avermectin B1a and avermectin B1b, expressed as avermectin B1a)	No		
Conclusion/ comments	productsB1aB1b, expressed as avermectin B1a) Plant commodities: The residue definitions set for enforcement and risk assessment by JMPR and at EU level in plant commodities are not comparable In the EU, the residue definitions are more comprehensive. Beside the minor abamectin component avermectin B1b ($\leq 20\%$ of abamectin mixture), the photodegradate (8,9-Z-isomer, identified also as delta-8,9-isomer or NOA427011) of avermectin B1a was included, since it is found in plant metabolism studies in concentrations three times higher than avermectin B1a. The three compounds can be determined with the enforcement analytical method simultaneously. In addition, the formation of the photodegradate during the sample analysis cannot be excluded as well Overall, the enforcement residue definitions established by JMPR and at EU level are not compatible					

Table 35: Comparison of the residue definitions derived by JMPR and at EU level

abamectin would apply to this metabolite

Commodity	JMPR	EU evaluation	RDs	
group	evaluation		comparable	
comparable. N taken over fro B1a). The curr	Animal commodities: The residue definition set for enforcement by JMPR and at EU lo comparable. NB: The residue definition for enforcement reported in EU Reg. 2018/1514 taken over from the legislation on veterinary medicinal products (marker substance aver B1a). The current uses of abamectin as pesticide does not lead to residues in animal pro Both assessments concluded that residues in products of animal origin are fat soluble			

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues.

5.8.4. Codex MRL proposals

Table 36:	Comparison of Codex MRL pr	oposals derived by JMPR and EU MRLs	
	Codex MRL		

Commodity	proposal	EU MRL	Comment
Blackberries	0.05 (W)		The previous CXL was withdrawn. It will be covered by the proposed CXL for the subgroup of cane barriers
Cane berries, subgroup of includes all commodities in this subgroup)	0.2	0.08 (blackberries, raspberries) 0.01* (dewberries, other cane berries)	Critical GAP: USA, 2 × 0.0213 kg/ha, interval 7 days, PHI 7 days Number of trials: 7 Sufficiently supported by data: Yes Specific comments/observations: Trials conducted on blackberry and raspberry, all with 3 instead of 2 applications. Based on decline trials results, JMPR concluded that number of applications do not had an impact on the final residue concentrations of avermectin B1a. Information on the magnitude and the decline behaviour of avermectin B1b and of the delta-8,9-isomer of avermectin B1a in cane berries not reported. The Codex MRL proposal refers to avermectin B1a residues only and would cover blackberries, raspberries and dewberries Conclusion: The proposed Codex MRL for cane fruits is not acceptable because residue definitions for enforcement are not compatible
Chives, dried	0.08	_	Critical GAP: not reported in the summary report Number of trials: 1 Sufficiently supported by data: No Specific comments/observations: PF of 5 refers to avermectin B1a residues only. It is noted that in the EU the MRL is set for the fresh product, but not for dried chives
Dried grape (= currants, raisins and sultanas)	0.1		Critical GAP: information assessed by JECFA in 2015 Number of trials: 3 Sufficiently supported by data: Yes Specific comments/observations: median PF of 2.8 refers to avermectin B1a residues only. It is noted that in the EU the MRL is set for the fresh product, but not for dried grapes
Grape juice	0.05	_	Critical GAP: information assessed by JECFA in 2015 Number of trials: 3 Sufficiently supported by data: Yes Specific comments/observations: best estimate of 1.4 refers to avermectin B1a residues only. It is noted that in the EU the MRL is set for the fresh product, but not for grape juice
Grapes	0.03	0.01* (table grapes, wine grapes)	Critical GAP: Brazil, 2 \times 0.0108 kg/ha, interval 7 days, PHI 7 days Number of trials: 6 Sufficiently supported by data: No

Commodity	Codex MRL proposal	EU MRL	Comment
			Specific comments/observations: all trials overdosed (0.0144 or 0.018 kg/ha) and with higher number of applications (3-5), proportionally scaled to the GAP rate (scaling factor: 0.75 or 0.60). Based on decline trials results, JMPR concluded that number of applications does not have an impact on the final residue concentrations of avermectin B1a. Information on the magnitude and the decline behaviour of avermectin B1b and of the delta-8,9- isomer of avermectin B1a in crops not reported in the JMPR report. Considering the decline (half-lives of abamectin in grape were 2.1–3.7 days), the higher number of applications is unlikely to affect significantly the final residues at harvest Grapes are major crop both for JMPR and EU and a minimum of 8 trials is required. The Codex MRL proposal refers to avermectin B1a residues only Conclusion: The proposed Codex MRL for grapes is not acceptable because (1) number of trials not sufficient to derive an MRL proposal; (2) residue definitions for enforcement are not compatible; and (3) the proportionality approach should not be applied when more than one parameter is deviating from critical GAP (3)
Green onions, subgroup of (includes all commodities in this subgroup)	0.01	0.01* (spring/green/ welsh onion) 0.01* (leeks) 2 (Chives, leaves and bulbs)	Critical GAP: USA, 2 × 0.0213 kg/ha, interval 7 days, PHI 7 days Number of trials: 6 trials in spring onions; additional 3 trials in chives (not used to calculate the MR proposal) Sufficiently supported by data: Yes Specific comments/observations: all trials on spring onions conducted with 4 instead of 2 applications. Based on two decline trials on onions, JMPR concluded that number of applications do not had an impact on the final residue concentrations of avermectin B1a. Information on the magnitude and the decline behaviour of avermectin B1b and of the delta-8,9-isomer of avermectin B1a in spring onions not reported. The Codex MRL proposal refers to avermectin B1a residues only Conclusion: The proposed Codex MRL may be acceptable, despite the incompatibility of the residue definitions, considering the level of the MRL. The proposed Codex MRL would also cover leeks. See also general comments
Herbs, subgroup of, except mint	0.015	2 (herbs and edible flowers, except celery leaves) 0.09 (ft) (celery leaves)	Critical GAP: USA, 2 × 0.0213 kg/ha, interval 7 days, PHI 14 days Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: Trial on basil (3) and mint (2) with 3 instead of 2 applications. For the extrapolation to the whole group (which includes mint in the basil subgroup), a minimum of 6 trials would be required in the EU. However, for JMPR, 5 trials are sufficient. None of the trials designed as decline. Based on decline trials results from other crops, JMPR concluded that number of applications do not had an impact on the final residue concentrations of avermectin B1a. Information on the magnitude and the decline behaviour of avermectin B1b and of the delta-8,9-isomer of avermectin B1a in herbs not reported The Codex MRL proposal refers to avermectin B1a residues only

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL for herbs and edible flowers is not acceptable because the residue definitions are not compatible
Leek	0.005 (W)		The previous CXL was withdrawn. It will be covered by the proposed CXL for the Subgroup of green onions
Orange oil	0.1	_	Critical GAP: not reported in the summary report Number of trials: 3 Sufficiently supported by data: Yes Specific comments/observations: median PF 5.5 refers to avermectin B1a residues only. It is noted that in the EU the MRL is set for the fresh product, but not for orange oil
Pineapple	0.002*	0.01*	Critical GAP: USA, 2 × 0.0261 kg/ha, interval 7 days, PHI 112 days Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: Residues of avermectin B1a < LOQ of 0.002 mg/kg in all 6 trials. Number of trials is in line with JMPR rules The Codex MRL proposal refers to avermectin B1a residues only, but avermectin B1b and of the delta-8,9- isomer of avermectin B1a are not expected to be found in the edible part of the fruit at the long PHI of the cGAP Conclusion: The proposed Codex MRL is acceptable, despite the incompatibility of the residue definitions, considering the level of the MRL. See also general comments
Raspberries, Red, Black	0.05 (W)		The previous CXL was withdrawn. It will be covered by the proposed CXL for the Subgroup of cane barriers
Soya bean (dry)	0.002*	0.01*	Critical GAP: USA, 2×0.0213 kg/ha (foliar application), interval 6 days, PHI 28 days Number of trials: 19 Sufficiently supported by data: Yes Specific comments/observations: Trails conducted with a seed treatment followed by 2 foliar applications with residues of avermectin B1a < LOQ of 0.002 mg/kg. The Codex MRL proposal refers to avermectin B1a residues only, but avermectin B1b and of the delta-8,9 isomer of avermectin B1a are not expected to be found in the seed at the long PHI of the cGAP Conclusion: The proposed Codex MRL is acceptable, despite the incompatibility of the residue definitions, considering the level of the MRL. See also general comments
Succulent beans without pods, subgroup of (includes all commodities in this subgroup)	0.002*	0.01* (beans w/out pod)	Critical GAP: USA, 2×0.0213 kg/ha, interval 6 days, PHI 7 days Number of trials: 7 Sufficiently supported by data: Yes Specific comments/observations: All trials on beans w/out pods with 3 or 4 instead of 2 applications with residues of avermectin B1a < 0.002 mg/kg. Based on decline trials results from other crops, JMPR concluded that number of applications do not had an impact on the final residue concentrations of avermectin B1a. Information on the magnitude and the decline behaviour of avermectin B1b and of the delta-8,9 isomer of avermectin B1a in beans not reported. The Codex MRL proposal refers to avermectin B1a residues only

Commodity	Codex MRL proposal	EU MRL	Comment		
			Conclusion: The proposed Codex MRL is acceptable, despite the incompatibility of the residue definitions, considering the level of the MRL. See also general comments		
Sweet corns	0.002*	0.01*			
General comments	compatible Risk manager all crops or w than the exis	Overall, the residue definitions for plant products derived at EU level and by JMPR are not			

CXL: Codex Maximum Residue Limit; GAP: Good Agricultural Practice; PHI: preharvest interval; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue limit; PF: processing factor; JECFA: Joint FAO/WHO Expert Committee on Food Additives; LOQ: limit of quantification

*: Indicates that the input value is proposed at the limit of quantification. Ft: Under the MRL review, some information on residue trials were missing and were requested as confirmatory data. The assessment of the data submitted by the manufacturer in response to the identified data gaps is currently ongoing.

5.8.5. Consumer risk assessment

Table 37: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions: An indicative short-term dietary risk assessment was performed with the products of plant origin for which Codex proposed higher MRLs compared to the existing EU MRLs. The HRs derived for raw agricultural commodities by JMPR refer to the avermectin B1a component only and were used if higher in absolute value (cane fruits, grapes) compared to the HRs derived based on the EU use according with the EU residue definition for risk assessment The risk assessment is indicative because information on the residue concentration in accordance with the EU risk assessment residue definition is not available for the crops assessed by JMPR	RA assumptions: An indicative long-term risk assessment was performed with the products of plant origin for which Codex proposed higher MRLs compared to the existing EU MRLs, and the existing MRL values in Reg 396/2005 The STMRs derived for raw agricultural commodities by JMPR refer to the avermectin B1a component only and were used if higher in absolute value (grapes) compared to the STMRs derived based on the EU use according with the EU residue definition for risk assessment. A conversion factor for risk assessment of 1.25 was used for the MRLs on products of animal origin set in the regulation above the LOQ The risk assessment is indicative because information on the residue concentration in accordance with the EU risk assessment residue definition is not available for the crops assessed by JMPR The EU ADI was used	Specific comments: Consumer exposure considering residues of avermectin B1a only	

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
Results: The consumer risk assessment is indicative No short-term exposure concern was identified (maximum 24% of the ARfD for blackberries)	Results: The consumer risk assessment is indicative No long-term exposure concern was identified (maximum 74% of the ADI)	Results: Long-term exposure: 1-6% of the JMPR ADI Short-term exposure: Max. 40% of the JMPR ARfD	

RA: risk assessment; HR: highest residue; MRL: maximum residue level; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; LOQ: limit of quantification; ADI: acceptable daily intake; ARfD: acute reference dose.

5.9. Fenpyroximate (193) R

5.9.1. Background information

Table 38:Background information

		Comments, references
Type of JMPR evaluation	Follow-up evaluation	First evaluation of the crops under assessment in 2017 JMPR; due to intake concerns in dried tomatoes, Codex MRL proposal was not advanced
RMS	AT	
Approval status	Approved	Commission Directive 2008/107/EC ^(a) (approval) Commission Regulation (EU) 2016/183 ^(b) (renewal)
EFSA conclusion	Yes, see comments	EFSA (2008c) EFSA (2013j) (amendment approval and confirmatory data) EFSA conclusion ongoing (AIR IV)
MRL review	Yes, see comments	EFSA (2015c)
MRL applications	Yes, see comments	Art. 10 celery (currently on clock-stop additional data request)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	No concluded	Harmonised classification and labelling for CMR – Annex VI: no classification ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(c)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): 2008/107/EC: Commission Directive 2008/107/EC of 25 November 2008 amending Council Directive 91/414/EEC to include abamectin, epoxiconazole, fenpropimorph, fenpyroximate and tralkoxydim as active substances. OJ L 316, 26.11.2008, p. 4–11.

(b): 2016/187/EC: Commission Implementing Regulation (EU) 2016/183 of 11 February 2016 amending Implementing Regulation (EU) No 686/2012 allocating to Member States, for the purposes of the renewal procedure, the evaluation of the active substances whose approval expires by 31 December 2018 at the latest (Text with EEA relevance). OJ L 37, 12.2.2016, p. 44–55.
 (a) Commission Regulation (EU) 2018/CDE of 10 April 2018 areading Approx II to Regulation (EU) No 1107/2020 by cotting out

(c): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.9.2. Toxicological reference values

Table 39:	Comparison of toxicological	reference values (TRV) derived by	y JMPR and at EU level
-----------	-----------------------------	-----------------------	--------------	------------------------

	J	JMPR evaluation		EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.01 mg/kg bw per day	JMPR (2017) Rat, 2-year study	0.01 mg/kg bw per day	EFSA (2013j) Rat, 2-year study	Yes	
ARfD	0.01 mg/kg bw		0.02 mg/kg bw		No	

	JMPR evaluation		EU	evaluation			
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable		
		JMPR (2017) Dog, 1-day and 13-week studies		EFSA (2013j) Dog, 1- and 5-day study			
Conclusion/ comment		tion of the ADI, the JMPR con dy, applying an uncertainty fac					
	0.01 mg/kg b a newly subm	In 2017, the JMPR withdrew the ARfD of 0.02 mg/kg bw from 2008 and established an ARfD of 0.01 mg/kg bw on the basis of the LOAEL of 2 mg/kg bw for the induction of diarrhoea seen in a newly submitted single bolus gavage study and 13-week study of toxicity in dogs. A safety factor of 200 was used since no NOAEL was identified					
	In the EU assessment, an ARfD of 0.02 mg/kg bw was established in 2008 on the same basis as conclusion reached by the JMPR in 2007 (1- and 5-day toxicity study in dogs presenting a NOAEL of 2 mg/kg bw per day for the occurrence of diarrhoea, applying an UF of 100)						
	It appears that the JMPR had access to a new acute toxicity study in dogs in 2017 resulting in a LOAEL at 2 mg/kg bw The RMS informed EFSA that for the renewal of fenpyroximate an additional single dose study in dogs has been submitted, which was not available for the first approval. In this study, dogs showed diarrhoea already after acute exposure to 2 mg/kg bw. No NOAEL could be determined and the LOAEL of the study is set at 2 mg/kg bw. The RMS will propose to lower the ARfD from 0.02 mg/kg bw to 0.01 mg/kg bw, on the basis of the LOAEL of 2 mg/kg bw from the single oral dose study in dogs and application of a uncertainty factor of 200 (for LOAEL)						
	covered by th detected in ra During the EU	olites, the JMPR concluded th e reference values of the pare ts at significant levels evaluation, the metabolites N he parent compound	ent compound s	ince these metabolites	were also		

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; LOAEL: lowest observed adverse effect level; RMS: rapporteur Member State.

5.9.3. Residue definitions

Table 40:	Comparison of the	residue definitions	derived by JMPR a	nd at EU level
-----------	-------------------	---------------------	-------------------	----------------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Fenpyroximate	EU Reg. 2019/552: Fenpyroximate Peer review (2013I): Fenpyroximate (fruit crops, pulses and oilseeds, only)	Yes
	Animal products	Sum of fenpyroximate, 2- hydroxymethyl-2-propyl (<i>E</i>)-4-[(1,3- dimethyl-5- phenoxypyrazol-4-yl)- methylenaminooxymethyl]benzoate (Fen-OH), and (<i>E</i>)-4-[(1,3-dimethyl- 5-phenoxypyrazol-4-yl) methyleneaminooxymethyl]benzoic acid (M-3), expressed as fenpyroximate The residue is fat soluble	EU Reg. 2019/552: Fenpyroximate for all animal products, except liver and kidney of ruminants: Liver and kidney of ruminants: metabolite M-3 Peer review (2013I): Metabolite M-3 expressed as fenpyroximate The residue is fat soluble	No
RD-RA	Plant products	Sum of parent fenpyroximate and <i>tert</i> -butyl (Z)- α -(1,3- dimethyl-5-phenoxypyrazol-4-ylmethyleneamino-oxy)- p -toluate	(EFSA, 2015c) Sum of fenpyroximate and its <i>Z</i> -isomer, expressed as	Yes

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
		(its Z-isomer M-1), expressed as fenpyroximate	fenpyroximate (fruit crops, pulses and oilseeds, only)	
	Animal products	Sum of fenpyroximate, 2- hydroxymethyl-2-propyl (<i>E</i>)-4-[(1,3- dimethyl-5- phenoxypyrazol-4-yl)- methylenaminooxymethyl]benzoate (Fen-OH), and (<i>E</i>)-4-[(1,3-dimethyl- 5-phenoxypyrazol-4-yl) methyleneaminooxymethyl]benzoic acid (M-3), expressed as fenpyroximate	(EFSA, 2015c) Sum of fenpyroximate, Fen-OH, M-3 and their <i>Z</i> -isomers (M-1), expressed as fenpyroximate	No
comments	Additional me grapes, snaps allowed derivi Animal: RD enf: Fen-C	tions for enforcement and risk assess tabolism studies with fenpyroximate for beans, cotton and Swiss chard were ing a general residue definition OH is not included in the residue definit ording to the results of the metabolism	blowing foliar application to cit evaluated by the JMPR. These tion for enforcement establishe	rus, apples, studies ed at EU level.

RD: residue definition; RA: risk assessment; RMS: rapporteur Member State; TRR: total radioactive residues.

5.9.4. Codex MRL proposals

Table 41: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Cherry tomato	W 0.3	0.2 (ft) (tomato)	The previous MRL is replaced by the MRL proposal for tomatoes, subgroup
Edible offal (mammalian)	0.5	0.09 except swine with 0.01*	Max dietary burden: 3.503 mg/kg DM (Australian diet after refinement excluding bean forage) The feeding study covered the max DB Sufficiently supported by data: Yes Specific comments/observations: MRL proposal reflects the residue definition of JMPR which is different than the EU RD Conclusion: The proposed Codex MRL is not fully compatible with the EU residue definition
Mammalian fats (except milk fats)	0.1	0.01*	Max dietary burden: 3.503 mg/kg DM (Australia diet after refinement excluding bean forage) Number of trials: 1 feeding study with highest dose level (10 ppm) covering the max DB Sufficiently supported by data: Yes Specific comments/observations: MRL proposal reflects the residue definition of JMPR which is different than the EU RD. HR in fat is 0.089 mg/kg; thus, a MRL proposal of 0.09 mg/kg should be enough

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL is not fully compatible with the EU residue definition
Meat (from mammals other than marine mammals)	0.1(fat)	0.01*	Since the residue definition is fat soluble, according to the Codex rules, an MRL proposal was derived for fat only Considering the result of the feeding study assessed by JMPR, the existing EU MRL for muscle may not be sufficient, since at the expected dietary burden, the maximum residues measured in muscle are 0.02 mg/kg
Milks	0.01	0.01*	Max dietary burden: 3.503 mg/kg DM (Australia diet after refinement excluding bean forage) 1 feeding study with highest dose level (10 ppm) covering the max DB Sufficiently supported by data: Yes Specific comments/observations: See comments on residue definitions Conclusion: The proposed Codex MRL is acceptable, despite the difference in the RD, considering the level
Tomato	W 0.3		The previous MRL is replaced by the MRL proposal for tomatoes, subgroup
Tomatoes, subgroup of (includes all commodities in this subgroup)	0.3	0.2 (ft) (tomato)	Critical GAP: 2×117 g a.i./ha; PHI 1 day Number of trials: 19 trials on tomatoes conducted in the USA Sufficiently supported by data: Yes Specific comments/observations: As residues in cherry tomato is normally higher than that in tomato, the Meeting estimated a maximum residue level, STMR and HR of 0.3, 0.10 and 0.17 mg/kg, respectively, for cherry tomato and tomato Conclusion: The proposed Codex MRL is acceptable
General comments	comprehen be slightly expected the The RMS in some EU M	sive than th higher than hat this diffe formed EFS IRLs will be es assessed	APR residue definition for animal products (enforcement) is more e EU residue definition, the proposed MRLs for animal commodities may required according to the EU residue definition. However, it is not rence has a major impact on the MRL A that in the framework of the renewal of the approval for fenpyroximate modified, but since the EU MRL assessment is not related to crops/ by JMPR, the future modification of existing EU MRLs does not affect the

MRL: maximum residue limit; DM: dry matter; RD: residue definition; HR: highest residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; GAP: Good Agricultural Practice; STMR: supervised trials median residue; RMS: rapporteur Member State; DB: Dietary Burden.

*: Indicates that the input value is proposed at the limit of quantification.

5.9.5. Consumer risk assessment

 Table 42:
 Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was performed for all commodities for which uses were assessed in the Art. 12 review, including HR/STMR values derived by JMPR for tomatoes and animal commodities The risk assessment for animal commodities is indicative since the EU RD covers the <i>Z</i> -isomers which are not included in the JMPR risk assessment values The EU ARfD was used	RA assumptions: The most recent long-term risk assessment (EFSA, 2015c) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for tomatoes and animal commodities The risk assessment for animal commodities is indicative since the EU RD covers the <i>Z</i> -isomers which are not included in the JMPR risk assessment values	Specific comments and Results: The Meeting concluded that the exceedance of the ARfD identified by JMPR in 2017 based on residues in dried tomatoes is now unlikely since a consumption figure was recently amended. For tomatoes (including dried tomatoes), the IESTI represents 2 –20% of the ARfD for the general population and 5–60% for children. The Meeting concluded that the acute dietary exposure to residues of fenpyroximate in food commodities in the subgroup of tomatoes when used in

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: For the Codex MRL proposals no short-term exposure concern was identified (maximum for tomatoes 49% of EU ARfD)	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 25% of the ADI	ways that have been considered by the JMPR, is unlikely to present a public health concern

RA: risk assessment; HR: highest residue; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; ARfD: acute reference dose RD: residue definition; ADI: acceptable daily intake; IESTI: international estimated of short-term intake.

5.10. Kresoxim-methyl (199) R,T

5.10.1. Background information

Table 43:Background information

		Comments, references
Type of JMPR evaluation	Periodic review	
RMS	SE	
Approval status	Renewal of the approval	Commission Implementing Regulation (EU) No 810/2011 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2010c)
MRL review	Yes, see comments	EFSA (2014b)
MRL applications	Yes, see comments	EFSA (2015m) (leeks) EFSA (2018s) Confirmatory data assessment following Art. 12
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonised classification for CMR – Annex VI: Carcinogen Cat. 2 EU Peer Review proposal for CMR: Carcinogen. Cat. 2 ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Implementing Regulation (EU) No 810/2011 of 11 August 2011 approving the active substance kresoximmethyl, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 207, 12.8.2011, p. 7–11.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.10.2. Toxicological reference values

Table 44: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR evaluation		E	EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.3 mg/kg bw per day	JMPR (2018) (2-year chronic toxicity and carcinogenicity study in rats)	0.4 mg/kg bw per day	EFSA (2010c) (2-yr oral rat with a uncertainty factor of 100) European Commission (2014)	No	
ARfD	Unnecessary	JMPR (2018)	Not allocated	Not necessary	Yes	
Conclusion/ comment	point of depar	The ADI in the EU and JMPR are based on a 2-year rat studies. Whereas in the EU assessment the oint of departure was the NOAEL for systemic toxicity of 36 mg/kg bw per day, JMPR derived a enchmark dose for a 10% response (BMDL ₁₀) for liver tumours in female rats of 29.1 mg/kg bw				

JMPR evaluation		EU evaluation		701/
Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
 acceptable and unlikely that m	d give a very similar value netabolites BF 490-1, BF 4	e that the NOAE 490-2 and BF 49	o the NOAEL that it is also co L. During the peer review, it 90-9 are more toxic than kre oplicable in case a consumer	was considered soxim-methyl,

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

5.10.3. Residue def	finitions
---------------------	-----------

Table 45	Comparison of the	residue definitions	dorived by IM	DD and at EU loval
1 able 45;	Comparison of the	residue deminicions	derived by JM	PR allu al EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Kresoxim-methyl	EU Reg. 2016/486: Kresoxim-methyl	Yes
Animal products		Sum of metabolites (2 <i>E</i>)- (methoxyimino) {2-[(2- methylphenoxy)methyl]phenyl} acetic acid (490M1), and (2 <i>E</i>)-{2- [(4-hydroxy-2-methylphenoxy) methyl]phenyl}(methoxyimino) acetic acid (490M9) expressed as kresoxim-methyl	EU Reg. 2016/486: Milk: 490M9, expressed as kresoxim-methyl Other animal products: 490M1, expressed as kresoxim-methyl The residue is not fat soluble	No
		The residue is not fat soluble		
RD-RA Plant products Animal products Plant products	Sum of kresoxim-methyl and metabolites (2 <i>E</i>)-(methoxyimino){2- [(2-methylphenoxy)methyl]phenyl} acetic acid (490M1) and (2 <i>E</i>)-{2- [(4-hydroxy-2-methylphenoxy) methyl]phenyl}(methoxyimino) acetic acid (490M9) including their conjugates expressed as kresoxim- methyl	Art.12 (EFSA, 2014b): Sum of kresoxim-methyl and the metabolites BF 490-2 (490M2) and BF 490-9 (490M9), free and conjugated, expressed as parent	No	
	Sum of metabolites (2 <i>E</i>)- (methoxyimino) {2-[(2- methylphenoxy)methyl]phenyl} acetic acid (490M1), and (2 <i>E</i>)- {2- [(4-hydroxy-2-methylphenoxy) methyl]phenyl}(methoxyimino) acetic acid (490M9) expressed as kresoxim-methyl	Art.12 (EFSA, 2014b): Sum of metabolites BF 490-1, BF 490-2 (490M2) and BF 490-9 (490M9), expressed as parent Peer-review (EFSA, 2010c): Ruminant matrices, milk: Sum of BF 490-1 (490M1), BF 490- 2 (490M2) and BF 490-9 (490M9); No residue definition is proposed for poultry matrices	No	
Conclusio	n/comments	The metabolite codes BF 490-1, BF 4 occasions used in the EU residue def 490M1, 490M2 and 490M9 (used by The EU risk assessment RD for plant JMPR did not include metabolite BF 4 major residue in the metabolism studies up to 14% TRR), but was not present sugar beet metabolism studies. BF 4 residue trials (fruit crops). Thus, the	finitions, correspond to metaboli JMPR), respectively products is different from the of 490-2. BF 490-2 (490M2) was for dies in grapes (unconjugated an nt in significant amounts in appl 90-2 was found at significant le	tes with codes one of JMPR. ound as a d conjugated, e, wheat and vels in field

Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
	likely to underestimate the exposure RD for processed products: Consider hydrolysed to kresoxim acid (BF 490 (enforcement) was defined as the su expressed as kresoxim; RD for risk a kresoxim-methyl, BF 490-1 (490M1), free and conjugated, expressed as p For animal products, the residue defi residue definition for enforcement is the respective matrix, while JMPR es that covers all metabolites observed Thus, the residue definitions for anir current EU residue definitions, both	ing that kresoxim-methyl is sigr -1), the RD for processed produ- um of kresoxim-methyl and BF 4 ssessment of processed produc BF 490-2 (490M2) and BF 490- arent (EFSA, 2014b) initions are not fully compatible. restricted to the most relevant tablished a comprehensive resid in animal products nal products proposed by JMPR	ucts 190-1, ts: sum of -9 (490M9), . The EU metabolite for due definition differ from the	

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; TRR: total radioactive residues.

5.10.4. Codex MRL proposals

Table 46: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment		
Barley	W 0.1	0.1 0.1 JMPR proposes to withdraw the MRL for barley and replace it w an MRL of 0.15 for the whole barley grain subgroup (see below)			
Barley, subgroup of (includes all commodities in this subgroup)	0.15	0.1 (barley and oats) 0.01* (buckwheat)	Critical GAP: UK, 2 foliar applications at 125 g a.i./ha (RTI not given) PHI not needed (last application up to BBCH 59) Number of trials: 10 The proposed Codex MRL would be also applicable to oats and buckwheat. At EU level, the extrapolation of residue trials in barley to buckwheat would not be acceptable Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable		
Beet root	0.05*	0.05*	Critical GAP: German GAP for beet root in Germany allows two foliar applications of kresoxim-methyl at 125 g a.i./ha with a RTI of 10 days and a PHI of 28 days Number of trials: 10 trials in sugar beet Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable		
Cucumber	W 0.05*	0.05*	JMPR proposes to replace existing CXL by a MRL for the whole group of fruiting vegetables (including edible and non-edible peel) (see below)		
Currants, Black, Red, White	0.9	0.9	Critical GAP: UK, 3 \times 100 g a.i./ha, RTI of 10 days, PHI of 14 days, foliar use Number of trials: 5 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable		
Dried grapes (= currants, raisins and sultanas)	3	1	PF of 1.6, based on 3 trials. It is noted that in the EU MRLs are set only for the fresh product, but not for dried grapes		
Edible offal (Mammalian)	0.05	0.05*	JMPR calculated the dietary burden, including the feed items sufficiently supported by data. Maximum dietary burden in Australia 3.2 ppm Feeding studies (7, 21 and 77 ppm) on lactating cow, corrected for maximum dietary burden of 3.2 ppm		

Commodity	Codex MRL proposal	EU MRL	Comment				
			Conclusion: The maximum residue expected in kidney is 0.02 mg/kg. The proposed Codex MRL was derived by rounding up; according to EFSA a lower MRL of 0.02 mg/kg would be sufficient. Further discussion with MS recommended, whether the proposed MRL is acceptable, taking into account that the residue definitions are not fully compatible				
Eggs	0.02*	0.05*	JMPR calculated the dietary burden, including the feed items sufficiently supported by data. Maximum dietary burden in EU (0.33 ppm) No feeding study available; MRL proposal were derived from metabolism study which is about 500 times overdosed compared to the expected maximum dietary burden Conclusion: The proposed Codex MRL is acceptable; a MRL of 0.01 mg/kg would be sufficient. Considering the proposed level of the MRL, the difference of the residue definition may not be relevant				
Fruiting vegetables, Cucurbits, Group of (includes all commodities in this group)	0.5	cucurbits with edible peel: 0.05*; cucurbits with inedible peel: 0.3	a.i./ha, RTI 7 days, PHI 0 days Number of trials: 8 cucumber, 5 summer squash and 5 melon				
Garlic	0.01	0.3	Critical GAP: BR GAP: 4 \times 70 g a.i./ha, RTI 10 days, 7 days PHI Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: The existing EU MRL is based on a more critical GAP (DE, NL, 3 \times 200 g/ha, 7 days PHI) Conclusion: The proposed Codex MRL is acceptable				
Grape	1.5	1	Critical GAP: USA, 4×224 g a.i./ha, RTI 7 days, PHI of 14 days, foliar Number of trials: 18 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable				
Grapefruit	W 0.5	0.5	The existing CXL was proposed to be withdrawn since insufficient data were provided to support the GAPs reported to JMPR The existing EU MRL was derived from the CXL; in the framework of the MRL review, no EU GAPs were reported for citrus Conclusion: It is recommended to discuss with MS to revise the existing EU MRL				
Leek	10	10	Critical GAP: NL GAP: 3×375 g a.i./ha, RTI 10 days, PHI 14 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: The existing EU MRL was derived from the same data and on the basis of the same cGAP Conclusion: The proposed Codex MRL is acceptable				

Commodity	Codex MRL proposal	EU MRL	Comment
Mammalian fats (except milk fats)	0.02*	0.05*	See comments on edible offal (mammalian) At the expected maximum dietary burden, the residues in fat were < 0.01 mg/kg Conclusion: The proposed Codex MRL is acceptable. Considering the proposed level of the MRL, the difference of the residue definition may not be relevant
Mango	0.1	0.01*	Critical GAP: BR, 2 \times 120 g a.i./ha, RTI 15 days, PHI 7 days Number of trials: 5 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Meat (from mammals other than marine mammals)	0.02*	0.05*	See comments on edible offal (mammalian) At the expected maximum dietary burden, the residues in muscle were < 0.01 mg/kg Conclusion: The proposed Codex MRL is acceptable; a MRL of 0.01 mg/kg would be sufficient. Considering the proposed level of the MRL, the difference of the residue definition may not be relevant
Milks	0.02*	0.01*	See comments on edible offal (mammalian) At the expected maximum dietary burden, the residues in milk were < 0.002 mg/kg Conclusion: The proposed Codex MRL is acceptable; a MRL of 0.01 mg/kg would be sufficient. Considering the proposed level of the MRL, the difference of the residue definition may not be relevant
Olive oil, Virgin	1		The MRL proposal for olive oil was derived from the MRL proposal for olives, applying a processing factor of 4.5 (derived from one processing study) and rounding up to the next MRL class. It is noted that in the EU MRLs are set only for the fresh product, but not for olive oil
Olives for oil production	0.2	0.2	Critical GAP: France, 3×100 g a.i./ha, PHI of 30 days Number of trials: 5 Sufficiently supported by data: No Specific comments/observations: Since olives for oil production are a major crop (in the EU and in Codex), at least 8 trials are required. In the MR review, the same cGAP was assessed which was sufficiently supported by data. Thus, additional trials were available in the EU which were not made available to JMPR Conclusion: To discuss with RMS, whether the proposed Codex MRL is acceptable
Oranges, Sweet, Sour (including Orange-like hybrids):several cultivars	W0.5	0.5	The existing CXL was proposed to be withdrawn since insufficient data were provided to support the GAPs reported to JMPR The existing EU MRL was derived from the CXL; in the framework of the MRL review, no EU GAPs were reported for citrus Conclusion: It is recommended to discuss with MS to revise the existing EU MRL
Peach	1.5	0.01*	Critical GAP: Japan, 3×25 g a.i./hL, PHI of 1 day, RTI not specified, foliar use. Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: According to Codex classification, peaches are a crop for which at least 5 trials are required to derive a MRL proposal. At EU level, 8 trials would be required Conclusion: The proposed Codex MRL is acceptable
Pecan nuts	0.05*	0.05*	Critical GAP: USA, 3 \times 168 g a.i./ha, RTI 14 days, PHI 45 days. Number of trials: 6 Sufficiently supported by data: Yes

Commodity	Codex MRL proposal	EU MRL	Comment
			Specific comments/observations: The same USA cGAP and trial data had been considered in the framework of the EU MRL review; the same MRL was derived as proposed by JMPR Conclusion: The proposed Codex MRL is acceptable
Peppers, sweet	0.3	0.8	Critical GAP: BR, 4×100 g a.i./ha, RTI 10 days, PHI 3 days. Number of trials: 4 according GAP + 2 overdosed proportionality corrected (0.4 scaling factor) Sufficiently supported by data: No Specific comments/observations: For peppers, at least 8 trials would be required, since it is classified as a major crop in Codex The EU MRL was derived from a more critical GAP (ES, CY, 4×250 g/ha, 3 d PHI). The EU GAP was not reported the JMPR Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy or setting MRLs. Furthermore it should be highlighted that data for a more critical EU GAP are available that have not been notified to JMPR
Pome fruits	W0.2 (apple)	0.2	The existing CXL was proposed to be withdrawn since insufficient data were provided to support the GAPs reported to JMPR The existing EU MRL was derived from the CXL; in the framework of the MRL review, EU GAPs were reported for pome fruits (apples, pears, quinces, medlar, loquat) and an MRL of 0.15 mg/kg was proposed for the EU uses Conclusion: It is recommended to discuss with MS to ask for maintaining the current CXL under the 4-years rule and to encourage the applicant to provide the EU GAPs and EU residue data to JMPR for evaluation
Poultry fats	0.02*	0.05*	See comments on eggs
Poultry meat	0.02*	0.05*	See comments on eggs
Poultry, Edible offal of	0.02*	0.05*	See comments on eggs
Straw and fodder (dry) of cereal grains	3(DM)	_	United Kingdom GAP for wheat and barley: Number of trials: 22 Sufficiently supported by data: Yes It is noted that in the EU no MRLs are set for feed products
Sugar beet	0.05*	0.05*	Critical GAP: Germany, 1×125 g a.i./ha, PHI of 28 days. Number of trials: 10 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable
Table olives	0.2	0.2	Critical GAP: France 3 \times 100 g a.i./ha, PHI 30 days Number of trials: 5 Sufficiently supported by data: No Specific comments/observations: According to JMPR criteria, table olives are considered a major crop and therefore at least 8 trials would be required. In the EU, table olives are a minor crop and therefore 5 trials would be sufficient Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that at EU level the number of trials would be sufficient and that the MRL proposal relates to a EU GAP
Turnip	0.05*	0.05*	MRL proposal was derived by extrapolation from sugar beets (see comments on sugar beets) Conclusion: The proposed Codex MRL is acceptable
Wheat	W 0.05*	0.08	JMPR proposed to withdraw the MRL of 0.05 for wheat and replace it with an MRL of 0.05 applicable to the whole subgroup of wheat grain (see below)

Commodity	Codex MRL proposal	EU MRL	Comment
Wheat, subgroup of (includes all commodities in this subgroup)	0.05	0.08	Critical GAP: UK: GAP for wheat, rye and triticale, 2×125 g a.i./ha, no PHI (last application up to BBCH 65) Number of trials: 12 Sufficiently supported by data: Yes The proposed Codex MRL would be also applicable to rye. Conclusion: The proposed Codex MRL is acceptable
General comments	-		

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; PHI: preharvest interval; BBCH: growth stages of mono- and dicotyledonous plants; PF: processing factor; RTI: re-treatment interval. *: Indicates that the input value is proposed at the limit of quantification.

5.10.5. Consumer risk assessment

Table 47: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant since no ARfD was allocated	RA assumptions: The most recent long-term risk assessment (EFSA, 2018s) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for crops where the Codex MRL proposal is higher than the EU MRL The risk assessment is indicative, because for the proposed Codex MRLs the STMRs do not cover BF 490-2; instead BF 490-1 is covered which is not included in the EU RD The risk assessment was performed with the EU ADI	Specific comments
Results: _	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 1% of the ADI Among the crops under consideration. wine grapes were identified as the main contributor, accounting for up to 0.23% of the ADI	Results: Long-term exposure: 0–0.4% of the ADI

RA: risk assessment; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; RD: residue definition; ADI: acceptable daily intake.

5.11. Pyriproxyfen (200) R

5.11.1. Background information

Table 48: Background information

		Comments, references
Type of JMPR evaluation	New use	
RMS	NL	
Approval status	Approved	Commission Directive 2008/69/EC ^(a)
EFSA conclusion	Yes, see comments	EFSA (2009b) Renewal ongoing
MRL review	Ongoing	On hold pending renewal process
MRL applications	Yes, see comments	EFSA (2013i) (stone fruits and tea) EFSA (2015e) (bananas)
Cut-off criteria: • Mutagen cat. 1A or 1B • Carcinogen cat. 1A or 1B	Not met	Harmonised classification and labelling for CMR – Annex VI: no entry for CMR EU Peer Review proposal: none for CMR

	Comments, references
 Toxic for reproduction cat.	ED assessment according to ECHA/EFSA guidance (2018)
1A or 1B Endocrine disrupter (ED)	and scientific criteria (Commission Regulation (EC)
potential	No 2018/605 ^(b)): negative

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Directive 2008/69/EC of 1 July 2008 amending Council Directive 91/414/EEC to include clofentezine, dicamba, difenoconazole, diflubenzuron, imazaquin, lenacil, oxadiazon, picloram and pyriproxyfen as active substances. OJ L 172, 2.7.2008, p. 9–14.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.11.2. Toxicological reference values

Table 49:	Comparison o	of toxicological	reference values ((TRV)) derived b	y JMPR and at EU level	
-----------	--------------	------------------	--------------------	-------	-------------	------------------------	--

	JMPR evaluation			EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.1 mg/kg bw per day	JMPR (1999) (1-year dog, safety factor 100)	0.1 mg/kg bw per day	EFSA (2009b) (1-year, dog with a safety factor of 100) Confirmed in European Commission (2010b)	Yes	
ARfD	Unnecessary	JMPR (1999)	Was not set, not appropriate	EFSA (2009b) confirmed in European Commission (2010b)	Yes	
Conclusion/ comment	 In the framework of the EU peer review for renewal (expert meeting January, 2019), the TRV for pyriproxyfen were proposed to be changed: the ADI was lowered to 0.05 mg/kg bw per day based on the LOAEL of 16.4 mg/kg bw per day from the 18-month mouse study and applying an uncertainty factor of 300; an ARfD was set at 1 mg/kg bw based on an increased incidence of malformations in the developmental rabbit study, applying an uncertainty factor of 100. In relationship with the ADI, the EU peer review reconsidered the assessment of the 18-month mouse study in which the decreased survival in males at the low dose was considered to be an adverse effect. JMPR has not considered this dose-related increase in mortality rate relevant a the low-dose level In relationship with the ARfD, the EU peer review reconsidered the assessment of one developmental rabbit study in which multiple visceral malformations in one animal and single visceral malformation in 2 animals at 300 mg/kg bw per day were concluded to be treatment-related and adverse, leading to a lower NOAEL of 100 mg/kg bw per day 					

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; LOAEL: lowest observed adverse effect level; NOAEL: no observed adverse effect level.

5.11.3. Residue definitions

Table 50: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Pyriproxyfen	EU Reg. 2016/1902: Pyriproxyfen	Yes
Animal products		Pyriproxyfen	EU Reg. 2016/1902: Pyriproxyfen	Yes
		The residue is fat soluble	Peer-review (EFSA, 2009b): Not relevant for notified uses. (No significant intake; no accumulation of residues in edible	

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
			animal products expected)		
			The residue is fat soluble		
RD-RA	Plant products	Pyriproxyfen	Peer-review (EFSA, 2009b): Pyriproxyfen	Yes	
	Animal products	Pyriproxyfen	Peer-review (EFSA, 2009b): Not relevant for notified uses. (No significant intake; no accumulation of residues in edible animal products expected)	Yes	
Conclusion/ comments	In the framework of the peer-review process, no investigation of the residues of pyriproxyfen in animal origin commodities has been performed (representative use on tomatoes and cotton seed – residues in cotton seeds at LOQ) In succeeding MRL applications, no need for setting MRLs in animal commodities was identified (intended uses on fruits and tea) JMPR 1999 assessed animal commodities and derived the residue definition for animal products which covers only parent compound Residue definitions for plant commodities identical				

RD: residue definition; RA: risk assessment; LOQ: limit of quantification; MRL: maximum residue level; JMPR: Joint FAO/WHO Meeting on Pesticide Residues.

5.11.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Cucumbers	0.04	0.1	Critical GAP: Europe (Italy, Greece, France, Spain) 2×0.12 kg a.s./ha, RTI 14 days, PHI 3 days Number of trials: 8 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Eggplant	0.6	1	Critical GAP: Europe (Italy), 2×0.12 , RTI 14 days, PHI 3 days Number of trials: 8 trials in peppers were used to derive MRL proposal by extrapolation At EU level an extrapolation from peppers to eggplants would not be appropriate. However, this extrapolation was proposed by JMPR in the general considerations Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Gherkins	0.04	0.1	Critical GAP: Europe (Italy, Greece, France, Spain) 2 × 0.12 kg a.s./ha, RTI 14 days, PHI 3 days Number of trials: 8 residue trials in cucumbers, used to derive MRL proposal by extrapolation Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Melons, except Watermelon	0.07	0.05*	Critical GAP: USA, 2×0.075 kg a.i./ha, RTI 14 days, PHI 7 days Number of trials: 7 Sufficiently supported by data: No Specific comments/observations: Since melons are classified as a major crop in Codex and at EU level, a minimum of 8 residue trials would be required Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the fact that 1 additional trial would be required
Рарауа	0.3	0.05*	Critical GAP: Philippines, 2×0.1 kg a.s./ha, RTI 14 days, PHI 1 day Number of trials: 6 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable

Table 51: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment	
Peppers	0.6	1	Critical GAP: Europe (Italy), 2×0.12 , RTI 14 days, PHI 3 days Number of trials: 8 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable	
Peppers chili, dried	6		Proposed MRL was derived from residue trials in peppers, applying the default dehydration factor of 10 At EU level, MRLs are set only for fresh products, but not for processed chili peppers	
Pineapple	0.01	0.05*	Critical GAP: USA, 2×0.06 kg a.s./ha, RTI 21 days, PHI 1 day Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: Although for pineapples a minimum of 8 residue trials would be required in the EU, according to Codex classification, 5 trials are sufficient to derive a Codex MRL Conclusion: The proposed Codex MRL is acceptable	
Summer squash	0.04	0.05*	Critical GAP: Europe (Italy, Greece, France, Spain) 2x 0.12 kg a.s./ ha, RTI 14 days, PHI 3 days Number of trials: 8 residue trials in cucumbers, used to derive MRL proposal by extrapolation Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable	
Tomato	0.4	1	Critical GAP: Italy, 2×0.12 kg a.s./ha, RTI 14 days, PHI 3 days Number of trials: 8 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable	
Canned pepper			PF (best estimate or mean): 0.08 Individual processing factors: 0.08, 0.08 Number of studies to derive the PF: 2	
Canned tomato			PF (best estimate or mean): < 0.18 Individual processing factors: < 0.17 , < 0.2 Number of studies to derive the PF: 2	
Tomato Juice			PF (best estimate or mean): < 0.18 Individual processing factors: < 0.17 , < 0.2 Number of studies to derive the PF: 2	
Tomato Puree			PF (best estimate or mean): 1.2 Individual processing factors: 0.67, 1.8 Number of studies to derive the PF: 2	
Ketchup			PF (best estimate or mean):0.67 Individual processing factors: 0.67 Number of studies to derive the PF would not be sufficient in the EU	
General comments	This was also Additionally,	conclude	mation reported, pyriproxyfen is stable under standard hydrolysis studies. ed by EFSA in the framework of the peer-review process ssing factors for tomato processed commodities in the JMPR report are the ssessed by EFSA during the peer-review process	

GAP: Good Agricultural Practice; PHI: preharvest interval; MRL: maximum residue level; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; a.s.: active substance; PF: processing factor; RTI: re-treatment interval. *: Indicates that the input value is proposed at the limit of quantification.

5.11.5. Consumer risk assessment

Table 52:	Summary	of the	consumer	risk	assessment
-----------	---------	--------	----------	------	------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions:	RA assumptions:	Specific comments:	
An indicative short-term exposure calculation	The most recent long-term risk assessment (EFSA, 2015e) was updated using the approach as outlined in	No further comments	

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
was performed for papayas and melons, using the proposed ARfD derived in the ongoing renewal process. For the other commodities no acute risk assessment was performed, since the existing EU MRL is higher than the proposed Codex MRLs	Section 'Assessment', including the STMR values derived by JMPR for papaya since it is the only commodity for which the CXL proposal is higher than the EU MRL Tentatively the Codex MRL proposal for melons has been considered in the exposure calculation; although the MRL proposal is not fully compliant with EU policies The MRL proposal for dried peppers was not included in the PRIMO since consumption data for dried peppers is not included in the PRIMO rev 3.1. For the commodities where the MRL was lower than the existing MRL, the STMR values derived from the EU uses were used for exposure calculations Since the review of the EU existing uses is pending of finalisation, EU MRLs established by Reg (EU). 2016/1902 were used for exposure calculations in chronic exposure scenario The calculations were performed with the currently approved ADI and in an indicative calculation with the ADI proposal derived recently in the framework of the renewal	
Results: No exceedance of the recently proposed ARfD (1 mg/kg bw) was identified for papaya and melons (exposure calculation with the proposed MRL) For other crops, no calculations were considered necessary	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 15% of the ADI, being the diet for Dutch toddlers the most critical one The contribution of the proposed Codex is considered low, accounting for less than 0.1% With the proposed new ADI, no intake concern is expected either	Results: Long-term exposure: 15% of the ADI Review of existing EU uses ongoing. Exposure estimates must be considered in tentative basis Short-term exposure: not calculate since no ARfD is available

RA: risk assessment; ARfD: acute reference dose; MRL: maximum residue level; CXL: Codex Maximum Residue Limit; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; PRIMo: (EFSA) Pesticide Residues Intake Model; ADI: acceptable daily intake.

5.12. Cyprodinil (207) R

5.12.1. Background information

Table 53: Background information

		Comments, references
Type of JMPR evaluation	Follow-up evaluation due to concern form	 In 2018 CCPR, the EU made a reservation: regarding the MRL proposals for post-harvest uses, calculated according to a wrong methodology leading to MRLs higher than necessary (CF*3 Mean); regarding the cyprodinil metabolism data that did not reflect post-harvest applications (studies with foliar applications only) 2018 JMPR revised the MRL proposals for post-harvest uses (mean + 4SD); regarding the metabolism studies JMPR concluded that the residue definitions are also appropriate for post-harvest uses, considering that less extensive metabolism is expected
RMS	FR	
Approval status	Approved	Commission Implementing Regulation (EU) No 678/2014 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2006a) EFSA conclusions ongoing (AIR III)

		Comments, references
MRL review	Yes, see comments	EFSA (2013h)
MRL applications	Yes, see comments	EFSA (2015g) (celery) EFSA (2019e) (Florence fennel)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonised classification for CMR – Annex VI: none EU peer review proposal for CMR: none ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not finalised

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): 678/2014/EU: Commission Implementing Regulation (EU) No 678/2014 of 19 June 2014 amending Implementing Regulation (EU) No 540/2011 as regards the extension of the approval periods of the active substances clopyralid, cyprodinil, fosetyl, pyrimethanil and trinexapac. OJ L 180, 20.6.2014, p. 11–12.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.12.2. Toxicological reference values

	JMPR	evaluation	EU eva	aluation	
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	0.03 mg/kg bw per day	JMPR (2003) (2-year rat, SF 100)	0.03 mg/kg bw per day	EFSA (2006a) (2-year rat, UF 100)	Yes
ARfD	Unnecessary	JMPR (2003)	Not necessary/ ^(b)	EFSA (2006a)	see comments under footnote (b)
Conclusion/ comment	 ^(b) In the Frer ARfD was agreed During the EU NOA42 lack of data CGA23 lack of data 	ach RAR, an ARfD was eed to be set at a lev I peer review meeting 2054 : not concluded and repeat-dose toxic 2449 : not concluded and repeat-dose toxic	s proposed (1.5 mg/ el of 2 mg/kg bw. The (September 2018), since genotoxicity p city had not been inv since genotoxicity p	otential could not be o	meeting, the et published ere discussed: concluded due to concluded due to
	 CGA26: uncertai CGA304 CGA304 Iack of c I13C ar lack of data CGA27: CGA32: For the TTC ap 	3208 : ADI is 0.02 me nty factor of 1000 to 4075 : the ADI and A 4076 : not concluded data and repeat-dose and 113b : not conclud and repeat-dose toxic 5535 : no genotoxic p 1915 : no genotoxic p oproach, the sum of t	g/kg bw per day bas take into account th RfD of cyprodinil car since genotoxicity p toxicity had not bee ed since genotoxicity city had not been inv potential, use of TTC potential, use of TTC the exposure for all r	y potential could not b	study, applying an e. njor rat metabolite. concluded due to e concluded due to II) was proposed II) was proposed cterised metabolite

Table 54: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; RAR: renewal assessment report; TTC: threshold of toxicological concern.

should be used

5.12.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products	Cyprodinil	EU Reg. 2019/552: Cyprodinil	Yes		
	Animal products	The residue is fat soluble	EU Reg. 2019/552: <u>Milk</u> : Cyprodinil (sum of cyprodinil and CGA 304075 (free and conjugated), expressed as cyprodinil) <u>Other animal products</u> : Cyprodinil (sum of cyprodinil and CGA 304075 (free), expressed as cyprodinil)	No		
			The residue is fat soluble			
RD-RA	Plant products	Cyprodinil	Cyprodinil	Yes		
	Animal products		Milk: Cyprodinil (sum of cyprodinil and CGA 304075 (free and conjugated), expressed as cyprodinil) Other animal products: Cyprodinil (sum of cyprodinil and CGA 304075 (free), expressed as cyprodinil)	No		
Conclusion/ comments	Plant products: The residue definition for enforcement and risk assessment derived by the JMPR and at EU level is identical <u>Animal products</u> : For animal products, the EU residue definition for enforcement and risk assessment is wider as comprises the metabolite CGA304075 (4-[(4-cyclopropyl-6- methylpyrimidin-2-yl)amino)]phenol) for tissues. In the framework of the MRL review also, the conjugates of CGA 304075 were also included in the residue definition for milk. However, this difference is of no relevance for the current MRL proposal The RMS informed EFSA that in the framework of the renewal of the approval, residue definitions may be revised (e.g. residue definition for animal products (risk assessment and enforcement): sum of cyprodinil and CGA 304075 (free form and glucuronide), expressed as cyprodinil; residue definition for plant products (risk assessment) – fruit crops: cyprodinil and CGA232449 (free and conjugated) (pending submission of toxicity data on CGA232449 to be decided whether a separate residue definition for the metabolite would be more appropriate); cereals: cyprodinil by default (cereal) (provisional); rotational crops: NOA422054 (free and conjugated) (provisional) However, since the modification of new residue definitions has not yet been implemented, the ongoing discussions at EU level do not affect the conclusions on Codex MRL proposals					

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

5.12.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Pomegranate	5Po	0.02*	Critical GAP: US post-harvest (dip/drench) GAP, 1×54 g/hL before storage + 1×54 g/hL before trading, PHI 0 days Number of trials: 1 storage facility, 4 trials at different dates Sufficiently supported by data: to be discussed with MS. AT EU level the trials would not be considered independent Specific comments/observations: Residue data were submitted for the 2017 JMPR, who proposed a CXL of 10 mg/kg The EU made a reservation due to uncertainty over the relevance of the foliar metabolism study used to support the post-harvest treatments and because for post-harvest use the MRL should be

Table 56: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
			calculated using mean + 4SD instead of CF × 3 Mean. The CXL proposal for pomegranates was maintained at step 4 2018 JMPR derived a revised MRL proposal calculated as proposed by the EU (5 mg/kg instead of 10 mg/kg) 2018 JMPR confirmed the metabolism studies are appropriate since post-harvest treatment is unlikely to result in a more extensive metabolism than observed from foliar treatments As regards question on the independence of residue trials and the lack of clarity of the GAP raised last year by the EU (see EFSA report on preparing EU position for the 50th CCPR), new information was not provided to 2018 JMPR A risk management decision to be taken on the acceptability of the CXL proposal The proposed Codex MRL is supported by the RMS
General comments	Further comments on residue trials can be found in EFSA, 2018n (50th Session of CCPR), and JMPR 2018 Report (FAO, 2017)		

GAP: Good Agricultural Practice; PHI: preharvest interval; MRL: maximum residue level; MS: Member State; CXL: Codex Maximum Residue Limit; CF: conversion factor; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State.

*: Indicates that the input value is proposed at the limit of quantification.

5.12.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions: Currently, no ARfD is established formally for cyprodinil. Thus, an acute risk assessment would not be required However, considering that in the framework of the renewal of the approval ARfD values were proposed/ agreed in expert meetings, EFSA calculated an indicative acute risk assessment using the ARfD proposed in the RAR/agreed in the expert meeting (scenario 1/scenario 2) for pomegranates	RA assumptions: The most recent long-term risk assessment (EFSA, 2019e), which was performed with EFSA PRIMo rev.3 was updated, including the CXL proposal of 5 mg/kg for pomegranates	Specific comments:	
Results: No short-term exposure concern was identified; exposure to residues from pomegranate accounted for a maximum of 12.5% of the ARfD (scenario 1); 9% of the ARfD (scenario 2)	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 55% of the ADI The contribution of pomegranate to the exposure was 1.7% of the ADI	Results: Long-term exposure: 8–70% of the ADI Acute exposure not necessary (ARfD not set)	

RA: risk assessment; ARfD: acute reference dose; RAR: renewal assessment report; CXL: Codex Maximum Residue Limit; PRIMo: (EFSA) Pesticide Residues Intake Model; ADI: acceptable daily intake.

5.13. Pyraclostrobin (210) R,T

5.13.1. Background information

Table 58:Background information

		Comments, references	
Type of JMPR evaluation	New use	Additional toxicological studies on parent and a number of metabolites were provided and assessed by JMPR; a new ARfD has been derived and the previous ARfD has been withdrawn	
RMS	DE		
Approval status	Approved	Commission Directive 2004/30/EC ^(a) amended by Commission Regulation (EU) No 823/2012 ^(b) and Commission Implementing Regulation (EU) 2016/ 2016 ^(c)	
EFSA conclusion	Ongoing	Peer-review ongoing	
MRL review	Yes, see comments	EFSA (2011e)	
MRL applications Yes, see comments		EFSA (2011a) (oranges) EFSA (2012b) (crops) EFSA (2013a) (Jerusalem artichokes) EFSA (2014d) (chicory roots) EFSA (2014d) (swedes and turnips) EFSA (2014i) (swedes and turnips) EFSA (2016g) (beet leaves) EFSA (2016g) (beet leaves) EFSA (2017a) (various crops) EFSA (2017a) (various crops) EFSA (2018p) (confirmatory data) EFSA (2018q) (rice) EFSA (2018r) (various crops & import tolerances) EFSA (2018u) (soya bean)	
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonized classification and labelling for CMR – Annex VI: none EU Peer Review proposal for CMR: Toxic for reproduction cat. 2 ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(d)): not finalised	

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level. (a): Commission Directive 2004/30/EC of 10 March 2004 amending Council Directive 91/414/EEC to include benzoic acid,

flazasulfuron and pyraclostrobin as active substances. OJ L 77, 13.3.2004, p. 50–53.

- (b): Commission Regulation (EU) No 823/2012 of 14 September 2012 derogating from Implementing Regulation (EU) No 540/2011 as regards the expiry dates of the approval of the active substances 2,4-DB, benzoic acid, beta-cyfluthrin, carfentrazone ethyl, *Coniothyrium minitans* strain CON/M/91-08 (DSM 9660), cyazofamid, cyfluthrin, deltamethrin, dimethenamid-P, ethofumesate, ethoxysulfuron, fenamidone, flazasulfuron, flufenacet, flurtamone, foramsulfuron, fosthiazate, imazamox, iodosulfuron, iprodione, isoxaflutole, linuron, maleic hydrazide, mecoprop, mecoprop-P, mesosulfuron, mesotrione, oxadiargyl, oxasulfuron, pendimethalin, picoxystrobin, propiconazole, propineb, propoxycarbazone, propyzamide, pyraclostrobin, silthiofam, trifloxystrobin, warfarin and zoxamide. OJ L 250, 15.9.2012, p. 13–14.
- (c): Commission Implementing Regulation (EU) 2016/2016 of 17 November 2016 amending Implementing Regulation (EU) No 540/2011 as regards the extension of the approval periods of the active substances acetamiprid, benzoic acid, flazasulfuron, mecoprop-P, mepanipyrim, mesosulfuron, propineb, propoxycarbazon, propyzamide, propiconazole, *Pseudomonas chlororaphis* Strain: MA 342, pyraclostrobin, quinoxyfen, thiacloprid, thiram, ziram, zoxamide. OJ L 312, 18.11.2016, p. 21–23.

(d): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.13.2. Toxicological reference values

	JMPR e	valuation	EU evaluation				
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable		
ADI	0.03 mg/kg bw per day	JMPR (2003)	0.03 mg/kg bw per day	European Commission (2004) (2-year rat study, uncertainty factor of 100)	Yes		
ARfD	0.7 mg/kg bw	JMPR Report 2019 (FAO, 2018), 90-day and 1-year feeding studies in dogs, uncertainty factor of 8	bw	European Commission (2004) (Rabbit developmental study, with an uncertainty factor of 100	No		
Conclusion/ comment	<u>JMPR assessment</u> : The previous ARfD of 0.05 mg/kg bw (JMPR, 2003), based on embryo and fetal toxicity in a developmental toxicity study in rabbits (SF 100), has been withdrawn. Based on additional studies, the meeting concluded that the effects secondary to local irritation following gavage dosing in rabbits were not relevant to human dietary risk assessment. Therefore, the meeting established a new ARfD of 0.7 mg/kg bw based on vomiting and diarrhoea seen during the first week of dosing of dogs (90-day and 1-yr studies), and applying a safety factor of 8 since the critical effects are considered to be secondary to a direct local effect on the gastrointestinal tract, which is independent of absorption and metabolism						
	 Additional toxicological information on certain metabolites/degradation products was assessed JMPR, e.g. degradation product formed under high temperature conditions, (see olives for oil production). The conclusions were: for 500M04: No evidence of genotoxicity, oral LD₅₀ > 2,000 mg/kg bw (rats), 3-month oral toxicity study NOAEL 100 mg/kg bw per day (rats), for 500M49: no evidence of genotoxicity <i>in vitro</i> 						
	<u>EU peer review assessment</u> : Peer review for the renewal is ongoing – The same toxicological reference values established during the first assessment (European Commission, 2004) are proposed by the RMS. To be discussed at the experts' meeting The agreed ARfD of the first peer review was based on maternal toxicity (body weight losses) during the initial phase of the treatment in the rabbit developmental toxicity studies						

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; LD₅₀: lethal dose, median; RMS: rapporteur Member State.

5.13.3. Residue definitions

Table 60: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Pyraclostrobin	EU Reg. 2017/1016: Pyraclostrobin	Yes
	Animal products	Pyraclostrobin The residue is fat soluble	EU Reg. 2017/1016: Pyraclostrobin The residue is fat soluble	Yes
RD-RA	Plant products	Pyraclostrobin	Art.12 (EFSA, 2011e): Pyraclostrobin	Yes
	Animal products	Pyraclostrobin	Art.12 (EFSA, 2011e): Sum of pyraclostrobin and its metabolites containing the 1-(4- chlorophenyl)-1 <i>H</i> -pyrazole moiety or the 1-(4-chloro-2-hydroxyphenyl)-1 <i>H</i> -pyrazole	No

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
			moiety, expressed as pyraclostrobin Conversion factor of 4 for ruminant liver Conversion factor of 6.8 for milk	
Conclusion/ comments	The residue definitions for enforcement are compatible The difference in the residue definition for animal products (risk assessment) can be compensated by using the conversion factors derived in the EU			

RD: residue definition; RA: risk assessment.

5.13.4. Codex MRL proposals

Table 61:	Comparison of Codex MRI	proposals derived by	y JMPR and EU MRLs
-----------	-------------------------	----------------------	--------------------

Commodity	Codex MRL proposal	EU MRL	Comment
Apple	W 0.5		The existing CXL is proposed to be withdrawn and replaced by the group MRL for pome fruit
Asparagus	0.01*	0.02*	Critical GAP: Germany, 2 foliar applications (BBCH > 69, after harvest of spears) at 0.1 kg a.i./ha, PHI not specified Number of trials: 7 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Avocado	0.2	0.02*	Critical GAP: USA, 2 foliar applications of 0.166 kg a.i./ha, PHI 0 days Number of trials: 4 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Beans with pods, subgroup of, except common beans (poroto)	0.3	0.6	Critical GAP: USA (for whole subgroup of beans with pods), 3 applications of 0.16 kg a.i./ha, PHI 7 days Number of trials: 7 trials with 2 × 0.23 kg/ha, PHI 7 days; trials were scaled (scaling factor 0.7). Scaling was considered acceptable, considering that decline trials demonstrated that the first application does not significantly contribute to the final residues Sufficiently supported by data: Yes Specific comments/observations: EFSA proposes to set only one MRL for beans with pods, subgroup (VP2060) at the level of 0.6 mg/kg derived from the EU trials (see below) Conclusion: The proposed Codex MRL is acceptable. However, preferably only one MRL for the whole subgroup should be set. The proposed Codex MRL of 0.6 mg/kg derived for common beans (poroto) would be the appropriate level for the code VP 2060
Broad beans without pods (succulent seeds)	0.01	0.02*	Critical GAP: France, 2 applications of 0.1 kg a.i./ha and PHI 7 days Number of trials: 8 (all at 0.01*) Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL refers to the code VP 0523 (<i>Vicia faba</i>). A separate MRL proposal of 0.3 mg/kg was derived for <i>Phaseolus</i> beans (common beans without pods (succulent seeds, VP 2845) Conclusion: The proposed Codex MRL is acceptable. See comments below on common beans without pods (succulent seeds)
Cacao beans	0.01	0.1*	Critical GAP: Brazil, 3 foliar applications of 0.2 kg a.i./ha, PHI 14 days Number of trials: 3 Sufficiently supported by data: No Specific comments/observations: Cocoa beans are a crop of consumption category 2; thus at least 4 trials would be required. At EU level 8 trials would be requested (if residues < LOQ, 4 trials would be sufficient) Conclusion: It is recommended to discuss with MS whether the proposed

Commodity	Codex MRL proposal	EU MRL	Comment
			Codex MRL is acceptable, considering the level of the MRL proposal. If the proposed Codex MRL is found acceptable, it should be proposed to label it with an asterisk, indicating that the MRL is at the LOQ
Carrot	W 0.5		Existing CXL to be replaced by new MRL for Root and tuber vegetables
Celery	1.5	1.5	Critical GAP: Poland, 2 foliar applications at 0.1 kg a.i./ha, PHI 14 days Number of trials: 9 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Common bean (poroto)	0.6	0.6	Critical GAP: France, 2 applications of 0.1 kg a.i./ha, PHI 7 days Number of trials: 17 trials Sufficiently supported by data: Yes Specific comments/observations: NEU and SEU residue trials were merged. The proposed Codex MRL refers to code VP2060 (<i>Vicia faba</i>) Conclusion: The proposed Codex MRL is acceptable. However, it would be preferable to set the MRL for the whole subgroup of beans with pods (VP2060) at this level. (See also comments on Beans with pods, subgroup of, except common beans (poroto)
Common beans (succulent seeds)	0.3	0.02*	Critical GAP: France, 2 applications of 0.1 kg a.i./ha and PHI = 7 days Number of trials: 11 Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL refers to the code VP 2845 (<i>Phaseolus vulgaris</i>). A separate MRL proposal of 0.01 mg/kg was derived for fava beans (Broad beans without pods (succulent seeds, VP 0523) Conclusion: Since in the EU, the two commodities (<i>Phaseolus</i> beans and fava beans (codex code VP) are covered by the same code (260020), the MRL proposal of 0.3 mg/kg would be relevant. It is sufficiently supported by data and therefore acceptable. See also comments on broad beans without pods (succulent seeds)
Dry peas, Subgroup of (includes all commodities in this subgroup)	0.3	0.3 dry peas, 0.5 dry lentils	Critical GAP: Canada, 2 foliar applications at 0.15 kg a.i./ha, PHI
Edible offal (Mammalian)	0.05	0.05*	See comments on meat (for mammals other than marine mammals)
Lettuce, head	40	2	Critical GAP: in USA of 0.23 kg a.i./ha and PHI = 0 Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: Although at EU level, 8 trials would be required, the number of trials is acceptable at Codex level, since lettuce is not a major crop 2006 JMPR assessed the same trials, but due to an exceedance of the ARfD, the MRL proposal was not advanced. With the higher ARfD value established by 2018 JMPR, the proposed MRL did not exceed the TRV JMPR withdrew previous recommendation of MRL of 2 mg/kg in head lettuce Conclusion: The proposed Codex MRL is not acceptable because of acute intake concerns identified at EU level (see below)
Meat (from mammals	0.5 (fat)	0.05*	No feeding study was available. The MRL proposals were derived from metabolism study in lactating goats. At EU level, MRLs are set for

Commodity	Codex MRL proposal	EU MRL	Comment
other than marine mammals)			muscle. The residue concentration in muscle at the calculated dietary burden of 29 ppm (EU diet) is expected to be between 0.05 and 0.06 mg/kg Conclusion: The proposed Codex MRL is not acceptable; considering the significant dietary burden, a feeding study would be required to derive a reliable MRL for animal products
Mammalian fats (except milk fats)	0.5	0.05*	See comments on meat (for mammals other than marine mammals)
Mango	0.6	0.05	Critical GAP: Brazil, 4 foliar applications at 0.133 kg a.i./ha, PHI 7 days Number of trials: 6 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Milks	0.03	0.01*	See comments on meat (for mammals other than marine mammals)
Olives for oil production	0.01*	0.02*	Critical GAP: See table olives is proposed Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: Extrapolation from table olives. In the framework of an Art. 10 application, additional toxicological data were requested for certain degradation products formed under conditions representative for frying and raffination (metabolite 500M04 and 500M49). The application was withdrawn JMPR assessed data on 500M04 and 500M49 (see comments on toxicological reference values) Conclusion: The proposed Codex MRL is acceptable
Olive oil, Virgin	0.07		Proposed PF for olive oil: 6.24 It is noted that in the EU MRLs are set only for unprocessed olives, but not for olive oil
Peas with pods, Subgroup of	0.3	0.6	Critical GAP: Spain, 2 applications of 0.1 kg a.i./ha, PHI 7 days Number of trials: 5 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Peas (pods and succulent= immature seeds)	0.02* W		The existing CXL is replaced by the new proposal for the subgroup of peas with pods
Passion fruit	0.2	0.02*	Critical GAP: Brazil, 4 foliar applications of 0.15 kg a.i./ha, PHI 7 days Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: Conclusion: The proposed Codex MRL is acceptable
Pineapple	0.3	0.02*	Critical GAP: Brazil, 4 foliar applications of 0.15 kg a.i./ha, PHI 3 days. Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: In 4 residue trials, residue concentration was measured in the pulp as well. At EU level, a peeling factor of 0.27 was proposed Conclusion: The proposed Codex MRL is acceptable
Pome fruits	0.7	0.5 pome fruit, 0.02* kaki, 3 azaroles	Critical GAP: Germany, 4 foliar application of 0.1 kg a.i./ha, PHI 7 days Number of trials: 33 (25 in apples + 8 in pears) Sufficiently supported by data: Yes Specific comments/observations: extrapolation to the entire pome fruits group (apples, pears, quinces, medlar and loquats/Japanese medlars) but also including azarole (0154070) and kaki (Japanese persimmon) (0131060)

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL is sufficiently supported by data, but since an acute intake concern was identified for apples, pears and kakis the proposed MRL is not acceptable
Potato	0.02* W		The existing CXL is replaced with the new proposal for tuberous and corm vegetables
Radish	0.5 W		The existing CXL is replaced with the new proposal for root vegetables
Rice	1.5		Critical GAP: see rice, husked
Rice, Husked	0.09	0.02	Critical GAP: Indonesia, 2 foliar applications at 0.1 kg a.i./ha and BBCH 65 (last application at mid-flowering), PHI not defined. Number of trials: 16 (results for brown rice) Sufficiently supported by data: Yes Specific comments/observations: Residue trials conducted in Asian countries, Italy and Spain. Conclusion: The proposed Codex MRL is acceptable
Rice, Polished	0.03		PF 0.2 (from brown rice to polished rice); no MRL is set for polished rice in the EU $$
Rice straw and fodder, dry			No MRLs are set for feed items in the EU
Root vegetables, Subgroup of this subgroup)	0.5	0.06 for Jerusalem artichokes, 0.09 for swedes and turnips; 0.1 beetroots, parsley roots, salsifies; 0.3 for parsnips and horseradish; 0.5 for radishes, carrots, celeriacs	Critical GAP: in USA for 3 foliar applications at 0.234 kg a.i./ha and PHI 0 Number of trials: 5 trials in radishes (minor crop), 6 in carrots (major crop) Sufficiently supported by data: No Specific comments/observations: The number of trials is not sufficient to derive a MRL proposal for the subgroup of root vegetables; furthermore, following the agreed policy on also trials on sugar beet or beetroots would be required Conclusion: The proposed Codex MRL is not acceptable because the residue trials are not sufficient
Spinach	1.5	0.6	Critical GAP: Germany and Italy, 2 applications of 0.1 kg a.i./ha, PHI 14 days, RTI 8 days (DE), 7 days (IT) Number of trials: 10 Sufficiently supported by data: Yes Specific comments/observations: Trials were conducted in Germany, France and Italy. JMPR merged the NEU and SEU trials to derive the MRL proposal. The EU MRL was derived from residue trials reflecting the NEU use. The trial with the highest residue (0.91 mg/kg) that is driving the MRL calculation was not available in the EU data package. Most likely this result is not correctly reflecting the trial results (the total residue (sum of parent plus metabolite is 0.1 mg/kg, while the parent alone was reported as 0.91 mg/kg; the results at a shorter PHI of 7 days were lower than at PHI 14 days) Conclusion: JMPR should be asked to verify the results for the residue trial leading to the highest result. Most likely the value of 0.91 mg/kg is a typo
Succulent peas without pods Subgroup of (includes all	0.08	0.15 peas 0.02* lentils	Critical GAP: Spain, 2 applications of 0.1 kg a.i./ha, PHI 7 days Number of trials: 16 trials in peas Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL covers also

Commodity	Codex MRL proposal	EU MRL	Comment	
commodities of this subgroup)			fresh lentils. At EU level, the residue trials in peas would not be acceptable to set an MRL for lentils Conclusion: The proposed Codex MRL is acceptable	
Sugar cane	0.08	0.02*	Critical GAP: Brazil, single application in-furrow at 0.133 kg a.i./ha, followed by 5 foliar applications of 0.13 kg a.i./ha with PHI 30 days Number of trials: 4 + 8 overdosed trails (scaled down to match the GAP) Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable	
Table olives	0.01*	0.02*	Critical GAP: Greece, foliar application, 2×0.1 kg a.i./ha, last application no later than BBCH 71; PHI not specified Number of trials: 8 Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable	
Tea, Green, Black (black, fermented and dried)	6	0.1*	Critical GAP: Japan, 2 applications of 0.003 kg a.i./hL, PHI 7 days Number of trials: 6 overdosed trials, scaled down to match the GAP Sufficiently supported by data: No Specific comments/observations: Tea is a major crop and according to EFSA's understanding 8 trials would be required Conclusion: The proposed Codex MRL is not acceptable because the number of trials is insufficient. To discuss with MS if EFSA'S view is shared	
Tuberous and corm vegetables, commodities in this subgroup)	0.02*	0.02*	Critical GAP: USA for 6 foliar applications at 0.22 kg a.i./ha and PHI 3 days Number of trials: 19 trials, probably in potatoes, not specified in which crops the trials were performed Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL covers arrowroots, cassava, potatoes, sweet potatoes, yams Conclusion: The proposed Codex MRL is acceptable	
Witloof chicory (leaves/ sprouts)	0.09	0.09	Critical GAP: France, 1 application of 0.42 g a.i./m ² tray area, PHI 21 days Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: Conclusion: The proposed Codex MRL is acceptable	
General comments	_			

CXL: Codex Maximum Residue Limit; GAP: Good Agricultural Practice; PHI: preharvest interval; MRL: maximum residue level; LOQ: limit of quantification; NEU: northern European Union; SEU: southern European Union; TRV: toxicological reference values; PF: processing factor; BBCH: growth stages of mono- and dicotyledonous plants; RTI: re-treatment interval. *: Indicates that the input value is proposed at the limit of quantification.

5.13.5. Consumer risk assessment

Table 62: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions:	RA assumptions:	Specific comments:
The short-term dietary risk assessment was performed for all crops under assessment for which Codex MRL proposals were higher than the existing EU MRLs. The calculations were	The most recent long-term risk assessment (EFSA, 2018u) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for the	New ARfD derived of 0.7

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
performed using PRIMo ver. 3.1	crops/commodities, for which the proposed Codex MRLs were higher than	
The EU ARfD of 0.03 mg/kg bw was used For animal commodities conversion factors	the existing EU MRLs	
were used for milk and liver to accommodate for the additional metabolites included in the EU residue definition for risk assessment		
Results: The risk assessment identified potential consumer risks for: Lettuce (2,500% of the ARfD) pears (319% of the ARfD) apples (247.90% of the ARfD) kaki/Japanese (107.07% of the ARfD)	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 29% of the ADI The highest contributor is milk	Results: Long-term exposure: 1–7% of the ADI Short-term exposure: 0–60% of the ARfD for children to 0–30% for the general population

RA: risk assessment; ARfD: acute reference dose; MRL: maximum residue level; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; STMR: supervised trials median residue; PRIMo: (EFSA) Pesticide Residues Intake Model; ADI: acceptable daily intake.

5.14. Fludioxonil (211) R

5.14.1. Background information

Table 63:	Background information	
-----------	------------------------	--

		Comments, references
Type of JMPR evaluation	New use	
RMS	FR	Co-RMS: ES
Approval status	Approval process ongoing	Commission Directive 2007/76/EC ^(a) amended by Commission Implementing Regulation (EU) 2018/1262 ^(b)
EFSA conclusion	Yes, see comments	EFSA (2007) Renewal ongoing
MRL review	Yes, see comments	EFSA (2011d)
MRL applications	Yes, see comments	EFSA (2016b) Art.10 in fennel (ongoing) Assessment of confirmatory data (ongoing, combined with renewal)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonised classification and labelling for CMR – Annex VI: no entry in Annex VI EU Peer Review proposal for CMR: no proposal for CMR properties ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(c)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.
 (a): Commission Directive 2007/76/EC of 20 December 2007 amending Council Directive 91/414/EEC to include fludioxonil, clomazone and prosulfocarb as active substances. OJ L 337, 21.12.2007, p. 100–104.

(b): Commission Implementing Regulation (EU) 2018/1262 of 20 September 2018 amending Implementing Regulation (EU) No 540/2011 as regards the extension of the approval periods of the active substances 1-methylcyclopropene, beta-cyfluthrin, chlorothalonil, chlorotoluron, clomazone, cypermethrin, daminozide, deltamethrin, dimethenamid-p, diuron, fludioxonil, flufenacet, flurtamone, fosthiazate, indoxacarb, MCPA, MCPB, prosulfocarb, thiophanate-methyl and tribenuron. OJ L 238, 21.9.2018, p. 62–64.

(c): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.14.2. Toxicological reference values

	JMPR evaluation			EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.4 mg/kg bw per day	JMPR (2004)	0.37 mg/kg bw per day	EFSA (2007) (2-y rat with an uncertainty factor of 100) confirmed in European Commission (2007b)	Yes	
ARfD	Unnecessary	JMPR (2004)	Not applicable	Not allocated – not necessary (EFSA, 2007)	Yes	
Conclusion/ comment	During the previous peer review at EU level (EFSA, 2007) During the previous peer review at EU level (EFSA, 2007), the ADI was based on the NOAEL of 37 mg/kg bw per day in the 2-year rat study; the same basis than the JMPR in 2004. The differences are because different policy in rounding. During the EU assessment, no assessment was done on whether metabolites oxidised to metabolite 2,2-difluoro-benzo[1,3]dioxole-4 carboxylic acid (CGA 192155) could be covered by the parent compound In the framework of the renewal process in the EU, the RMS proposed 0.1 mg/kg bw per day for both the ADI and ARfD, whereas the proposal of the co-RMS was 0.37 mg/kg bw per day for both reference values. (Discussion at Expert meeting foreseen in April 2019). The toxicological profile of metabolites including CGA 192155 will be also discussed during Expert meeting foreseen in April, 2019					

Table 64: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; RMS: rapporteur Member State.

5.14.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf			EU Reg. 2016/1902: Fludioxonil	Yes
			EFSA (2007, 2011d) (Peer- review, Art.12 MRL Review): Fludioxonil	
	Animal products	Fludioxonil and its benzopyrrole metabolites, determined as 2,2- difluoro-1,3-benzodioxole-4- carboxylic acid and expressed as fludioxonil	EU Reg. 2016/1902: Sum of fludioxonil and its metabolites oxidised to metabolite 2,2- difluoro-benzo[1,3]dioxole-4 carboxylic acid	Yes
		The residue is fat soluble	The residue is fat soluble	
RD-RA	Plant products	Fludioxonil	EFSA (2007, 2011d): Sum of fludioxonil and its metabolites oxidised to metabolite 2,2-difluoro-benzo [1,3]dioxole-4 carboxylic acid (CGA 192155), expressed as fludioxonil	No
	Animal products	Fludioxonil and its benzopyrrole metabolites, determined as 2,2- difluoro-1,3-benzodioxole-4- carboxylic acid and expressed as fludioxonil	EFSA (2007, 2011d): Sum of fludioxonil and its metabolites oxidised to metabolite 2,2-difluoro-benzo [1,3]dioxole-4 carboxylic acid (CGA 192155), expressed as fludioxonil	Yes

Table 65: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
Conclusion/ comments	factor (CF) of which reflects difluoro-benzo application the from enforcen For the comm definition is no metabolism st measured as 0 of 1 can be us	eed treatment), fruits and leafy veg 1 between residue definitions for e the fact that no significant concern [1,3]dioxole-4 carboxylic moiety ar e conversion factor of 2.8 (derived nent to risk assessment residue def odities for which Codex MRLs were of expected to have a major impact udies can be used in risk assessme CGA 192155 (CF 2.8); for the other sed, assuming that the metabolites sk assessment may need to be revi	inforcement and risk assessmer trations of metabolites containing e expected. For root vegetables from the metabolism study on finition is proposed (EFSA, 2007 e proposed by JMPR, the different t as for root vegetables a CF de ent to account for the presence r commodities similarly as in the is not present in significant cor	nt was derived ng the 2,2- s after foliar spring onions) 7, 2011d) nt residue erived from metabolites e MRL review a CF ncentrations.

RD: residue definition; RA: risk assessment; MRL: maximum residue level; JMPR: Joint FAO/WHO Meeting on Pesticide Residues

5.14.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Avocado	1.5	0.4	Critical GAP: Australia post-harvest dip/drench/flood spray application at a rate of 60 g a.i./hL Number of trials: 8 (dip treatment) + 2 (flood spray); trials combined Sufficiently supported by data: Yes Specific comments/observations: JMPR agreed to use the STMR of 0.01 mg/kg derived from the combined residues in the flesh. However, as information is not available on the time of sampling (whether samples analysed after a realistic storage period, allowing for penetration of residues in edible part of the fruit, as fludioxonil is fat soluble) the STMR relevant for the whole fruit was used in the exposure calculation Conclusion: The proposed Codex MRL is acceptable
Blueberries	2	2	Critical GAP: Canada: 3×244 g a.i./ha, RTI 7 days, PHI 1 days Number of trials: 8 trials (JMPR, 2004); 2 new trials compliant with the Canadian GAP Sufficiently supported by data: Yes Specific comments/observations: JMPR concluded that the existing CXL derived in 2004 for the US GAP (4×250 g a.i./ha PHI: 0 day) covers the Canadian GAP Conclusion: No change to the current Codex MRL is foreseen
Bulb onions, Subgroup of (includes all commodities in this subgroup)	0.5	onions: 0.5 garlic and shallots: 0.02	Critical GAP: US, 4×245 g a.i./ha, PHI 7 days Number of trials: 16 (13 assessed by JMPR in 2004) Sufficiently supported by data: Yes Specific comments/observations: JMPR proposed to set a group tolerance which covers also garlic (0220010), and shallots (0220030). It should be verified whether the US GAP applies to the whole group of bulb onions Conclusion: The proposed Codex MRL is acceptable, provided US GAP for the subgroup exists
Cabbages, head	2	2	Critical GAP: US, 4 \times 250 g a.i./ha, PHI 7 days. Number of trials: 6 (JMPR 2004) + 5 new trials Sufficiently supported by data: Yes Specific comments/observations: The previous MRL and STMR recommendations were maintained Conclusion: No change necessary

Table 66: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Carrot	1	1	Critical GAP: EU (DE), 3×250 g a.i./ha, RTI and PHI 7 days Number of trials: 15 Sufficiently supported by data: Yes Specific comments/observations: The RTI in the trials were 14 days, but was considered acceptable based on decline studies showing limited degradation. In the EU, a CF of 2.8 is proposed Conclusion: The proposed Codex MRL is acceptable
Celery	15	1.5 (stem vegetable)	Critical GAP: USA, 4×245 g a.i./ha, RTI 7 days, PHI 0 days Number of trials: 8 ($\pm 25\%$ GAP)Sufficiently supported by data: Yes Specific comments/observations: Pending on the setting of the ARfD an acute risk may occur (if ARfD is set at 0.1 mg/kg bw per day; no concern if set at 0.37 mg/kg) Conclusion: The proposed Codex MRL is acceptable
Chick-pea (dry)	0.3	0.4	Critical GAP: Canada, 3×244 g a.i./ha foliar; PHI 7 days Number of trials: 7 Sufficiently supported by data: No Specific comments/observations: In the EU food classification, chick peas are classified under peas (dry): 8 trials would be required for peas. However, considering that the EU MRL is higher than the proposed Codex MRL, the lack of 1 study may not be of relevance Conclusion: The proposed Codex MRL is acceptable
Currants, Black, Red, White	3	2	Critical GAP: Ireland 3×250 g a.i./ha, 10 days interval between 1st and 2nd applications and 28 days interval between 2nd and 3rd application, PHI 7 days Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: Same GAP assessed by EFSA (2011d). In the MRL review, the MRL was based on 9 GAP compliant residue trials on blueberries (0.15; 0.31; 0.31; 0.37) and currants (0.26; 0.6; 0.62; 0.63; 1.44) combined. The trials on currants are the same Conclusion: The proposed Codex MRL is acceptable
Edible offal (Mammalian)	0.1	Swine liver, kidney, edible offals: 0.05* Liver, kidney of other species: 0.2 (ft)	Critical GAP: Australian animal burden – dairy cattle (max dietary burden 23 ppm/mean dietary burden 6.4 ppm); since the dietary burden calculation was not presented in Annex 6 of the JMPR report, the calculations cannot be checked Sufficiently supported by data: Yes, a new feeding study was provided that covered the calculated dietary burden Specific comments/observations: In the EU, a livestock feeding study was requested as confirmatory data (deadline 30 January 2016). Confirmatory data assessment currently ongoing Conclusion: The proposed Codex MRL is acceptable
Eggs	0.02	0.05*	Critical GAP: EU, laying hen (maximum dietary burden calculation 1.9 ppm/mean dietary burden 0.86 ppm) Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Green onion, Subgroup of (includes all commodities in this subgroup) VA 2032	0.8	Spring onions: 5 Leek: 0.01* Chives: 20	

Commodity	Codex MRL proposal	EU MRL	Comment
Guava	0.5	0.01*	Critical GAP: USA, 4×245 g a.i./ha; RTI 7 days, PHI 0 days Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable
Leaves of Brassicaceae, subgroup of (includes all commodities in this subgroup) Subgroup 013B, Brassica leafy vegetable	15	0.3 Chinese cabbage: 10 land cress: 20, Kale: 0.01* Broccoli (covering chinese broccoli): 0.7 Rucola: 20	Critical GAP: US, 4×240 g a.i./ha, PHI 7 days Number of trials: 9 trials in mustard greens and water cress (assessed in 2004 JMPR) + 1 new trial in mustard greens Sufficiently supported by data: Yes Specific comments/observations: JMPR proposed to extrapolate to the whole subgroup of leaves of Brassicaceae. This crop group covers several crops that are classified differently in the EU food classification (e.g. Chinese cabbage, cress, kale, Chinese broccoli and rucola). It is noted that the higher MRL derived compared to the existing MRL is due to change in the method of calculation (OECD calculator, 2015) This approach is acceptable, however it needs to be confirmed that a US GAP refers to the whole group of Brassica. Based on the preliminary acute exposure calculation if the ARfD will be set at 0.1 mg/kg, a concern is foreseen for kales, broccoli and Chinese cabbage. No concern is expected if the ARfD is set at 0.37 mg/kg bw per day. Conclusion: The proposed Codex MRL is acceptable, provided the US GAP covers the whole group; an acute intake concern may be expected if the ARfD is lowered as proposed by the RMS
Lentils	0.3	0.05	Critical GAP: Canada, 3×244 g a.i./ha foliar; PHI 7 days Number of trials: 7 on dry peas Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Mammalian fats (except milk fats)	0.02	swine fat: 0.05* other species: 0.2(ft)	See edible offal (Mammalians); In the EU a metabolism study was requested as confirmatory data Conclusion: The proposed Codex MRL is acceptable
Meat (from mammals other than marine mammals)	0.02(fat)	swine muscle: 0.01* other species: 0.04 (ft)	See edible offal (Mammalians) In the EU, a metabolism study was requested as confirmatory data Conclusion: The proposed Codex MRL is acceptable. The respective MRL for muscle would be 0.01 or 0.02 mg/kg
Milks	0.04	0.01*	Critical GAP: Australian animal burden – dairy cattle (maximum dietary burden 23 ppm/mean dietary burden 6.4 ppm) Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable
Mustard greens	W 10	10	JMPR proposed to withdraw the existing CXL for mustard greens and to replace it with the new MRL for Subgroup of Leaves of Brassicaceae
Onion, bulb	W 0.5	0.5	Existing CXL is proposed to be withdrawn, and replaced by a CXL applicable to the whole subgroup
Pineapple	5Po	7	Critical GAP: USA, one drench treatment and one spray treatment at a rate of 60 g a.i./hL Number of trials: 4 Sufficiently supported by data: To be discussed with MS. Specific comments/observations: According to the JMPR crop classification, at least 5 trials are required for pineapples. However, for the post-harvest use 4 trials may be considered sufficient. In an US import tolerance application, EFSA derived the MRL proposal currently implemented in the EU legislation. In addition, pending on the ARfD to be set an acute risk may occur Conclusion: The proposed Codex MRL may not acceptable if MS

Commodity	Codex MRL proposal	EU MRL	Comment
			agree that the number of trials is insufficient. Nonetheless, in Europe a higher MRL is in place for pineapples
Pomegranate	3Po	3	Critical GAP: USA two post-harvest dip applications at a rate of 36 g a.i./hL Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: The current CXL for fludioxonil is 2 mg/kg. This change in CXL has no implications on the current EU MRL Conclusion: The proposed Codex MRL is acceptable
Poultry fats	0.01*	0.05*	See eggs Conclusion: The proposed Codex MRL is acceptable
Poultry meat	0.01*	0.01*	See eggs Conclusion: The proposed Codex MRL is acceptable. For muscle the corresponding MRL would be 0.01* mg/kg
Poultry, edible offal of	0.1	0.05*	See eggs Conclusion: The proposed Codex MRL is acceptable
Soya bean (dry)	0.2	0.01*	Critical GAP: Brazil, foliar, 2 × 250 g a.i./ha, RTI 7 days, PHI 30 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable
Carrots (canned)			JMPR derived a PF of 0.14, based on 4 processing studies
Carrots (cooked)			JMPR derived a PF of 0.12, based on 4 processing studies
Carrots (pasteurised)			JMPR derived a PF of 0.18, based on 4 processing studies
General comments	_		

GAP: Good Agricultural Practice; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; STMR: supervised trials median residue; PHI: preharvest interval; CXL: Codex Maximum Residue Limit; MRL: maximum residue level; CF: conversion factor; OECD: Organisation for Economic Co-operation and Development; RMS: rapporteur Member State; PF: processing factor; RTI: re-treatment interval.

*: Indicates that the input value is proposed at the limit of quantification.

5.14.5. Consumer risk assessment

Table 67:	Summary	of the consumer	risk assessment
-----------	---------	-----------------	-----------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was not performed as an EU ARfD was not yet established. Within the scope of the renewal an ARfD will be set. An indicative risk assessment was carried out for the commodities where a new CXL was proposed using both reference values proposed by the RMS and co-RMS (0.1 and 0.37 mg/kg bw per day) Since the EU residue definition for risk assessment in plants is wider, a CF of 2.8 was applied for bulb vegetables to account for the additional metabolites (see comments on residue definition)	RA assumptions: The most recent long-term risk assessment (ongoing application for fennel) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for the RACs having a higher Codex MRL proposed compared to the existing EU MRLs and using a CF of 2.8 for garlic and shallots The risk assessment is indicative	Specific comments:

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: No short-term consumer health risk was identified when the ARfD of 0.37 mg/kg bw was used However, if the ARfD proposed by FR will be accepted (ARfD of 0.1 mg/kg bw), short-term intake concerns are expected for kales, broccoli, celery, pineapples, Chinese cabbage, spring onions and pomegranate	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 20% of the existing ADI; if the ADI will be lowered as proposed by FR, the exposure accounts for 75%	Results: Long-term exposure: Up to: 6% of the ADI

RA: risk assessment; ARfD: acute reference dose; CXL: Codex Maximum Residue Limit; RMS: rapporteur Member State; CF: conversion factor; STMR: STMR: supervised trials median residue; RAC: raw agricultural commodity; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; bw: body weight; ADI: acceptable daily intake.

5.15. Mandipropamid (231) T/R

5.15.1. Background information

Table 68: Background information

		Comments, references
Type of JMPR evaluation	New use	
RMS	AT	
Approval status	Approved	Commission Implementing Regulation (EU) No 188/2013 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2012d)
MRL review	Yes, see comments	EFSA (2018i)
MRL applications	Yes, see comments	EFSA (2018t) (cocoa bean import tolerance) EFSA (2019c) (beetroot, Brussels sprouts, cauliflower, globe artichoke, peas, radish, witloof, Belgian endive)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonized classification and labelling for CMR – Annex VI: no entry for CMR EU Peer review proposal for CMR: none ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Implementing Regulation (EU) No 188/2013 of 5 March 2013 approving the active substance mandipropamid, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 62, 6.3.2013, p. 13–16.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.15.2. Toxicological reference values

Table 69: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR e	JMPR evaluation		EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.2 mg/kg bw per day	JMPR (2008)	0.15 mg/kg bw per day	Rat, 2-year with an uncertainty factor of 100	No	

	JMPR evaluation							
	Value	Comments (source, study)	Value Comments (source, study)		TRV comparable			
				(EFSA, 2012d, 2018i) confirmed in European Commission (2018a)				
ARfD	Unnecessary	JMPR (2008)	Not necessary	(EFSA, 2012d, 2018i) confirmed in European Commission (2018a)	Yes			
Conclusion/ comment	rounding (sam For the metab it was unlikely review. Never	necessary in European Commission (2018a) The different ADI values derived by JMPR and at EU level are the result of different policy on rounding (same study, same NOAEL) For the metabolite SYN500003, more acutely toxic than mandipropamid, JMPR concluded that it was unlikely to be genotoxic based on genotoxicity studies not available for the EU peer review. Nevertheless, both JMPR and EU review concluded that the ADI for mandipropamid is not applicable to the metabolite SYN500003, and no specific ADI or ARfD can be established						

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

5.15.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable			
RD enf	Plant products	Mandipropamid	EU Reg. 2015/845: Mandipropamid	Yes			
	Animal products	Mandipropamid The residue is not fat soluble	EU Reg. 2015/845: Mandipropamid The residue is not fat soluble	Yes			
RD-RA	Plant products	Mandipropamid	Art.12 (EFSA, 2018i): Fruits and leafy vegetables: mandipropamid (any ratio of constituent isomers)	No for root crops; yes for fruits and leafy vegetables			
			Root crops: Sum of mandipropamid and SYN 500003 [tentative, pending on the submission of toxicological information on SYN 500003]				
			Peer-review (EFSA, 2012d): Mandipropamid except for root/tuber crops where the definition is provisionally proposed as 'mandipropamid and SYN 500003', pending the submission of toxicological information on SYN 500003				
	Animal products	Mandipropamid	Art.12 (EFSA, 2018i): not required	Yes			
			Peer-review (EFSA, 2012d): Mandipropamid				
Conclusion/ comments	The JMPR and EU residue definitions for enforcement and risk assessment for plant and anima commodities are comparable except for the risk assessment residue definition for root/tuber crops, where the EU residue definition is provisionally proposed as 'mandipropamid and SYN 500003', pending the submission of toxicological information on SYN 500003 The JMPR plant risk assessment residue definition, in contrast to the EU definition for root/tuber crops, does not include the plant metabolite SYN 500003 The residue definition for enforcement proposed in the Peer Review and the MRL Review are equivalent to the residue definition set in Regulation (EC) No 396/2005, although they						

Table 70: Comparison of the residue definitions derived by JMPR and at EU level

Commodity group	JMPR evaluation	EU evaluation	RDs comparable
The different ris 500003), is a re for potatoes The RMS inform	k assessment residue levant issue in the ris	atio of constituent isomers e definition for root crops (due to sk assessment only with regard to ewal of the active, the notifier pl SYN500003	o the Codex MRL proposal

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

5.15.4. Codex MRL proposals

Table 71:	Comparison of Codex MRL proposals derived by JMPR and EU MRLs	
-----------	---	--

Commodity	Codex MRL proposal	EU MRL	Comment		
Beans with pods, subgroup of (includes all commodities in this subgroup)	1	0.01*	Critical GAP: Canada, 4×150 g/ha, RTI not reported, PHI 1 days Number of trials: 10 Sufficiently supported by data: Yes Specific comments/observations: Trials on snap beans. The available plant metabolism studies conducted on leafy crops and fruit crops are sufficient to address the metabolic behaviour for the specific use on beans (with pods). Conclusion: The proposed Codex MRL is acceptable		
Cacao bean	0.06	0.02* (0.06 proposed EU MRL; EFSA, 2018i)	Critical GAP: Cameroon, 6 × 90 g/ha, retreatment interval not reported, PHI 14 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: Residue trials on cacao beans assessed previously in an EU import tolerance application (EFSA, 2018i). The available plant metabolism studies conducted on leafy crops and fruit crop are sufficient to address the metabolic behaviour for the specific use on cocoa Conclusion: The proposed Codex MRL is acceptable		
Edible offal (mammalian)	0.01*	0.02*	The dietary burden was calculated, including cabbage head, grape pomace, potato by-products Since a feeding study is not available, the Codex MRL proposals were derived from the available lactating goat metabolism study Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable		
Eggs	0.01*	0.02*	The dietary burden was calculated, including the cabbage head and potato by-products. No animal feeding studies on poultry are available and Codex MRL proposals were derived for poultry from the poultry metabolism study. The highest dose level covers the max DB Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable		
Mammalian fats (except milk fats)	0.01*	0.02*	See comments on edible offal (mammalian) Conclusion: The proposed Codex MRL is acceptable		
Meat (from mammals other than marine mammals)	0.01*	0.02*	See comments on edible offal (mammalian) Conclusion: The proposed Codex MRL is acceptable		
Milks	0.01*	0.02*	See comments on edible offal (mammalian) Conclusion: The proposed Codex MRL is acceptable		

Commodity	Codex MRL proposal	EU MRL	Comment	
Potato	0.1	0.01*	Critical GAP: Canada and USA, seed treatment at 1×100 g/t seed potato followed by foliar treatment at 3×146 g/ha, retreatment interval not reported, PHI 14 days Number of trials: 18 Sufficiently supported by data: Yes Specific comments/observations: The metabolite SYN500003 was identified in potato tubers at levels up to 0.013 mg/kg with an estimated median reside of 0.005 mg/kg for SYN500003. No ADI or ARfD established for the metabolite SYN500003. The JMPR applied the threshold of toxicological concern (TTC) approach for the metabolite SYN500003 (the chronic exposure based on the median residue accounted for 0.027 µg/kg bw; an acute exposure was not calculated by JMPR; in the EU, this approach was not accepted to address the EU data requirements Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs. Toxicological reference vales (ADI or ARfD) are not available for the metabolite SYN500003 which was identified in potato tubers at levels above 0.01 mg/kg The RMS proposed to accept the proposed Codex MRLs, considering that individual residue levels of the metabolite are expected to be low (in all trials provided levels were below 0.01 mg/kg with the exception of 2, for which residues in potatoes were 0.01 mg/kg and 0.013 mg/kg). The use of	
Poultry edible offal	0.01*	0.02*	See comments on eggs Conclusion: The proposed Codex MRL is acceptable	
Poultry fats	0.01*	0.02*	See comments on eggs Conclusion: The proposed Codex MRL is acceptable	
Poultry meat	0.01*	0.02*	See comments on eggs Sufficiently supported by data: Yes Conclusion: The proposed Codex MRL is acceptable	
Cocoa butter	_	_	A reduction of residues in cocoa butter occurs and a PF of 0.53 was derived from two processing studies	
Cocoa powder	_	_	A reduction of residues in cocoa powder occurs and a PF of 0.48 was derived from two processing studies	
General comments	EU MRLs es	stablished l	by Regulation (EU) 2015/845	

GAP: Good Agricultural Practice; PHI: preharvest interval; MRL: maximum residue level; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ADI: acceptable daily intake; ARfD: acute reference dose; RMS: rapporteur Member State; DB: Dietary Burden; RTI: re-treatment interval.

*: Indicates that the input value is proposed at the limit of quantification.

5.15.5. Consumer risk assessment

Table 72:	Summary	of the co	onsumer r	risk assessment
-----------	---------	-----------	-----------	-----------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: A short-term dietary risk assessment was not required for the parent mandipropamid because an acute reference dose (ARfD) was not applicable for the active substance considering the toxicological profile. A short-term dietary risk assessment may be required for the metabolite SYN500003 for the proposed Codex	RA assumptions: The most recent long-term risk assessment (EFSA, 2019c) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for beans with pods and cacao beans (mandipropamid only), and potato (sum of mandipropamid and SYN500003). The long-term risk assessment is indicative because a	Specific comments: Toxicological reference values (ADI or ARfD) are not available for the metabolite SYN500003. The JMPR. The JMPR applied the threshold of toxicological concern (TTC) approach for the metabolite SYN500003 based on the estimated the chronic exposure for potatoes

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
MRL on potatoes, pending on the toxicological profile of this metabolite	toxicological reference value (ADI) is not available for the metabolite SYN500003 and was performed based on the assumption that SYN500003 is of similar chronic toxicity as the parent mandipropamid. The indicative calculation did not indicate a risk to consumers although the overall risk might be underestimated if the metabolite SYN500003 possesses a higher chronic toxicity than the parent mandipropamid (relevant for uses on root/tuber crops: potatoes, onions and spring onions) The EU ADI for mandipropamid was used The risk assessment was performed disregarding the possible impact of enantiomer ratio due to plant or livestock metabolism	
Results: No short-term dietary risk assessment was performed	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 5% of the ADI (NL toddler). From the commodities under consideration, the contribution to the total exposure was the highest for residues in beans with pods (0.12% of the ADI)	Results: Long-term exposure: 0–6% of the ADI No short-term dietary risk assessment was performed

RA: risk assessment; MRL: maximum residue level; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ADI: acceptable daily intake.

5.16. Fluopyram (243) R

5.16.1. Background information

Table 73:Background information

		Comments, references
Type of JMPR evaluation	Follow-up assessment	In 2017 JMPR MRL proposals were derived only for tomatoes; JMPR did not consider it appropriate to derive a MRL proposal for the whole subgroup. Following comments in the CCPR meeting, JMPR reconsidered its policy for extrapolation to the whole subgroup
RMS	DE	
Approval status	Approved	Commission Implementing Regulation (EU) 802/2013 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2013b) EFSA (2018a) (confirmatory data)
MRL review	No	Ongoing
MRL applications	Yes, see comments	EFSA (2017j) (purslanes) EFSA (2019d)

		Comments, references
Cut-off criteria:	Not met.	Harmonised classification and labelling for CMR –
• Mutagen cat. 1A or 1B	ED: not concluded	Annex VI: none
 Carcinogen cat. 1A or 1B Toxic for reproduction 		EU Peer Review proposal (2013b): R40: Limited evidence of a carcinogenic effect (Carc. Cat. 3)
cat. 1A or 1B	ED assessment according to ECHA/EFSA guidance (2018)	
• Endocrine disrupting	and scientific criteria (Commission Regulation (EC)	
(ED) potential	No 2018/605 ^(b)): not conducted	

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.
 (a): 802/2013/EU: Commission Implementing Regulation (EU) No 802/2013 of 22 August 2013 approving the active substance fluopyram, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 225, 23.8.2013, p. 13–16.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.16.2. Toxicological reference values

Table 74: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR evaluation			EU evaluation	
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	0.01 mg/kg bw per day	JMPR (2010)	0.012 mg/kg bw per day	EFSA (2013b) (2-yr, rat, uncertainty factor 100) confirmed in European Commission (2013a)	Yes
ARfD	0.5 mg/kg bw	JMPR (2010)	0.5 mg/kg bw	EFSA (2013b) (acute neurotoxicity, rat, uncertainty factor 100) confirmed in European Commission (2013a)	Yes
Conclusion/ comment	The agreed EU ADI is 0.012 mg/kg bw per day based on the NOAEL of the 2-year study applying an uncertainty factor of 100. The EU ARfD is 0.5 mg/kg bw based on the acute neurotoxicity NOAEL with an uncertainty factor of 100 The slightly different ADI values are probably the result of a different policy on rounding				

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

5.16.3. Residue definitions

Table 75: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Fluopyram	Fluopyram	Yes
Animal Sum c products (trifluc expres		Sum of fluopyram and 2- (trifluoromethyl) benzamide, expressed as fluopyram The residue is not fat soluble	Sum fluopyram and fluopyram- benzamide (M25), expressed as fluopyram The residue is not fat soluble	Yes
RD-RA Plant products		Fluopyram	Sum fluopyram, fluopyram- benzamide (M25), fluopyram- E/Z-olefine (M02/M03), expressed as fluopyram	No
	Animal products	Sum of fluopyram, 2- (trifluoromethyl)benzamide and the combined residues of <i>N</i> - {(<i>E</i>)-2-[3-chloro-5-	Sum of fluopyram, fluopyram- benzamide (M25), expressed as fluopyram	Yes

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
		(trifluoromethyl)pyridin-2-yl] ethenyl}-2-trifluoromethyl) benzamide and <i>N</i> -{(<i>Z</i>)-2-[3- chloro-5-(trifluoromethyl)pyridin- 2-yl]ethenyl}-2-trifluoromethyl) benzamide, all expressed as fluopyram		
Conclusion/ comments	The residue definitions for enforcement (plant and animal commodities) derived by JMPR and applicable in the EU are identical. Thus, the Codex MRLs are compatible with the EU legal framework As regards the residue definition for risk assessment for plants, the EU residue definition is wide It is noted that metabolite M25 was observed at important proportions in the metabolism study in beans. At EU level, a conversion factor was derived for fruit crops (1.1), peas without pods (1.5), peas/beans with pods, oilseeds, stem vegetables (1.2) The lack of conversion factors introduces an uncertainty in the exposure calculations and the consumer risk assessment should be considered as tentative and may underestimate the actual exposure for plant products for which JMPR derived MRL proposals that are higher than the existing EU MRLs		e EU legal lefinition is wider etabolism study without pods tions and the mate the actual	
	Rotational crop studies in cereals, leafy vegetables and roots were assessed in the peer re (EFSA, 2013b). Fluopyram and the metabolites resulting from the cleavage of the parent (fluopyram-benzamide (M25) and fluopyram-PCA (M43)) major components of the residue rotational crops. 7-hydroxy metabolites observed in higher proportions than in primary cro Residues in rotational crops cannot be excluded. (Default MRL proposals have been made root/tuber and leafy crops (0.1 mg/kg), cereals, oilseeds and perennial crops (0.01*))		e parent he residues in rimary crops. een made for	

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.16.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Cherry Tomato	W 0.4	0.9 (tomato)	JMPR proposed to withdraw the existing CXL for cherry tomato and to replace it with the new MRL for Subgroup of Tomatoes At EU level, the MRL established for tomatoes is also applicable to cherry tomatoes
Rice, husked	1.5	0.01*	Critical GAP: Thailand 2 × 0.024 kg/hL (up to BBCH 59) Number of trials: 8 trials in rice grain; 1 processing study (JMPR, 2017) Sufficiently supported by data: No Specific comments/observations: The Codex MRL proposal of 4 mg/kg derived by JMPR in 2017 referred to cereal grain (GC 0649). The MRL proposal for husked rice of 1.5 mg/kg (MRL relevant for rice, according to Annex I of Reg (EU) 2018/62) was derived by applying the processing factor of 0.29 (JMPR, 2017). Since only one processing study is available, the proposed MRL is not sufficiently supported. Conclusion: The proposed Codex MRL is not acceptable because the number of processing studies is insufficient
Rice, polished	0.5	_	Critical GAP: Thailand 2 \times 0.024 kg/hL (up to BBCH 59) Number of trials: 8 trials in rice grain; 1 processing study (JMPR, 2017) Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL proposal of 4 mg/kg by JMPR in 2017 referred to cereal grain (GC 0649). The MRL proposal for polished rice of 0.5 mg/kg was derived by applying the processing factor of 0.11 JMPR (2017)

Table 76: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
			Conclusion: The proposed Codex MRL is acceptable, noting that in the EU the relevant commodity is husked rice
Tomato	W 0.5	0.9	JMPR proposed to withdraw the existing CXL for tomato and to replace it with the new MRL for subgroup of Tomatoes
Tomatoes, subgroup of (includes all commodities in this subgroup)	0.5	0.9 (tomato)	Critical GAP: USA, 2×0.25 kg a.i./ha, PHI 0 days Number of trials: 11 Sufficiently supported by data: Yes Specific comments/observations: revised from 2017 to accommodate comments by EU and Canada. MRL extrapolated from tomato to the whole group of tomato (no change, in the EU classification tomatoes cover the whole subgroup) Conclusion: The proposed Codex MRL is acceptable
General comments	The changes a	re based on stu	dies assessed by JMPR in 2017

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; CXL: Codex Maximum Residue Limit; MRL: maximum residue level; BBCH: growth stages of mono- and dicotyledonous plants; GAP: Good Agricultural Practice; PHI: preharvest interval. *: Indicates that the input value is proposed at the limit of quantification.

5.16.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: An indicative short-term dietary risk assessment was performed for rice for which the Codex MRL proposal is higher than the existing EU MRLs were derived, as outlined in Section 2 STMR residue value was used for the exposure calculation The residues conversion from enforcement to risk assessment residue definitions has not been done due to the lack of reliable CF. Therefore, the risk assessment needs to be considered in indicative The EU ARfD was used	RA assumptions: An indicative long-term dietary risk assessment was performed with PRIMo rev. 3.1. The calculation is based input values derived in the framework of the most recent MRL application (broccoli). Considering that following the completeness check performed for the MRL review under Art. 12, EFSA expects that the livestock dietary burden calculation might result in lower livestock exposure and consequently lower residues in animal products, and considering that milk is a major driver for the long-term intake calculation and inaccurate input values have a major effect on the outcome of the calculation, EFSA did not include the previously derived STMR value for milk. Thus, risk assessment is therefore considered as indicative; a more accurate risk assessment taking into account the available data submitted in support of the existing MRLs will be presented in the framework of the Art. 12 MRL review For rice, the STMR value derived by JMPR for husked rice was included in the calculation. A conversion factor to accommodate for the wider EU residue definition was not available The EU ADI was used	Specific comments: The commodities were assessed in the previous assessment (JMPR, 2017)
Results: No short-term exposure concern was identified (4% of the ARfD for rice)	Results: The indicative long-term exposure assessment (without milk) accounted for 99% of the ADI The contribution of rice was max. 2% of the ADI Risk managers to discuss whether the existing MRL for rice should be amended before the MRL review is completed, considering that currently a comprehensive risk assessment cannot be performed	Results: No consumer risk identified in previous assessment related to rice (JMPR, 2017)

RA: risk assessment; MRL: maximum residue level; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; ADI: acceptable daily intake.

5.17. Sulfoxaflor (252) R

5.17.1. Background information

Table 78:Background information

		Comments, references
Type of JMPR evaluation	New use	
RMS	IE	
Approval status	Approved	Commission Implementing Regulation (EU) 2015/1295 ^(a)
EFSA conclusion	Yes	EFSA (2014e) EFSA (2019f)
MRL review	Yes, see comments	EFSA (2017d) (statement; no MRL review required since MRLs were set in the framework of the first approval of the a.s.)
MRL applications	Yes	EFSA (2017n) (grape leaves, artichoke) EFSA (2019b) (various crop)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonized classification and labelling-entry into Annex VI: no entry in Annex VI for CMR properties EU Peer Review proposal for CMR: no proposal for CMR properties ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level; a.s.: active substance.

(a): Commission Implementing Regulation (EU) 2015/1295 of 27 July 2015 approving the active substance sulfoxaflor, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 199, 29.7.2015, p. 8–11.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.17.2. Toxicological reference values

Table 79: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR	JMPR evaluation		U evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.05 mg/kg bw per day	JMPR (2011)	0.04 mg/kg bw per day	EFSA (2014e); European Commission (2015b) (Rat, 2-year study, UF 100)	No	
ARfD	0.3 mg/kg bw	JMPR (2011)	0.25 mg/kg bw	EFSA (2014e); European Commission (2015b) (Rat, acute Neurotoxicity, UF 100)	No	
Conclusion/ comment	policy on rour	The slight difference in the toxicological reference values are probably resulting from a different policy on rounding (ARfD) or conversion from ppm to mg/kg bw per day (ADI). During the EU peer review, it was agreed that references values of sulfoxaflor can apply to metabolite				

X11719474

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose.

5.17.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Sulfoxaflor	EU Reg. 2018/832: Sulfoxaflor (sum of isomers)	Yes	
	Animal products	Sulfoxaflor The residue is not fat soluble	EU Reg. 2018/832: Sulfoxaflor (sum of isomers) The residue is not fat soluble	Yes	
RD-RA	Plant products	Sulfoxaflor	Sum of parent sulfoxaflor and metabolite X11719474, expressed as sulfoxaflor	No	
	Animal products	Sulfoxaflor	Sum of parent sulfoxaflor and metabolite X11719474, expressed as sulfoxaflor	No	
comments	two diastereou all isomers At EU level, th comprehensiv which has sho in the leafy pa the residue dee that if the met residue definit For several cro recently asses and PHIs asse except in cere	Plant and animal commodities : The residue definitions for enforcement set by JMPR and at EU level are substantially identical. Since the routine analytical method could not separate the two diastereomeric pairs of enantiomers in sulfoxaflor, the residue definitions apply to the sum of all isomers At EU level, the residue definition for risk assessment in plant and animal commodities is more comprehensive and includes the metabolite X11719474. X11719474 is a plant and soil metabolite, which has shown to be preferentially taken up by the roots of the plants and to be present (> LOQ) in the leafy parts of the crops in rotation crops, particularly in feed items. However, its inclusion in the residue definitions for risk assessment of plant and animal products is provisional. It was agreed that if the metabolite X11719474 is shown to be significantly less toxic than sulfoxaflor, then the residue definitions for risk assessment will be restricted to parent sulfoxaflor only For several crops, including crops previously assessed by JMPR (JMPR evaluation 2011) and recently assessed by EFSA (2019f), results for X11719474 were reported separately. At the uses and PHIs assessed, concentrations of this metabolite were at or close to the LOQ of 0.01 mg/kg, except in cereal straw (up to 0.034 mg/kg). Considering the low concentrations and its toxicological profile, the differences between the two risk assessment residue definitions is of low			

Table 80: Comparison of the residue definitions derived by JMPR and at EU level

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; LOQ: limit of quantification; PHI: preharvest interval.

5.17.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Edible offal (Mammalian)	1	0.6 (edible offal, liver, kidney from farmed terrestrial animals, except poultry)	New maximum dietary burden of sulfoxaflor was calculated from the Australian diet for beef cattle. The Codex MRL proposal is based on estimates from previously assessed feeding studies Conclusion: The proposed Codex MRL is acceptable
Maize	0.01*	0.01*	Critical GAP: Canada, 2 × 36 g/ha, interval 7 days PHI 14 days (restriction max 72 g/ha per season) Number of trials: 14 Sufficiently supported by data: Yes Specific comments/observations: All trials overdosed (50 g/ha) with residues < LOQ (12) and at LOQ (2) proportionally scaled to derive STMR of 0.007 mg/kg, scaling factor 0.7. However, it is not a good practice to scale down overdosed trials with residues below the LOQ Conclusion: The proposed Codex MRL is acceptable

Commodity	Codex MRL proposal	EU MRL	Comment
Maize fodder (dry)	0.6	-	Critical GAP: Canada, 2×36 g/ha, interval 7 days, PHI 14 days (restriction max 72 g/ha per season) Number of trials: 15 Sufficiently supported by data: Yes No MRLs are set for feed items at EU level
Mammalian fats	0.2	0.1 (farmed terrestrial animals, except poultry)	See comments on mammalian edible offal Conclusion: The proposed Codex MRL is acceptable
Meat (mammalian except marine mammals)	0.4	0.3 (farmed terrestrial animals, except poultry)	See comments on mammalian edible offal The Codex MRL proposal refers to meat; for muscle the same MRL proposal would be derived Conclusion: The proposed Codex MRL is acceptable
Milks	0.3	0.2	New maximum dietary burden of sulfoxaflor was calculated from the Australian diet for dairy cattle. The Codex MRL proposal is based on estimates from previously assessed feeding studies. It was derived according to the residue definition set by JMPR, which includes parent compound only Conclusion: The proposed Codex MRL is acceptable
Poultry meat	0.7	0.1	New maximum dietary burden of sulfoxaflor was calculated from the Australian diet for broilers. The Codex MRL proposal was derived from a previously assessed feeding studies (JMPR 2011). The Codex MRL proposal refers to meat; for muscle the same MRL proposal would be derived Conclusion: The proposed Codex MRL is acceptable
Poultry edible offal	No modification proposed (existing CXL 0.3)	0.3 (edible offal, liver, kidney)	See comments on poultry meat Conclusion: The proposed Codex MRL is acceptable
Poultry fats	No modification proposed (existing CXL 0.03)	0.03	See comments on poultry meat Conclusion: The proposed Codex MRL is acceptable
Eggs	No modification proposed (existing CXL 0.1)	0.1	New maximum dietary burden of sulfoxaflor was calculated from the Australian diet for laying hens. The revised dietary burden calculation required a modification of the STMR and HR values for eggs, but did not lead to a modification of the existing CXL which is set at the level of 0.1 mg/kg
Rice	7	_	Critical GAP: Indonesia, 4 × 100 g/ha, interval 7 days, PHI 10 days (restriction 400 g/ha season) Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: Trials conducted in Philippines and Australia. The Codex MRL proposal was derived from residues of sulfoxaflor in paddy rice Conclusion: The proposed Codex MRL is not acceptable because it refers to paddy rice, which is not the commodity to which the EU MRL applies
Rice, polished	1	-	Critical GAP: not reported in the Summary report Number of trials: 3 Sufficiently supported by data: Yes Specific comments/observations: median PF of 0.14

Commodity	Codex MRL proposal	EU MRL	Comment
Rice, husked	1.5	0.01*	Critical GAP: not reported in the Summary report Number of trials: 8 residue trials in paddy rice, 3 processing studies Sufficiently supported by data: Yes Specific comments/observations: The MRL proposal was derived by applying the median PF of 0.2 on the MRL proposal derived for rice Conclusion: The proposed Codex MRL is acceptable; it refers to the commodity which is included in the EU MRL legislation
Rice straw and fodder (dry)	20		Critical GAP: Indonesia, 4×100 g/ha, interval 7 days, PHI 10 days (restriction 400 g/ha season) Number of trials: 8 Sufficiently supported by data: Yes No MRLs are set in the EU for feed items
Sorghum	0.2	0.01*	Critical GAP: Canada, 2×36 g/ha, interval 7 days, PHI 14 days (restriction max 72 g/ha per season) Number of trials: 9 Sufficiently supported by data: Yes Specific comments/observations: All trials overdosed (50 g/ha) proportionally scaled, scaling factor 0.7 Conclusion: The proposed Codex MRL is acceptable
Sorghum straw and fodder (dry)	0.7	_	Critical GAP: Critical GAP: Canada, 2 × 36 g/ha, interval 7 days, PHI 14 days Number of trials: 9 Sufficiently supported by data: Yes Specific comments/observations: All trials overdosed (50 g/ha) proportionally scaled, scaling factor 0.7 No MRLs are set in the EU for feed items
Sweet corn (corn- on-the-cob) kernels plus cobs with husks removed)	0.01*	0.01*	Critical GAP: Canadian, 2×36 g/ha, interval 7 days, PHI 7 days (restriction max 72 g/ha per season) Number of trials: 9 Sufficiently supported by data: Yes Specific comments/observations: All trials overdosed (50 g/ha) with residues < LOQ (9) Conclusion: The proposed Codex MRL is acceptable
Tree nuts	0.03	0.02*	Critical GAP: USA, 4×101 g/ha, interval 7 days, PHI 7 days (restriction max 298 g/ha per season) Number of trials: 10 trials conducted on almonds (5) and pecans (5) with 3×100 g/ha Sufficiently supported by data: Yes Specific comments/observations: Residues < LOQ except in one trial (0.02 mg/kg). The previously derived MRL proposal of 0.015 mg/kg (step 4) should be withdrawn Conclusion: The proposed Codex MRL is acceptable
General comments	Information on the concentrations of the metabolite X11719474, currently included in the EU residue definitions for risk assessment, in the products of plant and animal origin under assessment are not available. It is expected that this deviation does not have a practical implication for the consumer risk assessment Typos (summary report) STMR for maize fodder (dry) 0.16 mg/kg instead of 0.6 mg/kg		

MRL: maximum residue level; GAP: Good Agricultural Practice; PHI: preharvest interval; LOQ: limit of quantification; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; CXL: Codex Maximum Residue Limit: HR: highest residue; PF: processing factor.

*: Indicates that the input value is proposed at the limit of quantification.

5.17.5. Consumer risk assessment

Table 82: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was performed for the products of plant and animal origin for which higher Codex MRLs were proposed, compared to the existing EU MRLs The EU ARfD was used	RA assumptions: The most recent long-term risk assessment (EFSA, 2019f) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for the products of plant and animal origin which higher Codex MRLs were proposed, compared with the existing EU MRLs STMR related to the Codex MRLs refer to parent compound only, except citrus different than limes, where a conversion factor for risk assessment of 1.16 was used	Specific comments: –
Results: No short-term exposure concern was identified (maximum 7% of the ARfD for milk) In the framework of the EFSA conclusion, a theoretical factor of 2 was applied to the risk assessment in order to accommodate for the lack of information on the ratio of the enantiomers present in the individual diastereomers of sulfoxaflor and X11719474 (EFSA, 2014e). Following this approach, the margin of safety of the exposure calculation is still sufficiently large to conclude that the assessed uses are unlikely to present a consumer health concern	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 34% of the ADI In the framework of the EFSA conclusion, a theoretical factor of 2 was applied to the risk assessment in order to accommodate for the lack of information on the ratio of the enantiomers present in the individual diastereomers of sulfoxaflor and X11719474 (EFSA, 2014e). Following this approach, the margin of safety of the exposure calculation is still sufficiently large to conclude that the assessed uses are unlikely to present a consumer health concern	Results: Long-term exposure: 2–9% of the JMPR ADI Short-term exposure: Max. 20% of the ARfD

MRL: maximum residue level; ARfD: acute reference dose; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ADI: acceptable daily intake.

5.18. Chlorfenapyr (254) T/R

5.18.1. Background information

Table 83: Background information

		Comments, references
Type of JMPR evaluation	New use	In 2012 and 2013, JMPR assessed the active substance, however could not conclude on residue definitions and therefore did not propose Codex MRLs
RMS	ES	
Approval status	Not approved	Commission Decision No 2001/697/EC ^(a)
EFSA conclusion	No	
MRL review	No	
MRL applications	No	
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Chlorfenapyr is approved for use as a biocide in the EEA and/or Switzerland for wood preservation Harmonized classification and labelling for CMR – Annex VI: No classification ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level. (a): Commission Decision of 5 September 2001 concerning the non-inclusion of chlorfenapyr in Annex I to Council Directive

91/414/EEC (2001/697/EC). 0J L 249, 19.9.2001. pp. 19-20.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.18.2. Toxicological reference values

Table 84: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR evalua	tion	EU evaluatio	n		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.03 mg/kg bw per day	JMPR (2012)	0.015 mg/kg bw per day	ECCO (99)	No	
ARfD	0.03 mg/kg bw	JMPR (2012)	0.015 mg/kg bw	ECCO (99)	No	
Conclusion/	Parent compound: No re	ecent toxicolog	ical assessment available for	the a.s. used as	a pesticide	
comment	The ADI established by the JMPR is based on a NOAEL of 2.8 mg/kg bw per day for decreases in body weight gain and vacuolation of the white matter of the brain in an 18-month mouse study and a NOAEL of 2.9 mg/kg bw per day for reduced body weight and body weight gain and increased liver weight associated with hepatocellular enlargement in a 2-year rat study. This was supported by a NOAEL of 2.6 mg/kg bw per day for reversible vacuolar myelopathy, vacuolation and/or myelin sheath swelling of the brain and spinal cord in males in a 1-year neurotoxicity study in rats. An uncertainty factor (UF) of 100 was applied The ARfD is based on the NOAEL of 3 mg/kg bw for depression of grooming and reactivity and decreased spontaneous motor activity observed in a pharmacological study in mice and applying an UF of 100					
	In the framework of the EU biocides assessment, an ADI of 0.028 mg/kg bw per day was derived, based on the same NOAELs from the same studies as the ones used by the JMPR; no ARfD was allocated under Reg. 98/8/EC, however it seems that the biocide assessment may not have had access to the study that was used by the JMPR to establish the ARfD According to JMPR, the metabolite 4-bromo-2-(<i>p</i> -chlorophenyl)-5-(trifluoromethyl)-pyrrole-3-carbonitrile (tralopyril) which was observed in plant metabolism studies, is more toxic than parent chlorfenapyr and an additional uncertainty factor of 10 was applied with regards to chlorfenapyr toxicological reference values (JMPR, 2013)					
	Details on the studies on genotoxicity are not reported in the JMPR report (it states only that <i>in vitro</i> and <i>in vivo</i> studies were provided); EFSA could not find evidence on these genotoxicity studies in JMPR Evaluations and therefore a conclusion cannot be derived whether all genotoxicity endpoint have been covered					
	currently estimated diet for the 6 metabolites an Toxicological data on the Cramer Class 3. The cal	ary exposures of of compared to ese substances culated exposu g bw (CL32225	idies were considered toxicol using TTC approach (exposur the TTC threshold of $1.5 \mu g$, are not available to justify th re for these metabolites rang 0, CL151835 and CL325157, 25195)	re was estimated /kg bw for Cram ne use of the TT jed from < 0.001	l individually er Class 3). C threshold for L µg/kg bw (CL	

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; TTC: threshold of toxicological concern.

5.18.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Chlorfenapyr	Reg. 396/2005: Chlorfenapyr	Yes	
	Animal products	Chlorfenapyr The residue is fat soluble	Reg. 396/2005: Chlorfenapyr The residue is not labelled as fat soluble	Yes	
RD-RA	Plant products	bromo-2-(<i>p</i> -chlorophenyl)-5- RD for RA available co		No comparison possible	
	Animal products	Sum of chlorfenapyr plus 10×4 - bromo-2-(<i>p</i> -chlorophenyl)-5- (trifluoromethyl)-pyrrole-3-carbonitrile (tralopyril)		No comparison possible	
Conclusion/ comments	 (traiopyrii) Plant metabolism studies were assessed by the 2012 JMPR. Metabolism studies in oranges, tomatoes, head lettuce, potatoes and cotton are available JMPR recommended that if in future further uses of chlorfenapyr result in an increase in exposure to the metabolites for which no toxicological studies (except genotoxicity data) are available, the residue definition should be reconsidered EU assessment: RMS informed EFSA that in the peer review a residue definition for plants was agreed (residue definition was finally proposed as chlorfenapyr + AC 303268 (= tralopyril) expressed as AC 303268); for animal products the proposed residue definition was finally proposed as chlorfenapyr + CL 303268 (= tralopyril), expressed as CL 303268 (Evaluation table; ECCO, 99) 				

Table 85: Comparison of the residue definitions derived by JMPR and at EU level

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State.

5.18.4. Codex MRL proposals

Table 86: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Chili pepper, dry	3	_	The proposed Codex MRL is based on the MRL proposal for peppers, applying the default dehydration factor of 10 No MRLs are set in the EU for processed products
Edible offal (Mammalian)	0.05	-	The MRL proposal was derived from a feeding study assessed previously by JMPR (2012), taking into account the updated dietary burden calculation. Since the samples taken in the feeding study were not analysed for tralopyril, JMPR derived conversion factors on the basis of metabolism studies Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable with the EU policy on setting MRLs, considering the approach to derive input values for risk assessment using conversion factors derived from metabolism studies
Eggs	0.01	-	The MRL proposal was derived from a metabolism study assessed previously by JMPR (2012), taking into account the updated dietary burden calculation. JMPR should be asked to verify the correctness of the dietary burden calculation: according to Annex 6, p 602 of JMPR report, the maximum dietary burden for EU poultry broiler and layer is 0.008 ppm and 0.007 ppm, while the calculation of the MRL was based on an assumption of a maximum dietary burden of 0.47 ppm

Commodity	Codex MRL proposal	EU MRL	Comment
Garlic	0.01*	0.02*	Critical GAP: BR, 24 g a.i./hL, 1,000 L/ha, PHI 14 days, number of application was not specified (GAP originally reported in 2012 JMPR) Number of trials: 5 trials with 3×240 g a.i./ha, PHI 14 days Sufficiently supported by data: If it is confirmed by JMPR/ BR that the residue trials reflect an approved GAP, the supporting residue trials are sufficient. See also general comments below
Lemons and Limes, subgroup pf (includes all commodities in this subgroup)	0.8	0.01* Kumquats: 0.01*	Critical GAP: BR, 3×15 g a.i./hL, PHI 14 days. Water amount per ha are not specified Number of trials: 8 trials with 3×15 g/hL, PHI 14 days Sufficiently supported by data: Yes Specific comments/observations: See general comments below Conclusion: The proposed Codex MRL is acceptable
Mammalian fats	0.6	_	See edible offal mammalians
Meat (from mammals other than marine mammals)	0.6(fat)	_	See edible offal mammalians
Melons, except Watermelon	0.4	0.01*	Critical GAP: BR, 12–24 g/ha, PHI 14 days, number of applications and water amount per ha not specified Number of trials: 9 trials, with 3×24 g/hL, PHI 14 days; in 5 trials residues in edible part of the crop were measured Before a conclusion on the appropriateness of the MRL proposal and the validity of trials can be taken, further details on the Brazilian GAP need to be reported (i.e. number of applications, water amount/ha). See also general comment
Milks	0.03	-	See edible offal mammalians
Onion, bulb	0.01*	0.02*	Critical GAP: BR, 120–180 g/ha, 800–1000 l/ha, PHI 14 days, number of applications not specified Number of trials: 9 trials with 3×180 g/ha, PHI 14 days Before a conclusion on the appropriateness of the MRL proposal and the validity of trials can be taken, further details on the Brazilian GAP need to be reported (i.e. number of applications). See also general comment
Oranges, Sweet, Sour, subgroup of (includes all commodities in this subgroup)	1.5	0.01*	Critical GAP: BR, 3×15 g a.i./hL, PHI 14 days. Water amount per ha not specified Number of trials: 7 trials with 3×15 g/hL, PHI 14 days Sufficiently supported by data: No; one additional trial would be required Specific comments/observations: See general comments below Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs
Рарауа	0.3	0.01*	Critical GAP: 7.2–12 g/hL, PHI 14 days, number of applications and water amount per application not specified Number of trials: 5 trials with 3 \times 12 g/hL, PHI 14 days Before a conclusion on the appropriateness of the MRL proposal and the validity of trials can be taken, further details on the Brazilian GAP need to be reported (i.e. number of applications). See also general comment

Commodity	Codex MRL proposal	EU MRL	Comment
Peppers	0.3	0.01*	Critical GAP: BR, 7.2 g/ha, 7-day PHI, number of applications not specified Number of trials: 7 trial with 3 × 7.2 g/ha, 1,000 L/ha, 7-day PHI Sufficiently supported by data: Not fully supported (1 additional trial would be required) Specific comments/observations: From metabolism studies, a conversion factor of 1 was derived. Since in the metabolism study the sampling was 1 day after the last application, the residues are shifted to the unmetabolised parent compound. Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable/compatible with the EU policy on setting MRLs
Poultry, edible offal of	0.01	_	See eggs
Poultry, fats	0.02	-	See edible offal mammalians
Poultry, meat	0.02(fat)	_	See edible offal mammalians
Potato	0.01*	0.01*	Critical GAP: BR; 180 g a.i./ha, 7-day PHI, number of applications not reported. Number of trials: 9 trial (4×180 g a.i./ha, 7-day PHI Sufficiently supported by data: Unclear Before a conclusion on the appropriateness of the MRL proposal, further details on the Brazilian GAP need to be reported (i.e. number of applications, water amount/ha). See also general comment
Soya bean (dry)	0.08	0.02*	Critical GAP: BR, 3 \times 0.29 kg a.i./ha, PHI 30 days Number of trials: 14 trials representative for the BR GAP Sufficiently supported by data: Yes Specific comments/observations: see general comment
Soya bean fodder	7(DM)	-	No MRLs are set in the EU for feed
Soya bean, crude oil	0.4	_	The proposed Codex MRL is based on the MRL proposal for soya beans, applying the processing factor of 4.5 derived from 3 processing studies No MRLs are set in the EU for processed products
Tomatoes	0.4	0.01*	Critical GAP: BR, 12 g a.i./hL, 7 d PHI, number of applications and water amount/ha not specified (JMPR 2012) Number of trials: 8 trials with 5×24 g/hL, 1,000 L/ha. The results were adjusted to the GAP using scaling. Sufficiently supported by data: Unclear Before a conclusion on the appropriateness of the MRL proposal and the validity of scaling can be taken, further details on the Brazilian GAP need to be reported (i.e. number of applications, water amount/ha). See also general comment
Tea, Green, Black (black, fermented and dried)	60	50	Critical GAP: Japan, 2 × 100 g/ha (5 g/hL), 7-day PHI. Number of trials: 4 trials with 2 × 200 g/ha (5 g/hL), 7-day PHI Sufficiently supported by data: To be discussed with MS. At EU level 8 trials would be required. Number of trials required by JMPR is not clearly specified. Scaling might be appropriate for the residue trials, leading to a lower MRL proposal Conclusion: The proposed Codex MRL is not acceptable because the number of residue trials is probably insufficient, the residue trials are not reflecting the GAP in terms of application rate per hectare and because of the intake concern identified (short-term exposure > EU ARfD) See also general comment

Commodity	Codex MRL proposal	EU MRL	Comment
General comments	In none of the residue trials, tralopyril was analysed. To derive the risk assessment values, JMPR derived conversion factors on the basis of the ratio of parent compound and tralopyril measured in plant metabolism studies representative for the GAP. In the conversion factors the higher toxicity of the metabolite was also taken into account In general, this approach leads to additional uncertainties for the risk assessment, in particular where samples were taken shortly after the last application (i.e. peppers, eggplants, tomatoes), because this is likely to shift the ratio of parent and metabolite ir direction of the less toxic parent compound, leading to an underestimation of the risk for consumers. See risk assessment see below		sion factors on the basis of the ratio of parent compound ant metabolism studies representative for the GAP. In the r toxicity of the metabolite was also taken into account ds to additional uncertainties for the risk assessment, in re taken shortly after the last application (i.e. peppers, se this is likely to shift the ratio of parent and metabolite in rent compound, leading to an underestimation of the risk for
	assessed in th	ne DAR; howeve	nformation on the GAPs (EU uses) and the residue trials er, since the active substance has not been approved in the EU peer review do not affect the proposed Codex MRL

MRL: maximum residue level; ARfD: acute reference dose; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ADI: acceptable daily intake; DM: dry matter; DAR: draft assessment factor.

5.18.5. Consumer risk assessment

Table 87: Summary of the	consumer risk assessment
--------------------------	--------------------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: An indicative short-term dietary risk assessment was performed with PRIMo rev. 3.1 using the HR/STMR values derived by JMPR for the crops for which Codex MRL proposals were higher than the corresponding EU MRL. For the remaining crops, the current EU MRL was used as input value The EU ARfD was used. The risk assessment is indicative, because of additional, non-standard uncertainties, related to the lack of data on the occurrence of the more toxic metabolite tralopyril, which was overcome by JMPR using conversion factors derived from metabolism studies and the relative toxicity. In addition, an indicative peeling factor (0.017) for citrus was derived based on the ration of TRR found in metabolism study in oranges	RA assumptions: An indicative long-term dietary risk assessment was performed using the STMR values derived by JMPR for crops for which Codex MRL proposals were higher than the corresponding EU MRL. For the remaining crops, the current EU MRL was used in input value The EU ADI was used The risk assessment is indicative because of additional, non-standard uncertainties, related to the lack of data on the occurrence of the more toxic metabolite tralopyril, which was overcome by JMPR using conversion factors derived from metabolism studies and the relative toxicity	
Results: The indicative short-term exposure exceeded the ARfD for tea (122% of the ARfD). Further refinements might be possible, considering the transfer to the tea infusion. However, no appropriate processing factors are available at the moment. For other crops, no short-term intake concerns were identified For the other commodities no exceedance of the ARfD was identified	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 28% of the ADI	Results: Long-term exposure: 1-6% of the ADI Short-term exposure: 0-60% of the ARfD

RA: risk assessment; HR: highest residue; STMR: supervised trials median residue; PRIMo: (EFSA) Pesticide Residues Intake Model; MRL: maximum residue level; ARfD: acute reference dose; ADI: acceptable daily intake; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; TRR: total radioactive residues.

5.19. Fluxapyroxad (256) T/R

5.19.1. Background information

Table 88:Background information

		Comments, references
Type of JMPR evaluation	New use	
RMS	FR	
Approval status	Approved	Commission Implementing Regulation (EU) No 589/2012 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2012a)
MRL review	No	Ongoing
MRL applications	Yes, see comments	EFSA (2017i) (various crops); EFSA (2016a) (various crops); EFSA (2015o) (grapes and potatoes); EFSA (2011c) (various crops)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	EU Peer Review proposal for CMR: Carc 2 ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.
 (a): Commission Implementing Regulation (EU) No 589/2012 of 4 July 2012 approving the active substance fluxapyroxad, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 175, 5.7.2012, p. 7–10.

5.19.2. Toxicological reference values

Table 89: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR e	valuation		EU evaluation	
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	0.02 mg/kg bw per day	JMPR (2012)	0.02 mg/kg bw per day	EFSA (2012a) (Rat, 2-year study, UF 100)	Yes
				Same in European Commission (2012)	
ARfD	0.3 mg/kg bw	JMPR (2012)	0.25 mg/kg bw	EFSA (2012a) (Rabbit (developmental effects), and rat (maternal effects) developmental toxicity studies; UF 100)	No
				Same in European Commission (2012)	
Conclusion/ comment	The 2018 JMPR assessed additional <i>in vitro</i> studies, which supported the conclusions of 2012 JMPR that high doses of fluxapyroxad cause hepatocellular adenomas and carcinomas in rats. The Meeting concluded that new studies support the existing ADI and have not impact on the ARfD established.				

⁽b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

JMPR e	JMPR evaluation		EU evaluation	
Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
The ADI and ARfD established by the JMPR and the EU assessments are based on the same NOAELs from the same studies; the final ARfD value established by the JMPR resulted from rounding. It is noted that such rounding would not be applied at EU level since it represents more than 10% variation between the two values				
-	According to the EU assessment, the toxicological reference values of fluxapyroxad are applicable to metabolites M700F048 and M700F008			
The EU assessment established an ADI of 0.25 mg/kg bw per day for the metabolite M700F001 based on a developmental toxicity study in rabbits and applying an uncertainty factor (UF) of 1000; no ARfD was allocated to this metabolite as considered unnecessary. The metabolite would not share the carcinogenic potential of the parent. The metabolite M700F002 would not share the carcinogenic properties of the parent either; the EU peer review established an ADI of 0.3 mg/kg bw per day for this metabolite based on a developmental toxicity study in rabbits and applying an UF of 1,000. No ARfD needs to be established for this metabolite				

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

5.19.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Fluxapyroxad	EC Reg. 2018/685: Fluxapyroxad	Yes
	Animal products	Fluxapyroxad The residue is fat soluble	EC Reg. 2018/685: Fluxapyroxad	Yes
			The residue is fat soluble	
RD-RA	Plant products	Plants: Sum of fluxapyroxad and 3- difluoromethyl)- <i>N</i> -(3',4',5'-trifluoro[1,1'- biphenyl]-2-yl)-1 <i>H</i> -pyrazole-4-carboxamide (M700F008) and 3-(difluoromethyl)-1-(β- D-glucopyranosyl)- <i>N</i> -(3',4',5'- triflurobipheny-2-yl)-1 <i>H</i> -pyrzaole-4- carboxamide (M700F048) and expressed as parent equivalents	<u>Plants:</u> Fluxapyroxad	No
	Animal products	Animals: Sum of fluxapyroxad and 3- (difluoromethyl)- <i>N</i> -(3',4',5'-trifluoro[1,1'- biphenyl]-2-yl)-1 <i>H</i> -pyrazole-4-carboxamide (M700F008) expressed as parent equivalents	Animals: Fluxapyroxad (BAS 700F) and metabolite M700F008 expressed as parent equivalent	Yes
Conclusion/ comments	parent fluxapy comparable For the plant plant metabol observed in the EU risk assess levels above t	I animal residue definitions for enforcement yroxad only. The risk assessment residue de risk assessment residue definition, the JMPR lites (M700F008 and M700F048). Although t ne primary and rotational crop metabolism s sment residue definition for plant commoditi the LOQ in residue trials or rotational crop st esidue definition for plants should be recons	finitions in animal commendations in animal commendations in animal commendations, in contrast to EU, has the fluxapyroxad metabilitudies, they were not in the set of the set o	modities are als s included two olites were ncluded in the ver observed at

Table 90: Comparison of the residue definitions derived by JMPR and at EU level

Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
	The reside trials submitted for the JMPR assessment indicate that the overall contribution of metabolites is low			
Using the risk	assessment values derived by JMPR will lea	nd to a slightly more co	nservative result	

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; LOQ: limit of quantification.

5.19.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Alfalfa hay	20 (DM)	_	Critical GAP: USA, 2×100 g/ha, 14-day interval, PHI 14 days (max 3 annual applications) Number of trials: 10 (CAN/USA) Sufficiently supported by data: Yes Specific comments/observations: The Meeting derived risk assessment values for alfalfa forage and alfalfa hay for the DB calculation. Since the dietary burden did not change significantly compared to the previous JMPR assessment, no modification of MRLs for animal products were derived No MRLs are set in the EU for this crop which is used exclusively as feed items
Citrus fruit, Group of (includes all commodities in this group)	1	0.01* except grapefruit and oranges with 0.3	Critical GAP: USA, 4 × 138 g/ha, 10-day interval, PHI 0 days Number of trials: 23 (7 lemons, 5 grapefruit, 1 mandarin, 10 oranges) Sufficiently supported by data: to be discussed with MS According to agreed extrapolation at Codex levels, to derive MRL proposals for citrus fruit the following information is required: lemon or lime; mandarin; orange or pummelo or grapefruit. The minimum number of trials per commodity and the requirement to demonstrate that trials on different commodities belong to the same population are not defined in detail in the agreed extrapolation document (Appendix XI of 2012 CCPR Report) The JMPR combined residue trials for lemons, grapefruit, mandarins and oranges, since the number of trials was considered sufficient to derive a group MRL
			The CXL would be applicable also to kumquats (classified as miscellaneous fruit, edible peel). The appropriateness of the MRL proposal for kumquat should be addressed by JMPR. No information on the residue distribution between peel and pulp was provided Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering that the number of mandarin trials is very limited (mandarins are a major crop at Codex level) and that the data sets for oranges, lemons and grapefruit are significantly different (Kruskal–Wallis H-test) Instead of deriving a group MRL for citrus, the data would allow to set a MRL for oranges (1.5 mg/kg), lemon/lime/ kumquat (1 mg/kg) and grapefruit (0.6 mg/kg)
Citrus oil, edible	60	-	The PF of 59 derived from two processing studies

Commodity	Codex MRL proposal	EU MRL	Comment
Coffee beans	0.15	0.01*	Critical GAP: Brazil, 3 × 100 g/ha, 45-day interval, PHI 45 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable
Cotton seed	0.5	0.3	Critical GAP: Brazil, 4×58.5 g/ha, 12-day interval, PHI 14 days Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: Cotton seed according to EU classification is considered a major crop in the SEU/ World. According to the JMPR criteria 4 trials are sufficient Conclusion: The proposed Codex MRL was derived in accordance with the JMPR policy
Mango	0.6	0.5	Critical GAP: Brazil, 4 × 66.8 g/ha, 7-day interval, PHI 7 days Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable
Oranges, Sweet, Sour (including Orange-like hybrids)	W 0.3		The existing CXL will be withdrawn; instead the new Codex MRL proposed for citrus fruit (group) will be applicable
Рарауа	1	0.01*	Critical GAP: Brazil, 4 × 66.8 g/ha, 7-days interval, PHI 7 days Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable
Potato	0.07	0.1	Critical GAP: Italy, 1×240 g/ha (in-furrow), no PHI Number of trials: 16 Sufficiently supported by data: Yes Specific comments/observations: The same GAP and trials were already assessed by EFSA in 2015 with an MRL proposal of 0.07 mg/kg. On the basis of residues in rotational crops an MRL of 0.1 mg/kg was enforced Conclusion: The proposed Codex MRL is acceptable
Tuberous and corm vegetables, except potato, Subgroup of (includes all commodities in this subgroup)	0.03	0.1 tropical root and tuber vegetables; 0.3 Jerusalem artichokes	Critical GAP: USA, 3×99 g/ha, 7-day interval, PHI 7 days Number of trials: 19 Sufficiently supported by data: Yes Specific comments/observations: According to the EU classification, the CXL is applicable to a) tropical root and tuber vegetables group; Jerusalem artichoke Conclusion: The proposed Codex MRL is acceptable.
Citrus juice		_	PF 0.12; the reduction of residues in citrus juice occurs; the PF derived from two processing studies
Citrus peel		_	PF 1.9; residues concentrate in the peel; the concentration factor derived from two data points
Citrus marmalade		_	PF 0.042; the reduction of residues in citrus marmalade occurs; the PF derived from two processing studies
Cotton seed refined oil		-	PF 0.045; the processing factors for cotton were derived by 2015 JMPR. Now with new MRL proposal for raw cotton seed, the input values for processed commodities for the risk assessment are updated

Commodity	Codex MRL proposal	EU MRL	Comment
Potato baked tuber (with peel)		-	PF 0.5; the processing factors for potato were derived by 2012 JMPR. Now with new MRL proposal for raw potato,
Potato boiled tuber (with peel)		the input values for processed commodities for the assessment are updated	the input values for processed commodities for the risk assessment are updated
Potato chips			
Potato fried tuber (with peel)			
Potato granules/ flakes			
Potato peeled tuber			
General comments	-		

GAP: Good Agricultural Practice; PHI: preharvest interval; MRL: maximum residue level; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MS: Member State; CXL: Codex Maximum Residue Limit; PF: processing factor; DM: dry matter; DB: Dietary Burden.

*: Indicates that the input value is proposed at the limit of quantification.

5.19.5. Consumer risk assessment

Table 92: Summary of the cons	sumer risk assessment
-------------------------------	-----------------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The acute exposure assessment was performed using EFSA PRIMo rev. 3, considering the existing EU MRLs (Reg. 2018/685) For citrus fruits, kumquats, mango, papaya, coffee beans and cotton seed the HR values derived for parent fluxapyroxad were used as input values The EU ARfD was used	RA assumptions: The chronic exposure assessment was performed using EFSA PRIMo rev. 3, considering the existing EU MRLs (Reg. 2018/685) For citrus fruits, kumquats, mango, papaya, coffee beans and cotton seed the STMR values derived for parent fluxapyroxad were used as input values. For several commodities, which contributed most to the chronic exposure, the STMR values related to previously assessed EU uses were included to refine the exposure calculation. Further refinements of the exposure calculation would be possible	Specific comments: The risk assessment considers also metabolites of fluxapyroxad (M700F008 and M700F048)
Results: No short-term exposure concern was identified (citrus fruits (5–31% of the ARfD), kumquats (1% of the ARfD), mango (12%), papaya (9%), coffee beans (0%) and cotton seed (no data))	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for a maximum of 89% of the ADI (further refinements would be possible). From the crops under consideration, the contribution to the total exposure was the highest for residues in oranges (6.6% of the ADI)	Results: Long-term exposure: 6–20% of the ADI Short-term exposure: 0–10% of the ARfD

RA: risk assessment; PRIMo: (EFSA) Pesticide Residues Intake Model; MRL: maximum residue level; HR: highest residue; STMR: supervised trials median residue; ARfD: acute reference dose; ADI: acceptable daily intake.

5.20. Benzovindiflupyr (261) R

5.20.1. Background information

Table 93: Background information

		Comments, references
Type of JMPR evaluation	Other evaluation, see comment	Request of manufacturer to set a group MRL for the subgroup of dry peas and the subgroup of dry beans (instead of individual MRLs for dry peas and dry beans)
RMS	NL	
Approval status	Approved	Commission Implementing Regulation (EU) 2016/177 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2015f) EFSA (2017b) (E-fate, phys/chem,ecotox)
MRL review	No	Not required
MRL applications	No	EFSA (2016h) Import tolerance
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonized classification and labelling for CMR – Annex VI: No classification ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not finalised

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): (EU) 2016/177: Commission Implementing Regulation (EU) 2016/177 of 10 February 2016 approving the active substance benzovindiflupyr, as a candidate for substitution, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011. OJ L 35, 11.2.2016, p. 1–5.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.20.2. Toxicological reference values

Table 94: Comparison of toxicological reference values (TRV) derived by	y JMPR and at EU level
---	------------------------

	JMPR	evaluation	E	U evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.05 mg/kg bw per day	JMPR (2013)	0.05 mg/kg bw per day	EFSA (2015f); European Commission (2015a) (Rat, 2-year study, UF 100)	Yes	
ARfD	0.1 mg/kg bw	JMPR (2013)	0.1 mg/kg bw	EFSA (2015f); European Commission (2015a) (Rat, acute neurotoxicity Study, UF 100)	Yes	
Conclusion/ comment	The toxicological reference values derived at EU level and by JMPR are identical and are based on the same NOAELs from the same studies The JMPR concluded that SYN546039 and SYN545720 are less toxic than the parent based on acute oral toxicity studies The EU assessment established an ADI of 0.3 mg/kg bw per day for the metabolite SYN545720 (CSCD465008), based on a developmental toxicity study in rabbits and applying an uncertainty factor (UF) of 1000, no ARfD being needed for the metabolite An ADI of 0.25 mg/kg bw per day was established for the metabolite NOA449410 (CSAA798670) based on a developmental toxicity study in rabbits and applying an UF of 1000; no ARfD was set, as considered not necessary					

JMPR evaluation		E	EU evaluation		
Value	Comments (source, study)	Value Comments (source, study)		TRV comparable	
Insufficient information was provided on metabolite SYN546039 (CSCD695908) to conclude on its toxicological profile, including its genotoxicity potential					

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

5.20.3. Residue definitions

Table 95: C	Comparison	of the r	esidue	definitions	derived I	by	JMPR a	and a	t EU	level
-------------	------------	----------	--------	-------------	-----------	----	--------	-------	------	-------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Benzovindiflupyr	EC Reg. 2018/687: Benzovindiflupyr	Yes	
	Animal products	Benzovindiflupyr The residue is fat soluble	EC Reg. 2018/687: Benzovindiflupyr The residue is not fat soluble	Yes	
RD RA	Plant products	Benzovindiflupyr	Benzovindiflupyr	Yes	
	Animal products	nimal products Benzovindiflupyr Benzovindiflupyr and mono hy benzovindiflupyr, free and cor (SYN546039), expressed as benzovindiflupyr		No	
Conclusion/ comments	Plant commodities: The residue definitions for enforcement and risk assessment set by JMPR and at EU level are identical Animal commodities: The residue definition for enforcement set by JMPR and at EU level are identical. For risk assessment, the residue definition at EU level is more comprehensive and includes the mono-hydroxylated metabolite SYN546039 (free and conjugated). In the metabolism study in goats, the metabolite represented 22% to 50% TRR in tissues and milk. A conversion factor of 2 was proposed to account for the residue definition for consumer risk assessment for animal commodities. Furthermore, the residues were not considered fat soluble in the EU For the current request, the difference in the residue definitions is not relevant				

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; TRR: total radioactive residues.

5.20.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Beans (dry)	W 0.15		The previous CXL will be replaced by the proposed CXL for the Subgroup of dry beans
Dry beans, subgroup of, except soya bean, dry	0.15	0.2 (beans and lupins)	Critical GAP: Canada, 2 × 0.075 kg/ha, interval 7 days, PHI 15 days Number of trials: 13 Sufficiently supported by data: Yes Specific comments/observations: Residue trials already assessed by JMPR in 2016. Extrapolation of the individual CXL to the subgroup of dry beans possible. The MRL proposal for dry beans covers also lupins At EU level, the same MRL would have been derived for the whole group of dry pulses from the combined data set of residues in beans and peas Conclusion: The proposed Codex MRL is acceptable
Dry peas, subgroup of (includes	0.2	0.2 (peas and lentils)	Critical GAP: 2 \times 0.075 kg/ha, interval 7 days, PHI 15 days Number of trials: 11 Sufficiently supported by data: Yes

Table 96:	Comparison of Codex MR	proposals derived by	/ JMPR and EU MRLs
-----------	------------------------	----------------------	--------------------

Commodity	Codex MRL proposal	EU MRL	Comment		
all commodities in this subgroup)			Specific comments/observations: Residue trials already assessed by JMPR in 2016. Extrapolation of the individual CXL to the subgroup of dry peas possible. At EU level, a slightly lower MRL of 0.15 mg/kg (OECD calculator) would have been derived for the whole group of dry pulses from the combined data set of residues in beans and peas. The MRL proposal for dry peas covers also lentils Conclusion: The proposed Codex MRL is acceptable		
Peas (dry)	W 0.2		The previous CXL will be covered by the proposed CXL for the Subgroup of dry peas		
General comments	peas (dry) der respective sub A typo was n peas (dry) has	Upon request from the manufacturer, JMPR decided to expand the CXL in beans (dry) and peas (dry) derived based on the GAP for Canada for pulses (not including soybeans) to the respective subgroups A typo was noted in the 2018 publications (both Summary report & Report): the STMR for peas (dry) has been reported as '0.014 mg/kg' instead of '0.011 mg/kg' (please refer to 2016 Summary report & Report, where the residue data were assessed)			

CXL: Codex Maximum Residue Limit; GAP: Good Agricultural Practice; PHI: preharvest interval; MRL: maximum residue level; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; OECD: Organisation for Economic Co-operation and Development; STMR: supervised trials median residue.

5.20.5. Consumer risk assessment

Table 97: Summary of the consumer risk assessment	Table 97:	Summary	of the	consumer	risk	assessment
---	-----------	---------	--------	----------	------	------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was conducted using for pulses the STMR value of 0.011 mg/kg derived by JMPR from studies on dry beans and peas	RA assumptions: The long-term risk assessment was conducted using the approach as outlined in Section 'Assessment' and the STMR value of 0.011 mg/kg derived by JMPR from studies on dry beans and peas. MRLs of products of animal origin were multiplied by a conversion factor for risk assessment of 2	Specific comments: JMPR did not provide an update of the consumer exposure performed in EFSA (2016h)
Results: No short-term exposure concern was identified for dry beans (0.2% of the ARfD), peas and lentils (0.07% of the ARfD)	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 16% of the ADI The maximum contribution of pulses to the exposure was 0.02% of the ADI (dry beans)	

RA: risk assessment; STMR: supervised trials median residue; ARfD: acute reference dose; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; ADI: acceptable daily intake.

5.21. Cyantraniliprole (263) R

5.21.1. Background information

Table 98: Background information

		Comments, references
Type of JMPR evaluation	New use	
RMS	UK	Co-RMS: FR
Approval status	Approved	Commission Implementing Regulation (EU) 2016/1414 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2014g)
MRL review	Yes, see comments	Statement EFSA (2017d)
MRL applications	Yes, see comments	EFSA (2017m) (Raspberries and blackberries) EFSA (2018c) (leeks) 3 MRL applications on various crops: ongoing Table olives and olives for oil production: ongoing
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not met. ED: not concluded	Harmonised classification and labelling for CMR – Annex VI: no entry in Annex VI EU Peer Review proposal (2014g): none ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/ 605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Implementing Regulation (EU) 2016/1414 of 24 August 2016 approving the active substance cyantraniliprole, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 230, 25.8.2016, p. 16–19.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.21.2. Toxicological reference values

Table 99:	Comparison of	f toxicological	reference values	(TRV)	derived by	/ JMPR and	at EU level
-----------	---------------	-----------------	------------------	-------	------------	------------	-------------

	JMPR ev	aluation	EL		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	0.03 mg/kg bw per day	JMPR (2013) (dog studies, SF 100)	0.01 mg/kg bw per day	EFSA (2014g) (1-year dog study, UF 100) European Commission (2016a)	No
ARfD	Unnecessary	JMPR (2013)	Not necessary	EFSA (2014g) European Commission (2016a)	Yes
Conclusion/ comment	The ADI values set by JMPR and EU are not comparable The EU ADI is 0.01 mg/kg bw per day, based on the 1-year dog study and applying an uncertainty factor (UF) of 100. In the 90-day and 1-year dog studies, the agreed NOAEL was 1 mg/kg bw per day based on increased relative liver weights and altered clinical chemistry				
	On the contrary, in the JMPR report of 2013, the NOAEL from the 90-day oral toxicity study was 3.08 mg/kg bw per day (based on increased total protein, albumin and AP levels in males) which is the basis for the ADI				

	JMPR evaluation		El		
_	Value	Comments (source, study)	Value Comments (source, study)		TRV comparable
	Metabolites considered during the EU peer review: The plant metabolite IN-J9Z38, it is covered by the reference values derived for cyantraniliprole. For the metabolites IN-F6L99 and IN-N5M09 (found in processed commodities), an assessment of their toxicological properties is still missing (data gap)				

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

5.21.3. Residue definitions

Table 100:	Comparison of the residue d	lefinitions derived by	/ JMPR and at EU level
------------	-----------------------------	------------------------	------------------------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Cyantraniliprole	EU Reg. 2016/486: Cyantraniliprole	Yes
	Animal products	Cyantraniliprole The residue is not fat soluble	EU Reg. 2016/486: Cyantraniliprole The residue is not fat soluble	Yes
RD RA	Plant products	Cyantraniliprole For processed plant commodities: Sum of cyantraniliprole and IN-J9Z38, expressed as cyantraniliprole	Peer review (EFSA, 2014g, 2017m, 2018c): Cyantraniliprole For processed commodities: Sum cyantraniliprole and 2-[3- bromo-1-(3-chloropyridin-2-yl)- 1 <i>H</i> -pyrazol-5-yl]-3,8- dimethyl-4-oxo-3,4- dihydroquinazoline-6-carbonitrile (IN-J9Z38), expressed as cyantraniliprole	Yes
	Animal products	Sum of:-cyantraniliprole, 2-[3- Bromo-1-(3-chloro-2-pyridinyl)- 1 <i>H</i> -pyrazol-5-yl]-3,4-dihydro-3,8- dimethyl-4-oxo-6-quinazoline- carbonitrile (IN-J9Z38), 2-[3- Bromo-1-(3-chloro-2-pyridinyl)- 1 <i>H</i> -pyrazol-5-yl]-1,4-dihydro-8- methyl-4-oxo-6-quinazoline carbonitrile (IN-MLA84), 3- Bromo-1-(3-chloro-2-pyridinyl)- <i>N</i> -[4-cyano-2-(hydroxymethyl)-6- [(methylamino)carbonyl]phenyl]- 1 <i>H</i> -pyrazole-5-carboxamide (IN- N7B69) and 3-Bromo-1-(3- chloro-2-pyridinyl)- <i>N</i> -[4-cyano-2 [[(hydroxymethyl) amino]carbonyl]-6- methylphenyl]-1 <i>H</i> -pyrazole-5- carboxamide expressed as cyantraniliprole (IN-MYX98)	Peer review (EFSA, 2014g): Sum cyantraniliprole, IN- J9Z38, IN-MLA84 and IN- N7B69, expressed as cyantraniliprole	No
Conclusion, comments	green) in the	for animals are not compatible. Th RA RD derived by JMPR, but not	e metabolite IN-MYX98 is included in the one derived by EFSA. Since it is not expected that this has an	no Codex MRLs

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue levels.

5.21.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Cranberries	0.08	0.01*	Critical GAP: Canada (3×150 g a.i./ha, PHI 14 days) Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: trials compliant with the GAP Conclusion: The proposed Codex MRL is acceptable
Fruiting vegetables, Cucurbits	W 0.3		CXL withdrawn, see below the new proposal
Fruiting vegetables, Cucurbits, Group of (includes all commodities in this group)	0.3	cucurbits with edible peel: 0.4; cucurbits with inedible peel: 0.3	Critical GAP: JMPR 2018: USA (3×150 g a.i./ha, PHI 0 days, indoor use) 2013: Canada ($4 \times 0.025-0.15$ kg/ha, max. 0.45 kg/ha per season, PHI 1 day, outdoor use) Number of trials: 5 trials for indoor use assessed by 2015 JMPR were found to match the US GAP 10 trials on cucumbers and 9 trials in summer squash for outdoor use (JMPR 2013) Sufficiently supported by data: No for indoor use, Yes for outdoor use In 2013, a MRL proposal of 0.3 mg/kg was derived for fruiting vegetables (cucurbits) based on a sufficient data package. The new data submitted for the indoor use (see GAP mentioned above); since the data were insufficient, the previously derived MRL was maintained Number of trials considered insufficient to derive MRL for major crops. 4 additional trials compliant to Canadian GAP (4×100 g a.i./ha, PHI 0 days), also deemed insufficient. Both data set could not be matched using the 'GAP versus trial model' Conclusion: The proposed Codex MRL reflecting the Canadian GAP assessed in 2013 is acceptable
Mango	0.7	0.01*	Critical GAP: Cambodia (2×180 g a.i./ha, PHI 7 days) Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: residue results available for RAC and pulp Conclusion: The proposed Codex MRL is acceptable
Rice, Husked	0.01*	0.01*	Critical GAP: China (2 × 60 g a.i./ha, PHI 21 days) Number of trials: 33 Sufficiently supported by data: Yes Specific comments/observations: Residues in overdosed trials performed to: 2 or 3 × 100 g a.i./ha, PHI 21 days, were all < 0.01 mg/kg (n = 12). Residues in overdosed trials performed to: 2 or 3 × 150 g a.i./ha, PHI 21 days, ranged from < 0.01 (n = 9) to 0.019 mg/kg (n = 12). No residue situation anticipated when applied according to GAP Conclusion: The proposed Codex MRL is acceptable
Rice, polished	0.01*		Estimations from husked rice apply to polish rice At EU level no MRL is set for processed products
Rice straw & fodder (dry)	1.7 (dw)		At LO level no lince is set for processed productsCritical GAP: China (2×60 g a.i./ha, PHI 21 days)Number of trials: 6No EU MRLs are set for feed items like straw and fodder

www.efsa.europa.eu/efsajournal

Commodity	Codex MRL proposal	EU MRL	Comment		
Strawberry	1.5	0.05*	Critical GAP: Canada (3 \times 150 g a.i./ha, PHI 1 day) Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: Conclusion: The proposed Codex MRL is acceptable		
Winegrapes	1	1.5	Critical GAP: Italy (2 \times 112.5 g a.i./ha, PHI 10 days) Number of trials: 27 Sufficiently supported by data: Yes Specific comments/observations: combined data set of trials compliant with the GAP (n = 4) and overdosed (n = 23). Results from overdosed residue trials were scaled down according to the proportionality principle Conclusion: The proposed Codex MRL is acceptable		
Grape, juice	-		Median PF: 0.52 Robust (n = 3)		
Dried grapes (= currants, raisins and sultanas)	_		Median PF: 0.52 Robust (n = 3)		
Grape, wine	-		Median PF: 1.0 Robust (n = 3)		
Grape, must	_		Median PF: 1.5 Robust (n = 3)		
General comments	review for me	General discussion with risk managers how to deal with data gaps identified in the EU peer review for metabolites (metabolites IN-F6L99 and IN-N5M09 (found in processed commodities), see comments on toxicological reference values			

GAP: Good Agricultural Practice; PHI: preharvest interval; MRL: maximum residue level; CXL: Codex Maximum Residue Limit; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RAC: raw agricultural commodity; PF: processing factor. *: Indicates that the input value is proposed at the limit of quantification.

5.21.5. Consumer risk assessment

Table 102:	Summary of the consumer risk assessment	
------------	---	--

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Not relevant for the EU (no ARfD was derived)	RA assumptions: The most recent long-term risk assessment (EFSA, 2018c) was updated including the STMR values derived by JMPR for cranberries, mangoes and strawberries. The calculations is based on the STMR values; where the MRL was set above the LOQ and no STMR value was available, the MRL was used as input value. Crops with MRLs at the LOQ are not included in the calculation The risk assessment was performed with the EU ADI	Specific comments: –
	Results: A long-term consumer health risk was identified The overall chronic exposure accounted for 152% of the ADI The contribution of cranberries, mangoes and strawberries to the exposure was < 0.01, 0.03 and 2.3% of the ADI, respectively The main contributor were the STMR for cattle milk (96% of the ADI, Dutch toddler), apples (20% for German child), and olives for oil production (12%, calculation with MRL, further refinement would be possible)	Results: Long-term exposure: 4-40% of the ADI

RA: risk assessment; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; LOQ: limit of quantification; ARfD: acute reference dose; ADI: acceptable daily intake.

5.22. Cyazofamid (281) R

5.22.1. Background information

Table 103:Background information

		Comments, references
Type of JMPR evaluation	New use	
RMS	FR	
Approval status	Renewal of the approval	Commission Directive 2003/23/EC ^(a) as amended by Commission Implementing Regulation (EU) 2018/917 ^(b) , A decision on the renewal has not yet been taken
EFSA conclusion	Yes, see comments	EFSA (2016e)
MRL review	Yes, see comments	EFSA (2012e)
MRL applications	Yes, see comments	EFSA (2013g) (grapes) EFSA (2015d) (aubergines) EFSA (2015n) (spring/welsh onions, globe artichoke, leek and hops) Confirmatory data following Art. 12 review ongoing
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	No	Harmonised classification: none for tox. Peer review proposal: none ED: assessed before EU criteria were defined and implemented (2018)

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level. (a): Commission Directive 2003/23/EC of 25 March 2003 amending Council Directive 91/414/EEC to include imazamox,

(b): Commission Implementing Regulation (EU) 2018/917 of 27 June 2018 amending Implementing Regulation (EU)

(b): Commission Implementing Regulation (EU) 2018/917 of 27 June 2018 amending Implementing Regulation (EU) No 540/2011 as regards the extension of the approval periods of the active substances alpha-cypermethrin, beflubutamid, benalaxyl, benthiavalicarb, bifenazate, boscalid, bromoxynil, captan, carvone, chlorpropham, cyazofamid, desmedipham, dimethoate, dimethomorph, diquat, ethephon, ethoprophos, etoxazole, famoxadone, fenamidone, fenamiphos, flumioxazine, fluoxastrobin, folpet, foramsulfuron, formetanate, Gliocladium catenulatum strain: J1446, isoxaflutole, metalaxyl-m, methiocarb, methoxyfenozide, metribuzin, milbemectin, oxasulfuron, Paecilomyces lilacinus strain 251, phenmedipham, phosmet, pirimiphos-methyl, propamocarb, prothioconazole, pymetrozine and s-metolachlor. OJ L 163, 28.6.2018, p. 13–16.

5.22.2. Toxicological reference values

Table 104: Comparis	n of toxicologica	l reference values	(TRV)	derived by JMPF	and at EU level
---------------------	-------------------	--------------------	-------	-----------------	-----------------

	JMPR evaluation		EU e	EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.2 mg/kg bw per day	JMPR (2015)	0.17 mg/kg bw per day	EFSA (2016e) (rat, 2-year, UF 100) Same in European Commission (2002)	Yes	
ARfD	Unnecessary	JMPR (2015)	Not allocated, not necessary	EFSA (2016e) Same in European Commission (2002)	Yes	
Conclusion/ comment	Parent compound: The ADI established by JMPR is based on the NOAEL of 17.1 mg/kg bw per day for increase in kidney weight and changes in blood urea nitrogen and urine volume in the 2-year carcinogenicity study in rat and applying an uncertainty factor (UF) of 100					
	The EU evaluation derived a comparable ADI based on the NOAEL of 17.1 mg/kg bw per day from the same study (2-year carcinogenicity study in the rat) considered by JMPR and applying an UF of 100. The small difference between JMPR and EU assessment is due to different rounding of the values obtained					

ЈМР	JMPR evaluation		EU evaluation				
Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable			
As regards th	As regards the ARfD, JMPR and EU came to the same conclusion that no ARfD was necessary						
JMPR conclud	Metabolite CCIM: JMPR concluded that the ADI derived for parent compound is also applicable for CCIM. For this metabolite, an ARfD of 0.2 mg/kg bw was agreed by JMPR						
the EFSA Cor genotoxicity lymphoma L	In the EU Experts' meeting 141, the same ADI was proposed for CCIM. However, as reported in the EFSA Conclusion, considering that a data gap was identified for CCIM with regard to genotoxicity testing (mammalian cell mutation assay, <i>in vitro</i> mutation test using mouse lymphoma L518Y cells) EFSA, after the experts' meeting, considered preferable not to set an ARfD for CCIM until its genotoxic potential is clarified						

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

5.22.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable			
RD enf	Plant products	Cyazofamid	Reg. 396/2005: Cyazofamid	Yes			
	Animal products	Not defined	Reg. 396/2005: Cyazofamid	Yes			
		Fat solubility not specified	The residue is fat soluble				
RD RA	Plant products	Long-term dietary intake: Cyazofamid plus CCIM, expressed as cyazofamid short-term dietary intake: CCIM	Peer review and Art. 12 review (EFSA, 2012e, 2016e): Cyazofamid	No			
	Animal products	Not defined	Peer review (EFSA, 2016e): Cyazofamid Art. 12 MRL review (EFSA, 2012e): no RD proposed due to expected low dietary burden	Yes			
Conclusion/ comments	Primary crops: The JMPR and EU evaluations resulted in the same residue definitions for enforcement (cyazofamid) but different residue definitions for risk assessment were proposed Processed commodities:						
	Peer review proposal: Cyazofamid and CCIM. Due to data gaps regarding the genotoxic potential and a repeated dose toxicity study to conclude on the toxicological relevance of CCIM, a final decision whether the residue definition should cover the sum or the two compounds separately has not been taken yet						
	Animal matrices:						
	As the metabolism studies in poultry and ruminants clearly showed that residues are not expected in animal matrices considering the dietary burden calculation based on the representative uses, EFSA proposes for monitoring and risk assessment to set the residue definition by default as cyazofamid only and no MRLs are required. Also, in the framework of Art.12 MRL review, the livestock exposure assessment was not triggered based on the EU authorised uses and no RD for monitoring and risk assessment was derived for products of animal origin						

Table 105: Comparison of the residue definitions derived by JMPR and at EU level

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.22.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Bulb onions, Subgroup of (includes all commodities in this subgroup)	1.5	0.01*	Critical GAP: USA GAP (bulb vegetables, including dry bulb onions): 6×0.087 kg a.s./ha (minimum interval of 7 days between application) and a PHI: 0 d (max. seasonal rate: 0.47 kg a.s./ha) Number of trials: 10 US residue trials on onion bulbs with a possible extrapolation to garlic and shallots Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL covers garlic, onions, shallots. It is noted the MRL proposal was reported for the wrong code (VA0035) which refers to the group of bulb vegetables. The correct code for the subgroup of bulb onions is VA2031 Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable, considering the data gap related to the metabolite CCIM
Green onions, Subgroup of (includes all commodities in this subgroup)	6	0.01*	Critical GAP: US GAP (bulb vegetables, including spring onions and chive leaves): 6×0.087 kg a.s./ha (minimum interval of 7 days between application) and a PHI: 0 days (max. seasonal rate: 0.47 kg a.s./ha) Number of trials: 5 trials on spring onions matching the GAP and 5 trials on chives but conducted with 9 instead of 6 applications Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL covers spring onions, chives and leek. The MRL proposal for the green onions, subgroup was derived from the residue data set on chives only and extrapolated to the whole subgroup. According to the JMPR extrapolation rules, residue trials on spring onion or leek can be used to derive a group MRL; data on chives are not appropriate. In the given case, it would be more appropriate to derive a MRL proposal of 6 mg/kg for chives and a MRL of 2 mg/kg for green onions, subgroup of, except chives (this MRL would be applicable also to leek). This proposal is in line with the JMPR methodology (FAO manual p 91 ff)
			Conclusion: The proposed Codex MRL is not acceptable because this MRL is derived from the residue trials on chives extrapolated to the whole subgroup. Furthermore, it should be discussed whether the proposed Codex MRL is acceptable, considering the data gap related to the metabolite CCIM

Comparison of Codex MRL proposals derived by JMPR and EU MRLs Table 106:

GAP: Good Agricultural Practice; PHI: preharvest interval; a.s.: active substance; MRL: maximum residue level; JMPR: Joint FAO/ WHO Meeting on Pesticide Residues.*: Indicates that the input value is proposed at the limit of quantification.

5.22.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant. An ARfD was not allocated to cyazofamid	RA assumptions: The most recent long-term risk assessment (EFSA, 2015n) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for the crops for which Codex MRLs were derived For the remaining commodities, the existing EU MRL was used as an input value The calculations are indicative, since the residue definitions of JMPR and EU level are not fully compatible. Furthermore, data to exclude genotoxicity of CCIM were considered as not sufficient in the recent EU peer review	Specific comments: None
Results: Not relevant. An ARfD was not allocated to cyazofamid and is not required	The overall chronic exposure accounted for 1% of the	Results: Long-term exposure: 0.3% of the ADI Short-term exposure: Not relevant

Table 107: Summary of the consumer risk assessment

ARfD: acute reference dose; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; ADI: acceptable daily intake.

5.23. Lufenuron (286) R

5.23.1. Background information

Table 108:	Background	information
------------	------------	-------------

		Comments, references
Type of JMPR evaluation	New uses	
RMS	PT	
Approval status	Approved	Commission Directive 2009/77/EU ^(a)
EFSA conclusion	Yes, see comments	EFSA (2009a)
MRL review	Yes, see comments	EFSA (2017c)
MRL applications	No	
Cut-off criteria: • Mutagen cat. 1A or 1B	Not met	Harmonised classification and labelling for CMR – Annex VI: none
 Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B 	ED: not concluded	EU Peer Review proposal for CMR (EFSA, 2009a): none
Endocrine disrupting (ED) potential		ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Directive 2009/77/EC of 1 July 2009 amending Council Directive 91/414/EEC to include chlorsulfuron,

cyromazine, dimethachlor, etofenprox, lufenuron, penconazole, tri-allate and triflusulfuron as active substances OJ L 172, 2.7.2009, p. 23–33.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.23.2. Toxicological reference values

	JMPR	evaluation	EU	evaluation	
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	0.02 mg/kg bw per day	JMPR (2015) (2-year dietary study in rats, SF 100)	0.015 mg/kg bw per day	EFSA (2009a) (1-year dog study, UF 100) European Commission (2011d)	Yes
ARfD	Unnecessary	JMPR (2015)	Not needed	EFSA (2009a) European Commission (2011d)	Yes
Conclusion/ comment	An ADI of 0.02 mg/kg bw was established on the basis of the NOAEL of 1.93 mg/kg bw per day for tonic-clonic seizures and findings in lungs, gastrointestinal tract, liver and urinary tract in the 2-year dietary study in rats, using a safety factor of 100. The same NOAEL from the 2-year rat study was derived by the EU peer review However, the EU peer review set the ADI on the NOAEL of 1.5 mg/kg bw per day based on liver changes (increased weight and incidence of cell hypertrophy) from a 1-year study, while in the				

Table 109: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

JMPR report of 2015 a NOAEL of 7.02 mg/kg bw per day was proposed for this study

5.23.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Lufenuron	EU Reg. 2018/78: Lufenuron	Yes
			Art 12 MRL review: Lufenuron (any ratio of constituent isomers)	
			Peer review (EFSA, 2009a): Constituent isomers of lufenuron	
	Animal products	Lufenuron	EU Reg. 2018/78: Lufenuron	Yes
		The residue is fat soluble	Art 12 MRL review: Lufenuron (any ratio of constituent isomers)	
			Peer review (EFSA, 2009a): Constituent isomers of lufenuron	
			The residue is fat soluble	
RD RA	Plant products	Lufenuron	Peer review (EFSA, 2009a):	Yes
	Animal products		constituent isomers of lufenuron	Yes
			Art 12 MRL review: Lufenuron (any ratio of constituent isomers)	
Conclusion/ comments	comparable		ement and risk assessment in plant com rcement and risk assessment in animal	

Table 110:	Comparison of the residue definitions derived by JMPR and at EU level
------------	---

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.23.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Coffee beans	0.07	0.05*	Critical GAP: BR, 2×40 g a.i./ha, interval of 30 days; PHI = 7 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: Trials from Brazil matching the critical GAP Conclusion: The proposed Codex MRL is acceptable
Edible offal (Mammalian)	0.15	0.04 kidney, liver, 0.7 other edible offals	See meat (mammalian)
Lime	0.4	0.01*	Critical GAP: BR, 1×3.75 g a.i./ha, PHI = 28 days Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: Trials from Brazil on limes matching the critical GAP Conclusion: The proposed Codex MRL is acceptable
Mammalian fats	2	0.7	See meat (mammalian except marine mammals)
Meat (mammalian except marine mammals)	2(fat)	0.03 (muscle)	Two feeding studies on lactating cows and steer are available Sufficiently supported by data: Yes; according to the RMS the feeding studies evaluated in the JMPR are the same as the evaluated in the EU. Three dose levels were used in the feeding study. According to the RMS the quality of the study is acceptable Specific comments/observations: The Meeting based its recommendations for mammalian products on the lactating cow feeding study, generally showing higher residues than the study with steer Conclusion: The proposed Codex MRL is acceptable. However, at EU level, MRLs are established only for muscle. The expected residue in muscle is 0.06 mg/kg, thus, the MRL for muscle should be set between 0.06 mg/kg and 0.08 mg/kg
Maize	0.01	0.01*	Critical GAP: BR, 1×15 g a.i./ha; PHI = 35 days Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: Trials from Brazil matching the critical GAP (4). In addition, the no- residue situation is supported by four trials where two foliar applications were made with harvest at 35 days (immature corn=sweet corn) and at approximately 50 days after last application (maize), residues were < 0.01 mg/kg for both immature and mature maize Conclusion: The proposed Codex MRL is acceptable. However, it is recommended to label the Codex MRL with an asterisk, indicating that the MRL is equal to the LOQ, considering the no-residue situation
Milks	0.15	0.1	One feeding study on lactating cows is available. See comments on meat (mammalian except marine mammals)
			Conclusion: The proposed Codex MRL is acceptable
Milk fats	5	-	Not relevant

Commodity	Codex MRL proposal	EU MRL	Comment
Oranges sweet, sour, Subgroup of (includes all commodities in this subgroup)	0.3	0.01*	Critical GAP: BR, 1×3.75 g a.i./ha, PHI = 28 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: Residue trials from Brazil on oranges according to the critical GAP Conclusion: The proposed Codex MRL is acceptable
Orange oil, edible	8	-	The MRL proposal was derived taking into account the PF of 24 At EU level, MRLs are set only for the unprocessed products, but not for processed products like orange oil
Pome fruits, Group of (includes all commodities in this group)	1	0.15	Critical GAP: Chile, 3×5 g a.i./hL; PHI = 18 days Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: Residues in 8 trials approximating critical GAP in Chile (deviations were noted for the PHI with sampling between 14 and 21 days) Conclusion: The proposed Codex MRL is acceptable
Orange juice			PF < 0.02
Apple juice			PF < 0.2, based on 1 processing study; at EU level one processing study would not e sufficient to derive a processing factor
Apple pure			PF < 0.2, based on 1 processing study; at EU level one processing study would not e sufficient to derive a processing factor
General comments	_		

GAP: Good Agricultural Practice; PHI: preharvest interval; RMS: rapporteur Member State; PF: processing factor; MRL: maximum residue level; LOQ: limit of quantification.

*: Indicates that the input value is proposed at the limit of quantification.

5.23.5. Consumer risk assessment

Table 112:	Summary of the consumer risk assessment
------------	---

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: Not relevant	RA assumptions: The most recent long-term risk assessment EFSA (2017c) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for the commodities for which MRL proposals were derived The EU ADI was used	Specific comments –
Results: –	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 83% of the ADI	Results: Long-term exposure: 2–10% of the ADI

RA: risk assessment; STMR: supervised trials median residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ADI: acceptable daily intake.

5.24. Isofetamid (290) R

5.24.1. Background information

Table 113:Background information

		Comments, references
Type of JMPR evaluation	New use	
RMS	BE	
Approval status	Approved	Commission Implementing Regulation (EU) 2016/1425 ^(a)
EFSA conclusion (including MRL application)	Yes, see comments	EFSA (2015q); in the conclusion, MRL proposals were derived for a number of crops
MRL review	No	Not foreseen, since MRLs were set in the framework of the first approval
MRL applications	Yes, see comments	EFSA (2018h) (tomatoes, peppers, aubergines, okra and cucurbits with edible peel)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not met Not met Not met	Harmonised classification: none for tox EU Peer Review proposal for CMR: none ED assessment: not conducted because the peer review was finalised before the implementation of the current ED criteria

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level. (a): 2016/1425: Commission Implementing Regulation (EU) 2016/1425 of 25 August 2016 approving the active substance

isofetamid in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 231, 26.8.2016, p. 30–33.

5.24.2. Toxicological reference values

Table 114: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR evaluation		EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	0.05 mg/kg bw per day	JMPR (2016)	0.02 mg/kg bw per day	EFSA (2015g) (1-year dog study, UF 100) European Commission (2016b)	No
ARfD	3 mg/kg bw	JMPR (2016)	1 mg/kg bw	EFSA (2015g) (developmental toxicity study with rabbit, UF 100) European Commission (2016b)	No
Conclusion/ comment	The ADI established by JMPR is 0.05 mg/kg bw per day, based on the NOAEL of 5.34 mg/kg bw per day for liver toxicity in the 90-day and 1-year toxicity studies in dog and applying an uncertainty factor (UF) of 100 The EU evaluation derived a different ADI (0.02 mg/kg bw per day) based on the NOAEL of 1.57 mg/kg bw per day for effects on body weight and body weight gain in the 1-year toxicity study in dog and applying an UF of 100				
	anomalies in t The EU evalua	the development ation derived a c	tal toxicity stud lifferent ARfD	the NOAEL of 300 mg/kg bw per da dy in rabbit and applying an UF of 1 (1 mg/kg bw) based on the NOAEL ed in the developmental study in rab	00 of 100 mg/kg bw

JMPR evaluation		EU evaluation		
Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
to metabolite methylpheny	es and therefore I]-2-methyl-1-ox	also for meta opropan-2-yl}	alues of parent compound (isofetami bolite GPTC (N-{1-[4-(b-b-glucopyrar -3-methylthiophene-2-carboxamide) finition for plants	nosyloxy)-2-

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

5.24.3. Residue definitions

Table 115:	Comparison of the residue definitions derived by JMPR and at EU level	

Commodity group		JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Isofetamid	EU Reg. 2018/1514: Isofetamid	Yes
	Animal products	Sum of isofetamid and 2-[3- methyl-4-[2-methyl-2-(3-	EU Reg. 2018/1514: Isofetamid	No
		methylthiophene-2- carboxamido) propanoyl] phenoxy] propanoic acid (PPA), expressed as isofetamid	Peer review (EFSA, 2015q): Isofetamid (provisional, not required)	
		The residue is fat soluble	Fat solubility open (pending confirmation by livestock feeding study, not required at this stage)	
RD RA	Plant products	Isofetamid	Peer review (EFSA, 2015q); Art 10 MRL (EFSA, 2018h): Sum isofetamid and GPTC, expressed as isofetamid	No
	Animal products	Sum of isofetamid and 2-[3- methyl-4-[2-methyl-2-(3- methylthiophene-2- carboxamido) propanoyl] phenoxy]propanoic acid (PPA), expressed as isofetamid	Peer review (EFSA, 2015q): Sum isofetamid and PPA expressed as isofetamid	Yes
Conclusion/ comments	Plant commodities: The plant residue definitions for enforcement are identical, as both refer to the parent isofetamid only For the plant risk assessment residue definition, the JMPR, in contrast to the EU, does not include the plant metabolite GPTC EFSA previously derived conversion factors (CF) for risk assessment for peaches, plums, grapes (CF 1.1) and lettuce (CF 1.3) (EFSA, 2015q). A conversion for risk assessment was not deemed necessary for strawberries, tomatoes, aubergines, peppers, okra and cucurbits with edible peel (CF 1.0 and/or GPTC < LOQ) (EFSA, 2015q, 2018h). For apricots, cherries and rapeseed, CFs could not be derived in the framewor of the EU peer review, because residue levels of parent and GPTC were < LOQ (EFSA, 2015q) <u>Animal commodities</u> : For the animal residue definitions for enforcement, the JMPR, in contrast to provisional EU definition, has included the metabolite PPA. EFSA set the residue definition provisionally as isofetamid (only) considering that significant intake of isofetamid residues by livestock was not expected by livestock. This residue definition would have to be reconsidered when additional uses will lead to significant residue intakes by animals and considering the results of animal feeding studies. It is noted that in 2017 CCPR, the EU made a reservation for MRL proposals for animal commodities due to the different residue definition for enforcement.			

Commodity group	JMPR evaluation	EU evaluation	RDs comparable
and almost only p TRR), and other id at ca 20% in kidn The risk assessme	EU assessment, isofetamid was expresent in significant proportions in dentified metabolites were all below ey and liver of goat (EFSA, 2015c ent residue definitions in animal co and PPA expressed as isofetamid	n milk fat (76% TRR) and ow 5% TRR except meta I) ommodities are identical,	d goat fat (62% bolite PPA present

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; LOQ: limit of quantification.

5.24.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment	
Beans with pods, subgroup of (includes all commodities in this subgroup)	0.6	0.01*	Critical GAP: Canada and USA, 2 × 500 g/ha, 7- to 14-day interval, PHI 7 days Number of trials: 7 Sufficiently supported by data: Yes Specific comments/observations: trials on snap beans. Beans (with pods) are classified as a major crop in the EU, requiring 8 trials, but according to Codex criteria, a minimum of 5 trials are required Conclusion: The proposed Codex MRL is acceptable	
Bush berries, subgroup of (includes all commodities in this subgroup)	5	0.01* (blueberries, currants, gooseberries and rose hips)	Number of trials: 10 trials on blueberry conducted at higher	
Cane berries, subgroup of (includes all commodities in this subgroup)	3	0.01*	Critical GAP: Canada, 3 × 496 g/ha, 7-day interval, PHI 7 days Number of trials: 5 trials on raspberries conducted at higher application rates of 650 g/ha (1.31N) and scaled using the proportionality approach Sufficiently supported by data: Yes Specific comments/observations: According to the EU classification, extrapolation to whole subgroup cane fruit (153000) is possible Conclusion: The proposed Codex MRL is acceptable	
Cherries, subgroup of (includes all commodities in this subgroup)	4	0.01*	Critical GAP: Canada and USA, 3×365 g/ha, 7-day interval, PHI 1 days Number of trials: 13 Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable	

Table 116:	Comparison of Codex MRL p	proposals derived by JMPR and EU MRLs
------------	---------------------------	---------------------------------------

Commodity	Codex MRL proposal	EU MRL	Comment
Dry beans, subgroup of (except soya bean (dry))		0.01*	Critical GAP: Canada and USA, 2 × 500 g/ha, 7-day interval, PHI 30 days Number of trials: 8 trials on beans and 11 trials on peas Sufficiently supported by data: Yes Specific comments/observations: Residues from dry beans and dry peas were similar (Mann–Whitney test) and data sets could be combined. The MRL of 0.05 mg/kg proposed by JMPR is questionable, as it is lower than the HR (0.08 mg/kg); The MRL proposal derived using the OECD calculator is 0.09 mg/kg. The Codex MRL would be applicable also to dry lupin (300040) Conclusion: The available residue trials would suggest a higher MRL of 0.09 mg/kg
Dry peas, subgroup of (includes all commodities in this subgroup)	0.05	0.01*	Critical GAP: Canada and USA, 2 × 500 g/ha, 7-day interval, PHI 30 days Number of trials: 11 trials on peas and 8 trials on beans Sufficiently supported by data: Yes Specific comments/observations: The MRL of 0.05 mg/kg proposed by JMPR is questionable, as it is lower than the HR (0.08 mg/kg); The MRL proposal derived using the OECD calculator is 0.09 mg/kg The MRL proposal for dry peas would be also applicable to dry lentils (300020) Conclusion: The available residue trials would suggest a higher MRL of 0.09 mg/kg
Peaches, subgroup of (including Nectarine and Apricots) (includes all commodities in this subgroup)	3	0.01*	Critical GAP: Canada and USA, 3 × 365 g/ha, 7-day interval, PHI 1 days Number of trials: 11 Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL would be applicable also to apricots. At EU level, the trials on peaches would not be used for extrapolation to apricots Conclusion: The proposed Codex MRL is acceptable
Peas with pods, subgroup of (includes all commodities in this subgroup)	0.6	0.01*	 Critical GAP: Canada and USA, 2 × 500 g/ha, 7- to 14-day interval, PHI 7 days Number of trials: 7 trials are available on snap beans (beans with pods) Sufficiently supported by data: Yes Specific comments/observations: According to the JMPR, beans with pods (<i>Phaseolus vulgaris</i> varieties) are a representative crop for peas with pods and therefore the trials can be used to support the use in peas with pods. The extrapolation from beans with pods to peas with pods is also allowed according to the EU guidance document on extrapolation Conclusion: The proposed Codex MRL is acceptable
Plums, subgroup of (including fresh Prunes) (includes all commodities in this subgroup)	0.8	0.01*	Critical GAP: Canada and USA, 3 × 365 g/ha, 7-day interval, PHI 1 day Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: None Conclusion: The proposed Codex MRL is acceptable
Pome fruits, group of (includes all commodities in this group)	0.6	0.01*	Critical GAP: USA, 6×365 g/ha, 7-day interval, PHI 20 days Number of trials: 16 apples, 9 pears Sufficiently supported by data: Yes Specific comments/observations: The JMPR combined residue trials as of the same residue populations (Mann-

Commodity	Codex MRL proposal	EU MRL	Comment
			Whitney test). The CXL would be applicable to the whole group of pome fruits and to azaroles (154070) and kaki (161060). At EU level the extrapolation from apples and pears to azaroles would not be accepted Conclusion: The proposed Codex MRL is acceptable
Prunes, dried	3	_	A concentration of residues in dried prunes occurs and a PF of 4.0 was derived from two processing studies. No EU MRLs are set for processed prunes
Apple juice	-	_	A reduction of residues in juice occurs and a PF of 0.31 was derived from one processing study. 1 study is not sufficient to derive a robust processing factor
General comments		•	•

GAP: Good Agricultural Practice; PHI: preharvest interval; MRL: maximum residue level; OECD: Organisation for Economic Co-operation and Development; HR: highest residue; CXL: Codex Maximum Residue Limit; PF: processing factor. *: Indicates that the input value is proposed at the limit of quantification.

5.24.5. Consumer risk assessment

Table 117:	Summary of the	consumer risk assessment
------------	----------------	--------------------------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was performed using PRIMo rev.3, for commodities assessed by JMPR as outlined in Section 2 Assessment'. In order to estimate the contribution of the plant metabolite GPTC, according to the EU risk assessment residue definition, EFSA applied the previously derived conversion factor (CF) for risk assessment for peaches (also used for apricots) and plums (CF 1.1) (EFSA, 2015q). The risk assessment is indicative for the other commodities under consideration (pome fruit, cherries, blackberries, dewberries, raspberries, other cane fruit, blueberries, currants, gooseberries, rose hips, azarole, kaki, beans (with pods), peas (with pods), beans, lentils, peas, lupins and other pulses) because a conversion factor to accommodate the possible occurrence of residues of metabolite GPTC was not available which may lead to an underestimation of residue levels The EU ARfD was used	rose hips, azarole, kaki, beans (with pods), peas (with pods), beans, lentils, peas, lupins and other pulses. In order to estimate the contribution of the plant metabolite GPTC, according to the EU risk assessment residue definition, EFSA applied the previously derived conversion factor (CF) for risk assessment for peaches (also used for apricots) and plums (CF 1.1) (EFSA, 2015q). For other	Specific comments: The JMPR exposure assessment according to the residue definition for risk assessment for plant commodities covers isofetamid (only) whereas the EU residue definition includes also the plant metabolite GPTC

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: No short-term exposure concern was identified. The commodities under consideration leading to highest exposure are (in rank order): peaches (18% of the ARfD), apricots (7% of the ARfD), pears (6% of the ARfD), apples (5% of the ARfD)	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 29% of the ADI (NL toddler). From the commodities under consideration, the contribution to the total exposure was the highest for residues in apples (7% of the ADI)	Results: Long-term exposure: 0–6% of the ADI Short-term exposure: 3% of the ARfD

RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; PRIMo: (EFSA) Pesticide Residues Intake Model; STMR: supervised trials median residue; MRL: maximum residue level; ARfD: acute reference dose; ADI: acceptable daily intake.

5.25. Oxathiapiproline (291) R

5.25.1. Background information

Table 118:Background information

		Comments, references
Type of JMPR evaluation	New use	
RMS	IE	
Approval status	Approved	Commission Implementing Regulation (EU) 2017/239 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2016f) EU MRLs were derived in the EFSA conclusion (cucumber, gherkins, courgette, melons, as well as for the representative uses (table and wine grapes, tomatoes, aubergines, lettuces, grape leaves)
MRL review	No	Not foreseen, since EU MRLs were assessed in the framework of the first approval
MRL applications	ongoing	MRLs and IT applications in various crops (under clock stop)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disruptive (ED) potential 	Not concluded	Harmonized classification and labelling for CMR – Annex VI: no entry EU Peer Review proposal for CMR: none ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): 2017/239: Commission Implementing Regulation (EU) 2017/239 of 10 February 2017 approving the active substance oxathiapiprolin in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 36, 11.2.2017, p. 39–42.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.25.2. Toxicological reference values

	JMPR evaluation		EU	evaluation	
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	4 mg/kg bw per day	JMPR (2016) (2-generation rat, SF 100)	0.14 mg/kg bw per day	EFSA (2016f) (1-year dog, UF 100)	No
ARfD	Unnecessary	JMPR (2016)	Not necessary	EFSA (2016f)	Yes
Conclusion/ comment	For the 1-year dog study, JMPR has concluded that no adverse findings were observed up to the top dose level in the dog studies (i.e. at least 1,242 mg/kg bw per day), whereas the EU peer review concluded that the increase in relative liver weight (more than 20% compared to the control group) at the two high-dose levels was triggering a NOAEL of 13.6 mg/kg bw per day For the rat multigeneration study, JMPR established an ADI of 4 mg/kg bw per day on the basis of the NOAEL of 430 mg/kg bw per day for delayed balanopreputial separation in offspring at the top dose, whereas the EU peer review concluded that the NOAEL for the offspring was 86.37 mg/kg bw per day based on delayed preputial separation at the two high doses EU peer review (EFSA, 2016f):				
 the metabolite IN-E8S72, with no genotoxic potential, was granted an ADI of 1. bw per day, on the basis of a 28-day rat study and applying an uncertainty factor of cover the extrapolation of subacute to long-term toxicity and for the lack of a comtoxicity data package the metabolite IN-SXS67, with no genotoxic potential, was considered as cover toxicological profile of IN-E8S72, being its glucoside form It is noted that JMPR (in 2016f) concluded that these metabolites are all coverer studies in the rat 			ertainty factor of 1,000 to e lack of a complete dered as covered by the are all covered by		
	submitted in evidence, EF	the context of t SA considers that of the toxicologic	he MRL evaluation at this metabolite i	s unlikely to be genotox	d on the overall weight of

L19: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; MRL: maximum residue level.

5.25.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Oxathiapiprolin	EU Reg. 2017/1016: Oxathiapiprolin	Yes
	Animal products	Oxathiapiprolin The residue is not fat soluble	EU Reg. 2017/1016: Oxathiapiprolin The residue is not fat soluble	Yes
RD RA	Plant products	Sum of oxathiapiprolin,	Oxathiapiprolin	No
	Plant products Sum of oxathiapiprolin, Animal 5-(Trifluoromethyl)-1H- products pyrazole-3-carboxylic acid (IN-E8S72) and 1-β-D- Glucopyranosyl-3- (-(trifluoromethyl)-1H-pyrazole-5-carboxylic acid (IN-SXS67), expressed as parent			No

Table 120: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable				
Conclusion/ comments	The risk assess	The enforcement residue definitions for plant and animal commodities are comparable The risk assessment residue definition derived by the JMPR includes two major soil/rotational crop metabolites IN-E8S72 and IN-SXS67						
	The EFSA peer review concluded that both metabolites are of lower toxicity than oxathiapiprolin and therefore did not include them in the risk assessment residue definition							
	submitted to EF oxathiapiprolin the applicant to one of the majo in section toxico	In the framework of Article 10 (Regulation (EC) No 396/2005), an MRL application was submitted to EFSA on the setting of import tolerances and modification of existing EU MRLs of oxathiapiprolin in a wide range of crops. An assessment was temporarily suspended, awaiting the applicant to address data requirements related to toxicity of metabolite IN-WR791, which is one of the major metabolites in crops following soil treatment (see also comments on IN-WR791 in section toxicological reverence values) The 2016 IMPR decided not to include this metabolite in the residue definitions as						
	2) low residue	is no greater than parent, is are expected and ution to max long-term burden						

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.25.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Basil (fresh)	10	0.02*	Critical GAP: USA, foliar, indoor/outdoor, 4 × 35 g/ha, interval 5 days, PHI 0 day Number of trials: 6 (outdoor) + 2 (indoor) Sufficiently supported by data: Yes Specific comments/observations: The indoor and outdoor residue data sets were merged. According to EU and JMPR rules, for indoor use, additional 2 trials would be necessary. Outdoor use is sufficiently supported, but from the merged data it is not possible to identify which values refer to outdoor use. For risk assessment, mean residues in rotational leafy vegetables added to the STMR value (see comments below) Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable considering the limited information on indoor uses and the ongoing discussion on the toxicological properties for IN-WR791
Basil, dry	80	-	Critical GAP: USA (indoor/outdoor) 4×35 g/ha, interval 5 days, PHI 0 days Number of trials: 4 Sufficiently supported by data: Choose an item. Specific comments/observations: Samples from 4 residue trials with fresh basil (see above) were dehydrated No EU MRLs are set for dry basil
Cane berries, Subgroup of (includes all commodities in this subgroup)	0.5	0.01*	Critical GAP: USA, soil 2 × 281 g/ha, 7-day interval, PHI 7 days Number of trials: 5 (4 raspberry, 1 blackberry) Sufficiently supported by data: Yes Specific comments/observations: On the basis of 5 trials, an extrapolation to cane berry subgroup is proposed (raspberries, blackberries, dewberries). According to EU rules, another trial on blackberry would be required, but according the Codex criteria, 5 trials are sufficient. The highest value 0.22 mg/kg seems to be an outlier (remaining values: $3 \times < 0.01$, 0.022) Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable considering the ongoing discussion on the toxicological properties for IN-WR791

Table 121:	Comparison of	Codex MRL	proposals d	lerived by	JMPR and EU MRLs
------------	---------------	-----------	-------------	------------	------------------

Commodity	Codex MRL proposal	EU MRL	Comment
Citrus fruit, Group of (includes all commodities in this group)	0.05	0.01*	Critical GAP: USA, foliar 1×35 g/ha, PHI 0 d Number of trials: 23 (5 lemon, 6 grapefruit, 12 orange) Sufficiently supported by data: Yes Specific comments/observations: The trials were performed with soil + foliar treatment and considered acceptable on the basis that side-by-side trials performed with only soil application indicated no-residue situation from soil treatments. CXL applies also to kumquat (miscellaneous fruit). The MRL proposal may not be sufficient for kumquat Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable considering the ongoing discussion on the toxicological properties for IN-WR791
Citrus oil, edible	3		The PF of 47 derived from 2 processing studies with parent compound. No EU MRLs are set for citrus oil
Citrus pulp, dry	0.15		The PF of 2.7 derived from 2 processing studies with parent compound. No EU MRLs are set for citrus pulp
Edible offal (mammalian)	W0.01*	0.01*	JMPR estimated the mean and maximum dietary burden for parent compound and for the sum of the two metabolites included in the residue definition for risk assessment (IN.E8S72 + IN-SXS67). However, from the presentation of the calculation in Annex 6 of the JMPR report, it is not possible to verify the correctness of the calculation for parent oxathiapiprolin (the tables presenting the dietary burden calculation cover only soybean meal and soybean seed; all other feed items are not considered/not reported) Feeding studies are not available. In 2016, MRL proposals were derived from the goat metabolism study with oxathiapiprolin (1.2 N the max Australian DB for dairy cattle). 2018 JMPR decided to withdraw the previously recommended MRLs for meat, edible offal, fat and milk. The rationale is not further explained in the JMPR report To discuss with risk managers whether it is acceptable to establish MRLs for commodities that are used as feed items (e.g. kale), if the expected residues in animal commodities cannot be estimated reliably
Eggs	0.01*	0.01*	The calculated critical dietary burden (EU) for poultry has increased but does not affect the conclusions of 2016 JMPR that residues of oxathiapiprolin, IN-E8S72 and IN-SXS67 are not expected in poultry commodities. However, from the presentation of the calculation in Annex 6 of the JMPR report, it is not possible to verify the correctness of the calculation for parent oxathiapiprolin (the tables only present soybean meal and soybean seed residues; all other feed items are not considered/ not reported) The Meeting confirmed the existing CXL which is set at the same level as the EU MRL
Leaves of Brassicaceae, Subgroup of (includes all commodities in this subgroup)	10	0.01* (leafy brassica; land cress, rucola, red mustards, baby leaf crops)	Specific comments/observations: According to EU rules, such

Commodity	Codex MRL proposal	EU MRL	Comment
Maize	0.01*	0.01*	Critical GAP: Indonesia, 1×0.882 g/kg seed (220 µ/seed) Number of trials: 8 Sufficiently supported by data: Yes Specific comments/observations: Residue trials on maize from India and Thailand. For risk assessment mean residues in rotational cereals (grain) added to the STMR value (see comments below) Conclusion: The proposed Codex MRL is acceptable, considering that the MRL is proposed at the LOQ
Maize fodder	0.01*	0.01*	The fodder and forage samples from maize (treated according to the GAP on maize, as mentioned above) were analysed for residues, which were < LOQ. For dietary burden calculation for metabolites IN-E8S72 and IN-SXS67, residues in rotational crops (cereal forage and straw) were added to the risk assessment values No EU MRLs are set for maize fodder
Mammalian fats (except milk fats)	W 0.01*	0.01*	See comments on edible offal (mammalian)
Meat (from mammals other than marine mammals)	W 0.01*	0.01*	See comments on edible offal (mammalian)
Milks	W 0.01*	0.01*	See comments on edible offal (mammalian)
Poppy seed	0.01*	0.01*	Critical GAP: Australia, foliar 1×35 g/ha, PHI 42 days Number of trials: 5 Sufficiently supported by data: Yes Specific comments/observations: Trials from 5 locations (5 independent), consisting of 4 trials GAP compliant, 4 trials $2 \times cGAP$ and 1 trial $4 \times cGAP$. Since residues in all trials < LOQ, overdosed trials acceptable. For risk assessment, mean residues in rape seed rotational crop added to the STMR value (see comment below) Conclusion: The proposed Codex MRL is acceptable, considering that the MRL is proposed at the LOQ
Potato	W 0.01*	0.01*	Existing CXL is proposed to be replaced by group MRL for tuberous and corm vegetables
Poultry edible offal	0.01*	0.01*	See comments on eggs
Poultry fats	0.01*	0.01*	See comments on eggs
Poultry meats	0.01*	0.01*	The calculated critical dietary burden (EU) for poultry has increased but does not affect the conclusions of 2016 JMPR that residues of oxathiapiprolin, IN-E8S72 and IN-SXS67 are not expected in poultry commodities. The Meeting confirmed the existing MRLs
Soya bean (dry)	0.01*	0.01*	Critical GAP: USA, 12–24 µg/seed Number of trials: 6 overdosed trials Sufficiently supported by data: Yes Specific comments/observations: No quantifiable residues were found in the overdosed residue trails; thus, the reduced number of trials is acceptable. For risk assessment, the mean residues measured in rotational crops (pulses) were to the STMR value derived in primary crops (see comments below) Conclusion: The proposed Codex MRL is acceptable, considering that the MRL is proposed at the LOQ

Commodity	Codex MRL proposal	EU MRL	Comment
Soya bean hay	0.02	0.01*	The hay and forage samples from soya (treated according to the GAP on soya bean, as mentioned above) were analysed for residues, which were <loq. (legume="" added="" and="" are="" assessment="" bean="" burden="" calculation,="" crops="" dietary="" eu="" for="" forage="" hay)="" hay<="" in="" in-e8s72="" in-sxs67,="" metabolites="" mrls="" no="" residues="" risk="" rotational="" set="" soya="" td="" the="" to="" values="" were=""></loq.>
Sunflower seed	0.01*	0.01*	Critical GAP: USA 1 \times 9.4–18.8 µg/seed Number of trials: 8 (CAN/USA) Sufficiently supported by data: Yes Specific comments/observations: Identical NEU/SEU uses reported under Art. 10 MRL assessment (clock stop). For risk assessment mean residues in rape seed rotational crop added to the STMR value Conclusion: The proposed Codex MRL is acceptable, considering that the MRL is proposed at the LOQ
Sweet potato	W0.01*	0.01*	See comments on tuberous and corm vegetables
Tuberous and corm vegetables, Subgroup of (includes all commodities in this subgroup)	0.04	0.01* (potatoes, arrowroot, cassava, sweet potato, yams, yacons (listed in part B under chicory roots)	residues in rotational root vegetables added to the STMR value
Young shoots, Subgroup of (includes all commodities in this subgroup)	2	0.01* (asparagus, bamboo shoots)	Critical GAP: USA, 2 × 281 g/ha, soil, interval 14 days, PHI 0 days Number of trials: 8 trials in asparagus Sufficiently supported by data: Yes Specific comments/observations: Extrapolation from asparagus to whole group is in line with Codex rules, but is not allowed in the EU. For risk assessment mean residues in rotational stem vegetables added to the STMR value (see comments below). Conclusion: It is recommended to discuss with MS whether the proposed Codex MRL is acceptable considering the ongoing discussion on the toxicological properties for IN-WR791
Broccoli		0.01*	The STMR value derived by 2016 JMPR in primary crop (broccoli) was updated, adding the residues observed in rotational crops, i.e. stem vegetables (0.056 mg/kg). The STMR value refers to the total residues of oxathiapiprolin + IN-E8S72 + In-SXS67. It is unclear why in this case residues in rotational <u>stem</u> vegetables group were considered, instead of leafy vegetables (0.33 mg/kg)
Cabbages, Head		0.01*	The STMR value derived by 2016 JMPR in primary crop (head cabbage) was updated, adding the residues observed in rotational crops, i.e. stem vegetables (0.056 mg/kg). The STMR value refers to the total residues of oxathiapiprolin + IN-E8S72 + In-SXS67. It is unclear why in this case residues in rotational <u>stem</u> vegetables group were considered, instead of leafy vegetables (0.33 mg/kg)
Cauliflower		0.01*	The STMR value derived by 2016 JMPR in primary crop (cauliflower) was updated, adding the residues observed in rotational crops, i.e. stem vegetables (0.056 mg/kg). The STMR value refers to the total residues of oxathiapiprolin + IN-E8S72 + In-SXS67. It is unclear why in this case residues in rotational <u>stem</u> vegetables group were considered, instead of leafy vegetables (0.33 mg/kg)

Commodity	Codex MRL proposal	EU MRL	Comment
Citrus juice			The processing factor of $<$ 0.2 derived from 2 processing studies. Residues of parent and metabolites were below the LOQ. No EU MRLs are set for citrus juice
Garlic		0.01*	The STMR value derived by 2016 JMPR in primary crop (bulb onion) was updated, adding the residues observed in rotational crops, i.e. stem vegetables (0.056 mg/kg). The STMR value refers to the total residues of oxathiapiprolin + IN-E8S72 + In-SXS67. It is unclear why in this case residues in rotational <u>stem</u> vegetables group were considered, instead of leafy vegetables (0.33 mg/kg)
Kumquats (whole fruit)		0.01*	
Leek		0.01*	The STMR value derived by 2016 JMPR in primary crop (leek) was updated, adding the residues observed in rotational crops, i.e. stem vegetables (0.056 mg/kg). The STMR value refers to the total residues of oxathiapiprolin + IN-E8S72 + In-SXS67
Onion, bulb		0.01*	The STMR value derived by 2016 JMPR in primary crop (bulb onion) was updated, adding the residues observed in rotational crops, i.e. stem vegetables (0.056 mg/kg). The STMR value refers to the total residues of oxathiapiprolin + IN-E8S72 + IN-SXS67. It is unclear why in this case residues in rotational stem vegetables group were considered, instead of leafy vegetables (0.33 mg/kg)
Spring onion		0.01*	The STMR value derived by 2016 JMPR in primary crop (spring onion) was updated, adding the residues observed in rotational crops, i.e. stem vegetables (0.056 mg/kg). The STMR value refers to the total residues of oxathiapiprolin + IN-E8S72 + IN-SXS67. It is unclear why in this case residues in rotational <u>stem</u> vegetables group were considered, instead of leafy vegetables (0.33 mg/kg)
General comments	JMPR accounted for the presence of metabolites IN-E8S72 and IN-SXS67 which are metabolites expected in rotational crops by adding a constant residue concentration of these two metabolites (expressed as parent) to the residue concentration measured in primary crops. These constant values ranged from 0.33 mg/kg for leafy vegetables to 0.056 for stem vegetables and cereal grains. Using the risk assessment values derived by JMPR is therefore leading to higher exposure compared to the EU residue definition		

GAP: Good Agricultural Practice; PHI: preharvest interval; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; STMR: supervised trials median residue; MRL: maximum residue level; CXL: Codex Maximum Residue Limit; MS: Member State; PF: processing factor; LOQ: limit of quantification; NEU: northern European Union; SEU: southern European Union; DB: Dietary Burden.

*: Indicates that the input value is proposed at the limit of quantification.

5.25.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions: Short-term risk assessment was not undertaken as no ARfD is established	RA assumptions: An indicative long-term risk assessment was performed using PRIMo rev.3. The EU MRLs as established for oxathiapiprolin in Regulation (EC) No 2017/1016 were used as input values. For those commodities for which the CXL proposal is higher than the existing EU MRL, the STMR value proposed by JMPR was used as input value	Specific comments: The JMPR exposure assessment is more conservative, as it also considers the contribution of oxathiapiprolin metabolites E8S72 and IN-SXS67. In addition, the residue accumulation in primary commodities from the crop rotation is taken into account	

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
	Further refinements of the calculation would be possible. The calculation is indicative, awaiting the assessment of the toxicological data for metabolite IN-WR791. The EU ADI was used		
	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 3% of the ADI	Results: Long-term exposure: 0% of the ADI	

RA: risk assessment; ARfD: acute reference dose; MRL: maximum residue level; CXL: Codex Maximum Residue Limit; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; PRIMo: (EFSA) Pesticide Residues Intake Model; ADI: acceptable daily intake.

5.26. Ethiprole (304) R,T

5.26.1. Background information

		Comments, references
Type of JMPR evaluation	New compound evaluation	
RMS	UK	
Approval status	Not approved	Never notified and authorised in the EU
EFSA conclusion	No	
MRL review	No	
MRL applications	ongoing	Application for setting of an import tolerance in rice (EMS: UK)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded.	Harmonised classification for CMR – Annex VI: no entry in Annex VI EU Peer Review proposal for CMR: not conducted ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(a)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.
(a): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.26.2. Toxicological reference values

Table 124:	Comparison of toxicological	reference values (TR	RV) derived by	y JMPR and at EU level
------------	-----------------------------	----------------------	----------------	------------------------

	JMPR evaluation		EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	0.005 mg/kg bw per day	JMPR (2018)	-	No agreed EU ADI	No comparison possible
ARfD	0.005 mg/kg bw	JMPR (2018)	_	No agreed EU ARfD	No comparison possible

	JMPR ev	JMPR evaluation		U evaluation	
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
Conclusion/ comment	sulfone, expressed The assessment of gaps identified we classification and l the assessment of of published one g Data gaps were id of RPA 112916 and In the framework of bw per day and an addressed, a concl developmental neu	as ethiprole. The s f an import tolerance re the hazard asses abelling of ethiprole the developmental generation developm entified regarding the d clarifications on w of the import toleran ARfD of 0.03 mg/kg lusion on EU TRV is p	ubstance e applica sment of regardir neurotox nental ne ne assess hether R ce applic g bw. As pending. ight trigg	e has not been assess tion under Article 10 the ED potential of en- ing carcinogenicity and kicity potential of ethi urotoxicity in mice) sment of the clastoge PA097973 is covered ation, the EMS propo- long as the data gaps EFSA noted that the per lower reference var	is ongoing. The main data ethiprole, the assessment of d reproductive toxicity and prole (including assessment enic and aneugenic potential by parent sed an ADI of 0.005 mg/kg

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose.

5.26.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Ethiprole	Ethiprole (no specific residue definition reported in Regulation (EC) No 396/2005; thus, the default residue definition containing parent compound only is applicable	Yes
	Animal products	Sum of ethiprole and 5-amino- 1-(2,6-dichloro-4- trifluoromethylphenyl)-4- ethylsulfonylpyrazole-3- carbonitrile (ethiprole-sulfone), expressed as parent equivalents The residue is fat soluble	Ethiprole (no specific residue definition reported in Regulation (EC) No 396/2005; thus, the default residue definition containing parent compound only is applicable Fat solubility currently not specified in the EU legislation. However, considering the findings of animal metabolism studies, it is recommended to classify the residues as fat soluble	No
RD RA	Plant products	Sum of ethiprole, 5-amino-1- [2,6-dichloro-4-(trifluoromethyl) phenyl]-4-(ethylsulfinyl)-1 <i>H</i> - pyrazole-3-carboxamide (ethiprole-amide) and 5-amino- 1-(2,6-dichloro-4- trifluoromethylphenyl)-4- ethylsulfonylpyrazole-3- carbonitrile (ethiprole-sulfone), expressed as parent equivalents	RD proposed in MRL application for rice (assessment ongoing): Sum of ethiprole and RPA097973 (ethiprole sulfone), expressed as ethiprole	No

Table 125: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
	Animal products	Sum of ethiprole and 5-amino- 1-(2,6-dichloro-4- trifluoromethylphenyl)-4- ethylsulfonylpyrazole-3- carbonitrile (ethiprole-sulfone), expressed as parent equivalents	No residue definition set at EU level	No comparison possible	
Conclusion/ comments	Metabolism in plants was investigated in rice, sweet pepper and cotton as well as in rotational crops. Metabolism studies in goats and poultry available				

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.26.4. Codex MRL proposals

Table 126:	Comparison of Codex MRL	proposals derived by	y JMPR and EU MRLs
------------	-------------------------	----------------------	--------------------

Commodity	Codex MRL proposal	EU MRL	Comment
Coffee beans	0.07	Default 0.01*	Critical GAP: BR, 2×500 g/ha, 60-day PHI Number of trials: 10 GAP-compliant trials Sufficiently supported by data: if it is confirmed that the trials are valid, yes Specific comments/observations: Conclusion: The proposed Codex MRL is acceptable
Coffee beans, roasted	0.2		The MRL proposal was derived from the trials in coffee beans (green) using PF derived from one processing study (1.95) and rounding to the next MRL class No MRLs are set in the EU for roasted coffee beans
Edible offal (mammalian)	0.1	Default 0.01*	JMPR calculated the dietary burden and estimated the expected residues in animal commodities using a feeding study (lactating cows). The dietary burden calculation was not reported in Annex 6 of the JMPR report to verify the calculations According to the information provided in the JMPR report, the MRL proposal is plausible
Eggs	0.05	Default 0.01*	JMPR calculated the dietary burden and estimated the expected residues in animal commodities using a feeding study (laying hens). The dietary burden calculation was not reported in Annex 6 of the JMPR report to verify the calculations According to the information provided in the JMPR report, the MRL proposal is plausible
Mammalian fats (except milk fats)	0.15	Default 0.01*	See comments on edible offal (mammalian)
Meat (from mammals other than marine mammals)	0.15(fat)	Default 0.01*	See comments on edible offal (mammalian) For muscle, no MRL proposal was derived by JMPR. From the feeding study, EFSA assumes that a value of 0.03 mg/kg would be appropriate for muscle
Milk fats	0.5	Default 0.01*	Usually, the MRL for milk fat would be expected to be 25 times higher than the MRL in milk. Thus, for milk fat, a value of 0.375 mg/kg would be derived using the default approach. In the current case, JMPR derived the MRL for milk fat from one samples of the feeding study where milk cream was analysed. The milk fat value was derived by using an assumption on the fat content of cream EFSA is of the opinion that the approach used by JMPR is not appropriate. A slightly lower MRL of 0.4 mg/kg would be sufficient for milk cream

Commodity	Codex MRL proposal	EU MRL	Comment	
Milks	0.015	Default 0.01*	See comments on edible offal (mammalian)	
Poultry meat	0.05 (fat)	Default 0.01*	See comments on eggs For muscle, no MRL proposal was derived by JMPR. Fro the feeding study, EFSA assumes that a value of < 0.02 mg/kg would be appropriate for poultry muscle	
Poultry edible offal of	0.05	Default 0.01*	See comments on eggs	
Poultry fats	0.05	Default 0.01*	See comments on eggs	
Rice	3	-	In the EU, MRLs are set for husked rice, but not for paddy rice Critical GAP: TH, 94 g/ha (foliar application), 14-day PHI; number of applications not specified Number of trials: 12 trials with 3 or 4×91 to 110 g/ha (foliar applications), PHI 14–16 days	
Rice, husked	1.5	Default 0.01*	MRL for husked rice was derived from residue trials in rice, using a PF derived from one processing study (0.36) and rounding the result up If the validity of the residue trials is confirmed, the MRL proposal would not be acceptable, because the number of processing studies is insufficient. In the EU at least 2 processing studies are required to derive a robust processing factor Furthermore, the proposed MRL is too high: the results of the residue trials should be recalculated to husked rice individually; these residue concentrations should be used in the MRL calculator to derive the MRL proposal. Following this approach, the derived MRL would be 0.8 mg/kg	
Rice, polished	0.4		One processing study was provided (PF 0.11)	
General comments	If risk managers decide to accept the Codex MRLs for animal products, the EU residue definition needs to be modified			

GAP: Good Agricultural Practice; PHI: preharvest interval; MRL: maximum residue level; PF: processing factor; JMPR: Joint FAO/ WHO Meeting on Pesticide Residues.

*: Indicates that the input value is proposed at the limit of quantification.

5.26.5. Consumer risk assessment

Table 127:	Summary of the consumer risk assessment
------------	---

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: An indicative short-term dietary risk assessment was performed for coffee beans, rice husked and the animal products for which MRL proposals were derived by JMPR The JMPR ARfD was used. The risk assessment is indicative, pending a detailed evaluation of the toxicological properties of the active substance and a final conclusion on the residue definitions (Art. 10 application on rice)	RA assumptions: EFSA calculated an indicative long-term exposure, using the existing (default) EU MRLs and the STMR derived for the commodities under assessment The JMPR ADI was used The risk assessment is indicative, pending a detailed evaluation of the toxicological properties of the active substance and a final conclusion on the residue definitions (Art. 10 application on rice)	Specific comments -

Acute exposure assessment	cute exposure assessment Chronic exposure assessment	
Results: No short-term exposure concern was identified (35% of the ARfD for rice)	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 29% of the ADI The highest contributor was milk (13% of the ADI)	1–6% of the ADI

RA: risk assessment; MRL: maximum residue level; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; STMR: supervised trials median residue; ADI: acceptable daily intake.

5.27. Fenpicoxamid (XDE-777) (305) R,T

5.27.1. Background information

Table 128: Background information

		Comments, references
Type of JMPR evaluation	New compound evaluation	
RMS	UK	Co-RMS: FR
Approval status	Approved	Commission Implementing Regulation (EU) 2018/1265 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2018d) (including MRL application)
MRL review	No	
MRL applications	Yes, see comments	Bananas, rye, wheat, assessed together with the application for approval, see EFSA (2018d)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not met. ED: not concluded	Harmonised classification and labelling for CMR – Annex VI: none EU Peer Review proposal for CMR: none ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Implementing Regulation (EU) 2018/1265 of 20 September 2018 approving the active substance fenpicoxamid in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. OJ L 238, 21.9.2018, p. 77–80.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.27.2. Toxicological reference values

Table 129: Comparison of toxicological reference values (TRV) derived by JMPR and at EU

	JMPR	evaluation		EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.05 mg/kg bw per day	JMPR (2018) (18- month mouse study, SF 100)	0.05 mg/kg bw per day	EFSA (2018d) (18-month mouse study, UF 100) (European Commission, 2018b)	Yes	
ARfD	Unnecessary	JMPR (2018)	1.8 mg/kg bw	EFSA (2018d) (Developmental study in rabbits, UF 100) (European Commission, 2018b)	No	

	JMPR	evaluation		EU evaluation	TDV
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
Conclusion/ comment	carcinogeniciti takes also into bw per day', v dose-related a NOAEL setting Regarding the the rabbit dev study (with su ARfD was 1.8 rabbit develop It is also note for maternal t consumption a consider the e Concerning th – for X64212 – for X12320 major rat informat – for X12019 potential – for X12319 potential – for X12319	y study based on liv o consideration an 'e while the EU peer re and within historical g e ARfD derivation, the velopmental study (i. ubsequent recovery) mg/kg bw based or omental toxicity stud d that for the same toxicity at 52.8 mg/k and faecal output at effects observed at the metabolites conside 88, same assessmer 6349, the reference metabolite, while in ion was available 9520, X12335723 ar 4005, X12019520, X consumer risk asses ary, JMPR uses the T f chronic toxicity	er changes obsequivocal increa- view concluded control data. T e EU peer revie e. a body weig) relevant for th n the maternal y rabbit develop g bw per day b 177 mg/kg bw his dose as adv dered during th nt for acute tox values of the p the JMPR rep and X12264475, and ssment TC approach for	ber day from the 18-months mot served at 32 mg/kg bw per day. Ise in the incidence of adenomas I that the incidence of adenomas I to is occurring during the first I to is occurring during the first I to is mentioned that insuffice I X12335723 further data may b I X12314005, X12264475, X123 PR report but not in the EU peer	However, JMPR s at 32 mg/kg s was not clearly onsidered for the city observed in c days of the fore, the agreed by from the coses a NOAEL t gain, feed iew did not report considered a cient ude a genotoxic e needed to 35723 for the

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; UF: uncertainty factor; NOAEL: no observed adverse effect level; TTC: threshold of toxicological concern.

5.27.3. Residue definitions

Table 130: Comparison of the residue definitions derived by JMPR and at EU level

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Fenpicoxamid	Regulation 396/2005: Fenpicoxamid	Yes
	Animal products	No residue definition was derived by JMPR	Regulation 396/2005: Ruminants: X12326349 expressed as fenpicoxamid	Comparison not relevant
			The residue is not fat soluble	
RD RA	Plant products	Fenpicoxamid	Peer review EFSA (2018d): Fenpicoxamid	Yes
	Animal products	No residue definition was derived by JMPR	Peer review EFSA (2018d): Ruminants: X12326349 expressed as fenpicoxamid Poultry: Not necessary (in the view of the representative use)	Comparison not relevant
Conclusion/ comments	process. The resid	-	ere submitted and assessed unde cement and risk assessment in pla sals	•

Commodity group	JMPR evaluation	EU evaluation	RDs comparable
		pasteurisation, sterilisation, boiling X12016520, X12335723, and	
		he risk assessment residue definit X12314005, X12335723, X122644	

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues.

5.27.4. Codex MRL proposals

Table 131:	Comparison of Codex MRI	_ proposals derived by JMPR and EU MRLs
------------	-------------------------	---

Commodity	Codex MRL proposal	EU MRL	Comment
Banana	0.15	0.15 proposed in peer review	Critical GAP: 3×0.05 kg/ha, PHI 8 days Number of trials: 11 Sufficiently supported by data: Yes Specific comments/observations: Conclusion: The proposed Codex MRL is acceptable
General comments	The same residue data set was submitted and evaluated under peer review process. Although, no data on processed bananas were available, since the residue levels in peeled bananas were all below 0.01 mg/kg, currently, not further investigation is necessary. The proposed MRL is based on un-bagged bananas		

PHI: preharvest interval; MRL: maximum residue limit; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; GAP: Good Agricultural Practice.

5.27.5. Consumer risk assessment

Table 132: Summary of the consumer risk ass	sessment
---	----------

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
RA assumptions: The short-term dietary risk assessment was performed for bananas peeled as outlined in Section 2 The EU ARfD was used	RA assumptions: The most recent long-term risk assessment (EFSA, 2018d) was updated using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for bananas		
Results: No short-term exposure concern was identified for bananas (0.05% of the ARfD)	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 1% of the ADI The contribution of bananas peeled to the exposure was 0.11% of the ADI (NL toddler)	Results: Long-term exposure: 0–0.2% of the ADI Short-term exposure: not applicable since no ARfD was considered necessary by JMPR	

RA: risk assessment; ARfD: acute reference dose; ADI: acceptable daily intake; JMPR: Joint FAO/WHO Meeting on Pesticide Residues.

5.28. Fluazinam (306) R,T

5.28.1. Background information

Table 133: Background information

		Comments, references
Type of JMPR evaluation	New compound evaluation	
RMS	AT	
Approval status	Approved	Commission Directive 2008/108/EC ^(a)
EFSA conclusion	Yes, see comments	EFSA (2008a)
MRL review	Yes, see comments	EFSA (2015p)
MRL applications	Yes, see comments	Blueberries: EFSA (2016c) Onions, shallots and garlic: EFSA (2017b)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonized classification and labelling for CMR – Annex VI: Toxic for reproduction cat. 2 Peer review proposal for CMR: Toxic for reproduction cat. 2. ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not yet available

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level. (a): Commission Directive 2008/108/EC of 26 November 2008 amending Council Directive 91/414/EEC to include flutolanil,

benfluralin, fluazinam, fuberidazole and mepiquat as active substances. OJ L 317, 27.11.2008, p. 6–13.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.28.2. Toxicological reference values

Table 134: Co	omparison of toxicological	reference values (TRV) derived by	y JMPR and at EU level
---------------	----------------------------	--------------------	-----------------	------------------------

	JMPR e	valuation	EL	J evaluation	
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
ADI	Not established	JMPR (2018)	0.01 mg/kg bw per day	EFSA (2008a) (2-yr mouse, supported by 1-yr dog, UF 100)	No comparison possible
				Same in European Commission (2011c)	
ARfD	Not established	JMPR (2018)	0.07 mg/kg bw	EFSA (2008a) (rabbit, developmental, UF 100)	No comparison possible
				Same in European Commission (2011c)	
Conclusion/ comment	JMPR did not derive toxicological reference values because information on the level of impurity B-1457 (5-chloro- <i>N</i> -(3-chloro-5-trifluoromethyl-2-pyridyl)- α , α , α -trifluoro-4,6-dinitro-o-toluidine) in batches used for toxicity studies was not reported The FAO specification for fluazinam limits the level of this impurity to 0.3%				
		n 2 g/kg (0.2%)		is impurity is specified in D maximum amount present	

JMPR ev	JMPR evaluation		l evaluation	_
Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable
The RMS informed EFSA that in the framework of the renewal of the approval, the RMS will propose the same ADI/ARfD as currently in place The metabolite TFAA has been discussed during the first EU peer review (EFSA, 2008a), and it toxicological profile could not be concluded on the basis of the available data. It was also note that a new assessment including a developmental toxicity study were provided after the peer review (and will be considered for the renewal)				w (EFSA, 2008a), and its e data. It was also noted

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose.

5.28.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Fluazinam	EU Reg. 2018/70: fluazinam	Yes	
	Animal products	No proposal; due to lack of	EU Reg. 2018/70: fluazinam	No	
		information on storage stability, the validity of the livestock metabolism studies cannot be concluded	Art 12 MRL review (EFSA, 2015p): No proposal, MRLs not needed	comparison possible	
RD RA	Plant products	No proposal	Art 12 MRL review (EFSA, 2015p): Sum of fluazinam, AMPA- fluazinam and AMGT, expressed as fluazinam	No comparison possible	
	Animal products	No proposal	Art 12 MRL review (EFSA, 2015p): No proposal–MRLs not needed	Not relevant	
Conclusion/ comments	and AMGT, expres	rcement RD for processed comm sed as fluazinam (tentative) (pros boiling, baking, cooking, paster	ocessed commodities subject to		

Table 135: Comparison of the residue definitions derived by JMPR and at EU level

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.28.4. Codex MRL proposals

Table 136: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	Codex MRL proposal EU MRL Comment				
General comments	The sponsor did not submit critical relevant impurity in batches used aware that this information had b	JMPR did not derive MRL proposals, due to serious deficiencies of the dossier. The sponsor did not submit critical information on the levels of a toxicologically relevant impurity in batches used in the toxicity studies. The Meeting was aware that this information had been made available to a number of regulatory authorities. The Meeting was therefore unable to proceed with the evaluation of fluazinam				
	No Maximum residue levels are re- in long-term and acute dietary ex- reach a conclusion on the residue plant commodities In addition, the Meeting could no TFAA in the crops considered in t	posure assessments definition for dietary t reach a conclusion	as the Meeting could not risk assessment for			

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.28.5. Consumer risk assessment

cute exposure assessment Chronic exposure assessmen		Comments on JMPR exposure assessment
RA assumptions:	RA assumptions:	Specific comments:
Not relevant	Not relevant	Not relevant
Results:	Results:	Results:
Not relevant	Not relevant	Not relevant

Table 137: Summary of the consumer risk assessment

RD: residue definition; RA: risk assessment.

5.29. Norflurazon (308) R,T

5.29.1. Background information

Table 138: Background information

		Comments, references
Type of JMPR evaluation	New compound evaluation	
RMS	_	None
Approval status	Not approved	Commission Regulation (EC) No 2076/2002 ^(a)
EFSA conclusion	No	
MRL review	No	
MRL applications	No	
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	Not concluded	Harmonised classification and labelling for CMR – Annex VI: no entry in Annex VI EU Peer Review proposal for CMR: no assessment at EU level is available ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^b): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Regulation (EC) No 2076/2002 of 20 November 2002 extending the time period referred to in Article 8(2) of Council Directive 91/414/EEC and concerning the non-inclusion of certain active substances in Annex I to that Directive and the withdrawal of authorisations for plant protection products containing these substances. OJ L 319, 23.11.2002, p. 3–11.
(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.29.2. Toxicological reference values

Table 139: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR evalua	EU	evaluation	TRV comparable	
	Value	Comments (source, study)	Value		
ADI	0.005 mg/kg bw per day	No toxicological information		No	
ARfD	0.3 mg/kg bw	JMPR (2018)	available at EU level		No
Conclusion/ comment	Norflurazon is not approved in the EU and TRV at EU level are not available. It is noted by the JMPR that the database was of poor quality. An additional uncertainty factor of 3 was applied to setting of the ADI because of poor quality. It is noted that all relevant endpoints appear to be covered. At EU level, the setting of a reference value using an additional factor to compensate for the poor quality of the data package might not be acceptable				

JMPR evalua	tion	EU	evaluation		
 Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
According to 2018 JMPR, the toxicity of desmethyl norflurazon and its conjugates and 6-methyl sulfoxide norflurazon are covered by the parent compound, as these metabolites were identified in significant amounts in animal studies. Desmethyl norflurazon was found in rat urine (max. 7%); 6-methyl sulfoxide norflurazon appeared in rat urine at greater than 10%. During the peer review, a trigger of 10% is used to consider a metabolite covered by the parent compound. The JMPR monograph does not provide additional explanations. In this case, desmethyl norflurazon was present at 7% in urine					
For the metabolite NOA-452 17% TRR), no specific data metabolite would be well be therefore, based on the TTC included in the residue defin EFSA, the genotoxicity of thi monograph if QSARs for gen be excluded, the sum of the be compared to the TTC. It i assessing residues metabolit The metabolite 5,6-dihydroo TRR, 0.26 mg eq/kg) was id whether this metabolite is co	were available on the low the toxicological approach, the JMP ition for dietary risk is metabolite should notoxicity were used exposure for all not s noted that curren tes since there is not liol desmethyl norfile entified in rat and g	ne toxicity. al threshold R conclude assessme I be addres I). If the g n-toxicolog tly the TTC agreemen urazon (ma joat matric	The JMPR estimate d of concern (TTC) ed that NOA-45207! int for animal comm ssed first (it is note enotoxic potential c gical characterised r C is not used at Euro it yet on how this to ajor metabolite in n ses; however, an ex	ed exposure to this (1.5 μg/kg bw) and 5 need not be nodities. According to reported in the of this metabolite can metabolites should opean Level for bol should be used nilk accounting 22%	

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; TRR: total radioactive residues; QSAR: quantitative structure–activity relationship; eq: residue expressed as a.s. equivalent.

5.29.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Sum of norflurazon and desmethyl norflurazon, expressed as norflurazon	No specific residue definition. Default residue definition	No
	Animal products	Sum of norflurazon and desmethyl norflurazon (free and conjugated), expressed as norflurazon	covering parent compound only is applicable	No
		The residue is not fat soluble		
RD RA	Plant products	Sum of norflurazon and desmethyl norflurazon (free and conjugated), expressed as norflurazon	-	Comparison not appropriate
	Animal Sum of desmethyl norflurazon – products (free and conjugated) and 6-methyl sulfoxide norflurazon, expressed as norflurazon		_	Comparison not appropriate
Conclusion/ comments	Plant metabolism was investigated following either soil treatment or root treatment in crops belonging to the group of fruit crops (orange), cereals/grass (maize), pulses/oilseeds (alfalfa, cotton and soya bean). Similar metabolic pathways were observed in the three crop groups where the major residues identified were norflurazon (free and conjugated) and the metabolite desmethyl norflurazon (free and conjugated). The nature of residues was investigated in crops grown as confined rotational crops representative of the groups of leafy crops (spinach), cereals/grass (maize), pulses/oilseeds (soya bean) and root crops (beet and radish), where the nature of residues was found to be similar to that observed in the primary crops following soil or root treatment			

Table 140: Comparison of the residue definitions derived by JMPR and at EU level

Commodity group	JMPR evaluation	EU evaluation	RDs comparable
animals were de norflurazon was in other tissues desmethyl norfle kidney and poul include 6-methy and conjugated conjugated) in p a second high-d desmethyl norfle (17% TRR) The metabolites were identified in more toxic than major metabolit (ethanolamine of desmethyl norfle indicated to be in	nimals has been assessed in rats, osed with phenyl ring- or pyridazin s present in tissues at up to 9% TR and eggs (up to 2% TRR). The pr urazon (free and conjugated) which try muscle. Other major residues pr l sulfoxide norflurazon in milk (22%) in eggs (10% TRR) and 6-methyls boultry muscle (45% TRR), poultry l lose study in lactating goats, major urazon (22% TRR, 0.26 mg eq/kg) s desmethyl norflurazon (free and co in the rat metabolism study and the norflurazon. However, in rat urine of conjugate) and the JMPR applied a urazon (major metabolite in milk ac identified in rat and goat matrices; I vered by the parent compound is no	yl ring-labelled norflurazon. The R (goat fat) but was found on edominant residue in most tiss n was found at around 10–25% resent at above 10% TRR and 0 b TRR), deschloro desmethyl no sulfone desmethyl norflurazon (f liver (20% TRR) and poultry fat metabolites in milk were 5,6-dil and NOA-452075 (ethanolamin onjugated) and 6-methyl sulfox b JMPR considered these metabol desmethyl norflurazon was not f ere available for the metabolite 1 TTC approach. The metabolite 1 counting 22% TRR, 0.26 mg echowever, a conclusion on wheth	e parent ly at low levels ue was TRR in liver, 0.01 mg eq/kg orflurazon (free free and (38% TRR). In hydrodiol e conjugate) ide norflurazon olites were no found to be a NOA-452075 5,6-dihydrodiol q/kg) in
	ount the results of the metabolism s residue definition for enforcement i PR		

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; TRR: total radioactive residues; eq: residue expressed as a.s. equivalent.

5.29.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Alfalfa fodder	7(DW)		Critical GAP: Canada and USA, 2,200 g/ha during dormancy or after cutting, PHI 28 days, maximum application 2,200 g/ha per annum Number of trials: 6 Sufficiently supported by data: Yes Specific comments/observations: The JMPR considered desmethyl norflurazon (free and conjugated) should be included in the livestock dietary burden calculation. In four trials, only free norflurazon and desmethyl norflurazon residues were measured and the JMPR applied a conversion factor of 2.2 derived from the alfalfa metabolism study to estimate the residues of total norflurazon and desmethyl norflurazon (free and conjugated). The HR/STMR derived for alfalfa forage/hay were taken into account for the dietary burden calculation of livestock No MRLs are set in the EU for feed items
Edible offal (Mammalian)	0.3	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	The dietary burden was calculated, including alfalfa forage and hay, rape forage, wheat forage, corn field forage/silage, corn sweet forage, rye straw, rice straw, rice grain, sorghum grain and corn field grain Apart from alfalfa forage and hay, the estimated residues in animal feed commodities were derived from the field rotational crop studies

Table 141: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
			The highest maximum dietary burden was calculated for the EU. EFSA is of the opinion that the calculations are not realistic, since wheat straw containing norflurazon is not expected to be fed to European ruminants A dairy cow feeding study was available; the calculated maximum and mean dietary burden was below the lowest feeding level To estimate total residues in the dietary risk assessment residue definition, the JMPR applied a conversion factor based on the relative proportions of metabolites in the goat metabolism studies Conclusion: It is recommended to discuss with MS whether the proposed Codex MRLs for animal products (mammalian) are acceptable, considering the deficiencies of the dossier (see below general comments)
Eggs	0.02*	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	The dietary burden was calculated, including wheat straw, rice grain, sorghum grain and corn field grain. The estimated residues in animal feed commodities were derived from the field rotational crop studies The highest dietary burden was calculated for the EU diet, with wheat straw being the main contributor. EFSA is of the opinion that the calculations are not realistic, since wheat straw containing norflurazon is not expected to be fed to European poultry A feeding study in laying hens was assessed by JMPR; the calculated maximum and mean dietary burden was below the lowest feeding level Since the poultry feeding study did not measure conjugates, the JMPR used the poultry metabolism study to estimate STMRs, HRs and MRLs for poultry commodities
			Residues of 6-methylsulfoxide norflurazon and NOA-452075 (ethanolamine conjugate) were not detected in the poultry feeding study, and for desmethyl norflurazon (free and conjugated) the highest average concentration of was 0.085 mg/kg in liver. Since the highest dietary burden was approximately 50-fold lower than the metabolism study does, the JMPR concluded that residues of these metabolites are not expected in poultry commodities Conclusion: It is recommended to discuss with MS whether the proposed Codex MRLs for poultry products are acceptable, considering the deficiencies of the dossier (see below general comments)
Mammalian fats (except milk fats)	0.02*	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	See comments on edible offal (mammalian)
Meat (from mammals other than marine mammals)	0.02*	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	See comments on edible offal (mammalian)
Milks	0.02*	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	See comments on edible offal (mammalian)

Commodity	Codex MRL proposal	EU MRL	Comment
Poultry fat	0.02*	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	See comments on eggs
Poultry meat	0.02*	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	See comments on eggs
Poultry, Edible offal of	0.02*	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	See comments on eggs
Wheat, Subgroup of (includes all commodities in this subgroup)	_	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	Specific comments/observations: The JMPR concluded the data were not sufficient to estimate MRLs for rotational crops. The field rotational crop studies were used to estimate consumer dietary exposure and livestock dietary burdens Conclusion: Since no Codex MRL proposal was made by JMPR, there is no need to take an EU position
Maize cereals, Subgroup of (includes all commodities in this subgroup)	_	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	Specific comments/observations: The JMPR concluded the data were not sufficient to estimate MRLs for rotational crops. The field rotational crop studies were used to estimate consumer dietary exposure and livestock dietary burdens Conclusion: Since no Codex MRL proposal was made by JMPR, there is no need to take an EU position
Sorghum grain and Millet, Subgroup of (includes all commodities in this subgroup)	_	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	Specific comments/observations: The JMPR concluded the data were not sufficient to estimate MRLs for rotational crops. The field rotational crop studies were used to estimate consumer dietary exposure and livestock dietary burdens Conclusion: Since no Codex MRL proposal was made by JMPR, there is no need to take an EU position
Rice cereals, Subgroup of (includes all commodities in this subgroup)	_	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	Specific comments/observations: The JMPR concluded the data were not sufficient to estimate MRLs for rotational crops. The field rotational crop studies were used to estimate consumer dietary exposure and livestock dietary burdens Conclusion: Since no Codex MRL proposal was made by JMPR, there is no need to take an EU position
Leafy greens, Subgroup of (includes all commodities in this subgroup)	_	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	Specific comments/observations: The JMPR concluded the data were not sufficient to estimate MRLs for rotational crops. The field rotational crop studies were used to estimate consumer dietary exposure and livestock dietary burdens Conclusion: Since no Codex MRL proposal was made by JMPR, there is no need to take an EU position
Leaves of Brassicaceae, Subgroup of (includes all commodities in this subgroup)	-	0.01* (Default MRL according to Art 18(1)(b) Reg. 396/ 2005)	Specific comments/observations: The JMPR concluded the data were not sufficient to estimate MRLs for rotational crops. The field rotational crop studies were used to estimate consumer dietary exposure and livestock dietary burdens Conclusion: Since no Codex MRL proposal was made by JMPR, there is no need to take an EU position

Commodity	Codex MRL proposal	EU MRL	Comment		
Root vegetables, Subgroup of (includes all commodities in this subgroup)	_	0.01*Specific comments/observations: The JMPR concluded the data were not sufficient to estimate MRLs for rotational crops.according to Art 18(1)(b) Reg. 396/ 2005)The field rotational crop studies were used to estimate consumer dietary exposure and livestock dietary burdens Conclusion: Since no Codex MRL proposal was made by JMPR, there is no need to take an EU position			
General comments	 Overall, the following deficiencies of the dossier were noted which should be taken into account by risk managers to decide whether the proposed Codex MRLs are acceptable: the toxicological studies used to derive the ADI were of low quality; to compensate for outdated (non-GLP) studies an additional factor of 3 was used; the applicability of the TRV to the metabolite desmethyl norflurazon is not sufficiently demonstrated (the metabolite was not a major metabolite in urine); data to exclude genotoxicity for a major milk metabolite (NOA-452075) was not reported; the rotational crop studies are not sufficient to predict in a reliable manner the residues in feed (used for dietary burden calculation) and food; the calculation of the dietary burden for livestock is not reliable (see previous bullet point) and not realistic (EU livestock is not expected to be exposed to norflurazon via crops such as alfalfa forage, cereal straw, rape forage etc. containing residues mostly via uptake from soil (rotational crops), because these commodities are not traded 				

GAP: Good Agricultural Practice; PHI: preharvest interval; STMR: supervised trials median residue; HR: highest residue; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; GLP: Good Laboratory Practice; TRV: toxicological reference values.

*: Indicates that the input value is proposed at the limit of quantification.

5.29.5. Consumer risk assessment

Table 142: Summary of the consumer risk assessment

assessment was performed for mammalian fats, meat and edible offal, poultry fat, meat and edible offal, eggs and milks as outlined in Section 2 The JMPR ARfD was used The calculation is indicative, because no decision has been taken yet at EU level on the residue definition and the	Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
ARTD In contrast to the JMPR risk assessment, EFSA did not include the residue levels expected in rotational crops in the dietary intake calculation, since these residues (HR between 0.21 and 0.56 mg/kg) would violate the existing EU MRLs (b) Reg. 396/ 2005 The JMPR ADI was used The calculation is indicative, because no decision has been taken yet at EU level on the residue definition and the ADI. In contrast to the JMPR risk assessment, EFSA did not include the residue levels expected in rotational crops in the dietary intake calculation, since these residues (STMR values between 0.04 and 0.096 mg/kg) would violate the	An indicative short-term dietary risk assessment was performed for mammalian fats, meat and edible offal, poultry fat, meat and edible offal, eggs and milks as outlined in Section 2 The JMPR ARfD was used The calculation is indicative, because no decision has been taken yet at EU level on the residue definition and the ARfD In contrast to the JMPR risk assessment, EFSA did not include the residue levels expected in rotational crops in the dietary intake calculation, since these residues (HR between 0.21 and 0.56 mg/kg) would violate	An indicative long-term risk assessment was performed using the approach as outlined in Section 'Assessment', using the STMR values derived by JMPR for mammalian fats, meat and edible offal, poultry fat, meat and edible offal, eggs and milks. For other commodities EFSA applied the default MRL according to Art 18(1) (b) Reg. 396/ 2005 The JMPR ADI was used The calculation is indicative, because no decision has been taken yet at EU level on the residue definition and the ADI. In contrast to the JMPR risk assessment, EFSA did not include the residue levels expected in rotational crops in the dietary intake calculation, since these residues (STMR values between 0.04 and	For rotational crops, data were not sufficient to estimate MRLs however the JMPR used STMR and HR values derived from the field rotational crop studies to estimate

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: No short-term exposure concern was identified. The commodities under consideration leading to highest exposure are (in rank order): bovine liver (0.6% of the ARfD) and bovine edible offal (0.5% of the ARfD)	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 14% of the ADI (NL toddler). From the commodities under consideration, the contribution to the total exposure was the highest for residues in bovine milk (2% of the ADI)	Results: Long-term exposure: 0–20% of the ADI Short-term exposure: 10% of the ARfD

RA: risk assessment; ARfD: acute reference dose; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; HR: highest residue; ADI: acceptable daily intake.

5.30. Mandestrobin (307) T

5.30.1. Background information

Table 143:Background information

		Comments, references
Type of JMPR evaluation New compound evaluation		
RMS	AT	
Approval status	Approved	Commission Implementing Regulation (EU) 2015/2085 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2015k)
MRL review	Not required	MRLs have been established in the framework of the peer review.
MRL applications	Yes, see comments	Apricot, cherry, peach and plum: EFSA (2018f) Strawberry and grapes: EFSA (2018l)
Cut-off criteria: • Mutagen cat. 1A or 1B	Not concluded	Harmonised classification and labelling for \ensuremath{CMR} – Annex VI: no entry in Annex VI
Caringogen cat. 1A or 1B Tavia for reproduction		EU Peer Review proposal for CMR: none
 Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 		ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

(a): Commission Implementing Regulation (EU) 2015/2085 of 18 November 2015 approving the active substance mandestrobin, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 302, 19.11.2015, p. 93–96.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.30.2. Toxicological reference values

Table 144:	Comparison of toxicological	reference values (TRV) derived by	y JMPR and at EU level
------------	-----------------------------	--------------------	-----------------	------------------------

	ונ	JMPR evaluation		EU evaluation		
Value		Comments (source, study)	Value Comments (source, study)		TRV comparable	
ADI	0.2 mg/kg bw per day	JMPR (2018) (1-year toxicity study in dogs, SF 100)	0.19 mg/kg bw per day	EFSA (2015k) (52-week dog (UF 100), supported by multigeneration rat (parental LOAEL, UF 300)	Yes	

	JMPR evaluation			EU evaluation	701/	
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ARfD	3 mg/kg bw	JMPR (2018) (developmental toxicity study in rats, SF 100)	Not required	EFSA (2015k)	No	
Conclusion/ comment	factor of 10 an UF of 30 different Al In the EU, toxicity pro The ARfD of based on a toxicity stu by the EU Metabolites 4-OH-S-220	study in rats, SF 100)The EU ADI is 0.19 mg/kg bw per day based on the 1-year dog study (applying an uncertainty factor of 100), and supported by the parental LOAEL from the multigeneration rat study (applying an UF of 300). The JMPR proposes the same ADI also based on the 1-year dog study. The different ADI values are a result of different policies on rounding In the EU, the derivation of an ARfD was not considered needed on the basis of the low acute toxicity profile of mandestrobin by the peer review experts The ARfD of 3 mg/kg bw derived by JMPR applies only to women of childbearing age and is based on a NOAEL of 300 mg/kg bw per day for malformations observed in a developmental toxicity study in rats and using a safety factor of 100. The same NOAEL from this study was set by the EU peer review (based on foetal findings) but was not considered for the ARfD derivationMetabolites considered during the EU peer review: 4-OH-S-2200 and De-Xy-S-2200 were considered to be covered by the toxicological profile of mandestrobin, whereas the plant metabolite 2-CH ₂ OH-S-2200 was not covered by the studies				

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; LOAEL: lowest observed adverse effect level.

5.31. Pydiflumetofen (309)R,T

5.31.1. Background information

Table 145: Background information

		Comments, references
Type of JMPR evaluation	New compound evaluation	
RMS	FR	
Approval status	Approval process ongoing	NAS application under Regulation (EC) No 1107/2009
EFSA conclusion	ongoing	EFSA Conclusion not yet finalised, pending endocrine assessment to be conducted by EFSA
MRL review	No	
MRL applications	Yes, see comments	MRL application ongoing as part of the approval process for pome fruit, grapes, potatoes, tropical root and tuber vegetables, solanacea, cucurbits, brassica and soybeans
Cut-off criteria: • Mutagen cat. 1A or	Not concluded	Harmonised classification and labelling – Annex VI: Under discussion at the ECHA RAC (March 2019)
 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 		RMS informed EFSA that a classification as Carc. 2 H351 and Repr. 2 H361f (fertility) has been proposed for during the meeting of the Committee for the risk assessment of ECHA (RAC-47; November 2018; minutes not available yet). This classification proposal will be re-discussed in RAC-48 (March 2019) in order to clarify the arguments justifying a double classification carcinogen and reprotoxic and to make the opinion more robust
		ED assessment ongoing

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

5.31.2. Toxicological reference values

	JMPR e	valuation		EU evaluation		
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable	
ADI	0.1 mg/kg bw per day	JMPR (2018)	0.09 mg/kg bw per day		No	
ARfD	0.3 mg/kg bw	JMPR (2018)	0.3 mg/kg bw	Developmental toxicity study in the rat and based on effects on body weight, with an UF of 100	Yes	
				Proposal derived in peer review expert meeting (September 2018)		
comment	The ADI established by the JMPR is based on the NOAEL of 9.9 mg/kg bw per day for reduced body weight in males from the two-year study in rats and applying an uncertainty factor (UF) of 100. The ADI discussed during the EU peer review and proposed in the RAR is based on the NOAEL of 9.2 mg/kg bw per day for reduced body weight from the 18-month carcinogenicity study in mice and applying an UF of 100. The ARfD set by the JMPR at 0.3 mg/kg bw is based the NOAEL of 30 mg/kg bw per day for reduced maternal body weight gain and feed consumpt early during treatment from the developmental toxicity study in rabbits and applying an UF of 1 This value is in agreement with the EU peer review discussion According to 2018 JMPR, the toxicity of 2,4,6-TCP and its conjugates would be covered by the parent compound, as this metabolite was identified as a major metabolite in rats. The ADI/ARfD derived by JMPR applies to pydiflumetofen and the metabolites 2,4,6-TCP and SYN547897					
	In the ongoing EU peer review, additional toxicological data on 2,4,6-TCP were taken into consideration from the published literature ^(a) indicating that the metabolite present carcinog potential, the genotoxicity database was considered inconclusive and no toxicological refere values could be concluded An ADI of 0.25 mg/kg bw per day was discussed for NOA449410 , based on NOAEL of 250 m bw per day from the developmental toxicity study in rabbits and applying an UF of 1,000. No <i>A</i> being necessary for this metabolite An ADI and ARfD of 0.04 mg/kg bw (per day) were discussed for SYN508272 , based on the 28-day study in rats, applying an UF of 1,000. The metabolites SYN545547 , SYN548263 and SYN547897 were considered non-genotox however insufficient data was available to conclude on their general toxicity					

Table 146: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

(a): The RMS informed EFSA that a literature review on the 2,4,6-TCP metabolite performed according to the EFSA Guidance document (EFSA Journal 2011; 9(2):2092) was submitted by the applicant and assessed by the RMS. On this basis, the toxicological profile of 2,4,6-TCP (and conjugates) and appropriate reference values have been discussed in expert meeting PPR 182 (September 2018). It was concluded that although 2,4,6-TCP is the major metabolite in rat, its toxicity could not be covered by the parent. Indeed, 2,4,6-TCP is classified carcinogen category 2 (Reg 1272/2008, ATPO) based on lymphoma/leukaemias observed in male rats and liver tumours in mice. In addition, a genotoxic mode of action could not be ruled out since the genotoxicity database was considered inconclusive based on quality and limitations of the available studies performed on the metabolite; particularly for the in vivo studies. This was considered by the majority of experts as data gap and a complete data package, including in vivo Comet assay exploring the site of contact and the target organs identified in the carcinogenesis studies, was recommended. If a genotoxic potential can be ruled out for 2,4,6-TCP, the repeated-dose toxicity profile of the metabolite in comparison with the toxicity profile of the parent pydiflumetofen will need to be addressed to perform the consumer risk assessment.

5.31.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable		
RD enf	Plant products	Pydiflumetofen	Peer Review proposal (September 2018): Pydiflumetofen	Yes		
	Animal products	Pydiflumetofen The residue is fat soluble	Peer Review proposal (September 2018): Pydiflumetofen	Yes		
			The residue is fat soluble			
RD RA	Plant products	Pydiflumetofen	Peer Review proposal (September 2018): Pydiflumetofen (for all categories of crops following foliar application)	Yes		
	Animal products	Animal products other than mammalian liver and kidney: Sum of pydiflumetofen and 2,4,6- trichlorophenol (2,4,6- TCP) and its conjugates, expressed as pydiflumetofen	Peer Review proposal (September 2018): Parent and 2,4,6-TCP for all animal matrices (provisional, pending on toxicological data on 2,4,6-TCP, including genotoxicity potential) (majority opinion) See also comments below	No		
		For mammalian liver and kidney: Sum of pydiflumetofen, 2,4,6- trichlorophenol (2,4,6- TCP) and its conjugates, and 3-(difluoromethyl)- <i>N</i> - methoxy-1-methyl- <i>N</i> -[1- methyl-2-(2,4,6-trichloro- 3-hydroxy- phenyl) ethyl] pyrazole-4-carboxamide (SYN547897) and its conjugates, expressed as pydiflumetofen				
Conclusion/ comments	The EU pestic for plant and	ides peer review meeting of animal products and for risk	EU residue definitions are not yet formall experts proposed a residue definition for assessment for plant products which is id the parent pydiflumetofen only	enforcement		
	As regards the residue definition for risk assessment (animal products), the peer review meeting of experts proposed a provisional residue definition as parent and 2,4,6-TCP for all animal matrices (provisional)(majority opinion). A minority of experts proposed residue definition for ruminant liver to also include SYN547897; and for ruminant kidney to also include SYN547897 and SYN548263					
	kidney include conjugates of	In contrast, the JMPR residue definition for animal products other than mammalian liver and kidney includes also conjugates of 2,4,6-TCP; and for mammalian liver and kidney it includes also conjugates of 2,4,6-TCP, and SYN547897 and its conjugates. Thus, the JMPR residue definitions would be wider than the provisional EU RD				
			osals only for plant commodities, the open I commodities is not of immediate relevanc			

Table 147: Comparison of the residue definitions derived by JMPR and at EU level

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level.

5.31.4. Codex MRL proposals

Commodity	Codex MRL	EU MRL	
commonly	proposal	LOPIKE	comment
Dried grapes (= Currants, Raisins and Sultanas)	4	_	A concentration of residues in dried grapes (currants, raisins, sultanas) occurs and a PF of 2.45 was derived from 6 processing studies No EU MRLs are set for processed grapes, such as raisins
Small fruit vine climbing, Subgroup of (includes all commodities in this subgroup)		0.01* (Default MRL according to Art 18 (1)(b) Reg. 396/ 2005)	Critical GAP: USA, grape and small fruit vine climbing, except fuzzy kiwifruit, up to 200 g/ha at a maximum annual rate of 400 g/ha, RTI not reported, PHI 7 days Number of trials: 11 trials on grapes Sufficiently supported by data: Yes Specific comments/observations: The Codex MRL for the subgroup 'Small fruit vine climbing' would be applicable to table grapes (0151010) and wine grapes (0151020) The NAS application under Regulation (EC) No 1107/2009 includes an application to set EU MRLs for table and wine grapes (proposed MRL 2 mg/kg on the basis of combined NEU and SEU residue trials; critical GAP (NEU and SEU: 2 \times 200 g/ha at BBCH 67-89, 14-day interval, PHI 21 days) Conclusion: The proposed Codex MRL is acceptable
Grape juice	_	_	A reduction of residues in grape juice occurs and a PF of 0.06 was derived from 6 processing studies No EU MRLs are set for processed grape products
Grape must	_	-	A concentration of residues in grape must occurs and a PF of 1.06 was derived from 8 processing studies. No EU MRLs are set for processed grape products
Grape seed oil, refined	_	-	A concentration of residues in grape seed oil (refined) occurs and a PF of 1.05 was derived from 4 processing studies. No EU MRLs are set for processed grape products
Red wine	-	_	A reduction of residues in red wine occurs and a PF of 0.135 was derived from 4 processing studies. No EU MRLs are set for processed grape products
White wine	_	_	A reduction of residues in white wine occurs and a PF of 0.315 was derived from 4 processing studies. No EU MRLs are set for processed grape products
General comments	accumulation the termination NAS application	on in soil and al residue in f ation under F	s for which residue trials were received, the JMPR concluded that I uptake of residues into rotational crops may significantly contribute to food and feed commodities and no recommendations could be made. The Regulation (EC) No 1107/2009 includes applications to set MRLs for d an import tolerance

Table 148:	Comparison of Codex MRL	proposals derived by	y JMPR and EU MRLs
	Companson of Couck Pille	proposais acrived b	y JPH IX and LO PHXES

PF: processing factor; MRL: maximum residue limit; GAP: Good Agricultural Practice; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; PHI: preharvest interval; NEU: northern European Union; SEU: southern European Union; BBCH: growth stages of mono- and dicotyledonous plants; RTI: re-treatment interval.*: Indicates that the input value is proposed at the limit of quantification.

5.31.5. Consumer risk assessment

Table 149: Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: An indicative short-term dietary risk assessment was performed for table grapes and wine grapes as outlined in Section 2 The proposed EU ARfD (equal to the JMPR ARfD) was used The calculation is indicative, because no decision has been taken yet on the residue definition and the ARfD	RA assumptions: An indicative long-term risk assessment was performed using the approach as outlined in Section 'Assessment', including the STMR values derived by JMPR for grapes (table grapes and wine grapes). EFSA applied the processing factors (PF) derived by JMPR for dried grapes, grape juice and wine (white wine) For other crop commodities, EFSA assumed no uses are authorised. The calculation is indicative, because no decision has been taken yet on the residue definition and the ADI	Specific comments: None
Results: No short-term exposure concern was identified. The estimated short-term exposure was 21% of the ARfD (table grapes) and 3% of the ARfD (wine grapes) Pydiflumetofen is applied as a racemic mixture and the risk assessment was performed disregarding the possible impact of enantiomer ratio due to plant or livestock metabolism. Considering a worst- case theoretical factor of 2 for the toxicological burden, the potential change of isomer ratios is of low concern since the exposure represent less than 50% of the ADI. Further consideration may be required in case future uses lead to a higher consumer exposure	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 0.9% of the ADI (PT general). The contributions of the grape commodities under consideration were 0.8% of the ADI (wine grapes) and 0.1% of the ADI (table grapes) Pydiflumetofen is applied as a racemic mixture and the risk assessment was performed disregarding the possible impact of enantiomer ratio due to plant or	Results: Long-term exposure: 0% of the ADI Short-term exposure: 20% of the ARfD

RA: risk assessment; ARfD: acute reference dose; ADI: acceptable daily intake; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; STMR: supervised trials median residue.

5.32. Pyriofenone (310) R,T

5.32.1. Background information

Table 150:Background information

		Comments, references
Type of JMPR evaluation	New compound evaluation	
RMS	LV	Previous RMS UK
Approval status	Approved	Commission Implementing Regulation (EU) No 833/2013 ^(a)
EFSA conclusion	Yes, see comments	EFSA (2013c)
MRL review	ongoing	Publication planned by June 2019
MRL applications	Yes, see comments	Wheat, barley and grapes, animal products: EFSA (2013f) Grapes: EFSA (2015h)

		Comments, references
Cut-off criteria: • Mutagen cat. 1A or 1B	Not concluded	Harmonised classification and labelling for CMR – Annex VI: no entry in Annex VI
 Carcinogen cat. 1A or 1B 		EU Peer Review proposal for CMR (2013): Carc. 2
 Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 		ED assessment according to ECHA/EFSA guidance (2018) and scientific criteria (Commission Regulation (EC) No 2018/605 ^(b)): not conducted

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.
 (a): Commission Implementing Regulation (EU) No 833/2013 of 30 August 2013 approving the active substance pyriofenone, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Implementing Regulation (EU) No 540/2011. OJ L 233, 31.8.2013, p. 7–10.

(b): Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

5.32.2. Toxicological reference values

Table 151: Comparison of toxicological reference values (TRV) derived by JMPR and at EU level

	JMPR evaluation			EU evaluation			
	Value	Comments (source, study)	Value	Comments (source, study)	TRV comparable		
ADI	0.09 mg/kg bw per day	JMPR (2018) (2-year rat study, SF 100)	0.07 mg/kg bw per day	EFSA (2013c) (rat, 2-year study, UF 100) European Commission (2013b)	No		
ARfD	Unnecessary	JMPR (2018)	Not required	EFSA (2013c) European Commission (2013b)	Yes		
Conclusion/ comment	magnitude The EU ADI o day from the (UF) of 100. T NOAEL is set retained is the in mg/kg bw p In the EU pee	Although ADI derived by EFSA is slightly lower than JMPR, the values are in the same order of					

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level.

5.32.3. Residue definitions

Table 152:	Comparison of the res	idue definitions derived b	y JMPR and at EU level
------------	-----------------------	----------------------------	------------------------

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable
RD enf	Plant products	Pyriofenone	EU Reg. 2016/1: Pyriofenone	Yes
	Animal products	Pyriofenone	EU Reg. 2016/1: Pyriofenone	Yes
		No conclusion on fat solubility, due to the low residues in muscle and fat found in the metabolism study	The residue is not fat soluble: Peer review (EFSA, 2013c): Not required, considering the representative uses; Provisional RD proposed for ruminant products: pyriofenone	

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD RA	Plant products	Pyriofenone	Peer review (EFSA, 2013c): Pyriofenone	Yes	
	Animal products	Pyriofenone	Peer review (EFSA, 2013c): Not required, considering the representative uses; Provisional RD proposed for ruminant products: Sum of pyriofenone and 2MDPM (free and conjugated)	No comparison appropriate	
Conclusion/ comments	For plant commodities, the EU and JMPR residue definitions are the same For animal products, so far no definitive residue definitions have been derived in the EU, since no significant dietary intake is expected for livestock 2018 JMPR proposed the parent compound as the residue definition for animal products				

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues.

5.32.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Cane berries, (includes all commodities in this subgroup)	0.9	Default MRL 0.01*	Critical GAP: max 110 g a.s./ha per application, up to a seasonal maximum rate of 350 g a.s./ha, RTI 7 days, PHI 0 days Number of trials: 6 trials in blackberries Sufficiently supported by data: Yes Specific comments/observations: Trials conducted with 4 × 85–93 g a.s./ha, max seasonal rate of 350–370 g a.s/ha. The proposed Codex MRL would cover blackberries and raspberries Conclusion: The proposed Codex MRL is acceptable
Bush berries, (includes all commodities in this subgroup)	1.5	Default MRL 0.01*	Critical GAP: USA, max 110 g a.s/ha per application, up to a seasonal maximum rate of 350 g a.s./ha, RTI 7 days, PHI 0 days Number of trials: 10 trials on blueberries Sufficiently supported by data: Yes Specific comments/observations: Trials conducted with 4 × 82–100 g a.s./ha, max seasonal rate of 350–380 g a.s/ha. The proposed Codex MRL would cover blueberries, currants, gooseberries, rose hips. At EU level, the extrapolation from blueberries to currants, gooseberries, and rose hops would not be acceptable Conclusion: The proposed Codex MRL is acceptable
Dried grapes (=Currants, Raisins and Sultanas)	2.5	_	Median value of PF (2.8) and the STMR of 0.23 mg/kg for grapes was used to derive a STMR-p of 0.64 mg/kg. Since residues concentrate in dried grapes, a MRL of 2.5 mg/kg is proposed At EU level, no MRLs are set for processed grapes
Fruiting vegetables, Cucurbits	0.2	Default MRL 0.01*	Critical GAP: USA, max 110 g a.s/ha per application, up to a seasonal maximum rate of 350 g a.s./ha, RTI 7 days, PHI 0 days Number of trials: 26 trials (8 trials in cucumbers, 9 trials in summer squash, 9 trials in cantaloupe) Sufficiently supported by data: Yes Specific comments/observations: MRL proposal was derived from the combined data set of trials on cucumbers,

Table 153: Comparison of Codex MRL proposals derived by JMPR and	nd EU MRLs
---	------------

Commodity	Codex MRL proposal	EU MRL	Comment
			summer squash and cantaloupe/melon; trials were approximating the GAP (4 applications of 88–100 g a.s./ha at 7 days interval). At EU level the setting of a group MRL for cucurbits (edible and inedible peel) based on a merged data set would not be accepted Conclusion: The proposed Codex MRL is acceptable
Low growing berries, (includes all commodities in this subgroup)	0.5	Default MRL 0.01*	Critical GAP: max 110 g a.s/ha per application, up to a seasonal maximum rate of 350 g a.s./ha, with an interval of 7 days, PHI 0 days Number of trials: 9 trials in strawberries Sufficiently supported by data: Yes Specific comments/observations: The proposed Codex MRL would cover cranberries and strawberries. Conclusion: The proposed Codex MRL is acceptable
Small fruit vine climbing (includes all commodities in this subgroup)	0.8	Table grapes: 0.9 Wine grapes: 0.2	Critical GAP: USA, max 110 g a.s/ha per application, up to a seasonal maximum rate of 350 g a.s./ha, RTI 14 days, PHI 0 days Number of trials: 12 Sufficiently supported by data: Yes Specific comments/observations: The EU GAP on table grapes (3×90 g a.s./ha; PHI 14 days), for which a MRL of 0.9 mg/kg is set, is fully supported by data Conclusion: The proposed Codex MRL is acceptable
Grape juice	-	-	8 processing studies available, PF 0.06 At EU level, no MRLs are set for processed grapes
Grape must	-	-	2 processing studies available, PF 0.46 At EU level, no MRLs are set for processed grapes
Grape wine	_	-	16 processing studies available (8 for white wine and 8 for red wine); PF for red wine: 0.06, PF for white wine 0.04. At EU level, no MRLs are set for processed grapes
General comments	-		

GAP: Good Agricultural Practice; a.s.: active substance; PHI: preharvest interval; MRL: maximum residue level; PF: processing factor; STMR: supervised trials median residue; RTI: re-treatment interval. *: Indicates that the input value is proposed at the limit of quantification.

· Indicates that the input value is proposed at the infine of quantity

5.32.5. Consumer risk assessment

 Table 154:
 Summary of the consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions: The short-term dietary risk assessment was not performed as no ARfD is deemed necessary (EFSA, 2013a–j)	RA assumptions: The most recent long-term risk assessment (EFSA, 2015h) was updated using the approach as outlined in Section 'Assessment', including the STMR values for the commodities for which the proposed Codex MRL is higher than the existing EU MRL The EU ADI was used	Specific comments: The chronic exposure made by JMPR was performed with the ADI of 0.09 mg/kg bw per day. The IEDI was 0% of the maximum ADI JMPR also considered that an ARfD is unnecessary. Therefore, the acute dietary exposure to residues of pyriofenone from the uses assessed was considered unlikely to present a public health concern

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment	
Results: No short-term exposure assessment is necessary	Results: No long-term consumer health risk was identified. The overall chronic exposure accounted for 2% of the ADI	Results: Long-term exposure: 0% of the ADI	

RA: risk assessment; ARfD: acute reference dose; ADI: acceptable daily intake; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; MRL: maximum residue level; IEDI: international estimated daily intake.

5.33. Tioxazafen (311) R,T

5.33.1. Background information

Table 155: Background information

		Comments, references
Type of JMPR evaluation	New compound evaluation	
RMS	-	N/A
Approval status	Not approved	Never notified and authorised in the EU
EFSA conclusion	No	
MRL review	No	
MRL applications	No	Import tolerance application under preparation in NL (cotton, maize and soybeans)
 Cut-off criteria: Mutagen cat. 1A or 1B Carcinogen cat. 1A or 1B Toxic for reproduction cat. 1A or 1B Endocrine disrupting (ED) potential 	No assessment at EU level	Harmonised classification and labelling for CMR – Annex VI: no entry in Annex VI

JMPR: Joint FAO/WHO Meeting on Pesticide Residues; RMS: rapporteur Member State; MRL: maximum residue level.

5.33.2. Toxicological reference values

Table 156:	Comparison of toxicological	reference values (TRV	') derived b	y JMPR and at EU level
------------	-----------------------------	-----------------------	--------------	------------------------

	J	MPR evaluation	EU ev		
	Value Comments (source, study)		Value Comments (source, study)		TRV comparable
ADI	0.05 mg/kg bw per day	JMPR (2018) (2-year toxicity study in rats, SF 100)			Comparison not appropriate
ARfD	0.5 mg/kg bw	JMPR (2018) (acute neurotoxicity study in rats, SF 500)			Comparison not appropriate
Conclusion/ comment	So far no assessment of the active substance was performed in the EU JMPR assessment: The ADI is based on a 2-year toxicity study in rats, applying a safety factor of 100 The ARfD was derived from the acute neurotoxicity study in rats, using a safety factor of 500; the additional factor of 5 was applied for the use of a LOAEL instead of a NOAEL Both the ADI and the ARfD can be applied to benzamidine Since the detailed study reports are not available, no comment on the acceptability of the toxicological reference values derived by JMPR can be provided				

ADI: acceptable daily intake; bw: body weight; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; NOAEL: no observed adverse effect level; LOAEL: lowest observed adverse effect level.

5.33.3. Residue definitions

	Commodity group	JMPR evaluation	EU evaluation	RDs comparable	
RD enf	Plant products	Sum of tioxazafen and benzamidine (benzenecarboximidamide), expressed as tioxazafen	No specific residue definition is set in the EU; the default residue	No comparison possible	
	Animal products	Sum of tioxazafen and benzamidine (benzenecarboximidamide), expressed as tioxazafen The residue is not fat soluble	definition covering the parent compound only is applicable	No comparison possible	
RD RA	Plant products	Sum of tioxazafen and benzamidine (benzenecarboximidamide), expressed		No comparison possible	
	Animal products	as tioxazafen		No comparison possible	
Conclusion/ comments	The plant residue definitions derived by JMPR are based on metabolism studies in GM soya bean, GM maize and cotton, reflecting seed treatments (the GM varieties used in the metabolism studies are not reported) and rotational crop studies For animal commodities, JMPR assessed metabolism study in rats, lactating goats and laying hens Considering that tioxazafen was found to be extensively metabolised, parent compound is not a good marker substance. Thus, at EU level the setting of specific residue definitions as proposed by JMPR is recommended				

Table 157: Comparison of the residue definitions derived by JMPR and at EU level

RD: residue definition; RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; GM: genetically modified.

5.33.4. Codex MRL proposals

Commodity	Codex MRL proposal	EU MRL	Comment
Cotton gin trash	0.02	Default 0.01*	Critical GAP: USA, see GAP for cotton seed Number of trials: 4 Sufficiently supported by data: Yes Specific comments/observations: In the EU, MRLs are not set for feed items
Cottonseed	0.01*	Default 0.01*	Critical GAP: USA, 1 mg/seed, 210 g a.i./ha Number of trials: 12 Sufficiently supported by data: Yes Specific comments/observations: In all trials residues were < 0.005 mg/kg Conclusion: The proposed Codex MRL is acceptable
Edible offal (mammalian)	0.03	Default 0.01*	Feeding study in lactating cows was available. The lowest feeding level tested was 6 times higher than the calculated maximum dietary burden Conclusion: The proposed Codex MRL is acceptable However, a lower level would be sufficient (0.02 or 0.015 mg/kg)
Eggs	0.02*	Default 0.01*	The MRL proposal was derived from metabolism studies in poultry performed with a feeding level approximately 30 times the calculated maximum dietary burden Conclusion: The proposed Codex MRL is acceptable
Maize	0.01*	Default 0.01*	Critical GAP: USA, seed treatment 1 mg/seed; 99 g a.i./ha Number of trials: 22 Sufficiently supported by data: Yes Specific comments/observations: In all trials residues were < 0.005 mg/kg Conclusion: The proposed Codex MRL is acceptable

Table 158: Comparison of Codex MRL proposals derived by JMPR and EU MRLs

Commodity	Codex MRL proposal	EU MRL	Comment
Maize fodder	0.03(DM)		Critical GAP: USA, see GAP for maize Number of trials: 22 Sufficiently supported by data: Yes Specific comments/observations: In the EU, MRLs are not set for feed items
Mammalian fats (except milk fats)	0.03	Default 0.01*	See comments on edible offal (mammalian) Conclusion: The proposed Codex MRL is acceptable. However, a lower level would be sufficient (0.02 or 0.015 mg/kg)
Meat (from mammals other than marine mammals)	0.02	Default 0.01*	See comments on edible offal (mammalian) Conclusion: The proposed Codex MRL is not compatible with the EU legislation, because MRLs are not set for meat but for muscle. The corresponding MRL for muscle would be 0.01 mg/kg
Milks	0.02	Default 0.01*	See comments on edible offal (mammalian) Conclusion: The proposed Codex MRL is acceptable
Poultry edible offal	0.02*	Default 0.01*	See comments on eggs Conclusion: The proposed Codex MRL is acceptable
Poultry fat	0.02*	Default 0.01*	See comments on eggs Conclusion: The proposed Codex MRL is acceptable
Poultry meat	0.02*	Default 0.01*	See comments on eggs Conclusion: The proposed Codex MRL is acceptable
Soya bean (dry)	0.04	Default 0.01*	Critical GAP: USA, 0.5 mg/seed (309 g a.i./ha) Number of trials: 22 Sufficiently supported by data: Yes Specific comments/observations: – Conclusion: The proposed Codex MRL is acceptable
Soya bean fodder	0.4(DM)		Critical GAP: USA, see GAP for soya beans dry Number of trials: 22 Sufficiently supported by data: Yes Specific comments/observations: In the EU, MRLs are not set for feed items
Soya bean meal	0.06		MRL proposal was derived by applying a PF of 1.41 to soybeans. One processing study would not be sufficient in the EU
Soya bean oil, Refined			PF < 0.06. One processing study would not be sufficient in the EU
General comments	_		

GAP: Good Agricultural Practice; MRL: maximum residue level; PF: processing factor. *: Indicates that the input value is proposed at the limit of quantification.

5.33.5. Consumer risk assessment

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
RA assumptions:	RA assumptions:	Specific comments:
The short-term dietary risk assessment was performed for the commodities under consideration. The JMPR ARfD was used	The long-term exposure was calculated using the STMR values derived by JMPR for the commodities under consideration. For the remaining commodities, the default MRL of 0.01 mg/kg was used in the exposure calculation The JMPR ADI was used	_

Acute exposure assessment	Chronic exposure assessment	Comments on JMPR exposure assessment
Results: No short-term exposure concern was identified (maximum exposure via poultry meat, 0.07% of the ARfD)	Results: No long-term consumer health risk was identified The overall chronic exposure accounted for 4% of the ADI The contribution of milk to the exposure was 2% of the ADI	Results: Long-term exposure: 0% of the ADI Short-term exposure: 0% of the ARfD

RA: risk assessment; JMPR: Joint FAO/WHO Meeting on Pesticide Residues; ARfD: acute reference dose; STMR: supervised trials median residue; ADI: acceptable daily intake.

References

- ECHA (European Chemicals Agency), 2016. RAC opinion proposing harmonised classification and labelling at EU level of propiconazole. Available online: https://echa.europa.eu/documents/10162/723fe08d-2ec7-105b-51aa-05064bd91ac3
- ECHA and EFSA (European Chemicals Agency and European Food Safety Authority) with the technical support of the Joint Research Centre (JRC), Andersson N, Arena M, Auteri D, Barmaz S, Grignard E, Kienzler A, Lepper P, Lostia AM, Munn S, Parra Morte JM, Pellizzato F, Tarazona J, Terron A and Van der Linden S, 2018. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA Journal 2018;16(6):5311, 135 pp. https://doi.org/10.2903/j.efsa.2018.5311. ECHA-18-G-01-EN.
- EFSA (European Food Safety Authority), 2006a. Conclusion regarding the peer review of the pesticide risk assessment of the active substance cyprodinil. EFSA Journal 2006;4(1):RN-51, 78 pp https://doi.org/10.2903/j.efsa.2006.51r
- EFSA (European Food Safety Authority), 2006b. Conclusion regarding the peer review of the pesticide risk assessment of the active substance propamocarb. EFSA Journal 2006;4(7):RN-78, 80 pp. https://doi.org/ 10.2903/j.efsa.2006.78r
- EFSA (European Food Safety Authority), 2007. Conclusion regarding the peer review of the pesticide risk assessment of the active substance fludioxonil. EFSA Journal 2007;5(8):RN-110, 85 pp. https://doi.org/10. 2903/j.efsa.2007.110r
- EFSA (European Food Safety Authority), 2008a. Conclusion regarding the peer review of the pesticide risk assessment of the active substance fluazinam. EFSA Journal 2008;6(7):RN-137, 82 pp. https://doi.org/10.2903/j.efsa.2008.137r
- EFSA (European Food Safety Authority), 2008b. Conclusion regarding the peer review of the pesticide risk assessment of the active substance abamectin. EFSA Journal 2008;6(7):RN-147, 106 pp. https://doi.org/ 10.2903/j.efsa.2008.147r
- EFSA (European Food Safety Authority), 2008c. Conclusion regarding the peer review of the pesticide risk assessment of the active substance fenpyroximate. EFSA Journal 2008;6(10):RN-197, 104 pp. https://doi.org/ 10.2903/j.efsa.2008.197r
- EFSA (European Food Safety Authority), 2009a. Conclusion regarding the peer review of the pesticide risk assessment of the active substance lufenuron. EFSA Journal 2009;7(6):RN-189, 130 pp. https://doi.org/ 10.2903/j.efsa.2009.189r
- EFSA (European Food Safety Authority), 2009b. Conclusion on pesticide peer review regarding the risk assessment of the active substance pyriproxyfen. EFSA Journal 2009;7(8):336r, 99 pp. https://doi.org/10.2903/j.efsa.2009. 336r
- EFSA (European Food Safety Authority), 2010a. Conclusion on the peer review of the pesticide risk assessment of the active substance imazalil. EFSA Journal 2010;8(3):1526, 69 pp. https://doi.org/10.2903/j.efsa.2010.1526
- EFSA (European Food Safety Authority), 2010b. Modification of the existing MRL for bentazone in sweet corn. EFSA Journal 2010;8(5):1617, 21 pp. https://doi.org/10.2903/j.efsa.2010.1617
- EFSA (European Food Safety Authority), 2010c. Consumer safety assessment of certain EU MRLs established for bromopropylate. EFSA Journal 2010;8(6):1640, 26 pp. https://doi.org/10.2903/j.efsa.2010.1640
- EFSA (European Food Safety Authority), 2010d. Conclusion on the peer review of the pesticide risk assessment of the active substance kresoxim-methyl. EFSA Journal 2010;8(11):1891, 88 pp. https://doi.org/10.2903/j.efsa. 2010.1891
- EFSA (European Food Safety Authority), 2011a. Modification of the existing MRLs for pyraclostrobin in various crops. EFSA Journal 2011;9(3):2120, 41 pp. https://doi.org/10.2903/j.efsa.2011.2120
- EFSA (European Food Safety Authority), 2011b. Modification of the existing MRLs for bentazone in legume vegetables and fresh herbs. EFSA Journal 2011;9(5):2188, 29 pp. https://doi.org/10.2903/j.efsa.2011.2188
- EFSA (European Food Safety Authority), 2011c. Setting of new MRLs for fluxapyroxad (BAS 700 F) in various commodities of plant and animal origin. EFSA Journal 2011;9(6):2196, 68 pp. https://doi.org/10.2903/j.efsa. 2011.2196

- EFSA (European Food Safety Authority), 2011d. Review of the existing maximum residue levels (MRLs) for fludioxonil according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2011;9(8):2335, 86 pp. https://doi.org/10.2903/j.efsa.2011.2335
- EFSA (European Food Safety Authority), 2011e. Review of the existing maximum residue levels (MRLs) for pyraclostrobin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2011;9(8):2344, 92 pp. https://doi.org/10.2903/j.efsa.2011.2344
- EFSA (European Food Safety Authority), 2012a. Conclusion on the peer review of the pesticide risk assessment of the active substance fluxapyroxad (BAS 700 F). EFSA Journal 2012;10(1):2522, 90 pp. https://doi.org/ 10.2903/j.efsa.2012.2522
- EFSA (European Food Safety Authority), 2012b. Reasoned opinion on the modification of the existing MRLs for pyraclostrobin in leafy brassica and various cereals. EFSA Journal 2012;10(3):2606, 36 pp. https://doi.org/ 10.2903/j.efsa.2012.2606
- EFSA (European Food Safety Authority), 2012c. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for bentazone according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2012;10 (7):2822, 65 pp. https://doi.org/10.2903/j.efsa.2012.2822
- EFSA (European Food Safety Authority), 2012d. Conclusion on the peer review of the pesticide risk assessment of the active substance mandipropamid. EFSA Journal 2012;10(11):2935, 76 pp. https://doi.org/10.2903/j.efsa. 2012.2935
- EFSA (European Food Safety Authority), 2012e. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for cyazofamid according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2012;10 (12):3065, 38 pp. https://doi.org/10.2903/j.efsa.2012.3065
- EFSA (European Food Safety Authority), 2013a. Reasoned opinion on the modification of the existing MRLs for pyraclostrobin in cucumbers and Jerusalem artichokes. EFSA Journal 2013;11(2):3109, 27 pp. https://doi.org/ 10.2903/j.efsa.2013.3109
- EFSA (European Food Safety Authority), 2013b. Conclusion on the peer review of the pesticide risk assessment of the active substance [fluopyram]. EFSA Journal 2013;11(4):3052, 76 pp. https://doi.org/10.2903/j.efsa.2013.3052
- EFSA (European Food Safety Authority), 2013c. Conclusion on the peer review of the pesticide risk assessment of the active substance pyriofenone. EFSA Journal 2013;11(4):3147, 84 pp. https://doi.org/10.2903/j.efsa.2013.3147
- EFSA (European Food Safety Authority), 2013d. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for propamocarb according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2013;11 (4):3214, 72 pp. https://doi.org/10.2903/j.efsa.2013.3214
- EFSA (European Food Safety Authority), 2013e. Reasoned opinion on the modification of the existing MRLs for propamocarb in rocket and leek. EFSA Journal 2013;11(6):3255, 32 pp. https://doi.org/10.2903/j.efsa.2013.3255
- EFSA (European Food Safety Authority), 2013f. Reasoned opinion on the setting of new MRLs for pyriofenone in cereals, grapes and animal products. EFSA Journal 2013;11(7):3342, 23 pp. https://doi.org/10.2903/j.efsa. 2013.3342
- EFSA (European Food Safety Authority), 2013g. Reasoned opinion on the modification of the existing MRLs for cyazofamid in grapes. EFSA Journal 2013;11(10):3402, 23 pp. https://doi.org/10.2903/j.efsa.2013.3402
- EFSA (European Food Safety Authority), 2013h. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for cyprodinil according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2013;11 (10):3406, 81 pp. https://doi.org/10.2903/j.efsa.2013.3406
- EFSA (European Food Safety Authority), 2013i. Reasoned opinion on the modification of the existing MRLs for pyriproxyfen in stone fruits and tea. EFSA Journal 2013;11(12):3489, 26 pp. https://doi.org/10.2903/j.efsa. 2013.3489
- EFSA (European Food Safety Authority), 2013j. Conclusion on the peer review of the pesticide risk assessment of the active substance fenpyroximate. EFSA Journal 2013;11(12):3493, 81 pp. https://doi.org/10.2903/j.efsa. 2013.3493
- EFSA (European Food Safety Authority), 2014a. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for lambda-cyhalothrin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2014;12(1):3546, 117 pp. https://doi.org/10.2903/j.efsa.2014.3546
- EFSA (European Food Safety Authority), 2014b. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for kresoxim-methyl according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2014;12(1):3549, 70 pp. https://doi.org/10.2903/j.efsa.2014.3549
- EFSA (European Food Safety Authority), 2014c. Conclusion on the peer review of the pesticide risk assessment of the active substance lambda-cyhalothrin. EFSA Journal 2014;12(5):3677, 170 pp. https://doi.org/10.2903/j.ef sa.2014.3677
- EFSA (European Food Safety Authority), 2014d. Reasoned opinion on the modification of the existing MRL for pyraclostrobin in chicory roots. EFSA Journal 2014;12(5):3685, 23 pp. https://doi.org/10.2903/j.efsa.2014.3685
- EFSA (European Food Safety Authority), 2014e. Conclusion on the peer review of the pesticide risk assessment of the active substance sulfoxaflor. EFSA Journal 2014;12(5):3692, 170 pp. https://doi.org/10.2903/j.efsa.2014.3692
- EFSA (European Food Safety Authority), 2014f. Reasoned opinion on the modification of the existing MRLs for propamocarb in spring onions and Chinese cabbage. EFSA Journal 2014;12(8):3811, 18 pp. https://doi.org/10. 2903/j.efsa.2014.3811

- EFSA (European Food Safety Authority), 2014g. Conclusion on the peer review of the pesticide risk assessment of the active substance cyantraniliprole. EFSA Journal 2014;12(9):3814, 249 pp. https://doi.org/10.2903/j.efsa. 2014.3814
- EFSA (European Food Safety Authority), 2014h. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for abamectin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2014;12 (9):3823, 84 pp. https://doi.org/10.2903/j.efsa.2014.3823
- EFSA (European Food Safety Authority), 2014i. Reasoned opinion on the modification of the existing MRLs for pyraclostrobin in swedes and turnips. EFSA Journal 2014;12(10):3872, 19 pp. https://doi.org/10.2903/j.efsa. 2014.3872
- EFSA (European Food Safety Authority), 2015a. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for diquat according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2015;13 (1):3972, 69 pp. https://doi.org/10.2903/j.efsa.2015.3972
- EFSA (European Food Safety Authority), 2015b. Reasoned opinion on the review of the existing maximum residue levels (MRLs) for propiconazole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2015;13 (1):3975, 72 pp. https://doi.org/10.2903/j.efsa.2015.3975
- EFSA (European Food Safety Authority), 2015c. Reasoned opinion on the review of the existing maximum residue levels for fenpyroximate according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2016;14 (1):4382, 48 pp. https://doi.org/10.2903/j.efsa.2016.4382
- EFSA (European Food Safety Authority), 2015d. Reasoned opinion on the modification of the existing MRL for cyazofamid in aubergines. EFSA Journal 2015;13(1):3993, 19 pp. https://doi.org/10.2903/j.efsa.2015.3993
- EFSA (European Food Safety Authority), 2015e. Reasoned opinion on the modification of the existing maximum residue level for pyriproxyfen in bananas. EFSA Journal 2016;14(2):4387, 18 pp. https://doi.org/10.2903/j.efsa. 2016.4387
- EFSA (European Food Safety Authority), 2015f. Conclusion on the peer review of the pesticide risk assessment of the active substance benzovindiflupyr. EFSA Journal 2015;13(3):4043, 88 pp. https://doi.org/10.2903/j.efsa. 2015.4043
- EFSA (European Food Safety Authority), 2015g. Reasoned opinion on the modification of the existing MRL for cyprodinil in celery. EFSA Journal 2015;13(3):4046, 23 pp. https://doi.org/10.2903/j.efsa.2015.4046
- EFSA (European Food Safety Authority), 2015h. Reasoned opinion on the modification of the existing maximum residue level (MRL) for pyriofenone in table grapes. EFSA Journal 2015;13(3):4071, 16 pp. https://doi.org/ 10.2903/j.efsa.2015.4071
- EFSA (European Food Safety Authority), 2015i. Conclusion on the peer review of the pesticide risk assessment of the active substance bentazone. EFSA Journal 2015;13(4):4077, 153 pp. https://doi.org/10.2903/j.efsa.2015.4077
- EFSA (European Food Safety Authority), 2015j. Reasoned opinion on the modification of the existing maximum residue levels for propamocarb in onions, garlic, shallots and leeks. EFSA Journal 2015;13(4):4084, 20 pp. https://doi.org/10.2903/j.efsa.2015.4084
- EFSA (European Food Safety Authority), 2015k. Conclusion on the peer review of the pesticide risk assessment of the active substance mandestrobin. EFSA Journal 2015;13(5):4100, 72 pp. https://doi.org/10.2903/j.efsa.2015.4100
- EFSA (European Food Safety Authority), 2015I. Reasoned opinion on the modification of the existing MRLs for abamectin in various crops. EFSA Journal 2015;13(7):4189, 27 pp. https://doi.org/10.2903/j.efsa.2015.4189
- EFSA (European Food Safety Authority), 2015m. Reasoned opinion on the modification of the existing maximum residue level for kresoxim-methyl in leeks. EFSA Journal 2015;13(8):4215, 18 pp. https://doi.org/10.2903/j.efsa. 2015.4215
- EFSA (European Food Safety Authority), 2015n. Reasoned opinion on the modification of maximum residue levels for cyazofamid in hops, globe artichokes, leeks and spring onions/green onions and Welsh onions. EFSA Journal 2015;13(8):4204, 20 pp. https://doi.org/10.2903/j.efsa.2015.4204
- EFSA (European Food Safety Authority), 2015o. Reasoned opinion on the modification of the existing maximum residue levels for fluxapyroxad in grapes and potatoes. EFSA Journal 2015;13(9):4223, 25 pp. https://doi.org/ 10.2903/j.efsa.2015.4223
- EFSA (European Food Safety Authority), 2015p. Reasoned opinion on the review of the existing maximum residue levels for fluazinam according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2015;13(9):4240, 37 pp. https://doi.org/10.2903/j.efsa.2015.4240
- EFSA (European Food Safety Authority), 2015q. Peer review of the pesticide risk assessment of the active substance isofetamid. EFSA Journal 2015;13(11):4265, 130 pp. https://doi.org/10.2903/j.efsa.2015.4265
- EFSA (European Food Safety Authority), 2015r. Conclusion on the peer review of the pesticide risk assessment of the active substance diquat. EFSA Journal 2015;13(11):4308, 127 pp. https://doi.org/10.2903/j.efsa.2015.4308
- EFSA (European Food Safety Authority), 2015s. Reasoned opinion on the modification of the existing MRLs for propamocarb in various crops. EFSA Journal 2015;13(11):4266, 19 pp. https://doi.org/10.2903/j.efsa.2015.4266
- EFSA (European Food Safety Authority), 2015t. Revision of the review of the existing maximum residue levels for the active substance lambda-cyhalothrin. EFSA Journal 2015;13(12):4324, 119 pp. https://doi.org/10.2903/j.efsa. 2015.4324
- EFSA (European Food Safety Authority), 2016a. Reasoned opinion on setting of import tolerances for fluxapyroxad in various crops. EFSA Journal 2016;14(3):4404, 28 pp. https://doi.org/10.2903/j.efsa.2016.4404

- EFSA (European Food Safety Authority), 2016b. Reasoned opinion on the modification of the MRLs for fludioxonil in various crops. EFSA Journal 2016;14(3):4445, 20 pp. https://doi.org/10.2903/j.efsa.2016.4445
- EFSA (European Food Safety Authority), 2016c. Reasoned opinion on the setting of import tolerance for fluazinam in blueberries. EFSA Journal 2016;14(4):4460, 20 pp. https://doi.org/10.2903/j.efsa.2016.4460
- EFSA (European Food Safety Authority), 2016d. Peer review of the pesticide risk assessment of the active substance abamectin. EFSA Journal 2016;14(5):4491. https://doi.org/10.2903/j.efsa.2016.4491
- EFSA (European Food Safety Authority), 2016e. Reasoned opinion on the modification of the existing maximum residue level for pyraclostrobin in beet leaves (chards). EFSA Journal 2016;14(8):4552, 14 pp. https://doi.org/ 10.2903/j.efsa.2016.4552
- EFSA (European Food Safety Authority), 2016f. Conclusion on the peer review of the pesticide risk assessment of the active substance cyazofamid. EFSA Journal 2016;14(6):4503, 24 pp. https://doi.org/10.2903/j.efsa.2016.4503
- EFSA (European Food Safety Authority), 2016g. Reasoned opinion on the setting of import tolerances for benzovindiflupyr in various plant and animal origin commodities. EFSA Journal 2016;14(12):4644, 30 pp. https://doi.org/10.2903/j.efsa.2016.4644
- EFSA (European Food Safety Authority), 2016h. Conclusion on the peer review of the pesticide risk assessment of the active substance oxathiapiprolin. EFSA Journal 2016;14(7):4504, 19 pp. https://doi.org/10.2903/j.efsa. 2016.4504
- EFSA (European Food Safety Authority), 2017a. Reasoned opinion on the modification of the existing maximum residue levels for pyraclostrobin in various crops. EFSA Journal 2017;15(1):4686, 19 pp. https://doi.org/10. 2903/j.efsa.2017.4686
- EFSA (European Food Safety Authority), 2017b. Technical report on the outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for benzovindiflupyr in light of confirmatory data. EFSA supporting publication 2017:14(6):EN-1230. 14 pp. https://doi.org/10.2903/sp.efsa.2017.en-1230
- EFSA (European Food Safety Authority), 2017c. Reasoned opinion on the review of the existing maximum residue levels for lufenuron according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2017;15(1):4652, 41 pp. https://doi.org/10.2903/j.efsa.2016.4652
- EFSA (European Food Safety Authority), 2017d. Statement on pesticide active substances that do not require a review of the existing maximum residue levels under Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2017;15(12):5080, 8 pp. https://doi.org/10.2903/j.efsa.2017.5080
- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Bellisai G, Brancato A, Brocca D, Bura L, Byers H, Chiusolo A, Court Marques D, Crivellente F, De Lentdecker C, De Maglie M, Egsmose M, Erdos Z, Fait G, Ferreira L, Goumenou M, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Magrans JO, Medina P, Miron I, Molnar T, Nougadere A, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017e. Conclusion on the peer review of the pesticide risk assessment of the active substance propiconazole. EFSA Journal 2017;15(7):4887, 28 pp. https://doi.org/10.2903/j.efsa.2017.4887
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017f. Reasoned Opinion on the modification of the existing maximum residue levels for fluazinam in onions, shallots and garlic. EFSA Journal 2017;15(7):4904, 22 pp. https://doi.org/10.2903/j.efsa.2017.4904
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017g. Reasoned Opinion on the focussed review of the existing maximum residue levels for lambda-cyhalothrin in light of the unspecific residue definition and the existing good agricultural practices for the substance gamma-cyhalothrin. EFSA Journal 2017;15(7):4930, 29 pp. https://doi.org/10.2903/j.efsa.2017.4930
- EFSA (European Food Safety Authority). Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Janossy J, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017h. Reasoned opinion on the review of the existing maximum residue levels for imazalil according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2017;15(9):4977, 66 pp. https://doi.org/10.2903/j.efsa.2017.4977
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Janossy J, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017i. Reasoned opinion on the modification of the existing maximum residue levels for fluxapyroxad in various crops. EFSA Journal 2017;15(9):4975, 30 pp. https://doi.org/10.2903/j.efsa.2017.4975
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Janossy J, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017j. Reasoned opinion on the modification of the existing maximum residue level for fluopyram in purslanes. EFSA Journal 2017;15(9):4984, 22 pp. https://doi.org/10.2903/j.efsa.2017.4984

- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Janossy J, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017k. Reasoned opinion on the modification of the existing maximum residue level for abamectin in bananas. EFSA Journal 2017;15(10):4987, 24 pp. https://doi.org/10.2903/j.efsa.2017.4987
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017l. Reasoned opinion on the modification of the existing maximum residue level for propamocarb in chards/ beet leaves. EFSA Journal 2017;15(11):5055, 22 pp. https://doi.org/10.2903/j.efsa.2017.5055
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017m. Reasoned opinion on the setting of maximum residue levels for cyantraniliprole in raspberries and blackberries. EFSA Journal 2017;15(11):5061, 24 pp. https://doi.org/10.2903/j.efsa.2017.5061
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017n. Reasoned Opinion on the modification of the existing maximum residue levels for sulfoxaflor in grape leaves and similar species and globe artichokes. EFSA Journal 2017;15(11):5070, 23 pp. https://doi.org/10.2903/j.efsa.2017.5070

EFSA (European Food Safety Authority), 2018a. Technical report on the outcome of the consultation with Member States, the applicant and EFSA on the pesticide risk assessment for fluopyram in light of confirmatory data. EFSA supporting publication 2018:15(1):EN-1359. 35 pp. https://doi.org/10.2903/sp.efsa.2018.en-1359

EFSA (European Food Safety Authority), 2018b. Statement on non-dietary exposure on diquat. EFSA Journal 2018;16(5):5260, 15 pp. https://doi.org/10.2903/j.efsa.2018.5260

- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2018c. Reasoned Opinion on the setting of a maximum residue level for cyantraniliprole in leeks. EFSA Journal 2018;16(1):5124, 24 pp. https://doi.org/10.2903/j.efsa.2018.5124
- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Bellisai G, Brancato A, Brocca D, Bura L, Byers H, Chiusolo A, Court Marques D, Crivellente F, De Lentdecker C, De Maglie M, Egsmose M, Erdos Z, Fait G, Ferreira L, Goumenou M, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Magrans JO, Medina P, Miron I, Molnar T, Nougadere A, Padovani L, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2018d. Conclusion on the peer review of the pesticide risk assessment of the active substance fenpicoxamid (XDE-777). EFSA Journal 2018;16(1):5146, 27 pp. https://doi.org/10.2903/j.efsa.2018.5146
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Ferreira L, Greco L, Jarrah S, Leuschner R, Medina P, Miron I, Nougadere A, Pedersen R, Reich H, Santos M, Stanek A, Tarazona J, Theobald A and Villamar-Bouza L, 2018e. Guidance on use of EFSA Pesticide Residue Intake Model (EFSA PRIMo revision 3). EFSA Journal 2018;16(1):5147, 43 pp. https://doi.org/10.2903/j.efsa.2018.5147
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2018f. Reasoned Opinion on the modification of the existing maximum residue levels for mandestrobin in apricots, cherries, peaches/ nectarines and plums. EFSA Journal 2018;16(1):5148, 21 pp. https://doi.org/10.2903/j.efsa.2018.5148
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018g. Reasoned Opinion on the modification of the existing maximum residue level for abamectin in citrus fruits. EFSA Journal 2018;16(4):5254, 24 pp. https://doi.org/10.2903/j.efsa.2018.5254
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018h. Reasoned Opinion on the modification of the existing maximum residue levels for isofetamid in tomatoes, peppers, aubergines, okra and cucurbits with edible peel. EFSA Journal 2018;16(5):5264, 24 pp. https://doi.org/10.2903/j.efsa.2018.5264
- EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2018i. Review of the existing maximum residue levels for mandipropamid according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal 2018;16(5):5284, 46 pp. https://doi.org/10.2903/j.efsa.2018.5284

- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, Chiusolo A, Civitella C, Court Marques D, Crivellente F, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Istace F, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Mineo D, Miron I, Molnar T, Parra Morte JM, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Terron A, Theobald A, Vagenende B and Villamar-Bouza L, 2018j. Reasoned opinion on the modification of the existing maximum residue levels for imazalil in various commodities. EFSA Journal 2018;16(6):5329, 29 pp. https://doi.org/10.2903/j.efsa.2018. 5329
- EFSA (European Food Safety Authority), Arena M, Auteri D, Barmaz S, Brancato A, Brocca D, Bura L, Carrasco Cabrera L, Chiusolo A, Civitella C, Court Marques D, Crivellente F, Ctverackova L, De Lentdecker C, Egsmose M, Erdos Z, Fait G, Ferreira L, Goumenou M, Greco L, Ippolito A, Istace F, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Magrans JO, Medina P, Mineo D, Miron I, Molnar T, Padovani L, Parra Morte JM, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Serafimova R, Sharp R, Stanek A, Streissl F, Sturma J, Szentes C, Tarazona J, Terron A, Theobald A, Vagenende B, Van Dijk J and Villamar-Bouza L, 2018k. Conclusion on the peer review of the pesticide risk assessment of the active substance fosetyl. EFSA Journal 2018;16(7):5307, 25 pp. https://doi.org/10.2903/j.efsa.2018.5307
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Riemenschneider C, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018l. Reasoned Opinion on the setting of import tolerances for mandestrobin in strawberries and table and wine grapes. EFSA Journal 2018;16(8):5395, 22 pp. https://doi.org/10.2903/j.efsa. 2018.5395
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, Chiusolo A, Civitella C, Court Marques D, Crivellente F, De Lentdecker C, Erdös Z, Ferreira L, Goumenou M, Greco L, Istace F, Jarrah S, Kardassi D, Leuschner R, Medina P, Mineo D, Miron I, Molnar T, Nave S, Parra Morte JM, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Terron A, Theobald A, Vagenende B and Villamar-Bouza L, 2018m. Conclusion on the peer review of the pesticide risk assessment for the triazole derivative metabolites in light of confirmatory data submitted. EFSA Journal 2018;16(7):5376, 20 pp. https://doi.org/10.2903/j.efsa. 2018.5376
- EFSA (European Food Safety Authority), 2018n. Scientific Report of EFSA on scientific support for preparing an EU position in the 50th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2018;16 (7):5306, 229 pp. https://doi.org/10.2903/j.efsa.2018.5306
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018o. Reasoned Opinion on the updated review of the existing maximum residue levels for imazalil according to Article 12 of Regulation (EC) No 396/2005 following new toxicological information. EFSA Journal 2018;16(10):5453, 52 pp. https://doi.org/10.2903/j.efsa.2018.5453
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018p. Evaluation of confirmatory data following the Article 12 MRL review for pyraclostrobin. EFSA Journal 2018;16(11):5472, 21 pp. https://doi.org/10.2903/j.efsa.2018.5472
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018q. Reasoned opinion on the setting of an import tolerance for pyraclostrobin in rice. EFSA Journal 2018;16(11):5483, 21 pp. https://doi.org/10.2903/j.efsa.2018.5483
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Nave S, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018r. Reasoned opinion on the modification of the existing maximum residue levels and setting of import tolerances for pyraclostrobin in various crops. EFSA Journal 2018;16 (11):5488, 38 pp. https://doi.org/10.2903/j.efsa.2019.5488
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018s. Reasoned Opinion on the evaluation of confirmatory data following the Article 12 MRL review for kresoxim-methyl. EFSA Journal 2018;16(11):5471, 18 pp. https://doi.org/10.2903/j.efsa.2018.5471
- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018t. Reasoned opinion on the setting of an import tolerance for mandipropamid in cocoa beans. EFSA Journal 2018;16(11):5491, 21 pp. https://doi.org/10.2903/j.efsa.2018.5491

- EFSA (European Food Safety Authority), Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B and Villamar-Bouza L, 2018u. Reasoned opinion on the modification of the existing maximum residue levels for pyraclostrobin in soyabean. EFSA Journal 2018;16(11):5466, 26 pp. https://doi.org/10.2903/j.efsa.2018.5466
- EFSA PPR Panel (EFSA Panel on Plant protection products and their Residues), 2007. Opinion of the Scientific Panel on Plant protection products and their residues (PPR) on the Acute Reference Dose (ARfD) for imazalil. EFSA Journal 2007;5(3):460, 15 pp. https://doi.org/10.2903/j.efsa.2007.460
- EFSA PPR Panel (EFSA Panel on Plant protection products and their Residues), Ockleford C, Adriaanse P, Hougaard Bennekou S, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Gundert-Remy U, Kersting M, Waalkens-Berendsen I, Chiusolo A, Court Marques D, Dujardin B, Kass GEN, Mohimont L, Nougadère A, Reich H and Wolterink G, 2018. Scientific opinion on pesticides in foods for infants and young children. EFSA Journal 2018;16(6):5286, 75 pp. https://doi.org/10.2903/j.efsa.2018.5286
- EFSA Scientific Committee, Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen KH, More S, Mortensen A, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Silano V, Solecki R, Turck D, Aerts M, Bodin L, Davis A, Edler L, Gundert-Remy U, Sand S, Slob W, Bottex B, Abrahantes JC, Marques DC, Kass G and Schlatter JR, 2017. Update: Guidance on the use of the benchmark dose approach in risk assessment. EFSA Journal 2017;15 (1):4658, 41 pp. https://doi.org/10.2903/j.efsa.2017.4658
- EFSA (European Food Safety Authority), Abdourahime H, Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Nave S, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2019a. Reasoned Opinion on the modification of the existing maximum residue levels for lambda-cyhalothrin in celeries, fennel and rice. EFSA Journal 2019;17(1):5546, 28 pp. https://doi.org/10.2903/j.efsa.2019.5546
- EFSA (European Food Safety Authority), Abdourahime H, Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Nave S, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2019b. Reasoned opinion on the modification of the existing maximum residue levels for sulfoxaflor in various crops. EFSA Journal 2019;17 (1):5587, 31 pp. https://doi.org/10.2903/j.efsa.2019.5587
- EFSA (European Food Safety Authority), Abdourahime H, Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, De Lentdecker C, Ferreira L, Greco L, Jarrah S, Kardassi D, Leuschner R, Lostia A, Lythgo C, Medina P, Miron I, Molnar T, Nave S, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2019c. Reasoned opinion on the modification of the existing maximum residue levels for mandipropamid in various crops. EFSA Journal 2019;17 (2):5599, 30 pp. https://doi.org/10.2903/j.efsa.2019.5599
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Lostia A, Magrans JO, Medina P, Miron I, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Tarazona J, Theobald A and Verani , 2019d. Reasoned opinion on the modification of the existing maximum residue level for fluopyram in broccoli. EFSA Journal 2019;17(2):5624, 23 pp. https://doi.org/10.2903/j.efsa.2019.5624
- EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Lostia A, Magrans JO, Medina P, Miron I, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Tarazona J, Theobald A and Verani A, 2019e. Reasoned Opinion on the modification of the existing maximum residue level for cyprodinil in Florence fennel. EFSA Journal 2019;17(3):5623, 22 pp. https://doi.org/10.2903/j.efsa.2019.5623
- EFSA (European Food Safety Authority), Abdourahime H, Arena M, Auteri D, Barmaz S, Ctverackova L, De Lentdecker C, Ippolito A, Kardassi D, Messinetti S, Molnar T, Saari KE, Sharp R, Streissl F, Sturma J, Szentes C, Tiramani M, Vagenende B and Van Dijk J and Villamar-Bouza L, 2019f. Conclusion on the peer review of the pesticide risk assessment for the active substance sulfoxaflor in light of confirmatory data submitted. EFSA Journal 2019;17(3):5633, 14 pp. https://doi.org/10.2903/j.efsa.2019.5633

European Commission, 1996. Appendix G. Livestock Feeding Studies. 7031/VI/95-rev.4.

European Commission, 1997a. Appendix A. Metabolism and distribution in domestic animals. 7030/VI/95-rev.3

European Commission, 1997b. Appendix B. General recommendations for the design, preparation and realisation of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/ EEC. 7029/VI/95-rev.6.

European Commission, 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95-rev.2. European Commission, 1997d. Appendix E. Processing studies. 7035/VI/95-rev.5.

European Commission, 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev.3.

European Commission, 1997f. Appendix I. Calculation of maximum residue level and safety intervals. 7039/VI/95. European Commission, 1997g. Appendix H. Storage stability of residue samples. 7032/VI/95-rev.5.

- European Commission, 2000. Residue analytical methods. For pre-registration data requirement for Annex II (part A, section 4) and Annex III (part A, section 5 of Directive 91/414). SANCO/3029/99-rev.4., 26 pp.
- European Commission, 2001. Review report for the active substance diquat. Finalised in the Standing Committee on Plant Health at its meeting on 12 December 2000 in view of the inclusion of diquat in Annex I of Directive 91/414/EEC. 1688/VI/97-final, 22 March 2001, 34 pp.
- European Commission, 2002. Review report for the active substance cyazofamid. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 3 December 2002 in view of the inclusion of cyazofamid in Annex I of Directive 91/414/EEC. SANCO/10379/2002-final 27 November 2002, 23 pp.
- European Commission, 2004. Review report for the active substance pyraclostrobin. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 28 November 2003 in view of the inclusion of pyraclostrobin in Annex I of Directive 91/414/EEC. 8 September 2004, 24 pp.
- European Commission, 2007a. Review report for the active substance propamocarb finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 24 November 2006 in view of the inclusion of propamocarb in Annex I of Directive 91/414/EEC. SANCO/10057/2006 final 25 April 2007, 11 pp.
- European Commission, 2007b. Review report for the active substance fludioxonil. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 9 October 2007 in view of the inclusion of fludioxonil in Annex I of Directive 91/414/EEC. SANCO/2818/07-rev.2., 10 September 2007, 9 pp.
- European Commission, 2008. Review report for the active substance abamectin Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 11 July 2008 in view of the inclusion of abamectin in Annex I of Directive 91/414/EEC SANCO/138/08 final 11 July 2008, 10 pp.
- European Commission, 2010a. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010-rev. 0, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010. SANCO – D1 (2010) 410502, 3 pp.
- European Commission, 2010b. Review report for the active substance pyriproxyfen finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 14 March 2008 in view of the inclusion of pyriproxyfen in Annex I of Directive 91/414/EEC. SANCO/836/08 final 11 May 2010, 9 pp.
- European Commission, 2011a. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev.9.
- European Commission, 2011b. Review report for the active substance imazalil finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 17 June 2011 in view of the approval of imazalil as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/11021/2011 Rev 2, 17 June 2011, 9 pp.
- European Commission, 2011c. Review report for the active substance fluazinam finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 20 May 2008 in view of the inclusion of fluazinam in Annex I of Directive 91/414/EEC. SANCO/127/08 final rev. 2, 21 November 2011, 9 pp.
- European Commission, 2011d. Review report for the active substance lufenuron finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 26 February 2009 in view of the inclusion of lufenuron in Annex I of Directive 91/414/EEC. SANCO/165/08 final rev 1, 21 November 2011, 7 pp.
- European Commission, 2012. Review report for the active substance fluxapyroxad finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 1 June 2012 in view of the approval of fluxapyroxad as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/10692/2012 rev 1, 1 June 2012, 7 pp.
- European Commission, 2013a. Review report for the active substance fluopyram finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 16 July 2013 in view of the approval of fluopyram as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/11456/2013 rev 2, 16 July 2013, 8 pp.
- European Commission, 2013b. Review report for the active substance pyriofenone finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 16 July 2013 in view of the approval of pyriofenone as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/10851/2013 rev. 2, 16 July 2013, 9 pp.
- European Commission, 2014. Final review report for the renewal of active substance kresoxim-methyl finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 17 June 2011 in view of the approval of kresoxim-methyl as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/ 11029/2011 rev 5, 12 December 2014, 8 pp.
- European Commission, 2015a. Final review report for the active substance benzovindiflupyr Finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 11 December 2015 in view of the approval of the active substance benzovindiflupyr as a candidate for substitution in accordance with Regulation (EC) No 1107/20092, SANCO/11259/2015 rev. 1, 11 December 2015, 8 pp.
- European Commission, 2015b. Final review report for the active substance sulfoxaflor finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 29 May 2015 in view of the approval of sulfoxaflor as active substance in accordance with Regulation (EC) No 1107/2009, SANTE/10665/2015 rev 2, 29 May 2015, 8 pp.

- European Commission, 2015c. Review report for the active substance lambda-cyhalothrin finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 11 December 2015 in view of the renewal of the approval of lambda-cyhalothrin as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/12282/2014 Rev 4 11 December 2015, 18 pp.
- European Commission, 2016a. Final review report for the active substance cyantraniliprole finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 12 July 2016 in view of the approval of cyantraniliprole as active substance in accordance with Regulation (EC) No 1107/20092. SANTE/00111/2015 rev 1, 12 July 2016, 7 pp.
- European Commission, 2016b. Final Review report for the active substance isofetamid Finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 12 July 2016 in view of the approval of the active substance isofetamid in accordance with Regulation (EC) No 1107/2009. SANCO/10401/2016 rev. 2, 12 July 2016, 8 pp.
- European Commission, 2018a. Final review report for the active substance mandipropamid finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 1 February 2013 in view of the approval of mandipropamid as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/ 12991/2012 rev 4, 23 March 2018, 9 pp.
- European Commission, 2018b. Final review report for the active substance fenpicoxamid finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 20 July 2018 in view of the approval of fenpicoxamid in accordance with Regulation (EC) No 1107/2009. SANTE/10319/2018 Rev. 2, 20 July 2018, 9 pp.
- European Commission, 2018c. Final review report for the active substance bentazone finalised in the Standing Committee on Plants, Animals, Food and Feed at its meeting on 23 March 2018 in view of the approval of bentazone in accordance with Regulation (EC) No 1107/2009. SANTE/12012/2015 Rev 8, 23 March 2018, 9 pp.
- FAO (Food and Agriculture Organization of the United Nations), 2013. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Geneva, Switzerland, From 17 to 26 September 2013.
- FAO (Food and Agriculture Organization of the United Nations), 2016. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Rome, Italy, 13–22 September 2016. Pesticide residue in food 2016. FAO Plant Production and Protection paper 229, 836 pp.
- FAO (Food and Agriculture Organization of the United Nations), 2017. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Geneva, Switzerland, 12–21 September 2017. Pesticide residue in food 2017. FAO Plant Production and Protection paper 232, 104 pp.
- FAO (Food and Agriculture Organization of the United Nations), 2018. Pesticide residues in food 2018 Report 2018 - Joint FAO/WHO Meeting on Pesticide Residues. FAO Plant Production and Protection Paper no. 234, Rome, 668 pp. Licence: CC BY-NC-SA 3.0 IGO.
- OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: http://www.oecd.org
- OECD (Organisation for Economic Co-operation and Development), 2013. Guidance document on residues in livestock. In: Series on Pesticides No 73. ENV/JM/MONO(2013)8, 04 September 2013.

Abbreviations

ADI a.i. ARfD AOEL a.s. BMD BBCH bw CCPR CF	acceptable daily intake active ingredient acute reference dose acceptable operator exposure level active substance benchmark dose growth stages of mono- and dicotyledonous plants body weight Codex Committee on Pesticide Residues conversion factor for enforcement residue definition to risk assessment residue definition
CMR	Carcinogenic, Mutagenic or Toxic for Reproduction
CXL	Codex Maximum Residue Limit (Codex MRL)
DAR	draft assessment report (prepared under Council Directive 91/414/EEC)
DART DB	developmental and reproductive toxicity
DB DM	dietary burden dry matter
DMS	document management system
0110	uocument management system

dw EMS eq FAO GAP GLP	dry weight evaluating Member State residue expressed as a.s. equivalent Food and Agriculture Organization of the United Nations Good Agricultural Practice Good Laboratory Practice
GM	genetically modified
HR	highest residue
IEDI	international estimated daily intake
IESTI	international estimated of short-term intake
ILV	independent laboratory validation
JECFA	Joint FAO/WHO Expert Committee on Food Additives
JMPR LD ₅₀	Joint FAO/WHO Meeting on Pesticide Residues lethal dose, median
LOAEL	lowest observed adverse effect level
LOQ	limit of quantification (determination)
LP	large portion
MOR	magnitude of residue
MRL	maximum residue limit
MS	Member States
MW	molecular weight
NEU	northern European Union
NOAEL	no observed adverse effect level
OECD	Organisation for Economic Co-operation and Development
PF PHI	processing factor preharvest interval
PRIMo	(EFSA) Pesticide Residues Intake Model
QSAR	quantitative structure–activity relationship
RA	risk assessment
RAC	raw agricultural commodity
RAR	renewal assessment report
RD-RA	residue definition for risk assessment
RD-ENF	residue definition for enforcement practice
RMS	rapporteur Member State
RTI	re-treatment interval
RVIM	National Institute for Public Health and the Environment
SEU	southern European Union
STMR	supervised trials median residue triazole-derivative metabolites
TDMS TTC	threshold of toxicological concern
TRR	total radioactive residues
TRV	toxicological reference values
VF	variation factor
WHO	World Health Organization
UF	uncertainty factor

Appendix A – Calculations of Consumer exposure with Pesticide Residue Intake Model (Primo)

*	*	C			Diquat				<u> </u>	t values		
	*ρ	fsa		LOQs (mg/kg) range t	rom: 0.01 Toxicological reference	to: values	0.05	Details-ch assess		Supplementary r chronic risk asse		
	L			ADI (mg/kg bw per da	y): 0.002	ARfD (mg/kg bw):	0.01			·	$ \longrightarrow$	
Eu	ropean Food	Safety Authority		Source of ADI:	EFSA	Source of ARfD:	EFSA	Details-a		Details-acute		
Е	FSA PRIMo rev	vision 3.1; 2018/11/18		Year of evaluation:	2015	Year of evaluation:	2015	assessmen	t/children	assessment/a	dults	J
nents	5:											
					Norm	al mada						
						al mode						
					Chronic risk assessmen							
			1	No of diets exceeding	the ADI :	4			1		MRLs set at	
			Expsoure	Highest contributor to		2nd contributor to			3rd contributor to		the LOQ (in % of	under asse (in % of
0	Calculated exposure		(µg/kg bw per	MS diet	Commodity/	MS diet	Commodity/		MS diet	Commodity/	(IN % OF ADI)	
	(% of ADI) 193%	MS Diet DK child	day) 3.87	(in % of ADI) 139%	group of commodities Rye	(in % of ADI) 38%	group of commodities Oat		(in % of ADI) 4%	group of commodities Wheat	7%	+
	126%	GEMS/Food G08	2.51		Barley	15%	Rye		10%	Oat	10%	
	107%	NL toddler	2.15		Oat	13%	Barley		11%	Apples	21%	
	101%	GEMS/Food G15	2.01		Barley	6%	Rye		5%	Potatoes	11%	
	98%	IE adult	1.95	37%	Linseeds	18%	Oat		14%	Sweet potatoes	8%	
	98%	GEMS/Food G11	1.95	60%	Barley	9%	Soyabeans		6%	Potatoes	10%	
	97% 94%	FI 3 years GEMS/Food G07	1.95		Oat	16%	Rye Oat		7% 6%	Potatoes	5%	
	94% 89%	GEMS/Food GU/ GEMS/Food G10	1.88		Barley Barley	13% 8%	Soyabeans		6% 8%	Rapeseeds/canola seeds Oat	10%	
	82%	DE child	1.63	21%	Oat	20%	Rye		12%	Apples	10%	
	80%	DE general	1.60		Barley	15%	Rye		10%	Oat	7%	
	67%	FI 6 years	1.33	32%	Oat	15%	Rye		6%	Potatoes	4%	
	53%	DE women 14-50 years	1.06		Barley	12%	Rye		10%	Oat	8%	
	51%	LT adult	1.01	27%	Rye	9%	Oat		5%	Potatoes	2%	
	50%	ES adult	1.01		Barley	2%	Wheat		1%	Potatoes	5%	
	48%	NL child	0.97	6%	Apples	5%	Potatoes		5%	Oat	13%	
	47%	NL general	0.94		Barley	4%	Oat		4%	Potatoes	6%	
	46%	FI adult	0.91	18%	Rye	13%	Oat		6%	Coffee beans	8%	
	44% 39%	UK infant GEMS/Food G06	0.88		Oat Wheat	5% 6%	Potatoes Barley		3% 3%	Wheat Soyabeans	7% 18%	
	39%	FR child 3–15 years	0.78	8%	Oat	5%	Wheat		3%	Oranges	18%	
	31%	PT general	0.62	8%	Potatoes	4%	Wheat		3%	Rye	8%	
	27%	UK toddler	0.55	5%	Potatoes	5%	Oat		4%	Wheat	8%	
	27%	FR toddler 2–3 years	0.54	6%	Oat	3%	Apples		3%	Wheat	9%	
	26%	SE general	0.52	7%	Rye	6%	Potatoes		3%	Wheat	7%	
	22%	RO general	0.45	6%	Potatoes	5%	Wheat		3%	Sunflower seeds	11%	
	22%	ES child	0.43	4%	Wheat	3%	Potatoes		2%	Lentils	9%	
	21% 18%	DK adult	0.41	13% 5%	Rye Oat	2% 2%	Potatoes Potatoes		1% 2%	Wheat Wheat	3% 5%	
	18%	UK vegetarian IT toddler	0.35		Wheat	2%	Other cereals		2%	Potatoes	5%	
	14%	FR adult	0.28		Wheat	2%	Oat		1%	Wine grapes	6%	
	13%	UK adult	0.25	2%	Potatoes	2%	Barley		2%	Oat	4%	
	12%	IT adult	0.24	4%	Wheat	0.9%	Potatoes		0.8%	Apples	7%	
	11%	FR infant	0.21	3%	Potatoes	2%	Apples		0.8%	Wheat	4%	
	10% 5%	PL general IE child	0.20	5% 1%	Potatoes Wheat	2% 1%	Apples Oat		0.4%	Tomatoes Potatoes	2% 2%	
	0%	ie child	0.10	170	VV Heat	170	Udi		0.9%	Folatoes	270	
+	Conclusion:			1	1					1		-
		/NEDI/IEDI was in the range of 0-19										

Ac	Acute risk assessment/children				assessment/adults/gen	eral popu	lation	A	cute risk assessment	/children		Acute risk assessment/adults/general population					
Details-a	acute risk assessme	ent/childr	ren	Detail	s–acute risk assessm	nent/adu	lts		Hide IESTI new calc	ulations			Show IESTI new cal	culations			
	ssment is based on the ARID. ased on the large portion of th			^{p.} s for all crop	2			IESTI new calculations: The calculation is performed with the MRL and the peeling/processing factor (PF), taking into account the residue in the edible portion and/or the conversion fact the residue definition (CF). For case 2a, 2b and 3 calculations, a variability factor of 3 is used. Since this methodology is not based on internationally agreed pri the results are considered as indicative only. Since this methodology is not based on internationally agreed principles, the results are considered as indicative only.									
	n for which ARfD/ADI is	Results for adults	for which ARfD/ADI is				s for which ARfD/ADI is				s for which ARfD/ADI is exceeded						
exceeded (IESTI):			1	exceeded (IESTI):				exceeded (IESTI ne	ew):		1	(IESTI new):					
IESTI		MRL/input		IESTI		MRL/input		IESTI new		MRL/input		IESTI new		MRL/input			
Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Expo		
ARfD/ADI 154%	Commodities Potatoes	(mg/kg) 0.1/0.1	(µg/kg bw)	ARfD/ADI 75%	Commodities Barley	(mg/kg) 5/1.55	(µg/kg bw)	ARfD/ADI 281%	Commodities Barley	(mg/kg) 5/5	(µg/kg bw) 28	ARfD/ADI 242%	Commodities Barley	(mg/kg) 5/5	(µg/k 2		
154%	Potatoes Barley	0.1/0.1 5/1.55	15 8.7	30%	Potatoes	5/1.55 0.1/0.1	7.5 3.0	281%	Barley Rye	5/5 1.5/1.5	28 9.5	73%	Barley Rye	5/5	2		
54%	Linseeds	5/5	5.4	25%	Rye	1.5/0.51	2.5	73%	Beans	0.4/0.4	7.3	31%	Potatoes	0.1/0.1	3		
32%	Rye	1.5/0.51	3.2	24%	Linseeds	5/5	2.4	66% 59%	Potatoes	0.1/0.1	6.6	30%	Peas	0.9/0.9	3		
28% 27%	Pears Oranges	0.02/0.02	2.8 2.7	13% 12%	Oat Lentils	2/2 0.2/0.2	1.3 1.2	59% 54%	Peas Linseeds	0.9/0.9	5.9 5.4	26% 24%	Beans Linseeds	0.4/0.4	2		
22%	Oat	2/2	2.2	8%	Peas	0.9/0.24	0.80	29%	Sunflower seeds	0.9/0.9	2.9	22%	Soyabeans	0.4/0.4	2		
22%	Apples	0.02/0.02	2.2	6%	Oranges	0.02/0.02	0.61	22%	Oat	2/2	2.2	13%	Oat	2/2	1		
19%	Bananas	0.02/0.02	1.9	6%	Pears	0.02/0.02	0.61	21%	Rapeseeds/canola seeds	1.5/1.5	2.1	12%	Lentils	0.2/0.2	1		
19% 16%	Peaches Peas	0.02/0.02 0.9/0.24	1.9 1.6	6% 5%	Apples Strawberries	0.02/0.02 0.05/0.05	0.56	13% 13%	Lentils Oranges	0.2/0.2 0.02/0.02	1.3 1.3	9% 9%	Oranges Sunflower seeds	0.02/0.02 0.9/0.9	0. 0.		
16%	Grapefruits	0.02/0.02	1.6	4%	Kaki/Japanese persimmons	0.02/0.02	0.44	12%	Apples	0.02/0.02	1.2	8%	Rapeseeds/canola seeds	1.5/1.5	0.		
15%	Melons	0.01/0.01	1.5	4%	Bananas	0.02/0.02	0.42	12%	Bananas	0.02/0.02	1.2	8%	Plums	0.02/0.02	0.		
13%	Lentils	0.2/0.2	1.3	4%	Head cabbages	0.01/0.01	0.42	12%	Pears	0.02/0.02	1.2	7%	Pears	0.02/0.02	0.		
12% Expand/collapse list	Watermelons	0.01/0.01	1.2	4%	Watermelons	0.01/0.01	0.41	11%	Peaches	0.02/0.02	1.1	7%	Mandarins	0.02/0.02	0.		
Total number of co children and adult	mmodities exceeding the A diets	RfD/ADI in						ARfD/ADI in child	commodities found exceedin ren and adult diets	g the							
(IESTI calculation)			1					(IESTI new calculation)	ation)		1						
Results for children No of processed corr is exceeded (IESTI):	mmodities for which ARfD/ADI			Results for adults No of processed co is exceeded (IESTI	mmodities for which ARfD/ADI		1	Results for childre No of processed co ARfD/ADI is exceed	mmodities for which			Results for adults No of processed or exceeded (IESTI n	ommodities for which ARfD/ADI is				
IESTI				IESTI				IESTI new				IESTI new					
		MRL/input				MRL/input				MRL/input				MRL/input			
Highest % of	Decement convertiles	for RA	Exposure	Highest % of	December of a second different	for RA	Exposure	Highest % of	Decement converse dialog	for RA	Exposure	Highest % of	Decessed commendation	for RA	Expo		
ARfD/ADI 93%	Processed commodities Potatoes/fried	(mg/kg) 0.1/0.1	(µg/kg bw) 9.3	ARfD/ADI 112%	Processed commodities Barley/beer	(mg/kg) 5/0.31	(µg/kg bw) 11	ARfD/ADI 73%	Processed commodities Oat/boiled	(mg/kg) 2/2	(µg/kg bw) 7.3	ARfD/ADI 112%	Processed commodities Barley/beer	(mg/kg) 5/0.31	(µg/k 1		
73%	Oat/boiled	2/2	7.3	30%	Oat/boiled	2/2	3.0	60%	Oat/milling (flakes)	2/2	6.0	30%	Oat/boiled	2/2	3		
60%	Oat/milling (flakes)	2/2	6.0	7%	Apples/juice	0.02/0.02	0.67	56%	Barley/cooked	5/1.55	5.6	7%	Apples/juice	0.02/0.02	0.		
56% 28%	Barley/cooked	5/1.55 5/1.55	5.6	6% 6%	Peas/canned	0.9/0.1 0.01/0.01	0.64 0.55	44% 28%	Potatoes/fried	0.1/0.1 5/1.55	4.4	6% 4%	Peas/canned	0.9/0.1 0.01/0.12	0. 0.		
28%	Barley/milling (flour) Rye/boiled	5/1.55 1.5/0.51	2.8 1.8	4%	Pumpkins/boiled Sugar beets (root)/sugar	0.01/0.01	0.55	28%	Barley/milling (flour) Rye/boiled	5/1.55 1.5/0.51	2.8 1.8	4%	Sugar beets (root)/sugar Pumpkins/boiled	0.01/0.12	0		
18%	Potatoes/dried (flakes)	0.1/0.14	1.8	4%	Cauliflowers/boiled	0.01/0.01	0.44	18%	Potatoes/dried (flakes)	0.1/0.14	1.8	4%	Beans/canned	0.4/0.05	0		
18%	Rye/milling (wholemeal)-	1.5/0.51	1.8	4%	Beans/canned	0.4/0.05	0.36	18%	Rye/milling (wholemeal)-	1.5/0.51	1.8	3%	Oranges/juice	0.02/0.02	0		
17%	Peas/canned Lentils/boiled	0.9/0.1 0.2/0.2	1.7 1.6	3%	Celeries/boiled	0.01/0.01 0.02/0.02	0.34	17%	Peas/canned Lentils/boiled	0.9/0.1 0.2/0.2	1.7 1.6	3% 3%	Maize/oil Potatoes/chips	0.02/0.5	0		
169/	Sugar beets (root)/sugar	0.2/0.2	1.6	3%	Oranges/juice Maize/oil	0.02/0.02	0.30	16%	Lentils/boiled Sugar beets (root)/sugar	0.2/0.2	1.6	3%	Potatoes/chips Cauliflowers/boiled	0.1/0.03	0		
16% 11%	Apples/juice	0.02/0.02	1.1	3%	Potatoes/chips	0.1/0.03	0.25	11%	Apples/juice	0.02/0.02	1.1	2%	Grapefruits/juice	0.02/0.02	0		
11% 11%			1.1	2%	Broccoli/boiled	0.01/0.01	0.24	11%	Oranges/juice	0.02/0.02	1.1	2%	Witloofs/boiled	0.01/0.01	0		
11% 11% 11%	Oranges/juice	0.02/0.02	0.00			0.01/0.01	0.23	7%	Pears/juice	0.02/0.02	0.65	2%	Wine grapes/juice	0.01/0.01	0		
11% 11% 11% 9%	Oranges/juice Pumpkins/boiled	0.01/0.01	0.89	2%	Courgettes/boiled Beetroots/boiled	0.01/0.01	0.22	5%						0.01/0.01			
11% 11% 11%	Oranges/juice Pumpkins/boiled Witloofs/boiled		0.89 0.87	2% 2%	Beetroots/boiled	0.01/0.01	0.22	5%	Pumpkins/boiled	0.01/0.01	0.53	2%	Celeries/boiled	0.01/0.01	0.		
11% 11% 11% 9% 9%	Oranges/juice Pumpkins/boiled Witloofs/boiled	0.01/0.01				0.01/0.01	0.22	5%	Pumpkins/boiled	0.01/0.01	0.53	2%	Celeries/boiled	0.01/0.01	0		
11% 11% 11% 9% 9% Expand/collapse list	Oranges/juice Pumpkins/boiled Witloofs/boiled	0.01/0.01				0.01/0.01	0.22	5%	Pumpkins/boiled	0.01/0.01	0.53	2%	Celeries/boiled	0.01/0.01	(
11% 11% 11% 9% 9% Expand/collapse list Conclusion:	Oranges/juice Pumpkins/boiled Witloofs/boiled	0.01/0.01 0.01/0.01	0.87	2%	Beetroots/boiled	0.01/0.01	0.22	5%	Pumpkins/boiled	0.01/0.01	0.53	2%	Celeries/boiled	0.01/0.01			

	*	tca_		LOQs (mg/kg) range	from: Toxicological	0.02	to: alues	0.05	Details-chi assess		Supplementary chronic risk ass		
	C	d Safety Authority		ADI (mg/kg bw per da	•	0.0025	ARfD (mg/kg bw):	0.005			 		
E	Iropean Foo	d Safety Authority		Source of ADI:		EU 2016/146	Source of ARfD:	EU 2016/146	Details-ac		Details-acut		
		evision 3.1; 2018/11/18		Year of evaluation:		2016	Year of evaluation:	2016	assessmen	t/children	assessment/	adults	
nent	s:			•									
						<u>Normal</u>	<u>l mode</u>						
					Chronic risk a	assessment:	JMPR methodo	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :		24					Exposure	
			-									MRLs set at the LOQ	comm under a
	Calculated exposu	re	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of	(in %
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	
Ţ	429%	NL toddler	10.73	119%	Milk: Cattle		43%	Apples		25%	Rice	19%	
	253% 243%	DE child NL child	6.33 6.07	50% 49%	Apples Milk: Cattle		40% 23%	Milk: Cattle		32% 22%	Oranges Swine: Muscle/meat	7% 15%	
	243%	FR child 3–15 years	6.06	49%	Milk: Cattle		23%	Apples Bovine: Muscle/meat		22%	Swine: Muscle/meat	8%	
	235%	GEMS/Food G10	5.87	50%	Rice		18%	Bovine: Muscle/meat		17%	Swine: Muscle/meat	12%	
	226%	GEMS/Food G08	5.65	39%	Swine: Muscle/meat		32%	Olives for oil production		18%	Barley	10%	
	220%	GEMS/Food G06	5.51	62%	Rice		15%	Olives for oil production		14%	Wheat	8%	
	220%	FR toddler 2-3 years	5.49	59%	Milk: Cattle		24%	Bovine: Muscle/meat		24%	Rice	7%	
	216%	SE general	5.40	88%	Bovine: Muscle/meat		25%	Milk: Cattle		16%	Rice	6%	
	210%	ES child	5.26	29%	Olives for oil production		28%	Bovine: Muscle/meat		25%	Milk: Cattle	5%	
	209%	GEMS/Food G07	5.22	23%	Swine: Muscle/meat		18%	Bovine: Muscle/meat		14%	Rice	10%	
	200%	GEMS/Food G11	4.99	24%	Swine: Muscle/meat		16%	Milk: Cattle		16%	Barley	15%	
	194%	GEMS/Food G15	4.84	28%	Swine: Muscle/meat		16%	Barley		14%	Milk: Cattle	10%	
	192%	UK infant DK child	4.81	77% 45%	Milk: Cattle Swine: Muscle/meat		25%	Rice Bovine: Muscle/meat		25% 25%	Bovine: Muscle/meat Milk: Cattle	7%	
	180% 171%	IE adult	4.50 4.28	45%	Swine: Muscle/meat Wine grapes		26% 9%	Bovine: Muscle/meat Rice		25%	Milk: Cattle Milk: Cattle	4% 9%	
	163%	UK toddler	4.20	41%	Milk: Cattle		26%	Bovine: Muscle/meat		23%	Rice	7%	
	154%	RO general	3.86	23%	Milk: Cattle		23%	Swine: Muscle/meat		13%	Wine grapes	6%	
	147%	DE general	3.68	25%	Milk: Cattle		22%	Swine: Muscle/meat		13%	Oranges	7%	
	143%	ES adult	3.56	17%	Olives for oil production		15%	Bovine: Muscle/meat		14%	Swine: Muscle/meat	3%	
	139%	DE women 14-50 years	3.48	25%	Milk: Cattle		17%	Swine: Muscle/meat		15%	Oranges	7%	
	137%	NL general	3.42	19%	Swine: Muscle/meat		17%	Milk: Cattle		15%	Bovine: Muscle/meat	8%	1
	122%	PT general	3.05	31%	Rice		20%	Wine grapes		10%	Olives for oil production	6%	1
	120%	FR adult	2.99	19%	Wine grapes		13%	Swine: Muscle/meat		12%	Bovine: Muscle/meat	4%	1
	96%	FR infant	2.40	34%	Milk: Cattle		7%	Swine: Muscle/meat		7%	Bovine: Muscle/meat	4%	1
	86% 80%	DK adult	2.16	18% 22%	Swine: Muscle/meat Rice		11% 7%	Bovine: Muscle/meat Strawberries		11% 5%	Milk: Cattle Bananas	2% 5%	1
	80% 76%	FI 3 years UK adult	2.01	22%	Rice		13%	Strawberries Bovine: Muscle/meat		5% 9%	Bananas Wine grapes	5%	
	76%	IT toddler	1.90	13%	Wheat		8%	Rice		6%	Lettuces	2%	
1	74%	LT adult	1.85	19%	Swine: Muscle/meat		9%	Rice		8%	Milk: Cattle	4%	1
	71%	IT adult	1.77	8%	Wheat		8%	Lettuces		7%	Rice	1%	1
	70%	UK vegetarian	1.76	15%	Rice		7%	Oranges		7%	Milk: Cattle	2%	1
	63%	FI 6 years	1.56	17%	Rice		6%	Strawberries		3%	Potatoes	5%	1
	48%	FI adult	1.20	11%	Coffee beans		5%	Rice		3%	Oranges	13%	1
	38%	IE child	0.94	12%	Rice		7%	Milk: Cattle		3%	Swine: Muscle/meat	1%	1
	34%	PL general	0.86	8%	Apples		4%	Tomatoes		3%	Head cabbages	3%	1

	Ac	cute risk assessment/	children		Acute risk a	ssessment/adults/gen	eral popu	lation	A	cute risk assessment	children/		Acute risk assessment/adults/general population				
(Details–a	icute risk assessmei	nt/childr	en	Details	s–acute risk assessm	ient/adu	lts	Hide IESTI new calculations				Show IESTI new calculations				
		ssment is based on the ARID. Ised on the large portion of the			p. s for all crops				the residue definition the results are con	performed with the MRL and the	calculations,	a variability fac	or of 3 is used. Since	int the residue in the edible portion an e this methodology is not based on ir nsidered as indicative only.			
			011	owneoun					IESTI new				IESTI new				
N	Results for children No. of commodities fe exceeded (IESTI):	n for which ARfD/ADI is		33	Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is		13	Results for childr	s for which ARfD/ADI is		24	Results for adults	for which ARfD/ADI is exceeded		9	
1	ESTI				IESTI				IESTI new				IESTI new				
	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Expos	
	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg	
	880% 803%	Kales Escaroles/broad-leaved	1/1 1/1	44 40	506% 403%	Chinese cabbages/pe-tsai Escaroles/broad-leaved	1/1 1/1	25 20	528% 482%	Kales Escaroles/broad-leaved	1/1 1/1	26 24	304% 294%	Chinese cabbages/pe-tsai Escaroles/broad-leaved endives	1/1 1/1	1:	
	643%	Chinese cabbages/pe-tsai	1/1	32	385%	Kales	1/1	19	386%	Chinese cabbages/pe-tsai	1/1	19	231%	Kales	1/1	1	
	530%	Oranges	0.2/0.2	27	271%	Aubergines/egg plants	0.5/0.5	14	267%	Oranges	0.2/0.2	13	193%	Aubergines/egg plants	0.5/0.5	9	
	381% 380%	Lettuces Peaches	0.5/0.5	19 19	189% 170%	Chards/beet leaves Rice	0.5/0.5	9.4 8.5	252% 228%	Rice Lettuces	1/1 0.5/0.5	13 11	187% 170%	Oranges Rice	0.2/0.2	9	
	354%	Leeks	0.3/0.3	18	168%	Head cabbages	0.2/0.2	8.4	226%	Spinaches	0.5/0.5	11	156%	Plums	0.2/0.2	7	
	315%	Mangoes	0.2/0.2	16	136%	Table grapes	0.2/0.2	6.8	216%	Peaches	0.2/0.2	11	132%	Mandarins	0.2/0.2	6	
	314% 292%	Grapefruits Table grapes	0.2/0.2	16 15	123% 121%	Oranges Lettuces	0.2/0.2 0.5/0.5	6.1 6.1	197% 189%	Apricots Mangoes	0.2/0.2	9.8 9.4	101% 95%	Head cabbages Wine grapes	0.2/0.2 0.2/0.2	5 4	
	292%	Pears	0.2/0.2	13	112%	Florence fennels	0.3/0.3	5.6	188%	Grapefruits	0.2/0.2	9.4	93%	Mangoes	0.2/0.2	4	
	252%	Rice	1/1	13	106%	Red mustards	1/1	5.3	175%	Table grapes	0.2/0.2	8.8	93%	Strawberries	0.5/0.5	4	
	250% 237%	Aubergines/egg plants Mandarins	0.5/0.5 0.2/0.2	13 12	104%	Mangoes Celeries	0.2/0.2 0.3/0.3	5.2 4.8	163% 152%	Strawberries Leeks	0.5/0.5	8.2 7.6	88% 84%	Chards/beet leaves Grapefruits	0.5/0.5 0.2/0.2	4. 4.	
	226%	Spinaches	0.5/0.5	12	95%	Wine grapes	0.2/0.2	4.0	150%	Aubergines/egg plants	0.5/0.5	7.5	81%	Peaches	0.2/0.2	4.	
	Expand/collapse list Fotal number of cor	mmodities exceeding the AF	tfD/ADI in							commodities found exceeding	g the						
	children and adult d IESTI calculation)	diets		#N/A					ARfD/ADI in child (IESTI new calcul	ren and adult diets ation)		#N/A					
	Results for children				Results for adults				Results for childr	en			Results for adults				
	No of processed com s exceeded (IESTI):	nmodities for which ARfD/ADI		14	No of processed con is exceeded (IESTI)	mmodities for which ARfD/ADI		5	No of processed of ARfD/ADI is excee	ommodities for which		11	No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is			
				14				5		ded (IESTI new):				sw):			
1	ESTI		MRL/input		IESTI		MRL/input		IESTI new		MRL/input		IESTI new		MRL/input		
	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Expo	
	ARfD/ADI 1325%	Processed commodities Escaroles/broad-leaved end	(mg/kg) 1/1	(µg/kg bw)	ARfD/ADI 409%	Processed commodities Escaroles/broad-leaved	(mg/kg) 1/1	(µg/kg bw)	ARfD/ADI 795%	Processed commodities Escaroles/broad-leaved	(mg/kg) 1/1	(µg/kg bw)	ARfD/ADI 311%	Processed commodities Escaroles/broad-leaved endives/	(mg/kg) 1/1	(µg/k	
	552%	Kales/boiled	1/1	66 28	203%	Celeries/boiled	0.3/0.3	20 10	331%	Kales/boiled	1/1	40 17	122%	Celeries/boiled	0.3/0.3	1	
	344%	Leeks/boiled	0.3/0.3	17	125%	Chards/beet leaves/boiled	0.5/0.5	6.3	211%	Oranges/juice	0.2/0.2	11	88%	Chards/beet leaves/boiled	0.5/0.5	4	
	311%	Chards/beet leaves/boiled	0.5/0.5	16 14	116%	Florence fennels/boiled Leeks/boiled	0.3/0.3	5.8 5.2	197%	Leeks/boiled	0.3/0.3 0.2/0.2	9.9 8.7	83% 83%	Wine grapes/juice	0.2/0.2 0.5/0.5	4	
	272% 211%	Florence fennels/boiled Oranges/juice	0.3/0.3	14 11	105% 83%	Leeks/boiled Cauliflowers/boiled	0.3/0.3	5.2	175% 163%	Wine grapes/juice Florence fennels/boiled	0.2/0.2	8.7 8.2	83%	Spinaches/frozen; boiled Leeks/boiled	0.5/0.5	4	
	175%	Wine grapes/juice	0.2/0.2	8.7	83%	Wine grapes/juice	0.2/0.2	4.2	139%	Spinaches/frozen; boiled	0.5/0.5	7.0	77%	Rice/milling (polishing)	1/0.4	3	
	158% 139%	Broccoli/boiled Cauliflowers/boiled	0.1/0.1	7.9 7.0	83% 77%	Spinaches/frozen; boiled Rice/milling (polishing)	0.5/0.5 1/0.4	4.1 3.9	133% 122%	Chards/beet leaves/boiled Rice/milling (polishing)	0.5/0.5	6.7	74% 72%	Florence fennels/boiled	0.3/0.3 0.5/0.1	3	
	139%	Spinaches/frozen; boiled	0.1/0.1	7.0	72%	Rice/milling (polishing) Barley/beer	1/0.4	3.9	122%	Currants (red, black and	1/0.4 0.2/0.2	6.1 5.7	67%	Barley/beer Apples/juice	0.5/0.1	3	
	122%	Rice/milling (polishing)	1/0.4	6.1	67%	Apples/juice	0.1/0.1	3.3	108%	Apples/juice	0.1/0.1	5.4	60%	Oranges/juice	0.2/0.2	3	
	114%	Currants (red, black and wh	0.2/0.2	5.7	60%	Oranges/juice	0.2/0.2	3.0	95%	Broccoli/boiled	0.1/0.1	4.7	51%	Currants (red, black and white)/	0.2/0.2	2.	
	108% 104%	Apples/juice Peaches/canned	0.1/0.1 1/0.2	5.4 5.2	55% 51%	Pumpkins/boiled Currants (red, black and	0.05/0.05 0.2/0.2	2.8 2.6	84% 77%	Cauliflowers/boiled Peaches/canned	0.1/0.1 1/0.2	4.2 3.9	50% 43%	Cauliflowers/boiled Grapefruits/juice	0.1/0.1 0.2/0.2	2. 2.	
			0.05/0.05	4.4	48%	Broccoli/boiled	0.1/0.1	2.4	66%	Peaches/juice	0.2/0.2	3.3	41%	Purslanes/boiled	0.5/0.5	2.	
	89%	Pumpkins/boiled	0.03/0.03														
E		Pumpkins/boiled	0.05/0.05														
E	89%	Pumpkins/boiled	0.03/0.05														
c	89%	Pumpkins/boiled	0.03/0.03														

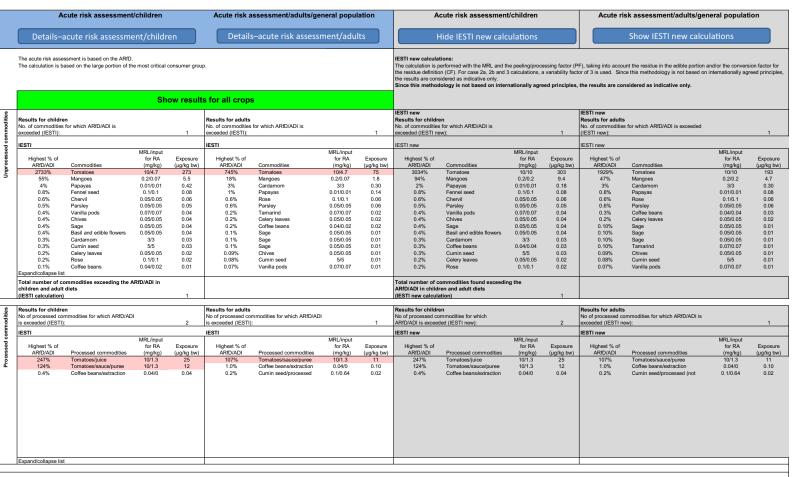
4	*	C				mocarl)					\equiv	
	*	fsa Safety Authority		LOQs (mg/kg) range		0.01	to:	0.05	Details–ch		Supplementary res		
	C			ADI (mg/kg bw per da		0.24 ARfD (mg/kg bw): 0.84			assess	ment	chronic risk assess	ment	
Eu	Ironoan Foor	Safety Authority			y).				Details-ad	cute risk	Details-acute ri	sk	
				Source of ADI:		EU	Source of ARfD:	EU	assessmen		assessment/adu		
		vision 3.1; 2018/11/18		Year of evaluation:		2007	Year of evaluation:	2007		, ennaren .			
nent	s:												
						<u>Norma</u>	l mode						
					Chronic risk a	issessment	JMPR methodo	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :							Exposure	e resulting fro
												MRLs set at	commoditie
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ (in % of	under asses (in % of A
1	Calculated exposur		(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		MS diet	Commodity/	(In % or ADI)	
_	(% of ADI) 24%	MS Diet NL toddler	day) 58.02	(in % of ADI) 12%	group of commodities Spinaches		(in % of ADI) 3%	group of commodities Cauliflowers		(in % of ADI) 2%	group of commodities Escaroles/broad-leaved endives	0.2%	-
	17%	GEMS/Food G06	41.14	6%	Tomatoes		2%	Watermelons		1%	Cucumbers	0.2%	
	12%	DE child	28.57	3%	Spinaches		2%	Tomatoes		1%	Cucumbers	0.1%	
	11%	GEMS/Food G10	25.77	2%	Tomatoes		1%	Chinese cabbages/pe-tsai		0.8%	Spinaches	0.1%	
	11%	FR infant	25.34	4%	Spinaches		2%	Leeks		1%	Cauliflowers	0.0%	
	10%	NL child	24.56	4%	Spinaches		0.9%	Tomatoes		0.8%	Escaroles/broad-leaved endives	0.1%	
	10%	SE general	24.54	2%	Chinese cabbages/pe-tsai		1%	Tomatoes		1%	Spinaches	0.0%	
	10%	IE adult	23.07	2%	Spinaches		2%	Melons		0.7%	Leeks	0.1%	
	9%	GEMS/Food G11	21.96	2%	Leeks		2%	Spinaches		2%	Tomatoes	0.1%	
	9%	FR toddler 2–3 years	21.78	3%	Spinaches		2%	Leeks		1.0%	Cauliflowers	0.1%	
	9%	NL general	21.64	3%	Spinaches		1%	Leeks		0.8%	Escaroles/broad-leaved endives	0.1%	
	9%	IT adult	21.04	2%	Tomatoes		2%	Spinaches		1%	Other spinach and similar	0.0%	
	9%	FR child 3–15 years	20.71	2%	Spinaches		2%	Leeks		1%	Tomatoes	0.1%	
	9%	GEMS/Food G08	20.43	2%	Tomatoes		0.6%	Leeks		0.6%	Lamb's lettuce/corn salads	0.1%	
	8%	IT toddler	18.86	2%	Tomatoes		1%	Chards/beet leaves		1.0%	Spinaches	0.1%	
	8%	RO general	18.12	3%	Tomatoes		1.0%	Watermelons		0.6%	Onions	0.1%	
	7%	ES child	17.97	2%	Tomatoes		1%	Spinaches		1%	Chards/beet leaves	0.1%	
	7%	GEMS/Food G15	17.81	2%	Tomatoes		1.0%	Watermelons		0.7%	Sweet peppers/bell peppers	0.1%	
	7%	GEMS/Food G07	17.00	2%	Tomatoes		0.6%	Spinaches		0.6%	Leeks	0.1%	
	7% 7%	ES adult DK child	16.98 16.80	1% 3%	Chards/beet leaves		1% 0.9%	Tomatoes Tomatoes		1% 0.5%	Spinaches Melons	0.0%	1
	7% 7%	FI 3 years	16.80	3%	Cucumbers Cucumbers		1%	Spinaches		0.5%	Tomatoes	0.1%	1
	6%	DE women 14–50 years	13.70	1%	Tomatoes		0.8%	Spinaches		0.6%	Cauliflowers	0.0%	1
	5%	FI 6 years	13.18	1%	Cucumbers		0.9%	Spinaches		0.6%	Tomatoes	0.1%	
	5%	DE general	12.73	1%	Tomatoes		0.8%	Spinaches		0.6%	Cauliflowers	0.1%	
	5%	FR adult	12.72	1%	Leeks		0.9%	Spinaches		0.8%	Tomatoes	0.1%	
	5%	PT general	11.82	2%	Kales		1%	Tomatoes		0.7%	Potatoes	0.1%	1
	4%	UK vegetarian	9.97	1%	Tomatoes		0.6%	Spinaches		0.5%	Cauliflowers	0.0%	1
	4%	PL general	9.40	1%	Tomatoes		0.4%	Potatoes		0.4%	Cauliflowers	0.0%	1
	3%	UK toddler	8.19	1.0%	Tomatoes		0.5%	Cauliflowers		0.5%	Cauliflowers	0.1%	1
	3%	FI adult	7.86	0.9%	Tomatoes		0.8%	Cucumbers		0.3%	Lettuces	0.1%	1
	3%	DK adult	7.57	0.9%	Tomatoes		0.5%	Cucumbers		0.3%	Melons	0.0%	
	3%	UK infant	7.13	1%	Cauliflowers		0.6%	Tomatoes		0.4%	Potatoes	0.1%	1
	3%	LT adult	6.50	1%	Tomatoes		0.8%	Cucumbers		0.4%	Potatoes	0.0%	1
	3% 0.7%	UK adult IE child	6.33 1.58	0.7%	Tomatoes Cauliflowers		0.3%	Spinaches Tomatoes		0.3%	Cauliflowers Potatoes	0.0%	1

The long-term intake of residues of Propamocarb is unlikely to present a public health concern.

Acute risk assessment/children				Acute risk a	ssessment/adults/gen	ute risk assessment/children Acute risk assessment/adults/general population						Acute risk assessment/adults/general population				
Details–a	cute risk assessmer	nt/childr	en	Details	s–acute risk assessm	nent/adu	lts	Hide IESTI new calculations				Show IESTI new calculations				
	sment is based on the ARID. sed on the large portion of the r	most critical	consumer group	p.				the residue definition the results are consi	rformed with the MRL and the	calculations, a	variability fact	tor of 3 is used. Since	In the residue in the edible portion an the this methodology is not based on in sidered as indicative only.			
	Shov	v results	of IESTI	calculation fo	or all crops											
Results for children No. of commodities fe exceeded (IESTI):	n for which ARfD/ADI is		2	Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for children No. of commodities exceeded (IESTI new	for which ARfD/ADI is		2	IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded			
ESTI				IESTI				IESTI new				IESTI new				
Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exp (µg/	
133%	Lettuces	40/29.3	1115	60%	Chinese cabbages/pe-tsai	20/20	506	109%	Lettuces	40/40	914	42%	Chards/beet leaves	40/40	(-5	
105%	Leeks	20/15	884	56%	Chards/beet leaves	40/25	472	108%	Spinaches	40/40	904	36%	Chinese cabbages/pe-tsai	20/20	5	
90% 77%	Melons Chinese cabbages/pe-tsai	5/5 20/20	758 643	42% 28%	Lettuces Cauliflowers	40/29.3 10/10	356 232	63% 60%	Kales Leeks	20/20 20/20	528 505	35% 35%	Escaroles/broad-leaved endives Lettuces	20/20 40/40	1	
73%	Watermelons	20/20	611	28%	Kales	20/11.8	232	59%	Witloofs/Belgian endives	20/20	505 496	28%	Kales	20/20		
69%	Cauliflowers	10/10	579	24%	Watermelons	5/5	203	57%	Escaroles/broad-leaved	20/20	482	23%	Witloofs/Belgian endives	15/15		
67%	Spinaches	40/25	565	23%	Leeks	20/15	197	54%	Melons	5/5	455	19%	Spinaches	40/40		
62%	Kales	20/11.8	519	23%	Melons	5/5	196	49%	Spring onions/green onions	30/30	411	17%	Cauliflowers	10/10	1	
56% 46%	Spring onions/green onions Chards/beet leaves	30/30 40/25	471 390	19% 18%	Escaroles/broad-leaved Witloofs/Belgian endives	20/8.1 15/8	163 147	46% 44%	Chinese cabbages/pe-tsai Watermelons	20/20 5/5	386 367	15% 14%	Watermelons Melons	5/5 5/5		
46% 39%	Cucumbers	40/25	390	17%	Cucumbers	5/5	147	44%	Cauliflowers	5/5 10/10	367	14%	Leeks	20/20		
39%	Escaroles/broad-leaved	20/8.1	325	16%	Spring onions/green onions	30/30	135	32%	Chards/beet leaves	40/40	267	12%	Spring onions/green onions and	30/30		
38%	Witloofs/Belgian endives	15/8	317	14%	Courgettes	5/5	116	23%	Cucumbers	5/5	197	10%	Cucumbers	5/5		
28%	Tomatoes	4/4	233	13%	Aubergines/egg plants	4/4	108	14%	Tomatoes	4/4	121	9%	Aubergines/egg plants	4/4		
28% xpand/collapse list	Courgettes	5/5	232	13%	Red mustards	20/20	106	12%	Courgettes	5/5	100	9%	Tomatoes	4/4		
	mmodities exceeding the AR diets	fD/ADI in	2					Total number of co ARfD/ADI in childre (IESTI new calculat		the	2					
Results for children				Results for adults				Results for childre				Results for adults				
	nmodities for which ARfD/ADI				mmodities for which ARfD/ADI			No of processed cor					mmodities for which ARfD/ADI is			
s exceeded (IESTI):			1	is exceeded (IESTI)				ARfD/ADI is exceeded	ed (IESTI new):			exceeded (IESTI ne	w):			
ESTI				IESTI				IESTI new				IESTI new				
		MRL/input	_			MRL/input	_			MRL/input	_			MRL/input		
Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (ug/kg.hu)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure	Highest % of ARfD/ADI	Processed commodities	for RA	Exposure	Highest % of ARfD/ADI	Processed commodities	for RA	Exp	
102%	Leeks/boiled	20/15	(µg/kg bw) 859	50%	Cauliflowers/boiled	(mg/kg) 10/10	(µg/kg bw) 417	59%	Leeks/boiled	(mg/kg) 20/15	(µg/kg bw) 493	30%	Cauliflowers/boiled	(mg/kg) 10/10	(µgi	
93%	Chards/beet leaves/boiled	40/25	778	37%	Chards/beet leaves/boiled	40/25	313	50%	Cauliflowers/boiled	10/10	418	26%	Chards/beet leaves/boiled	40/25		
83%	Witloofs/boiled	15/8	698	33%	Pumpkins/boiled	5/5	276	45%	Witloofs/boiled	15/8	378	25%	Spinaches/frozen; boiled	40/25		
83%	Cauliflowers/boiled	10/10	696	31%	Leeks/boiled	20/15	262	41%	Spinaches/frozen; boiled	40/25	348	24%	Leeks/boiled	20/15		
64% 53%	Escaroles/broad-leaved end Pumpkins/boiled	20/8.1 5/5	537 443	25% 20%	Spinaches/frozen; boiled Escaroles/broad-leaved	40/25 20/8.1	207 166	40% 38%	Chards/beet leaves/boiled Escaroles/broad-leaved	40/25 20/8.1	333 322	24% 21%	Pumpkins/boiled Witloofs/boiled	5/5 15/8		
41%	Spinaches/frozen; boiled	40/25	348	20%	Purslanes/boiled	40/40	165	32%	Pumpkins/boiled	5/5	266	20%	Purslanes/boiled	40/40		
39%	Kales/boiled	20/11.8	325	18%	Witloofs/boiled	15/8	148	23%	Kales/boiled	20/11.8	195	15%	Escaroles/broad-leaved endives/	20/8.1		
28%	Broccoli/boiled	3/3	236	14%	Courgettes/boiled	5/5	114	17%	Broccoli/boiled	3/3	142	9%	Courgettes/boiled	5/5		
21%	Courgettes/boiled	5/5	177	9%	Broccoli/boiled	3/3 4/4	72	13%	Courgettes/boiled	5/5 4/4	106 76	7%	Broccoli/boiled	3/3		
14% 9%	Gherkins/pickled Tomatoes/juice	5/5 4/4	115 76	4%	Tomatoes/sauce/puree Onions/boiled	4/4 2/2	33 19	9% 6%	Tomatoes/juice Gherkins/pickled	4/4 5/5	76 49	4%	Tomatoes/sauce/puree Onions/boiled	4/4 2/2		
5%	Tomatoes/sauce/puree	4/4	38	1%	Shallots/boiled	2/2	12	5%	Tomatoes/sauce/puree	4/4	38	2%	Shallots/boiled	2/2		
	Shallots/boiled	2/2	32	0.8%	Head cabbages/canned	0.7/0.7	6.6	2%	Brussels sprouts/boiled	2/2	20	0.8%	Head cabbages/canned	0.7/0.7		
4%	Potatoes/fried	0.3/0.3	28	0.8%	Kohlrabies/boiled	0.3/0.3	6.4	2%	Potatoes/dried (flakes)	0.3/1.38	18	0.3%	Kohlrabies/boiled	0.3/0.3		
3%				1				1				1				
3%																
3% Expand/collapse list																
3% Expand/collapse list	term intake (IESTI) exceeded th	he toxicologi	cal reference va	lue for 2 commodities	s.											

EFSA Journal

-	* *	r				iconazol							
	*•• •	d Safety Authority		LOQs (mg/kg) range f		al reference v	to: values	0.07	Details-chi assess		Supplementary chronic risk ass		
				ADI (mg/kg bw per da	y):	0.04	ARfD (mg/kg bw):	0.1					
E	uropean Foo	d Safety Authority		Source of ADI:		EFSA	Source of ARfD:	EFSA	Details-ac		Details-acut		
		vision 3.1; 2018/11/18		Year of evaluation:		2017	Year of evaluation:	2017	assessmen	t/children	assessment/	adults	J
nen		VISION 3.1, 2010/11/10											<u> </u>
						Norma	l mode						
					Chronic ris	k assessment	: JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :		-					Exposure	e resulting fr
Τ												MRLs set at	t commoditie
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ	under asses (in % of A
	Calculated exposur		(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		MS diet	Commodity/	(in % of ADI)	(11.70 01.
\neg	(% of ADI)	MS Diet	day)		group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		+
	21% 16%	NL toddler GEMS/Food G06	8.31 6.41		Apples Tomatoes		3% 3%	Maize/corn Rice		2% 1%	Tomatoes Wheat	2% 0.3%	
			5.56				2%	Oranges		2%		0.3%	
	14% 13%	DE child			Apples		2%			2%	Tomatoes		
	13%	NL child GEMS/Food G10	5.03 4.28		Sugar beet roots		2%	Apples		0.7%	Tomatoes	0.9%	
	10%	GEMS/Food G10 GEMS/Food G07	4.20		Tomatoes Tomatoes		2%	Rice Bovine: Liver		0.8%	Peaches Oranges	0.4%	
	10%	FR child 3–15 years	4.12		Oranges		2%	Tomatoes		1.0%	Sugar beet roots	0.8%	
	9%	IE adult	3.69		Sheep: Liver		1%	Peaches		0.7%	Tomatoes	0.5%	
	9%	GEMS/Food G15	3.63		Tomatoes		0.7%	Wheat		0.6%	Bovine: Liver	0.4%	
	9%	GEMS/Food G08	3.52	2%	Tomatoes		0.8%	Peaches		0.6%	Wheat	0.4%	
	9%	RO general	3.49	3%	Tomatoes		0.8%	Wheat		0.5%	Wine grapes	0.5%	
	8%	ES child	3.32		Tomatoes		1%	Oranges		0.8%	Rice	0.5%	
	8%	UK infant	3.28		Rice		1%	Bovine: Liver		1.0%	Milk: Cattle	1%	
	8%	FR toddler 2-3 years	3.18		Rice		0.9%	Apples		0.9%	Tomatoes	1.0%	
	8%	GEMS/Food G11	3.16	2%	Tomatoes		0.5%	Wheat		0.5%	Rice	0.5%	
	8%	UK toddler	3.11	1%	Oranges		1%	Tomatoes		0.9%	Rice	0.7%	
	8%	DE women 14-50 years	3.06	1%	Tomatoes		1%	Sugar beet roots		1%	Oranges	0.4%	
	8%	DK child	3.04	1.0%	Tomatoes		0.8%	Rye		0.7%	Wheat	0.5%	
	7%	PT general	2.86	2%	Tomatoes		1%	Peaches		1%	Rice	0.2%	
	7%	DE general	2.86	1%	Tomatoes		1%	Sugar beet roots		0.9%	Oranges	0.4%	
	7%	SE general	2.82		Bovine: Muscle/meat		1%	Tomatoes		0.7%	Rice	0.6%	
	7%	IT toddler	2.62		Tomatoes		1%	Peaches		1.0%	Wheat	0.1%	
	6%	ES adult	2.31	1%	Tomatoes		0.8%	Peaches		0.7%	Oranges	0.3%	
	6% 5%	NL general	2.26		Tomatoes		0.8%	Sugar beet roots		0.6%	Oranges	0.4%	
	5%	IT adult FR adult	2.20		Tomatoes Tomatoes		0.7%	Peaches Wine grapes		0.6%	Wheat Peaches	0.1%	
	5% 5%	FR adult FI 3 years	1.95	1%	Tomatoes		0.7%	Wine grapes Rice		0.5%	Peaches	0.2%	
	5%	UK vegetarian	1.90	1%	Tomatoes		0.6%	Rice		0.5%	Oranges	0.2%	
	4%	DK adult	1.48	0.9%	Tomatoes		0.3%	Wine grapes		0.3%	Peaches	0.2%	
	4%	FI 6 years	1.46		Tomatoes		0.7%	Rice		0.4%	Peaches	0.2%	
	4%	UK adult	1.44	0.8%	Tomatoes		0.6%	Rice		0.3%	Wine grapes	0.2%	
	4%	LT adult	1.42	1%	Tomatoes		0.5%	Apples		0.4%	Rice	0.2%	
	3%	FI adult	1.34	1%	Tomatoes		0.8%	Coffee beans		0.2%	Oranges	0.1%	
	3%	PL general	1.25	2%	Tomatoes		0.6%	Apples		0.2%	Peaches	0.1%	
- 1	3%	FR infant	1.06		Apples		0.4%	Milk: Cattle		0.4%	Sugar beet roots	0.6%	
- 1	1%	IE child	0.53	0.5%	Rice		0.2%	Wheat		0.1%	Tomatoes	0.1%	1


The long-term intake of residues of Propiconazole is unlikely to present a public health concern.

Acute risk assessment/children				Acute risk a	ssessment/adults/ger	A	cute risk assessmen	t/children		Acute risk assessment/adults/general population					
Details-a	acute risk assessme	ent/childr	en	Detail	-acute risk assessn	nent/adu	lts		lide IESTI new calo	culations			Show IESTI new calcu	ations	
	ssment is based on the ARID. ased on the large portion of th	e most critical	consumer group	p.				IESTI new calculations: The calculation is performed with the MRL and the peeling/processing factor (PF), taking into account the residue in the edible portion and/or the conversion the residue admintion (CP). For case 2a, 2b and 3 calculations, a variability factor of 3 is used. Since this methodology is not based on internationally agree the results are considered as indicative only. Since this methodology is not based on internationally agreed principles, the results are considered as indicative only.							
		Sh	ow results	s for all crop	5										
Results for childre No. of commodities exceeded (IESTI):	n for which ARfD/ADI is		2	Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childr No. of commodities exceeded (IESTI ne	for which ARfD/ADI is		6	IESTI new Results for adults No. of commodities (IESTI new):	s for which ARfD/ADI is exceeded		
IESTI				IESTI				IESTI new				IESTI new			
Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exp (µg/k
209% 102% 57%	Peaches Tomatoes Oranges	5/2.2 3/1.76 10/0.43	209 102 57	41% 28% 23%	Peaches Tomatoes Bovine: Liver	5/2.2 3/1.76 0.5/5.67	41 28 23	668% 370% 270%	Oranges Mandarins Peaches	10/10 10/10 5/5	668 370 270	469% 330% 105%	Oranges Mandarins Grapefruits	10/10 10/10 5/5	43
46% 35%	Bovine: Liver Table grapes	0.5/5.67 0.3/0.48	46 35	18% 16%	Cherries (sweet) Table grapes	3/1.8 0.3/0.48	18 16	236% 233%	Grapefruits Lemons	5/5 10/10	236 233	103% 102% 58% 38%	Peaches Tomatoes	5/5 3/3 10/10	1
25% 23% 23%	Mandarins Bananas Apples	10/0.43 0.15/0.24 0.15/0.21	25 23 23	16% 13% 11%	Sheep: Liver Oranges Wine grapes	0.5/5.67 10/0.43 0.3/0.48	16 13 11	121% 91% 86%	Pineapples Tomatoes Limes	2/2 3/3 10/10	121 91 86	36% 30%	Lemons Pineapples Limes	2/2 10/10	
22% 19% 18%	Cherries (sweet) Pineapples Bovine: Kidney	3/1.8 2/0.19 0.5/4.8	22 19 18	11% 10% 8%	Swine: Kidney Bovine: Kidney Mandarins	0.5/4.8 0.5/4.8 10/0.43	11 10 7.7	37% 19% 13%	Cherries (sweet) Rice Table grapes	3/3 1.5/1.5 0.3/0.3	37 19 13	30% 13% 10%	Cherries (sweet) Rice Barley	3/3 1.5/1.5 2/2	
15% 13% 10%	Lemons Grapefruits Cucumbers	10/0.43 5/0.16 0.01/0.15	15 13 9.8	6% 6% 6%	Apples Pineapples Rice	0.15/0.21 2/0.19 1.5/0.66	5.9 5.6 5.6	11% 9% 9%	Barley Apples Bananas	2/2 0.15/0.15 0.15/0.15	11 9.2 9.2	7% 6% 5%	Wine grapes Table grapes Apples	0.3/0.3 0.3/0.3 0.15/0.15	1
9% Expand/collapse list	Plums	0.01/0.22	9.3	5%	Bananas	0.15/0.24	5.1	7%	Apricots	0.15/0.15	9.2 7.4	4%	Bananas	0.15/0.15	4
Total number of co children and adult (IESTI calculation)	ommodities exceeding the A diets	RfD/ADI in	2						ommodities found exceedin ren and adult diets ation)	ng the	6				
Results for childre No of processed con is exceeded (IESTI)	mmodities for which ARfD/AD	1		Results for adults No of processed co is exceeded (IESTI)	mmodities for which ARfD/ADI			Results for children No of processed co ARfD/ADI is exceed	mmodities for which			Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is		
IESTI				IESTI				IESTI new				IESTI new			
Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exp (µg/l
57% 26% 14%	Peaches/canned Peaches/juice Tomatoes/juice	1/2.2 5/1.55 3/0.72	57 26 14	18% 6% 5%	Peaches/canned Tomatoes/sauce/puree Sugar beets (root)/sugar	5/2.2 3/0.72 0.15/1.26	18 5.9 4.6	43% 26% 14%	Peaches/canned Peaches/juice Tomatoes/juice	1/2.2 5/1.55 3/0.72	43 26 14	18% 6% 5%	Peaches/canned Tomatoes/sauce/puree Sugar beets (root)/sugar	5/2.2 3/0.72 0.15/1.26	
12% 12%	Oranges/juice Sugar beets (root)/sugar	10/0.22 0.15/1.26	12 12	5% 4%	Wine grapes/wine Apples/juice	0.3/0.48 0.15/0.11	4.5 3.6	12% 12%	Oranges/juice Sugar beets (root)/sugar	10/0.22 0.15/1.26	12 12	5% 4%	Wine grapes/wine Apples/juice	0.3/0.48 0.15/0.11	4
8% 7% 6%	Pineapples/canned Tomatoes/sauce/puree Apples/juice	2/0.19 3/0.72 0.15/0.11	7.8 6.9 5.9	3% 3% 3%	Oranges/juice Table grapes/raisins Rice/milling (polishing)	10/0.22 0.3/2.26 1.5/0.26	3.3 2.8 2.6	7% 6% 5%	Tomatoes/sauce/puree Apples/juice Wine grapes/juice	3/0.72 0.15/0.11 0.3/0.12	6.9 5.9 5.2	3% 3% 3%	Oranges/juice Table grapes/raisins Rice/milling (polishing)	10/0.22 0.3/2.26 1.5/0.26	:
5% 4% 4%	Wine grapes/juice Currants (red, black and wi Rice/milling (polishing)	0.3/0.12 h 0.01/0.15 1.5/0.26	5.2 4.3 4.0	3% 2% 2%	Pineapples/canned Wine grapes/juice Currants (red, black and	2/0.19 0.3/0.12 0.01/0.15	2.5 2.5 1.9	5% 4% 4%	Pineapples/canned Currants (red, black and Rice/milling (polishing)	2/0.19 0.01/0.15 1.5/0.26	4.7 4.3 4.0	2% 2% 2%	Wine grapes/juice Currants (red, black and white)/ Maize/oil	0.3/0.12 0.01/0.15 0.05/3.75	-
3% 2% 2%	Maize/oil Pineapples/juice Peanuts/peanut butter	0.05/3.75 2/0.16 0.01/0.6	3.5 2.3 2.2	2% 1% 1%	Maize/oil Pineapples/juice Grapefruits/juice	0.05/3.75 2/0.16 5/0.11	1.9 1.4 1.2	3% 2% 2%	Maize/oil Pineapples/juice Peanuts/peanut butter	0.05/3.75 2/0.16 0.01/0.6	3.5 2.3 2.2	2% 1% 1%	Pineapples/canned Pineapples/juice Grapefruits/juice	2/0.19 2/0.16 5/0.11	1 1 1
2% Expand/collapse list	Plums/juice	0.01/0.19	1.7	0.9%	Barley/beer	2/0.02	0.86	2%	Plums/juice	0.01/0.19	1.7	0.9%	Barley/beer	2/0.02	0
Conclusion:															
	-term intake (IESTI) exceeded	the toxicologic	al reference val	lue for 2 commoditie											

EFSA Journal

	÷	fsa		LOQs (mg/kg) range		to:	0.05	Details-chr		Supplementary		
	· · C				Toxicological reference v		0.01	assessi	ment	chronic risk asse	essment	
E	uronean Foor	d Safety Authority		ADI (mg/kg bw per d		ARfD (mg/kg bw):		Details-ac	ute risk	Details-acute	e risk	
				Source of ADI:	Germany	Source of ARfD:	Germany	assessment	t/children	assessment/a	adults	
_		vision 3.1; 2018/11/18		Year of evaluation:	2001	Year of evaluation:	2001					
nen	nts:											
					Refined calc	ulation mode						
					Chronic risk assessment	: JMPR method	ology (IEDI/TMDI)				<u></u>	
_				No of diets exceeding	the ΔDI ·	1					Exposure	e resulting f
											MRLs set at	commodi
			Expsoure	Highest contributor to		2nd contributor to			3rd contributor to		the LOQ (in % of	under asse (in % of
	Calculated exposure (% of ADI)	e MS Diet	(µg/kg bw per	MS diet (in % of ADI)	Commodity/ group of commodities	MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ group of commodities	ADI)	
+	(% of ADI) 113%	GEMS/Food G06	day) 5.64	(in % of ADI) 93%	Tomatoes	(in % of ADI) 19%	group of commodities Cotton seeds		(in % of ADI) 0.7%	Papayas	,	11
	50%	RO general	2.51	50%	Tomatoes	1976	FRUIT AND TREE NUTS		0.7 %	Fapayas		5
	44%	GEMS/Food G10	2.18	36%	Tomatoes	8%	Cotton seeds		0.4%	Papayas		4
	39%	GEMS/Food G07	1.96	28%	Tomatoes	11%	Cotton seeds		0.2%	Papayas		3
	37%	IT toddler	1.85	37%	Tomatoes	0.0%	Other herbs		0.0%	Parsley		3
	34%	GEMS/Food G08	1.71	30%	Tomatoes	4%	Cotton seeds		0.1%	Papayas		34
	34%	GEMS/Food G15	1.71	31%	Tomatoes	3%	Cotton seeds		0.1%	Papayas		34
	30%	IT adult	1.51	30%	Tomatoes	0.0%	Other herbs		0.0%	Parsley		30
	30%	GEMS/Food G11	1.50	24%	Tomatoes	6%	Cotton seeds		0.4%	Papayas		30
	27%	DE child	1.37	26%	Tomatoes	0.4%	Papayas		0.1%	Juniper berry		27
	27%	NL toddler	1.33	26%	Tomatoes	0.5%	Papayas		0.2%	Mangoes		27
	26%	ES child	1.28	26%	Tomatoes		FRUIT AND TREE NUTS			-		26
	23%	PT general	1.16	23%	Tomatoes	0.0%	Parsley					23
	23%	PL general	1.15	23%	Tomatoes	0.0%	Celery leaves		0.0%	Parsley		23
	22%	FR child 3–15 years	1.09	22%	Tomatoes	0.0%	Other herbs		0.0%	Parsley		22
	21%	SE general	1.03	20%	Tomatoes	0.7%	Papayas		0.0%	Mangoes		21
	20%	ES adult	1.02	20%	Tomatoes	0.0%	Papayas		0.0%	Mangoes		2
	20%	DE women 14–50 years	0.98	19%	Tomatoes	0.2%	Coffee beans		0.1%	Papayas		20
	17%	DE general	0.87	17%	Tomatoes	0.2%	Coffee beans		0.1%	Papayas		17
	17%	FI adult	0.84	14%	Tomatoes	2%	Coffee beans					1
	16%	UK vegetarian	0.81	16%	Tomatoes	0.0%	Mangoes		0.0%	Parsley		1
	16%	LT adult	0.81	16%	Tomatoes		FRUIT AND TREE NUTS					1
	15%	UK toddler	0.77	15%	Tomatoes	0.0%	Mangoes					15
ļ	15%	NL child	0.75	15%	Tomatoes	0.3%	Papayas		0.1%	Mangoes		1
1	15%	FI 3 years	0.73	15%	Tomatoes	0.0%	Coffee beans					15
1	14%	DK child	0.70	14%	Tomatoes	0.1%	Papayas		0.0%	Mangoes		1.
1	14%	DK adult	0.68	13%	Tomatoes	0.0%	Papayas		0.0%	Mangoes		1.
ļ	12% 12%	FR toddler 2–3 years FR adult	0.62	12% 12%	Tomatoes Tomatoes	0.1%	Mangoes Coffee beans		0.0%	Parsley		12
	12%	FR adult FI 6 years	0.61	12%	Tomatoes	0.2%	Coffee beans		0.0%	Parsley		1
l	11%	UK adult	0.57	11%	Tomatoes	0.0%	Mangoes		0.0%	Parsley		1
l	11%	NL general	0.57	11%	Tomatoes	0.1%	Coffee beans		0.0%	Mangoes		
1	11%	IE adult	0.55	10%	Tomatoes	0.3%	Mangoes		0.0%	Basil and edible flowers		11
1	10%	UK infant	0.48	10%	Tomatoes	0.570	FRUIT AND TREE NUTS		0.070			10
ļ	2%	FR infant	0.12	2%	Tomatoes	0.0%	Parsley		0.0%	Chives		2
	1%	IE child	0.07	1%	Tomatoes	0.0%	Mangoes		0.0%	Sage		1
	1			1	1	1	1		1	1		1

Conclusion:

The estimated short-term intake (IESTI) exceeded the toxicological reference value for 1 commodities. For processed commodities, the toxicological reference value was exceeded in one or several cases. **ei**

EFSA Journal

	K T T X	-			Profe	nofos (F)	(F)			Inpu	t values		
-	¥. *	1		LOQs (mg/kg) range f		0.01	to:	0.05	Details-ch	ronic risk	Supplementary	results_	
	***	d Safety Authority				ical reference v	alues		assess		chronic risk ass		
				ADI (mg/kg bw per da	y):	0.03	ARfD (mg/kg bw):	1	<u> </u>		(<u>}</u>		
E	uropean Foo	d Safety Authority		Source of ADI:		JMPR	Source of ARfD:	JMPR	Details-ad		Details-acut		
	EFSA PRIMo re	evision 3.1; 2018/11/18		Year of evaluation:		2007	Year of evaluation:	2007	assessmen	t/children	assessment/	adults	
men				1			1						
						Refined calc	ulation mode						
					Chronic r	isk assessment	: JMPR methodo	ology (IEDI/TMDI)					
_				No of diets exceeding	the ADI :	-	-						e resulting from
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		MRLs set at the LOQ	under assess
	Calculated exposu	re	(µg/kg bw per		Commodity/		2nd contributor to MS diet	Commodity/		MS diet	Commodity/	(in % of	(in % of A
	(% of ADI)	MS Diet	(pg/kg bit por day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	
	19%	GEMS/Food G06	5.64	16%	Tomatoes		3%	Cotton seeds		0.1%	Papayas		19%
	8%	RO general	2.51	8%	Tomatoes			FRUIT AND TREE NUTS					8%
	7%	GEMS/Food G10	2.18	6%	Tomatoes		1%	Cotton seeds		0.1%	Papayas		7%
	7%	GEMS/Food G07	1.96	5%	Tomatoes		2%	Cotton seeds		0.0%	Papayas		7%
	6%	IT toddler	1.85	6%	Tomatoes		0.0%	Other herbs		0.0%	Parsley		6%
	6% 6%	GEMS/Food G08	1.71	5% 5%	Tomatoes		0.7%	Cotton seeds		0.0%	Papayas		6% 6%
- 1	6% 5%	GEMS/Food G15 IT adult	1.71 1.51	5%	Tomatoes		0.5%	Cotton seeds Other herbs			Papayas		6% 5%
	5%	GEMS/Food G11	1.51	4%	Tomatoes Tomatoes		0.9%	Cotton seeds		0.0%	Parsley		5%
	5%	DE child	1.50	4%	Tomatoes		0.9%			0.1%	Papayas		5% 5%
	4%	NL toddler	1.37	4%	Tomatoes		0.1%	Papayas Papayas		0.0%	Juniper berry Mangoes		5%
	4%	ES child	1.33	4%	Tomatoes		0.1%	FRUIT AND TREE NUTS		0.0%	Mangoes		4%
	4%	PT general	1.16	4%	Tomatoes		0.0%	Parslev					4%
	4%	PL general	1.15	4%	Tomatoes		0.0%	Celery leaves		0.0%	Parsley		4%
,	4%	FR child 3–15 years	1.09	4%	Tomatoes		0.0%	Other herbs		0.0%	Parsley		4%
	3%	SE general	1.03	3%	Tomatoes		0.1%	Papayas		0.0%	Mangoes		3%
	3%	ES adult	1.02	3%	Tomatoes		0.0%	Papayas		0.0%	Mangoes		3%
	3%	DE women 14-50 years	0.98	3%	Tomatoes		0.0%	Coffee beans		0.0%	Papayas		3%
	3%	DE general	0.87	3%	Tomatoes		0.0%	Coffee beans		0.0%	Papayas		3%
	3%	FI adult	0.84	2%	Tomatoes		0.4%	Coffee beans					3%
·	3%	UK vegetarian	0.81	3%	Tomatoes		0.0%	Mangoes		0.0%	Parsley		3%
	3%	LT adult	0.81	3%	Tomatoes		1	FRUIT AND TREE NUTS					3%
	3%	UK toddler	0.77	3%	Tomatoes		0.0%	Mangoes					3%
	3%	NL child	0.75	2%	Tomatoes		0.1%	Papayas		0.0%	Mangoes		3%
	2%	FI 3 years	0.73	2%	Tomatoes		0.0%	Coffee beans					2%
	2%	DK child	0.70	2%	Tomatoes		0.0%	Papayas		0.0%	Mangoes		2%
	2%	DK adult	0.68	2%	Tomatoes		0.0%	Papayas		0.0%	Mangoes		2%
	2%	FR toddler 2–3 years	0.62	2%	Tomatoes		0.0%	Mangoes		0.0%	Parsley		2%
	2%	FR adult	0.61	2%	Tomatoes		0.0%	Coffee beans		0.0%	Parsley		2%
	2%	FI 6 years	0.57	2% 2%	Tomatoes		0.0%	Coffee beans		0.0%	Develop		2%
	2%	UK adult	0.57	2%	Tomatoes		0.0%	Mangoes		0.0%	Parsley		2%
	2% 2%	NL general IE adult	0.55	2%	Tomatoes Tomatoes		0.0%	Coffee beans Mangoes		0.0%	Mangoes Basil and edible flowers		2% 2%
	2%	UK infant	0.54	2%	Tomatoes		0.1%	Mangoes FRUIT AND TREE NUTS		0.0%	Dasi and edible nowers		2%
	0.4%	FR infant	0.48	0.4%	Tomatoes		0.0%	Parsley		0.0%	Chives		0.4%
	0.4%	IE child	0.12	0.4%	Tomatoes		0.0%	Mangoes		0.0%	Sage		0.4%
			0.07							2.070		1	0.2 /

The estimated long-term dietary intake (TMDI/NEDI/IEDI) was below the ADI. The long-term intake of residues of Profenofos (F) (F) is unlikely to present a public health concern.

д	cute risk assessment	/children		Acute risk a	ssessment/adults/g	eneral popu	lation	A	cute risk assessmen	/children		Acute risk assessment/adults/general population				
Details–	acute risk assessme	ent/childr	en	Details	-acute risk assess	ment/adu	lts	ŀ	lide IESTI new calc	ulations			Show IESTI new calcu	lations		
	assment is based on the ARfD. aased on the large portion of th	e most critical	consumer grou	p.				IESTI new calculations: The calculation is performed with the MRL and the peeling/processing factor (PF), taking into account the residue in the edible portion and/or the convers the residue definition (CF). For case 2a, 2b and 3 calculations, a variability factor of 3 is used. Since this methodology is not based on internationally ag the results are considered as indicative only. Since this methodology is not based on internationally agreed principles, the results are considered as indicative only.								
		Sh	ow result	s for all crops												
Results for childre No. of commodities exceeded (IESTI):	en s for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded			
IESTI				IESTI				IESTI new				IESTI new				
Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Expo (µg/kg	
27% 3% 2%	Tomatoes Papayas Mangoes	10/4.7 0.01/0.7 0.2/0.2	273 30 16	7% 1.0% 0.5%	Tomatoes Papayas Mangoes	10/4.7 0.01/0.7 0.2/0.2	75 9.8 5.2	30% 0.9% 0.02%	Tomatoes Mangoes Papayas	10/10 0.2/0.2 0.01/0.01	303 9.4 0.18	19% 0.5% 0.03%	Tomatoes Mangoes Cardamom	10/10 0.2/0.2 3/3	19 4. 0.3	
0.01% 0.01% 0.01%	Fennel seed Chervil Parsley	0.1/0.1 0.05/0.05 0.05/0.05	0.08 0.06 0.05	0.03% 0.01% 0.01%	Cardamom Rose Parsley	3/3 0.1/0.1 0.05/0.05	0.30 0.06 0.06	0.01% 0.01% 0.01%	Fennel seed Chervil Parsley	0.1/0.1 0.05/0.05 0.05/0.05	0.08 0.06 0.05	0.01% 0.01% 0.01%	Papayas Rose Parsley	0.01/0.01 0.1/0.1 0.05/0.05	0.0 0.0 0.0	
0.00% 0.00% 0.00%	Vanilla pods Chives Sage	0.07/0.07 0.05/0.05 0.05/0.05	0.04 0.04 0.04	0.00% 0.00% 0.00%	Tamarind Celery leaves Coffee beans	0.07/0.07 0.05/0.05 0.04/0.02	0.02 0.02 0.02	0.00% 0.00% 0.00%	Vanilla pods Chives Sage	0.07/0.07 0.05/0.05 0.05/0.05	0.04 0.04 0.04	0.00% 0.00% 0.00%	Coffee beans Celery leaves Sage	0.04/0.04 0.05/0.05 0.05/0.05	0.0 0.0 0.0	
0.00% 0.00% 0.00%	Basil and edible flowers Cardamom Cumin seed	0.05/0.05 3/3 5/5	0.04 0.03 0.03	0.00% 0.00% 0.00%	Sage Sage	0.05/0.05 0.05/0.05 0.05/0.05	0.01 0.01 0.01	0.00% 0.00% 0.00%	Basil and edible flowers Cardamom Coffee beans	0.05/0.05 3/3 0.04/0.04	0.04 0.03 0.03	0.00% 0.00% 0.00%	Sage Sage Tamarind	0.05/0.05 0.05/0.05 0.07/0.07	0.0 0.0 0.0	
0.00% 0.00% 0.00% Expand/collapse lis	Celery leaves Rose Coffee beans	0.05/0.05 0.1/0.1 0.04/0.02	0.02 0.02 0.01	0.00% 0.00% 0.00%	Chives Cumin seed Vanilla pods	0.05/0.05 5/5 0.07/0.07	0.01 0.01 0.01	0.00% 0.00% 0.00%	Cumin seed Celery leaves Rose	5/5 0.05/0.05 0.1/0.1	0.03 0.02 0.02	0.00% 0.00% 0.00%	Chives Cumin seed Vanilla pods	0.05/0.05 5/5 0.07/0.07	0.0 0.0 0.0	
	ommodities exceeding the A t diets	RfD/ADI in						Total number of co ARfD/ADI in childr (IESTI new calcula		ig the						
Results for children No of processed co is exceeded (IESTI	mmodities for which ARfD/AD	I		Results for adults No of processed con is exceeded (IESTI):	nmodities for which ARfD/A	וכ		Results for childre No of processed co ARfD/ADI is exceed	mmodities for which			Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is w):			
IESTI		1001		IESTI				IESTI new				IESTI new				
Highest % of ARfD/ADI 2%	Processed commodities Tomatoes/juice	MRL/input for RA (mg/kg) 10/1.3	Exposure (µg/kg bw) 25	Highest % of ARfD/ADI 1%	Processed commodities Tomatoes/sauce/puree	MRL/input for RA (mg/kg) 10/1.3	Exposure (µg/kg bw) 11	Highest % of ARfD/ADI 2%	Processed commodities Tomatoes/juice	MRL/input for RA (mg/kg) 10/1.3	Exposure (µg/kg bw) 25	Highest % of ARfD/ADI 1%	Processed commodities Tomatoes/sauce/puree	MRL/input for RA (mg/kg) 10/1.3	Expo (µg/ki 1	
1% 0.0%	Tomatoes/sauce/puree Coffee beans/extraction	10/1.3 10/1.3 0.04/0	12 0.04	0.01% 0.00%	Coffee beans/extraction Cumin seed/processed	0.04/0 0.1/0.64	0.10 0.02	1% 0.00%	Tomatoes/juice Tomatoes/sauce/puree Coffee beans/extraction	10/1.3 10/1.3 0.04/0	12 0.04	0.01%	Coffee beans/extraction Cumin seed/processed (not	0.04/0 0.1/0.64	0. 0.(
Expand/collapse lis	st															

For processed commodities, no exceedance of the ARfD/ADI was identified.

-	×Δ	d Safety Authority		· ·		njugated), expr	ressed as b		Details-chr assess		Supplementar chronic risk as		
					Toxicologica	I reference value	es				J		
E	uropean Foo	d Safety Authority		ADI (mg/kg bw per da Source of ADI:	ıy):		fD (mg/kg bw): urce of ARfD:	1	Details-ac	ute risk	Details-acu	ite risk	
	EESA PRIMo re	vision 3.1; 2018/11/18		Year of evaluation:			ar of evaluation:		assessment	t/children	assessment	:/adults	
nmer				I		I							
					R	efined calculat	tion mode						
				1	Chronic risk	assessment: JM	IPR methodo	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :							Exposure MRLs set at	commodities
	Calculated exposur (% of ADI)	e MS Diet	Expsoure (µg/kg bw per day)	Highest contributor to MS diet (in % of ADI)	Commodity/ aroup of commodities		nd contributor to MS diet (in % of ADI)	Commodity/ group of commodities		3rd contributor to MS diet (in % of ADI)	Commodity/ group of commodities	the LOQ (in % of ADI)	under assess (in % of A
	3%	NL toddler	2.38	1%	Milk: Cattle		0.4%	Maize/corn		0.3%	Potatoes	0.0%	3%
	2% 2%	DK child UK infant	1.57 1.40	0.6%	Rye Milk: Cattle		0.3%	Wheat Potatoes		0.3%	Milk: Cattle Wheat	0.0%	2% 2%
	2%	GEMS/Food G11	1.40	0.9%	Soyabeans		0.3%	Potatoes		0.2%	Wheat	0.0%	2%
	1%	GEMS/Food G10	1.26	0.3%	Soyabeans		0.3%	Wheat		0.2%	Potatoes		1%
	1%	DE child	1.22	0.4%	Milk: Cattle		0.3%	Wheat		0.2%	Potatoes	0.0%	1%
	1% 1%	NL child GEMS/Food G08	1.22	0.5%	Milk: Cattle Potatoes		0.3% 0.3%	Wheat Wheat		0.3%	Potatoes	0.0%	1% 1%
	1%	GEMS/Food G15	1.21	0.3%	Wheat		0.3%	Potatoes		0.2%	Soyabeans Soyabeans		1%
	1%	UK toddler	1.16	0.5%	Milk: Cattle		0.3%	Potatoes		0.3%	Wheat	0.0%	1%
	1%	FR toddler 2–3 years	1.14	0.7%	Milk: Cattle		0.2%	Wheat		0.1%	Potatoes	0.0%	1%
	1%	GEMS/Food G07	1.13	0.3%	Potatoes		0.3%	Wheat		0.2%	Soyabeans		1%
-	1% 1%	FR child 3–15 years GEMS/Food G06	1.11 1.10	0.5%	Milk: Cattle Wheat		0.3% 0.2%	Wheat Potatoes		0.1% 0.1%	Potatoes Soyabeans	0.0%	1% 1%
,	1%	RO general	1.03	0.3%	Wheat		0.3%	Potatoes		0.3%	Milk: Cattle	0.0%	1%
	1%	SE general	1.00	0.3%	Potatoes		0.3%	Milk: Cattle		0.2%	Wheat	0.0%	1%
	0.9%	ES child	0.85	0.3%	Wheat		0.3%	Milk: Cattle		0.1%	Potatoes	0.0%	0.9%
	0.9%	PT general	0.77	0.4%	Potatoes		0.3%	Wheat		0.0%	Onions		0.9%
	0.8%	FI 3 years	0.68	0.4%	Potatoes		0.1%	Cucumbers		0.1%	Wheat	0.001	0.89
	0.7%	DE general IE adult	0.67	0.3%	Milk: Cattle Potatoes		0.1%	Wheat Wheat		0.1%	Potatoes Milk: Cattle	0.0%	0.7%
	0.7%	DE women 14–50 years	0.64	0.3%	Milk: Cattle		0.1%	Wheat		0.1%	Potatoes	0.0%	0.79
	0.7%	NL general	0.64	0.2%	Potatoes		0.2%	Milk: Cattle		0.1%	Wheat	0.0%	0.7%
	0.7%	FR infant	0.62	0.4%	Milk: Cattle		0.1%	Potatoes		0.1%	Wheat	0.0%	0.79
	0.6%	LT adult	0.58	0.2%	Potatoes Potatoes		0.1%	Rye		0.1%	Milk: Cattle	0.0%	0.6%
	0.6%	FI 6 years IT toddler	0.55	0.3%	Potatoes Wheat		0.1% 0.1%	Cucumbers Potatoes		0.1%	Rye Onions		0.69
	0.5%	DK adult	0.47	0.1%	Milk: Cattle		0.1%	Potatoes		0.1%	Wheat	0.0%	0.67
	0.5%	ES adult	0.46	0.2%	Wheat		0.1%	Milk: Cattle		0.1%	Potatoes	0.0%	0.5%
	0.4%	UK vegetarian	0.40	0.1%	Wheat		0.1%	Potatoes		0.1%	Milk: Cattle	0.0%	0.4%
	0.4%	FR adult UK adult	0.40	0.1%	Wheat Wheat		0.1% 0.1%	Milk: Cattle Potatoes		0.1%	Potatoes Milk: Cattle	0.0%	0.4%
	0.4%	UK adult IT adult	0.37	0.1%	Wheat		0.1%	Potatoes		0.1%	Parsley	0.0%	0.4%
	0.4%	PL general	0.34	0.3%	Potatoes		0.0%	Onions		0.0%	Celery leaves		0.4%
	0.3%	FI adult	0.25	0.1%	Potatoes		0.1%	Rye		0.0%	Cucumbers		0.3%
	0.3%	IE child	0.24	0.1%	Milk: Cattle		0.1%	Wheat		0.0%	Potatoes	0.0%	0.3%

(Details–a	cute risk assessmen	t/childr	en		ssessment/adults/gen –acute risk assessm			H	lide IESTI new calc	ulations			sk assessment/adults/ger Show IESTI new calcu		
	he calculation is ba	sment is based on the ARID. sed on the large portion of the r				h GAPs under asse	semant		the residue definition the results are const	erformed with the MRL and th	calculations, a	a variability facto	or of 3 is used. Since	int the residue in the edible portion the this methodology is not based on asidered as indicative only.		
N	Results for children		laicula		Results for adults No. of commodities	for which ARfD/ADI is	Sillen			for which ARfD/ADI is				for which ARfD/ADI is exceeded		
e	exceeded (IESTI):				exceeded (IESTI):				exceeded (IESTI ne	3W):			(IESTI new):			
IE	ESTI				IESTI				IESTI new				IESTI new			
	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Expo
	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
	2%	Potatoes	0.2/0.1	15	0.9%	Parsley	10/7.72	9.2	1%	Potatoes	0.2/0.2	13	1%	Parsley	10/10	1
	1.0% 0.9%	Chervil Sweet corn	10/7.72	10.0 9.1	0.3%	Sweet corn Potatoes	0.3/0.21 0.2/0.1	3.3	1%	Chervil	10/10 10/10	13 11	0.6% 0.4%	Potatoes Sweet.com	0.2/0.2 0.3/0.3	6
	0.9%	Sweet corn Parsley	0.3/0.21 10/7.72	9.1 8.4	0.3%	Potatoes Cucumbers	0.2/0.1	3.0 2.8	1% 0.9%	Parsley Beans	0.5/0.5	11 9.1	0.4%	Sweet corn Peas	0.3/0.3	3
	0.7%		0.03/0.1	6.6	0.3%	Celery leaves	10/7.72	2.5	0.8%	Chives	10/10	8.2	0.3%	Beans	0.5/0.5	3
	0.6%	Chives	10/7.72	6.3	0.2%	Beans (with pods)	0.3/0.21	1.6	0.8%	Sage	10/10	7.6	0.3%	Celery leaves	10/10	3
	0.6%	Sage Basil and edible flowers	10/7.72 10/7.72	5.8 5.6	0.2%	Sage Onions	10/7.72 0.1/0.1	1.5 1.5	0.7%	Basil and edible flowers Peas	10/10 1/1	7.3	0.3%	Soyabeans	0.5/0.5	2
	0.5%		0.15/0.08	5.6 4.8	0.1%	Chives	10/7.72	1.5	0.7%	Sweet com	0.3/0.3	0.0 5.6	0.2%	Beans (with pods) Sage	10/10	2
	0.4%	Celery leaves	10/7.72	3.7	0.1%	Leeks	0.15/0.08	1.1	0.5%	Celery leaves	10/10	4.8	0.2%	Chives	10/10	1
	0.2%		0.02/0.02	2.5	0.09%	Basil and edible flowers	10/7.72	0.95	0.4%	Leeks	0.15/0.15	3.8	0.1%	Basil and edible flowers	10/10	1
	0.2%	Beans (with pods)	0.3/0.21	2.4	0.08%	Bovine: Fat tissue	1/0.81	0.79	0.3%	Beans (with pods)	0.3/0.3	3.4	0.1%	Peas (with pods)	0.3/0.3	1
	0.2%	Onions Peas (with pods)	0.1/0.1 0.3/0.21	2.3 1.7	0.08%	Rosemary Rosemary	10/7.72 10/7.72	0.77	0.2%	Milk: Cattle Peas (with pods)	0.02/0.02 0.3/0.3	2.5 2.4	0.10%	Tarragon Rosemary	10/10 10/10	1. 1.
	0.2%	Bovine: Fat tissue	1/0.81	1.7	0.08%	Rosemary	10/7.72	0.77	0.2%	Bovine: Fat tissue	1/1	2.1	0.10%	Rosemary	10/10	1.
Т	Expand/collapse list fotal number of con children and adult of	mmodities exceeding the ARI	fD/ADI in						Total number of c ARfD/ADI in child	ommodities found exceedin	g the					
(1	IESTI calculation)								(IESTI new calculation)	ation)						
N	Results for children to of processed com s exceeded (IESTI):	modities for which ARfD/ADI			Results for adults No of processed corr is exceeded (IESTI):	nmodities for which ARfD/ADI			Results for childre No of processed co ARfD/ADI is exceed	mmodities for which			Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is		-
IE	ESTI				IESTI				IESTI new				IESTI new			
			MRL/input				MRL/input				MRL/input				MRL/input	
	Highest % of ARfD/ADI	Processed commodities	for RA	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Expo (µg/k
H	0.9%	Potatoes/fried	(mg/kg) 0.2/0.1	(µg/kg bw) 9.3	0.1%	Leeks/boiled	0.15/0.08	(µg/kg bw) 1.4	0.4%	Potatoes/fried	(mg/kg) 0.2/0.1	(µg/kg bw) 4.4	0.1%	Leeks/boiled	0.15/0.08	(µg/k 1
	0.5%	Leeks/boiled	0.15/0.08	4.6	0.09%	Onions/boiled	0.1/0.1	0.94	0.4%	Potatoes/dried (flakes)	0.2/0.32	4.2	0.07%	Peas (with pods)/boiled	0.3/0.21	0.
	0.4%		0.2/0.32	4.2	0.07%	Peas (with pods)/boiled	0.3/0.21	0.72	0.3%	Leeks/boiled	0.15/0.08	2.7	0.07%	Onions/boiled	0.1/0.1	0.
	0.3% 0.1%		0.3/0.21 0.2/1.25	2.6 1.2	0.06%	Beans/canned Maize/oil	0.5/0.09 0.2/1.25	0.64 0.63	0.3%	Beans (with pods)/boiled Maize/oil	0.3/0.21 0.2/1.25	2.6 1.2	0.06%	Beans/canned Maize/oil	0.5/0.09 0.2/1.25	0. 0.
	0.1%	Peas/canned	1/0.06	1.1	0.06%	Potatoes/chips	0.2/0.07	0.59	0.1%	Peas/canned	1/0.06	1.1	0.06%	Potatoes/chips	0.2/0.07	0.
	0.1%		0.06/0.06	0.97	0.04%	Barley/beer	0.1/0.01	0.43	0.07%	Wheat/milling (flour)	0.1/0.06	0.73	0.04%	Barley/beer	0.1/0.01	0.
	0.1%		0.1/0.06	0.73	0.04%	Peas/canned	1/0.06	0.42	0.05%	Shallots/boiled	0.06/0.06	0.45	0.04%	Shallots/boiled	0.06/0.06	0.
	0.0%	Soyabeans/soy milk Rye/boiled	0.5/0.09 0.1/0.1	0.38	0.04%	Potatoes/dried (flakes) Shallots/boiled	0.2/0.32 0.06/0.06	0.40 0.37	0.04%	Soyabeans/soy milk Rye/boiled	0.5/0.09 0.1/0.1	0.38 0.36	0.04%	Peas/canned Potatoes/dried (flakes)	1/0.06 0.2/0.32	0. 0.
	0.0%		0.1/0.1	0.35	0.03%	Wheat/bread/pizza	0.1/0.06	0.26	0.04%	Rye/milling (wholemeal)-	0.1/0.1	0.35	0.03%	Wheat/bread/pizza	0.1/0.06	0.
	0.0%	Wheat/milling (wholemeal)-I		0.33	0.02%	Wheat/pasta	0.1/0.06	0.23	0.03%	Wheat/milling	0.1/0.06	0.33	0.02%	Wheat/pasta	0.1/0.06	0.
	0.0%	Peas (without pods)/canned Oat/boiled	0.05/0.03	0.24	0.02%	Wheat/bread (wholemeal)	0.1/0.06 0.05/0.04	0.21	0.02%	Peas (without pods)/ Oat/boiled	0.05/0.03	0.24	0.02%	Wheat/bread (wholemeal)	0.1/0.06 0.05/0.04	0. 0.
	0.0%		0.1/0.06	0.22	0.02%	Beans (without pods)/ Peas (without pods)/boiled	0.05/0.04	0.21 0.13	0.02%	Oat/boiled Barley/cooked	0.1/0.06	0.22	0.02%	Beans (without pods)/boiled Peas (without pods)/boiled	0.05/0.04 0.05/0.04	0. 0.
E	xpand/collapse list			V.66	0.0170	(manuar podoji boliku	2.00/0.04	0.10	0.0270		2.110.00	0.22	0.0170	(miniour pour pour pour boileu	0.00/0.04	0.
_																
	Conclusion:															

Background information to derive EU position for 51st CCPR meeting

Calculated exposure (% of ADI) 7% 5% 35% 34% 33% 33% 33% 33% 33% 33% 33% 29% 27% 27% 27% 27% 28% 25% 25% 25% 25% 25% 25% 25% 25%	e MS Diet ML toddler DE child SK-Fold G06 FR child 3-15 years FR toddler 2-3 years GEMS/Food G11	Expsoure (ug/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	LOGs (mg/kg) range ADI (mg/kg bw per d Source of ADI: Year of evaluation: Highest contributor to MS diets exceeding Highest contributor to MS diets exceeding 10% of ADI; 10% 10%	Toxicological re ay): Chronic risk as g the ADI :	eference va 0.0025 EC 2008	ARID (mg/kg bw): Source of ARID: Year of evaluation: Imode JMPR methodo 2nd contributor to MS diet (m % of ADI)	0.05 0.005 EC 2008	Details-ch assess Details-a assessmen	sment cute risk t/children	Supplementary re chronic risk asses Details-acute assessment/ac	sment risk ults	
Calculated exposure (% of ADI) 7% 5% 35% 34% 33% 33% 33% 33% 33% 33% 33% 29% 27% 27% 27% 27% 28% 25% 25% 25% 25% 25% 25% 25% 25%	e MS Diet NL toddler DE child NL child GEMS/Food G06 FR child 3-15 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	No of diets exceeding Highest contributor to MS diet (m % of ADI) 24% 15% 10%	ay): Chronic risk as the ADI : Commodity/ group of commodities Milk: Cattle Apples	0.0025 EC 2008 <u>Norma</u>	ARID (mg/kg bw): Source of ARID: Year of evaluation: Imode JMPR methodo 2nd contributor to MS diet (m % of ADI)	EC 2008	Details-a	cute risk t/children	Details-acute	isk ults	
Calculated exposure (% of ADI) 7% 5% 35% 34% 33% 33% 33% 33% 33% 33% 33% 29% 27% 27% 27% 27% 28% 25% 25% 25% 25% 25% 25% 25% 25%	e MS Diet NL toddler DE child NL child GEMS/Food G06 FR child 3-15 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	No of diets exceeding Highest contributor to MS diet (m % of ADI) 24% 15% 10%	Chronic risk as the ADI : Commodity/ group of commodities Milk: Cattle Apples	EC 2008 <u>Norma</u>	Source of ARID: Year of evaluation: Imode JMPR methodo 2nd contributor to MS diet (in % of ADI)	EC 2008		t/children		ults	
Calculated exposure (% of ADI) 74% 58% 41% 33% 33% 33% 33% 33% 20% 20% 20% 20% 20% 20% 20% 25% 25% 25% 25% 25% 25% 18%	re MS Diet N. todder DE child N. child GEMS/Food G06 FR child 3-15 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	Year of evaluation: No of diets exceeding Highest contributor to MS diet (m % of ADI) 24% 15% 15% 13%	g the ADI : Commodity/ group of commodities Milk: Cartite Apples	2008 <u>Norma</u>	Year of evaluation: Mode JMPR methodo 2nd contributor to MS diet (in % of ADI)	2008		t/children		ults	
E: Calculated exposure (% of ADI) 74% 58% 41% 37% 33% 33% 33% 29% 27% 27% 20% 25% 25% 25% 25% 25% 25% 25% 19% 18% 17% 17% 17%	e MS Diet N. todder DE child N. child GEMS/Food G06 FR child 3-15 years FR toddler 2-3 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	No of diets exceeding Highest contributor to MS diet ((n % of ADI) 24% 15% 15% 13%	g the ADI : Commodity/ group of commodities Milk: Cartite Apples	Norma	I mode JMPR methodo 2nd contributor to MS diet (in % of ADI)	Commodity/					
Calculated exposure (% of ADI) 74% 41% 35% 34% 35% 34% 33% 33% 33% 33% 33% 29% 22% 22% 22% 22% 22% 22% 25% 25% 25% 25	MS Diet NL toddier DE child NL child GEMS/Food G06 FR child 3–15 years FR toddier 2–3 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	Highest contributor to MS diet (in % of ADI) 24% 15% 10% 13%	g the ADI : Commodity/ group of commodities Milk: Cartite Apples		JMPR methodo 2nd contributor to MS diet (in % of ADI)	Commodity/				Exposure	
(% of ADI) 74% 88% 41% 37% 33% 33% 33% 22% 22% 22% 22% 22% 22% 25% 25% 25% 25	MS Diet NL toddier DE child NL child GEMS/Food G06 FR child 3–15 years FR toddier 2–3 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	Highest contributor to MS diet (in % of ADI) 24% 15% 10% 13%	g the ADI : Commodity/ group of commodities Milk: Cartite Apples		JMPR methodo 2nd contributor to MS diet (in % of ADI)	Commodity/				Exposure	
(% of ADI) 74% 88% 41% 37% 33% 33% 33% 22% 22% 22% 22% 22% 22% 25% 25% 25% 25	MS Diet NL toddier DE child NL child GEMS/Food G06 FR child 3–15 years FR toddier 2–3 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	Highest contributor to MS diet (in % of ADI) 24% 15% 10% 13%	g the ADI : Commodity/ group of commodities Milk: Cartite Apples	sessment: 	2nd contributor to MS diet (in % of ADI)	Commodity/				Exposure	
(% of ADI) 74% 88% 41% 37% 33% 33% 33% 22% 22% 22% 22% 22% 22% 25% 25% 25% 25	MS Diet NL toddier DE child NL child GEMS/Food G06 FR child 3–15 years FR toddier 2–3 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	Highest contributor to MS diet (in % of ADI) 24% 15% 10% 13%	Commodity/ group of commodities Milk: Cattle Apples		MS diet (in % of ADI)					Exposure	
(% of ADI) 74% 88% 41% 37% 33% 33% 33% 22% 22% 22% 22% 22% 22% 25% 25% 25% 25	MS Diet NL toddier DE child NL child GEMS/Food G06 FR child 3–15 years FR toddier 2–3 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	MS diet (in % of ADI) 24% 15% 10% 13%	Commodity/ group of commodities Milk: Cattle Apples		MS diet (in % of ADI)						resulting fr
(% of ADI) 74% 88% 41% 37% 33% 33% 33% 22% 22% 22% 22% 22% 22% 25% 25% 25% 25	MS Diet NL toddier DE child NL child GEMS/Food G06 FR child 3–15 years FR toddier 2–3 years	(μg/kg bw per day) 1.86 1.45 1.02 0.93 0.87 0.85	MS diet (in % of ADI) 24% 15% 10% 13%	Commodity/ group of commodities Milk: Cattle Apples		MS diet (in % of ADI)					MRLs set at the LOQ	commoditi under asse
(% of ADI) 74% 88% 41% 37% 33% 33% 33% 22% 22% 22% 22% 22% 22% 25% 25% 25% 25	MS Diet NL toddier DE child NL child GEMS/Food G06 FR child 3–15 years FR toddier 2–3 years	day) 1.86 1.45 1.02 0.93 0.87 0.85	(in % of ADI) 24% 15% 10% 13%	group of commodities Milk: Cattle Apples		(in % of ADI)			3rd contributor to MS diet	Commodity/	(in % of	(in % of
58% 41% 37% 35% 34% 33% 33% 29% 27% 27% 22% 25% 25% 25% 25% 25% 25% 25% 18% 17% 17% 17% 17%	DE child NL child GEMS/Food G06 FR child 3–15 years FR toddler 2–3 years	1.45 1.02 0.93 0.87 0.85	15% 10% 13%	Apples			group of commodities		(in % of ADI)	group of commodities	ADI)	
41% 37% 36% 33% 33% 33% 29% 29% 27% 27% 27% 27% 25% 25% 25% 25% 25% 25% 25% 19% 18% 17% 17% 17%	NL child GEMS/Food G06 FR child 3–15 years FR toddler 2–3 years	1.02 0.93 0.87 0.85	10% 13%			13%	Apples		5%	Pears	38%	0.3
37% 35% 33% 33% 22% 22% 27% 27% 22% 25% 25% 25% 25% 25% 25% 18% 17% 17% 17% 15%	GEMS/Food G06 FR child 3–15 years FR toddler 2–3 years	0.93 0.87 0.85	13%	IMIK: Cattle		8%	Milk: Cattle		6%	Oranges	16%	0.2
35% 33% 33% 31% 29% 27% 27% 27% 28% 25% 25% 25% 25% 25% 25% 25% 25% 55% 25% 55% 5	FR child 3–15 years FR toddler 2–3 years	0.87 0.85		Tomatoes		7% 3%	Apples Wheat		3% 2%	Sugar beet roots Oranges	21% 11%	0.2
94% 33% 33% 20% 20% 27% 27% 25% 25% 25% 25% 25% 25% 19% 18% 17% 17% 17%	FR toddler 2-3 years	0.85		Milk: Cattle		5%	Oranges		2%	Tomatoes	18%	0.1
33% 33% 31% 29% 27% 27% 27% 28% 25% 25% 25% 25% 25% 25% 19% 18% 18% 17% 17% 17%			12%	Milk: Cattle		4%	Apples		2%	Oranges	19%	0.1
33% 31% 20% 27% 27% 27% 25% 25% 25% 25% 25% 19% 18% 17% 17% 17% 15%		0.82	7%	Lamb's lettuce/corn salads		3%	Tomatoes		3%	Milk: Cattle	14%	0.1
31% 29% 27% 27% 28% 28% 25% 25% 25% 25% 18% 18% 17% 17% 17% 15%	GEMS/Food G08	0.81	6%	Lamb's lettuce/com salads		4%	Tomatoes		3%	Parslev	12%	0.2
29% 29% 27% 27% 25% 25% 25% 25% 25% 25% 19% 18% 17% 17% 17% 15%	UK infant	0.77	15%	Milk: Cattle		2%	Oranges		2%	Apples	22%	0.0
29% 27% 27% 26% 25% 25% 25% 25% 19% 18% 17% 17% 17% 15%	GEMS/Food G07	0.73	4%	Tomatoes		3%	Milk: Cattle		2%	Oranges	12%	0.2
27% 27% 28% 25% 25% 25% 25% 19% 18% 17% 17% 17% 17%	GEMS/Food G10	0.73	5%	Tomatoes		3%	Parsley		2%	Milk: Cattle	12%	0.1
27% 26% 25% 25% 25% 25% 25% 19% 18% 17% 17% 17% 17%	GEMS/Food G15	0.68	4%	Tomatoes		3%	Milk: Cattle		2%	Parsley	12%	0.1
26% 25% 25% 25% 25% 19% 18% 17% 17% 17% 15%	DE women 14-50 years	0.67	5%	Milk: Cattle		3%	Apples		3%	Oranges	12%	0.1
25% 25% 25% 25% 19% 18% 17% 17% 17% 15%	SE general	0.66	5%	Milk: Cattle		3%	Tomatoes		2%	Bovine: Muscle/meat	12%	0.1
25% 25% 25% 19% 18% 17% 17% 17%	UK toddler	0.65	8%	Milk: Cattle		3%	Oranges		2%	Tomatoes	15%	0.1
25% 25% 19% 18% 17% 17% 17%	IE adult	0.64	3%	Basil and edible flowers		2%	Milk: Cattle		2%	Oranges	10%	0.2
25% 25% 19% 18% 17% 17% 17% 15%	ES child	0.63	5%	Milk: Cattle		4%	Tomatoes		3%	Oranges	12%	0.0
25% 19% 18% 17% 17% 17% 15%	DK child	0.63	5%	Milk: Cattle		3%	Apples		3%	Cucumbers	13%	0.0
19% 18% 17% 17% 17% 15%	DE general	0.63	5%	Milk: Cattle		3%	Apples		3%	Oranges	11%	0.1
18% 17% 17% 17% 15%	RO general	0.63	7%	Tomatoes		5%	Milk: Cattle		2%	Wheat	12%	0.2
17% 17% 17% 15%	FI adult	0.47	11%	Coffee beans		2%	Tomatoes		0.8%	Strawberries	13%	0.1
17% 17% 15%	NL general	0.45	3%	Milk: Cattle		2%	Apples		2%	Oranges	10%	0.1
17% 15%	FR infant	0.43	7%	Milk: Cattle		2%	Apples		1%	Strawberries	10%	0.0
15%	IT toddler	0.42	5%	Tomatoes		3%	Wheat		1%	Apples	4%	0.0
	ES adult	0.41	3%	Tomatoes		2%	Oranges		2%	Milk: Cattle	6%	0.0
	FI 3 years	0.37	2%	Strawberries		2%	Tomatoes		2%	Potatoes	5%	0.2
	FR adult	0.37	2% 3%	Milk: Cattle		2% 2%	Tomatoes		2%	Lamb's lettuce/corn salads	6%	0.2
	PT general IT adult	0.35	3%	Tomatoes Tomatoes		2%	Potatoes Wheat		2% 1%	Wheat Lettuces	6% 3%	0.2
	FI 6 vears	0.35	4% 2%	Strawberries		2%	Wheat Tomatoes		1%	Potatoes	3%	0.0
	LT adult	0.29	2%	Apples		2%	Tomatoes		2%	Milk: Cattle	4 % 5%	0.0
	UK vegetarian	0.28	2%	Tomatoes		1%	Oranges		1%	Milk: Cattle	4%	0.0
		0.27	2%	Milk: Cattle		2%	Tomatoes		1%	Apples	5%	0.1
	DK adult	0.24	3%	Tomatoes		2%	Apples		1%	Potatoes	2%	0.0
9%	DK adult	0.22	2%	Tomatoes		1%	Milk: Cattle		0.9%	Oranges	4%	0.1
4%	DK adult PL general UK adult	0.10	1%	Milk: Cattle		0.5%	Wheat		0.4%	Apples	3%	0.0
Conclusion:	DK adult PL general											L
The estimated long-ter	DK adult PL general UK adult											

	A	cute risk assessment/	children		Acute risk a	ssessment/adults/gen	eral popu	lation	A	cute risk assessment/	children		Acute ris	sk assessment/adults/gene	eral populat	tion
	Details-a	acute risk assessme	nt/childr	ren	Details	-acute risk assessm	nent/adu	lts	ŀ	lide IESTI new calcı	lations			Show IESTI new calcul	ations	
		ssment is based on the ARfD. ased on the large portion of the	e most critical	consumer group	p.				the residue definition the results are const	erformed with the MRL and the	calculations, a	a variability fac	or of 3 is used. Since	In the residue in the edible portion an this methodology is not based on in asidered as indicative only.	d/or the conver- nternationally ag	sion factor for reed principles,
	S	how results of IES	TI calcula	ation only	for crops wit	h GAPs under asse	ssment						liner			
commodities	Results for childre No. of commodities exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		
	IESTI				IESTI				IESTI new				IESTI new			
Unprocessed	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure
proc	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)
5	24% 23%	Blackberries Table grapes	0.2/0.11 0.03/0.02	1.2 1.2	18% 12%	Blackberries Raspberries (red and	0.2/0.11 0.2/0.11	0.90	43% 37%	Blackberries Raspberries (red and	0.2/0.2 0.2/0.2	2.1 1.8	33% 22%	Blackberries Raspberries (red and yellow)	0.2/0.2 0.2/0.2	1.6 1.1
	20%	Raspberries (red and	0.2/0.11	1.0	11%	Table grapes	0.03/0.02	0.54	26%	Table grapes	0.03/0.03	1.3	14%	Wine grapes	0.03/0.03	0.71
	5% 4%	Leeks Dewberries	0.01/0 0.2/0.11	0.24 0.19	8% 3%	Wine grapes Dewberries	0.03/0.02 0.2/0.11	0.38	7% 6%	Dewberries Wine grapes	0.2/0.2 0.03/0.03	0.35	12% 6%	Table grapes Dewberries	0.03/0.03 0.2/0.2	0.61 0.29
	3%	Wine grapes	0.03/0.02	0.15	1% 0.4%	Leeks	0.01/0	0.05	5% 3%	Leeks	0.01/0.01	0.25	1% 0.7%	Leeks	0.01/0.01	0.06
	1%	Spring onions/green onions	0.01/0	0.06	0.4%	Spring onions/green onions	0.01/0	0.02	3%	Spring onions/green onions	0.01/0.01	0.14	0.7%	Spring onions/green onions and	0.01/0.01	0.03
		ommodities exceeding the A	RfD/ADI in							ommodities found exceeding	I the					
	children and adult (IESTI calculation)								ARfD/ADI in childr (IESTI new calcula							
es	Results for childre				Results for adults				Results for childre				Results for adults			
commoditi	is exceeded (IESTI):	mmodities for which ARfD/ADI			is exceeded (IESTI)	mmodities for which ARfD/ADI			ARfD/ADI is exceed	mmodities for which led (IESTI new):			No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is w):		
- mo	IESTI				IESTI				IESTI new				IESTI new			
ocessed o	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Proc	5%	Raspberries/juice	0.2/0.02	0.27	3%	Wine grapes/wine	0.03/0.02	0.15	5%	Raspberries/juice	0.2/0.02	0.27	3%	Wine grapes/wine	0.03/0.02	0.15
-	5% 2%	Leeks/boiled Wine grapes/juice	0.01/0 0.03/0	0.23	2% 1%	Table grapes/raisins Leeks/boiled	0.03/0.08 0.01/0	0.09	3% 2%	Leeks/boiled Wine grapes/juice	0.01/0 0.03/0	0.13	2% 1%	Table grapes/raisins Leeks/boiled	0.03/0.08 0.01/0	0.09
					0.9%	Wine grapes/juice	0.03/0	0.04					0.9%	Wine grapes/juice	0.03/0	0.04
1 1																
	Expand/collapse list															
	Expand/collapse list	t														
	Conclusion:	t he toxicological reference value														

	×. 0	fsa		LOQs (mg/kg) range		0.01	to:	0.05	Details-cl		Supplementary		
	, C			ADI (mg/kg bw per da		gical reference v 0.01	ARfD (mg/kg bw):	0.02	asses	sment	chronic risk ass	essment	
E	uropean Food	Safety Authority		Source of ADI:	,	EFSA 2013	Source of ARfD:		Details–a	cute risk	Details-acut	e risk	
		vision 3.1; 2018/11/18		Year of evaluation:		2013 2013	Year of evaluation:	EFSA 2013 2013	assessmer	it/children	assessment/	adults	
men		//s/0/13.1, 2010/11/10				2010		2010					·
						Norma	l mode						
					Chronic			ology (IEDI/TMDI)					
				No of diets exceeding								Exposure	e resulting f
				ne or aleto exoceang								MRLs set at	t commodit
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ	under asse (in % of
	Calculated exposure		(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		MS diet	Commodity/	(in % of ADI)	(
-	(% of ADI) 25%	MS Diet NL toddler	day) 2.49	(in % of ADI) 9%	group of commodities Apples		(in % of ADI) 4%	group of commodities Pears		(in % of ADI) 2%	group of commodities Table grapes	4%	
	25% 19%	NL toddler DE child	2.49	9% 10%	Apples Apples		4% 1%	Pears Table grapes		2% 1.0%	Table grapes Tomatoes	4%	
	19%	NL child	1.37	5%	Apples		1%	Table grapes		1%	Pears	3%	
	14 %	GEMS/Eood G06	1.04	4%	Tomatoes		1%	Table grapes		0.8%	Apples	2%	
	9%	GEMS/Food G07	0.85	2%	Wine grapes		1%	Tomatoes		0.9%	Apples	2%	
	8%	FR child 3–15 years	0.85	1%	Apples		0.8%	Tomatoes		0.6%	Swine: Other products	2%	
	8%	RO general	0.84	2%	Tomatoes		2%	Wine grapes		1%	Apples	2%	
·	8%	GEMS/Food G15	0.84	1%	Tomatoes		1%	Wine grapes		0.9%	Apples	2%	
	8%	IE adult	0.81	1%	Wine grapes		0.6%	Sheep: Liver		0.6%	Apples	2%	
	8%	FR toddler 2–3 years	0.80	3%	Apples		0.9%	Beans (with pods)		0.5%	Tomatoes	2%	
	8%	GEMS/Food G11	0.80	1%	Apples		1%	Wine grapes		0.9%	Tomatoes	2%	
	8%	GEMS/Food G08	0.79	1%	Tomatoes		1%	Wine grapes		1%	Apples	2%	
	8%	DE women 14-50 years	0.76	2%	Apples		0.9%	Wine grapes		0.7%	Tomatoes	2%	
2	7%	DE general	0.75	2%	Apples		0.9%	Wine grapes		0.7%	Tomatoes	1%	
n	7%	GEMS/Food G10	0.72	1%	Tomatoes		0.6%	Apples		0.4%	Wine grapes	2%	
	7%	PT general	0.71	3%	Wine grapes		0.9%	Tomatoes		0.9%	Apples	1%	
	7%	DK child	0.70	2%	Apples		0.6%	Pears		0.6%	Rye	2%	
	6%	FR adult	0.64	2%	Wine grapes		0.6%	Apples		0.5%	Tomatoes	1%	
	6%	ES child	0.59	1.0%	Tomatoes		1.0%	Apples		0.4%	Wheat	2%	
	6%	UK toddler	0.58	1%	Apples		0.6%	Tomatoes		0.4%	Wheat	2%	
	6%	UK infant	0.56	1%	Apples		0.6%	Milk: Cattle		0.4%	Tomatoes	2%	
	6%	NL general	0.56	1%	Apples		0.6%	Wine grapes		0.4%	Tomatoes	1%	
	5%	SE general	0.54	0.9%	Apples		0.8%	Tomatoes		0.5%	Bovine: Muscle/meat	2%	
	5%	Fladult	0.52	3%	Coffee beans		0.6%	Tomatoes		0.5%	Apples	3%	
	5%	IT toddler	0.49	1%	Tomatoes		0.7%	Apples		0.7%	Wheat	1%	
	5%	ES adult	0.45	0.8%	Tomatoes		0.6%	Apples		0.4%	Wine grapes	0.9%	
	4%	FI 3 years	0.44	0.8%	Apples		0.6%	Tomatoes		0.5%	Potatoes	1%	
	4% 4%	PL general DK adult	0.42	2% 1.0%	Apples Wine grapes		0.9%	Tomatoes Apples		0.3%	Potatoes Tomatoes	0.5%	
	4%	IT adult	0.42	1%	Tomatoes		0.7%	Apples		0.5%	Wheat	0.8%	
	4%	FR infant	0.41	1%	Apples		0.6%	Beans (with pods)		0.3%	Milk: Cattle	0.8%	
	4%	LT adult	0.40	2%	Apples		0.6%	Tomatoes		0.3%	Potatoes	0.8%	
	4%	UK vegetarian	0.36	0.8%	Wine grapes		0.6%	Tomatoes		0.5%	Apples	0.8%	
	4%	UK adult	0.36	1%	Wine grapes		0.4%	Tomatoes		0.4%	HOPS (dried)	0.7%	
	3%	FI 6 years	0.33	0.5%	Apples		0.4%	Tomatoes		0.4%	Potatoes	1%	
	1.0%	IE child	0.10	0.3%	Apples		0.1%	Wheat		0.1%	Potatoes	0.3%	1
					1			1		1	1		1

	Acute risk assessment/	children		Acute risk a	assessment/adults/gen	eral popu	lation	A	cute risk assessment	t/children		Acute ris	sk assessment/adults/gene	eral popula	tion
Details	s–acute risk assessme	nt/childr	en	Detail	sacute risk assessme	ent/adult	:s		Hide IESTI new calc	ulations			Show IESTI new calcul	ations	
	assessment is based on the ARID. is based on the large portion of the							the residue definition the results are con-	performed with the MRL and th	3 calculations,	a variability fac	tor of 3 is used. Since	nt the residue in the edible portion ar e this methodology is not based on in sidered as indicative only.		
		Sn	low result	s for all crop	5							1			
Results for chi No. of commodi exceeded (IEST	ities for which ARfD/ADI is		1	Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childr No. of commodities exceeded (IESTI not	s for which ARfD/ADI is		3	IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		1
IESTI				IESTI				IESTI new				IESTI new			
Highest % d	of	MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Expo
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
117%	Peaches	0.3/0.25	23	33%	Table grapes	0.3/0.2	6.6	167%	Oranges	0.5/0.5	33	117%	Oranges	0.5/0.5	23
100% 78%	Pears Apples	0.3/0.14 0.3/0.14	20 16	23% 23%	Peaches Wine grapes	0.3/0.25 0.3/0.2	4.6 4.6	122% 118%	Cherries (sweet) Grapefruits	2/2 0.5/0.5	24 24	100% 82%	Cherries (sweet) Mandarins	2/2 0.5/0.5	20 16
78%	Table grapes	0.3/0.14	16	23%	Pears	0.3/0.2	4.6	93%	Mandarins	0.5/0.5	24 19	53%	Pears	0.3/0.3	1
49%	Tomatoes	0.3/0.17	9.9	20%	Blackberries	0.7/0.49	4.1	92%	Apples	0.3/0.3	18	52%	Grapefruits	0.5/0.5	1
43%	Apricots	0.3/0.25	8.6	20%	Apples	0.3/0.14	4.0	89%	Pears	0.3/0.3	18	45%	Apples	0.3/0.3	9.
43%	Sweet peppers/bell peppers		8.6	20%	Raspberries (red and	1.5/0.73	3.9	81%	Peaches	0.3/0.3	16	40%	Raspberries (red and yellow)	1.5/1.5	8.
36% 34%	Celeriacs/turnip rooted Raspberries (red and	0.01/0.13	7.2 6.8	17% 16%	Beans (with pods) Aubergines/egg plants	0.7/0.45	3.5 3.2	74% 69%	Apricots Raspberries (red and	0.3/0.3	15 14	36% 31%	Wine grapes Peaches	0.3/0.3	7.
26%	Blackberries	0.7/0.49	5.3	15%	Aubergines/egg plants Blueberries	0.2/0.12	3.2	66%	Table grapes	0.3/0.3	14	31%	Table grapes	0.3/0.3	6.
26%	Beans (with pods)	0.7/0.45	5.1	14%	Cherries (sweet)	2/0.27	2.7	58%	Lemons	0.5/0.5	12	29%	Tomatoes	0.3/0.3	5.
20%	Bovine: Liver	0.08/0.5	4.0	13%	Tomatoes	0.3/0.17	2.7	46%	Tomatoes	0.3/0.3	9.1	29%	Blackberries	0.7/0.7	5.
20%	Strawberries	0.3/0.25	4.0	13%	Apricots	0.3/0.25	2.7	40%	Beans (with pods)	0.7/0.7	8.0	27%	Beans (with pods)	0.7/0.7	5.
18%	Quinces	0.2/0.14	3.5	12%	Sweet peppers/bell peppers	0.3/0.14	2.3	38%	Sweet peppers/bell	0.3/0.3	7.7	20%	Plums	0.1/0.1	3.
17% Expand/collapse	Oranges	0.5/0.03	3.4	12%	Strawberries	0.3/0.25	2.3	38%	Blackberries	0.7/0.7	7.5	19%	Aubergines/egg plants	0.2/0.2	3.
	of commodities exceeding the A dult diets	RfD/ADI in	1						commodities found exceedin ren and adult diets	ng the	3				
											5				
Results for chi	ildren d commodities for which ARfD/ADI			Results for adults	mmodities for which ARfD/ADI			Results for childr	en ommodities for which			Results for adults	mmodities for which ARfD/ADI is		
is exceeded (IES				is exceeded (IESTI				ARfD/ADI is excee				exceeded (IESTI ne			
IESTI	,-			IESTI				IESTI new				IESTI new			
ESTI		MRL/input		IE311		MRL/input		IE311 New		MRL/input		ESTITIEW		MRL/input	
Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Expo
ARfD/ADI		(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg
32% 29%	Peaches/canned Pumpkins/boiled	1/0.25 0.01/0.07	6.4 5.8	18% 14%	Pumpkins/boiled Apples/juice	0.01/0.07 0.3/0.08	3.6 2.8	28% 24%	Beans (with pods)/boiled Peaches/canned	0.7/0.45 1/0.25	5.6 4.8	14% 13%	Apples/juice Pumpkins/boiled	0.3/0.08 0.01/0.07	2. 2.
29%	Beans (with pods)/boiled	0.01/0.07	5.6	14%	Apples/juice Celeriacs/boiled	0.01/0.13	2.8	24%	Currants (red, black and	0.4/0.16	4.6	13%	Wine grapes/juice	0.3/0.1	2.
23%	Currants (red, black and wh		4.6	12%	Wine grapes/juice	0.3/0.1	2.4	23%	Apples/juice	0.3/0.08	4.0	10%	Currants (red, black and white)/	0.4/0.16	2.
23%	Apples/juice	0.3/0.08	4.5	10%	Currants (red, black and	0.4/0.16	2.1	23%	Wine grapes/juice	0.3/0.1	4.5	10%	Peaches/canned	0.3/0.25	2.
23%	Wine grapes/juice	0.3/0.1	4.5	10%	Peaches/canned	0.3/0.25	2.0	17%	Pumpkins/boiled	0.01/0.07	3.5	9%	Wine grapes/wine	0.3/0.2	1.
14% 13%	Pears/juice Elderberries/juice	0.3/0.08 0.4/0.16	2.7 2.6	9% 7%	Wine grapes/wine Elderberries/juice	0.3/0.2 0.4/0.16	1.8 1.5	14% 13%	Pears/juice Elderberries/juice	0.3/0.08 0.4/0.16	2.7 2.6	7% 7%	Elderberries/juice Celeriacs/boiled	0.4/0.16 0.01/0.13	1. 1.
13%	Elderberries/juice Tomatoes/juice	0.4/0.16	2.6	6%	Elderberries/juice Courgettes/boiled	0.4/0.16	1.5	13%	Elderberries/juice Tomatoes/juice	0.4/0.16	2.6	6%	Table grapes/raisins	0.01/0.13	1.
9%	Celeriacs/juice	0.01/0.13	1.9	6%	Table grapes/raisins	0.3/0.92	1.1	9%	Celeriacs/juice	0.01/0.13	1.9	4%	Courgettes/boiled	0.08/0.05	0.8
9%	Courgettes/boiled	0.08/0.05	1.8	4%	Tomatoes/sauce/puree	0.3/0.1	0.82	9%	Peaches/juice	0.3/0.1	1.7	4%	Tomatoes/sauce/puree	0.3/0.1	0.8
9%	Peaches/juice	0.3/0.1	1.7	4%	Hops/beer	15/0.02	0.80	6%	Raspberries/juice	1.5/0.11	1.3	4%	Hops/beer	15/0.02	0.8
6%	Raspberries/juice	1.5/0.11	1.3	2%	Sugar beets (root)/sugar	0.01/0.12	0.44	6%	Courgettes/boiled	0.08/0.05	1.1	2%	Sugar beets (root)/sugar	0.01/0.12	0.4
	Gherkins/pickled Sugar beets (root)/sugar	0.08/0.05	1.2 1.1	2% 2%	Cauliflowers/boiled Celeries/boiled	0.01/0.01	0.42	6% 5%	Sugar beets (root)/sugar Tomatoes/sauce/puree	0.01/0.12 0.3/0.1	1.1 0.95	1% 1%	Cauliflowers/boiled Coffee beans/extraction	0.01/0.01 0.05/0.01	0.1
6% 6%		0.01/0.12		2.70	00/01/00/00/00	5.01/0.01	0.04	570	romatoooraauterpd166	0.00.1	0.00	170	Conce Deans/extraction	0.00/0.01	0
6% 6% Expand/collapse	e list														
6%	e list														
6% Expand/collapse	e list														
6% Expand/collapse Conclusion:		the toxicologi	cal reference va	lue for 1 commoditie	e.										
6% Expand/collapse Conclusion: The estimated s	short-term intake (IESTI) exceeded	-		lue for 1 commoditie	s.										
6% Expand/collapse Conclusion: The estimated s		-		lue for 1 commoditie	S.										

	*	~			Kres	oxim-met	hyl			mpu	t values		
*	0	tea		LOQs (mg/kg) range	from:		to:		Details-ch	ronic risk	Supplementar	y results–	
*	* (=	Sdm			Toxicolo	gical reference v	/alues		assess	ment	chronic risk as	sessment	
		d Safety Authority		ADI (mg/kg bw per da	y):	0.4	ARfD (mg/kg bw):	not necessary					
urope	ean Foo	d Safety Authority		Source of ADI:		EC 99/1	Source of ARfD:	EC 99/1	Details-a assessmen		Details-acu assessment		
EFSA	PRIMo re	vision 3.1; 2018/11/18		Year of evaluation:		1999	Year of evaluation:	1999	assessmen	t/children	assessment	adults	J
nts:							•	· · · ·					
						Refined calc	ulation mode						
					Chronic	risk assessmen	t: JMPR methodo	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :	-						Exposure	e resulting f
												MRLs set at the LOQ	t commodi under ass
Colouin	ted owner		Expsoure	Highest contributor to	Common all had		2nd contributor to MS diet	Common different		3rd contributor to	Commoditul	(in % of	(in % of
	ted exposu of ADI)	MS Diet	(µg/kg bw per day)	r MS diet (in % of ADI)	Commodity/ group of commodities		(in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ group of commodities	ADI)	1
	1%	NL toddler	5.01	0.3%	Apples		0.1%	Milk: Cattle		0.1%	Table grapes		1
	1%	DE child	4.14	0.4%	Apples		0.1%	Wheat		0.1%	Table grapes		1
	0.9%	GEMS/Food G06	3.54	0.3%	Tomatoes		0.2%	Wheat		0.1%	Table grapes		0.9
	0.8%	NL child	3.25	0.2%	Apples		0.1%	Wheat		0.1%	Sugar beet roots		0.8
	0.7%	FR child 3–15 years	2.77	0.2%	Leeks		0.1%	Wheat		0.1%	Tomatoes		0.7
	0.7%	GEMS/Food G11	2.69	0.2%	Leeks		0.1%	Wheat		0.1%	Wine grapes		0.1
	0.7%	RO general	2.66	0.2%	Wine grapes		0.2%	Wheat		0.2%	Tomatoes		0.7
	0.6%	FR toddler 2–3 years	2.54	0.2%	Leeks		0.1%	Apples		0.1%	Wheat		0.6
	0.6%	DK child	2.47	0.2%	Rye		0.1%	Wheat		0.1%	Apples		0.6
	0.6%	GEMS/Food G08	2.39	0.1%	Wheat		0.1%	Wine grapes		0.1%	Tomatoes		0.6
	0.6%	GEMS/Food G07	2.30	0.1%	Wine grapes		0.1%	Wheat		0.1%	Tomatoes		0.6
	0.6%	PT general	2.30		Wine grapes		0.1%	Wheat		0.1%	Tomatoes		0.6
	0.5%	DE women 14–50 years	2.23	0.2%	Apples		0.1%	Wine grapes		0.1%	Wheat		0.6
	0.5%	GEMS/Food G15	2.16	0.1%	Wheat		0.1%	Tomatoes		0.1%	Wine grapes		0.5
	0.5%	FR adult	2.16	0.1%	Wine grapes		0.1%	Leeks		0.1%	Wheat		0.5
	0.5%	DE general	2.12	0.2%	Wine grapes		0.1%	Apples		0.1%	Leeks		0.5
				0.1%			0.1%				Wheat		0.5
	0.5%	IE adult	2.00		Wine grapes			Leeks		0.1%			0.5
	0.5% 0.4%	GEMS/Food G10 IT toddler	1.84 1.75	0.1%	Wheat Wheat		0.1%	Tomatoes Tomatoes		0.0%	Wine grapes Peaches		0.4
	0.4%	NL general	1.72	0.1%	Leeks		0.1%	Wheat		0.1%	Wine grapes		0.4
	0.4%	UK toddler	1.66	0.1%	Wheat Wheat		0.1%	Milk: Cattle		0.1%	Apples		
	0.4%	ES child	1.65	0.1%			0.1%	Tomatoes		0.0%	Apples		0.4
	0.4%	FR infant	1.63	0.2%	Leeks		0.1%	Apples		0.0%	Milk: Cattle		0.4
	0.4%	SE general	1.51	0.1%	Wheat		0.1%	Tomatoes		0.0%	Leeks		0.4
	0.3%	IT adult	1.34	0.1%	Wheat		0.1%	Tomatoes		0.0%	Peaches		0.3
	0.3%	UK infant	1.34	0.1%	Milk: Cattle		0.1%	Wheat		0.0%	Apples		0.
	0.3%	ES adult	1.30	0.1%	Wheat		0.1%	Tomatoes		0.0%	Wine grapes		0.3
	0.3%	DK adult	1.21	0.1%	Wine grapes		0.0%	Tomatoes		0.0%	Wheat		0.3
	0.3%	FI 3 years	1.16	0.0%	Tomatoes		0.0%	Wheat		0.0%	Strawberries		0.0
	0.3%	UK vegetarian	1.15	0.1%	Wine grapes		0.1%	Wheat		0.0%	Tomatoes		0.3
	0.3%	UK adult	1.02	0.1%	Wine grapes		0.1%	Wheat		0.0%	Tomatoes		0.3
	0.2%	PL general	0.93	0.1%	Tomatoes		0.1%	Apples		0.0%	Leeks		0.2
	0.2%	FI 6 years	0.89	0.0%	Tomatoes		0.0%	Wheat		0.0%	Strawberries		0.2
	0.2%	LT adult	0.85	0.1%	Apples		0.0%	Tomatoes		0.0%	Rye		0.2
	0.2% 0.1%	FI adult	0.72	0.0%	Tomatoes		0.0%	Wine grapes		0.0%	Rye		0.2
		IE child	0.31	0.0%	Wheat		0.0%	Apples		0.0%	Milk: Cattle		0.1

	Acute risk assessment/children	Acute risk assessment/adults/general population	Acute risk assessment/children	Acute risk assessment/adults/general population
	Details-acute risk assessment/children	Details-acute risk assessment/adults	Hide IESTI new calculations	Show IESTI new calculations
	As an ARID is not necessary/not applicable, no acute risk assessment is perform	ned.	IESTI new calculations: The calculation is performed with the MRL and the peeling/processing factor (P the residue definition (CF). For case 2a, 2b and 3 calculations, a variability fact the results are considered as indicative only. Since this methodology is not based on internationally agreed principles,	PF), taking into account the residue in the edible portion and/or the conversion factor for for of 3 is used. Since this methodology is not based on internationally agreed principles, the results are considered as indicative only.
	Show results	s for all crops		
Unprocessed commodities	Results for children No. of commodities for which ARID/ADI is exceeded (IESTI):	Results for adults No. of commodilies for which ARID/ADI is exceeded (IESTI):	IESTI new Results for children No. of commodities for which ARID/ADI is exceeded (IESTI new):	IESTI new Results for adults No. of commodilies for which ARID/ADI is exceeded ((ESTI new):
ocessed cr	IESTI MRL/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	IESTI MRL/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	IESTI new MRL/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	IESTI new MRL/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)
nnn	Expand/collapse list	ARTUAUI Commoaties ((mg/kg) (µg/kg bw)		ARUUAUI Commodities ((mg/kg) (µg/kg bw)
	Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)		Total number of commodities found exceeding the ARfD/ADI in children and adult diets (IESTI new calculation)	
nodities	Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI):	Results for adults No of processed commodities for which AR/D/ADI is exceeded (IESTI):	Results for children No of processed commodities for which ARID/ADI is exceeded (IESTI new):	Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI new):
Processed commodities	HESTI MRL/input Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)	IESTI MRL/input Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (ug/kg bw)	IESTI new MRL/input Highest % of For RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)	IESTI new MRL/input Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)
	Expand/collapse list			
	Conclusion:			

	***	-		1	Pvrini	roxyfen	1			Inpu	t values		
-	K. 👗	1		LOQs (mg/kg) range f		0.05	to:	0.05	Details-c	hronic risk	Supplementary resu	ults-	
	** 6	fsa			Toxicological	reference v	alues			sment	chronic risk assessn		
				ADI (mg/kg bw per da	ау):	0.1	ARfD (mg/kg bw):	not necessary	Dataila	acute risk	Details-acute ris		
E	uropean Foo	d Safety Authority		Source of ADI:		Dir 08/69	Source of ARfD:	Dir 08/69		acute risk nt/children	assessment/adu		
		vision 3.1; 2018/11/18		Year of evaluation:		2008	Year of evaluation:	2008	ussessine	ing enharen	ussessment/add	<u> </u>	
men	ts:												
						Norma	l mode						
					Chronic risk a	_		ology (IEDI/TMDI)					
						issessment						-	
				No of diets exceeding	the ADI :							MRLs set at	commoditie
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ (in % of	under asses (in % of A
	Calculated exposur (% of ADI)	e MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ group of commodities	ADI)	
	15%	NL toddler	14.87	4%	Bananas		3%	Milk: Cattle		2%	Apples	5%	1
	11%	DE child	10.64	2%	Apples		2%	Oranges		1%	Bananas	2%	
	8%	GEMS/Food G06	8.37	4%	Tomatoes		0.8%	Tea (dried leaves of Camellia	sinensis)	0.6%	Oranges	1%	
	8% 7%	NL child FR child 3–15 years	7.87	1% 2%	Bananas Oranges		1% 1%	Milk: Cattle Milk: Cattle		1% 0.8%	Apples Tomatoes	3% 2%	
	7%	IE adult	6.74	2%	Tea (dried leaves of Camellia sinensis)		0.6%	Oranges		0.8%	Bananas	2%	
	6%	UK infant	6.29	2%	Milk: Cattle		1%	Bananas		0.9%	Tea (dried leaves of Camellia sinen:	3%	
	6%	UK toddler	5.53	1%	Oranges		1%	Milk: Cattle		0.8%	Bananas	2%	
	5%	FR toddler 2–3 years	5.44	1%	Milk: Cattle		0.9%	Oranges		0.6%	Apples	2%	
	5%	GEMS/Food G07	5.33	1%	Tomatoes		0.8%	Oranges		0.7%	Tea (dried leaves of Camellia sinen:	2%	
	5%	GEMS/Food G10	5.23	1%	Tomatoes		0.7%	Oranges		0.5%	Tea (dried leaves of Camellia sinen	2%	
	5%	ES child	5.20	1%	Oranges		1.0%	Tomatoes		0.7%	Bananas	1%	
	5% 5%	RO general DE women 14–50 years	5.18 5.13	2% 1%	Tomatoes		0.6%	Milk: Cattle Tomatoes		0.4%	Sweet peppers/bell peppers Milk: Cattle	2% 1%	
	5% 5%	DE women 14–50 years SE general	5.13	1%	Oranges Bananas		0.7%	Tomatoes		0.6%	Milk: Cattle Milk: Cattle	1%	
	5%	GEMS/Food G15	5.01	1%	Tomatoes		0.6%	Sweet peppers/bell peppers		0.4%	Oranges	2%	
	5%	GEMS/Food G11	5.00	0.9%	Tomatoes		0.6%	Tea (dried leaves of Camellia	sinensis)	0.4%	Oranges	2%	
	5%	GEMS/Food G08	4.86	1%	Tomatoes		0.4%	Tea (dried leaves of Camellia	sinensis)	0.3%	Sweet peppers/bell peppers	2%	
	5%	DE general	4.71	0.9%	Oranges		0.7%	Tomatoes		0.6%	Milk: Cattle	1%	
	4%	FR adult	4.29	2%	Tea (dried leaves of Camellia sinensis)		0.5%	Tomatoes		0.4%	Oranges	0.8%	
	4%	DK child	4.28	0.8%	Bananas		0.6%	Milk: Cattle		0.5%	Tomatoes	2%	
	4% 4%	NL general IT toddler	3.60 3.52	0.6%	Oranges Tomatoes		0.5%	Tea (dried leaves of Camellia Bananas	sinensis)	0.4%	Milk: Cattle Wheat	1% 0.6%	
	4% 3%	ES adult	3.52	1%	Tomatoes		0.4%	Bananas Oranges		0.3%	Bananas	0.6%	
	3%	PT general	3.13	0.9%	Tomatoes		0.4%	Oranges		0.3%	Potatoes	0.8%	
	3%	UK vegetarian	3.12	0.7%	Tea (dried leaves of Camellia sinensis)		0.6%	Tomatoes		0.5%	Oranges	0.6%	
	3%	FI 3 years	2.94	0.9%	Bananas		0.6%	Tomatoes		0.2%	Potatoes	0.6%	
	3%	IT adult	2.74	1%	Tomatoes		0.2%	Oranges		0.2%	Wheat	0.4%	
	3%	UK adult	2.65	0.8%	Tea (dried leaves of Camellia sinensis)		0.4%	Tomatoes		0.3%	Oranges	0.6%	
	2% 2%	DK adult FR infant	2.24 2.24	0.5%	Tomatoes Milk: Cattle		0.3%	Bananas Apples		0.3%	Milk: Cattle Bananas	0.7%	
	2%	FR mant FI 6 years	2.24	0.5%	Bananas		0.4%	Tomatoes		0.1%	Mandarins	0.5%	
	2%	PL general	2.13	0.9%	Tomatoes		0.4%	Apples		0.2%	Potatoes	0.3%	
	2%	LT adult	1.89	0.6%	Tomatoes		0.4%	Apples		0.2%	Milk: Cattle	0.6%	
	2%	FI adult	1.84	0.6%	Tomatoes		0.3%	Coffee beans		0.2%	Oranges	0.5%	
	0.7%	IE child	0.74	0.2%	Milk: Cattle		0.1%	Bananas		0.1%	Apples	0.4%	1

	Acute risk assessment/children	Acute risk assessment/adults/general population	Acute risk assessment/children	Acute risk assessment/adults/general population
	Details-acute risk assessment/children	Details-acute risk assessment/adults	Hide IESTI new calculations	Show IESTI new calculations
	As an ARID is not necessary/not applicable, no acute risk assessment is perform	ned.		PF), taking into account the residue in the edible portion and/or the conversion factor for or of 3 is used. Since this methodology is not based on internationally agreed principles, the results are considered as indicative only.
	Show result	s for all crops		
Un processed commodities	Results for children No. of commodities for which ARfD/ADI is exceeded (IESTI):	Results for adults No. of commodities for which AR/D/ADI is exceeded (IESTI):	IESTI new Results for children No. of commodities for which AR(D/ADI is exceeded (IESTI new):	IESTI new Results for adults No. of commodilies for which ARID/ADI is exceeded (IESTI new):
ed co	IESTI MRL/input	IESTI MRL/input	IESTI new MRL/input	IESTI new MRL/input
ocess	Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)
5	Expand/collapse list			
	Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)		Total number of commodities found exceeding the ARfD/ADI in children and adult diets (IESTI new calculation)	
es	Results for children	Results for adults	Results for children	Results for adults
commodities	No of processed commodities for which ARfD/ADI is exceeded (IESTI):	No of processed commodities for which ARfD/ADI is exceeded (IESTI):	No of processed commodities for which ARfD/ADI is exceeded (IESTI new):	No of processed commodities for which ARID/ADI is exceeded (IESTI new):
COL	IESTI MRL/input	IESTI MRL/input	IESTI new MRL/input	IESTI new MRL/input
Processed	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw)
Pro				
	Expand/collapse list			
	Conclusion:			

		fsa			Cyprodinil (F)			Inpu	t values		
				LOQs (mg/kg) range f		to:		Details-ch	ronic risk	Supplementary res	ults–	
	** •	TSAM			Toxicological reference v	values		assess	ment	chronic risk assess		
				ADI (mg/kg bw per da	y): 0.03	ARfD (mg/kg bw):	1.5					
E	uropean Food	Safety Authority		Source of ADI:	EFSA	Source of ARfD:	EFSA	Details–a assessmen		Details–acute ris assessment/adu		
		vision 3.1; 2018/08/18		Year of evaluation:	2005	Year of evaluation:	2018	assessmen	ity children	assessment/aut	iits	
nmer	nts:											
					Norma	al mode						
					Chronic risk assessment	: JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :	-						e resulting fro
											MRLs set at the LOQ	t commodities under assess
	Calculated exposure		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of	(in % of Al
	(% of ADI)	MS Diet	(µg/kg bw per day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	
	55%	NL toddler	16.60	17%	Apples	7%	Spinaches		7%	Pears		
	42%	DE child	12.70	20%	Apples	3%	Table grapes		2%	Spinaches		
	28%	NL child	8.32	9%	Apples	3%	Spinaches		2%	Table grapes		
	27%	GEMS/Food G11	8.16	8%	Celeries	2%	Apples		2%	Wine grapes		
	23% 22%	GEMS/Food G07 GEMS/Food G08	7.05	4% 2%	Celeries	3% 2%	Wine grapes Barley		2% 2%	Lettuces		
	22%	GEMS/Food G08	5.96	2% 4%	Wine grapes Celeries	2%	Barley Wine grapes		2%			
	19%	GEMS/Food G10	5.78	4%	Lettuces	2%	Wheat		2%	Spinaches Celeries		
	19%	GEMS/Food G15	5.73	2%	Celeries	2%	Wine grapes		2%	Wheat		
	19%	GEMS/Food G06	5.69	3%	Wheat	2%	Table grapes		2%	Tomatoes		
	18%	DK child	5.34	4%	Apples	2%	Rye		2%	Carrots		
	17%	FR child 3–15 years	5.15	3%	Apples	2%	Wheat		2%	Milk: Cattle		
	17%	FR toddler 2–3 years	5.04	5%	Apples	2%	Milk: Cattle		2%	Spinaches		
	17%	IT adult	4.98	4%	Lettuces	2%	Wheat		2%	Other lettuce and other salad plants	s	
•	16%	IT toddler	4.82	3%	Lettuces	3%	Wheat		1%	Apples		
	16%	ES adult	4.72	6%	Lettuces	1%	Apples		1%	Barley		
	15%	SE general	4.59	4%	Lettuces	2%	Apples		1%	Wheat		
	15%	DE women 14-50 years	4.57	4%	Apples	2%	Wine grapes		1%	Lettuces		
	15% 15%	DE general ES child	4.49 4.47	4% 4%	Apples	2% 2%	Wine grapes Wheat		1% 2%	Barley		
	15%	PT general	4.47		Lettuces Wine grapes	2%	Wheat		2%	Apples Apples		
	14%	RO general	4.37	4%	Wine grapes	2%	Apples		2%	Wheat		
	14%	FR adult	4.25		Wine grapes	2%	Other lettuce and other salad plants		2%	Apples		1
	13%	NL general	4.05	2%	Apples	2%	Spinaches		1%	Wine grapes		1
	13%	FR infant	3.93	3%	Spinaches	3%	Apples		2%	Carrots		1
	13%	UK infant	3.86	3%	Milk: Cattle	3%	Apples		2%	Carrots		1
	12%	UK toddler	3.59	3%	Apples	2%	Wheat		1%	Milk: Cattle		1
	11%	FI 3 years	3.28	2%	Apples	1%	Oat		1%	Carrots		1
	9%	UK vegetarian	2.76	2%	Wine grapes	1%	Lettuces		1.0%	Celeries		1
	9%	DK adult	2.72		Wine grapes	2%	Apples		0.9%	Lettuces		1
	8% 8%	FI 6 years UK adult	2.53 2.28	0.9% 2%	Strawberries Wine grapes	0.9%	Apples Lettuces		0.9%	Carrots Wheat		1
	8%	PL general	2.28	2%	Apples	1%	Lettuces Table grapes		0.7%	Tomatoes		1
	7%	LT adult	2.25	3%	Apples	0.7%	Lettuces		0.5%	Rye		
	6%	Fl adult	1.92	1%	Lettuces	0.9%	Apples		0.7%	Wine grapes		
	2%	IE child	0.75	0.5%	Apples	0.5%	Wheat		0.3%	Carrots		
	Conclusion:			I	1	1	1		I	1	1	
	Loonoluoion.	erm dietary intake (TMDI/NEDI/IEDI)										

	cute risk assessment/	cmiaren		Acute risk a	ssessment/adults/gen	erai popu	nation	Ad	cute risk assessment/	children		Acute ris	sk assessment/adults/gen	eral popula	uon
Details-a	acute risk assessme	nt/childr	ren	Detail	s–acute risk assessm	nent/adu	ilts	н	lide IESTI new calcu	ulations			Show IESTI new calcul	ations	
The acute risk asser The calculation is ba	ssment is based on the ARID. ased on the large portion of the							the results are cons	ions: arformed with the MRL and the n (CF). For case 2a, 2b and 3 dered as indicative only. ology is not based on intern				unt the residue in the edible portion ar ce this methodology is not based on in nsidered as indicative only.	nd/or the conven nternationally ag	rsion factor fo greed principl
		Sh	low result	s for all crop	S			IFSTI new				IESTI new			
Results for childre No. of commodities exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADL is			Results for childre	for which ARfD/ADI is			Results for adults	s s for which ARID/ADI is exceeded		
IESTI		MRI /input		IESTI		MRI /input		IESTI new				IESTI new		MRI /input	
Highest % of ARID/ADI	Commodities	for RA	Exposure	Highest % of ARfD/ADI		for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		for RA	Exposur
40%	Celeries	(mg/kg) 30/16	(µg/kg bw) 599	17%	Commodities Celeries	(mg/kg) 30/16	(µg/kg bw) 256	45%	Commodities Celeries	(mg/kg) 30/30	(µg/kg bw) 673	ARfD/ADI 19%	Commodities Celeries	(mg/kg) 30/30	(µg/kg b/ 288
24% 23%	Escaroles/broad-leaved Lettuces	15/8.9 15/8.9	358 339	12% 11%	Escaroles/broad-leaved Chards/beet leaves	15/8.9 15/8.9	179 168	24% 23%	Escaroles/broad-leaved Lettuces	15/15 15/15	362 343	15% 9%	Escaroles/broad-leaved endives Chards/beet leaves	15/15 15/15	221 132
13% 12%	Spinaches Granate	15/8.9 5/3.4	201 187	7%	Lettuces Table grapes	15/8.9 3/2.3	108 78	23%	Spinaches Table grapes	15/15 3/3	339 131	7% 5%	Lettuces Plums	15/15 2/2	109
12% 11%	Pears Table grapes	2/1.3 3/2.3	180 168	5% 4% 4%	Granate Wine grapes	5/3.4 3/2.3	60 55	9% 8% 8%	Apples Pears	3/3 2/2 2/2	123 119	5% 5%	Pears Wine grapes	2/2 3/3	78 71
11%	Peaches	2/1.7	162	3%	Red mustards	15/8.9	47	8%	Granate	5/5	118	4%	Table grapes	3/3	71 61
9% 9%	Apples Chards/beet leaves	2/1.3 15/8.9	140 139	3% 2%	Pears Apples	2/1.3 2/1.3	40 36	7% 7%	Peaches Chards/beet leaves	2/2 15/15	108 100	4% 4%	Spinaches Apples	15/15 2/2	60 60
5% 4%	Plums Carrots	2/1.7 1.5/1.04	72 66	2% 2%	Spinaches Strawberries	15/8.9 5/3.74	36 35	7% 5%	Apricots Strawberries	2/2 5/5	98 82	4% 3%	Kaki/Japanese persimmons Granate apples/pomegranates	2/2 5/5	54 49
4%	Cauliflowers Strawberries	2/1.1	64	2%	Florence fennels Peaches	4/1.71 2/1.7	32 32	5%	Cauliflowers Melons	2/2 0.6/0.6	70	3%	Parsley Statute apples/pomegranales	40/40	48 47
4%	Kaki/Japanese	2/1.3	61 61	2% 2%	Plums	2/1.7	30	4% 3%	Chervil	40/40	55 52	3% 3%	Strawberries Globe artichokes	5/5 4/4	43
4% 4%	Apricots Tomatoes	2/1.7 1.5/0.97	59 56	2% 2%	Kaki/Japanese persimmons Broccoli	2/1.3 2/1.1	29 26	3% 3%	Plums Globe artichokes	2/2 4/4	51 50	3% 3%	Peaches Broccoli	2/2 2/2	41 39
4%	Melons Sweet peppers/bell peppers	0.6/0.36 1.5/0.78	55 46	2% 1%	Cauliflowers Aubergines/egg plants	2/1.1 1.5/0.97	26 21	3%	Broccoli Tomatoes	2/2 1.5/1.5	50 46	2% 2%	Red mustards Florence fennels	15/15 4/4	34 32
3%	Beetroots	1.5/1.04	46	1%	Carrots	1.5/1.04	20	3%	Watermelons	1.5/1.5	46	2%	Tomatoes	15/15	29
3% 3%	Broccoli Watermelons	2/1.1 0.6/0.36	46 44	1% 1%	Quinces Parsley	2/1.3 40/16	20 19	3%	Parsley Lamb's lettuce/corn salads	40/40 15/15	44 42	2% 2%	Purslanes Lamb's lettuce/corn salads	15/15 15/15	29 28
3% 2%	Parsnips Salsifies	1.5/1.04 1.5/1.04	38 32	1% 1%	Apricots Cherries (sweet)	2/1.7 2/1.7	18 17	3% 3%	Carrots Roman rocket/rucola	1.5/1.5 15/15	41 40	2% 2%	Cauliflowers Blueberries	2/2 3/3	28 27
2% 2%	Quinces Avocados	2/1.3	32 30	1%	Purslanes Globe artichokes	15/8.9 4/1.3	17	3%	Kaki/Japanese Sweet peppers/bell	2/2	40 38	2% 2%	Apricots Blackberries	2/2 3/3	26 25
	A COMPANY A	10.0	55			41.5		0,0	Circles pepperarban	1.011.0	55		Lincolourieur	0.0	2.5
Expand/collapse list Total number of co children and adult (IESTI calculation)	ommodities exceeding the AF diets	tfD/ADI in						Total number of co ARfD/ADI in childr (IESTI new calcula		; the					
Results for childre	n mmodities for which ARfD/ADI			Results for adults	mmodities for which ARfD/ADI			Results for childre No of processed cor				Results for adults	s ommodities for which ARfD/ADI is		
is exceeded (IESTI)				is exceeded (IESTI)				ARID/ADI is exceed				exceeded (IESTI no	ew):		
IESTI		MRL/input		IESTI		MRL/input		IESTI new		MRL/input		IESTI new		MRL/input	
Highest % of ARfD/ADI	Processed commodities	for RA	Exposure (unline hou)	Highest % of ARfD/ADI	Processed commodities	for RA	Exposure (up/log.bus)	Highest % of ARfD/ADI	Processed commodities	for RA	Exposure (un/ins hur)	Highest % of ARfD/ADI	Descend commodition	for RA	Exposu
39%	Escaroles/broad-leaved end Spinaches/frozen: boiled	(mg/kg) 15/8.9 15/8.9	(µg/kg bw) 590 292	36%	Celeries/boiled Escaroles/broad-leaved	(mg/kg) 30/16 15/8.9	(µg/kg bw) 540 182	24%	Escaroles/broad-leaved Soinaches/frozen: boiled	(mg/kg) 15/8.9 15/8.9	(µg/kg bw) 354 292	22%	Processed commodities Celeries/boiled Escaroles/broad-leaved endives/	(mg/kg) 30/16 15/8.9	(µg/kg b 324 138
18%	Chards/beet leaves/boiled	15/8.9	277	7%	Chards/beet leaves/boiled	15/8.9	111	8%	Chards/beet leaves/boiled	15/8.9	119	5%	Chards/beet leaves/boiled	15/8.9	79
6% 5%	Broccoli/boiled Florence fennels/boiled	2/1.1 4/1.71	87 78	5% 3%	Spinaches/frozen; boiled Cauliflowers/boiled	15/8.9 2/1.1	74 46	3% 3%	Broccoli/boiled Florence fennels/boiled	2/1.1 4/1.71	52 47	5% 2%	Spinaches/frozen; boiled Purslanes/boiled	15/8.9 15/8.9	74 37
5% 4%	Cauliflowers/boiled Parsnips/boiled	2/1.1 1.5/1.04	77 53	2% 2%	Purslanes/boiled Florence fennels/boiled	15/8.9 4/1.71	37	3% 2%	Cauliflowers/boiled	2/1.1 3/0.67	46 29	2% 1%	Cauliflowers/boiled Broccoli/boiled	2/1.1 2/1.1	27
3%	Beetroots/boiled	1.5/1.04	46	2%	Broccoli/boiled	2/1.1	26	2%	Wine grapes/juice Apples/juice	2/0.48	26	1%	Wine grapes/wine	3/2.3	22 22
2% 2%	Peaches/canned Pumpkins/boiled	2/1.7 0.6/0.36	35 32	2% 2%	Beetroots/boiled Peaches/canned	1.5/1.04 2/1.7	23 23	2% 2%	Salsifies/boiled Parsnips/boiled	1.5/1.04 1.5/1.04	23 23	1% 1%	Florence fennels/boiled Beetroots/boiled	4/1.71 1.5/1.04	21 17
2% 2%	Wine grapes/juice Salsifies/boiled	3/0.67 1.5/1.04	29 27	1% 1%	Wine grapes/wine Pumpkins/boiled	3/2.3 0.6/0.36	22 20	1% 1%	Beetroots/boiled Currants (red, black and	1.5/1.04 3/0.69	20 20	1% 1.0%	Apples/juice Pumpkins/boiled	2/0.48 0.6/0.36	16 14
2%	Apples/juice	2/0.48	26	1%	Apples/juice	2/0.48	16	1%	Pumpkins/boiled	0.6/0.36	19	0.9%	Wine grapes/juice	3/0.67	14
2% 1%	Head cabbages/boiled Currants (red, black and wh	0.7/0.36 3/0.69	23 20	0.9%	Wine grapes/juice Currants (red, black and	3/0.67 3/0.69	14 8.8	1% 1%	Carrots/juice Pears/juice	1.5/0.45 2/0.48	16 16	0.7% 0.6%	Peaches/canned Salsifies/boiled	2/1.7 1.5/1.04	10 9.5
1% 1%	Carrots/juice Pears/juice	1.5/0.45 2/0.48	16 16	0.6%	Salsifies/boiled Courgettes/boiled	1.5/1.04 0.5/0.36	8.6 8.2	1% 1.0%	Peaches/canned Beans (with pods)/boiled	2/1.7 2/1.15	15 14	0.6%	Currants (red, black and white)/ Elderberries/juice	3/0.69 3/0.69	8.8 6.3
1.0%	Beans (with pods)/boiled	2/1.15 0.5/0.36	14 13	0.4%	Elderberries/juice Barley/beer	3/0.69 4/0.15	6.3 5.4	0.9%	Head cabbages/boiled	0.7/0.36 2/0.68	14 11	0.4%	Courgettes/boiled	0.5/0.36 4/0.15	5.7 5.4
0.8%	Courgettes/boiled Peaches/juice	2/0.68	11	0.3%	Peas (with pods)/boiled	2/1.15	3.9	0.7%	Peaches/juice Elderberries/juice	3/0.69	11	0.3%	Barley/beer Peas (with pods)/boiled	2/1.15	3.9
0.7%	Elderberries/juice Raspberries/juice	3/0.69 3/0.81	11 9.5	0.2%	Carrots/canned Celeriacs/boiled	1.5/0.45 0.3/0.11	3.7 2.0	0.6%	Raspberries/juice Pomegranates/juice	3/0.81 5/3.3	9.5 9.0	0.2%	Carrots/canned Table grapes/raisins	1.5/0.45 3/3.2	3.7 1.3
0.6%	Pomegranates/juice Gherkins/pickled	5/3.3 0.5/0.36	9.0	0.09%	Table grapes/raisins Onions/boiled	3/3.2 0.3/0.1	1.3	0.5%	Courgettes/boiled Plums/juice	0.5/0.36 2/0.68	7.7	0.08%	Celeriacs/boiled Rose hips/iam	0.3/0.11 3/0.69	1.3 1.2 0.86
0.0%	Plums/juice	2/0.68	6.4	0.06%	Rose hips/jam	3/0.69	0.86	0.3%	Cranberries/juice	3/0.69	4.0	0.05%	Onions/boiled	0.3/0.1	0.72
0.4%	Cranberries/juice Azarole (mediteranean med	3/0.69 3/0.69	4.0 3.8	0.04%	Quinces/jam Wheat/bread/pizza	2/0.48 0.5/0.13	0.60	0.3%	Azarole (mediteranean Gherkins/pickled	3/0.69 0.5/0.36	3.8 3.5	0.04%	Witloofs/boiled Quinces/jam	0.06/0.03 2/0.48	0.65 0.60
0.4% 0.3%	Tomatoes/juice	1.5/0.17	3.2	0.04%	Tomatoes/sauce/puree Ginger/iam	1.5/0.17	0.56	0.2%	Tomatoes/juice Qat/boiled	1.5/0.17 4/0.75	3.2	0.04%	Wheat/bread/pizza Tomatoes/sauce/puree	0.5/0.13	0.57
0.4% 0.3% 0.3% 0.2%	Oat/boiled	4/0.75	2.7	0.04%	Witloofs/boiled Crapherries/dried	0.06/0.03	0.55	0.2%	Barley/cooked Qat/milling (flakes)	4/0.75	2.7 2.7 2.3	0.04%	Ginger/jam Cranberries/dried	1.5/0.45	0.56
0.4% 0.3% 0.2% 0.2% 0.2%	Barley/cooked	410 75	2.3	0.03%	Wheat/pasta	0.5/0.13	0.50	0.1%	Rose hips/jam	3/0.69	2.1	0.03%	Wheat/pasta	0.5/0.13	0.50
0.4% 0.3% 0.2% 0.2% 0.2% 0.2% 0.2% 0.1%	Barley/cooked Oat/milling (flakes) Rose hips/jam	4/0.75 3/0.69	2.1			0.2/0.06	0.43	0.1% 0.10%	Wheat/milling (flour) Quinces/jam	0.5/0.13 2/0.48	1.6 1.5	0.03%	Beans/canned Shallots/boiled	0.2/0.06 0.07/0.05	0.43 0.36
0.4% 0.3% 0.2% 0.2% 0.2% 0.2%	Barley/cooked Oat/milling (flakes)	4/0 75	1.6	0.03%	Beans/canned Shallots/boiled	0.07/0.05		0.09%	Ginger/jam	1.5/0.45	1.4	0.02%	Beans (without pods)/boiled Wheat/bread (wholemeal)	0.08/0.05	0.26
0.4% 0.3% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1%	Bartey/cooked Oat/milling (flakes) Rose hips/jam Wheat/milling (flour) Wittoofs/boiled Quinces/jam	4/0.75 3/0.69 0.5/0.13 0.06/0.03 2/0.48	1.6 1.5 1.5	0.03% 0.02% 0.02%	Shallots/boiled Beans (without pods)/	0.08/0.05	0.26							0.5/0.49	
0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%	Barley/cooked Oat/milling (flakes) Rose hips/jam Wheat/milling (flour) Witloofs/boiled Quinces/jam Ginger/jam Barley/milling (flour)	4/0.75 3/0.69 0.5/0.13 0.06/0.03 2/0.48 1.5/0.45 4/0.75	1.6 1.5 1.5 1.4 1.4	0.03% 0.02% 0.02% 0.01% 0.01%	Shallots/boiled Beans (without pods)/ Wheat/bread (wholemeal) Head cabbages/canned	0.08/0.05 0.5/0.13 0.7/0.03	0.22	0.09% 0.08%	Barley/milling (flour) Celeriacs/juice	4/0.75 0.3/0.08	1.2	0.01%	Head cabbages/canned	0.5/0.13 0.7/0.03	0.16
0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1	Barley/cooked Out/milling (flakes) Rose hips/jam Whoat/milling (flour) Witloofs/boiled Outnces/jam Ginger/jam Barley/milling (flour) Celeriacs/juice Guavas/juice	4/0.75 3/0.69 0.5/0.13 0.06/0.03 2/0.48 1.5/0.45 4/0.75 0.3/0.08 1.5/0.49	1.6 1.5 1.4 1.4 1.2 0.84	0.03% 0.02% 0.02% 0.01% 0.01% 0.01% 0.01%	Shallots/boiled Beans (without pods)/ Wheat/bread (wholemeal) Head cabbages/canned Peas (without pods)/boiled Coconuts/milk	0.08/0.05 0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02	0.22 0.16 0.16 0.07	0.08% 0.06% 0.05%	Celeriacs/juice Guavas/juice Witloofs/boiled	0.3/0.08 1.5/0.49 0.06/0.03	1.2 0.84 0.79	0.01% 0.01% 0.00%	Head cabbages/canned Peas (without pods)/boiled Coconuts/milk	0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02	0.16
0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1	Bartey/cooked Oat/miling (flakes) Rose hipo/jam Wheat/miling (flour) Wittoofs/boiled Ouinces/jam Ginger/jam Bartey/miling (flour) Celeriaos/juice Guavas/juice Skatlote/bnied	4/0.75 3/0.69 0.5/0.13 0.06/0.03 2/0.48 1.5/0.45 4/0.75 0.3/0.08 1.5/0.49 0.07/0.05	1.6 1.5 1.4 1.4 1.2 0.84 0.81	0.03% 0.02% 0.01% 0.01% 0.01% 0.01% 0.00%	Shallots/boiled Beans (without pods)/ Wheat/bread (wholemeal) Head cabbages/canned Peas (without pods)/boiled Coconuts/milk Peas/canned	0.08/0.05 0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02 0.1/0.01	0.22 0.16 0.16 0.07 0.05	0.08% 0.06% 0.05% 0.05%	Celeriacs/juice Guavas/juice Witloofs/boiled Wheat/milling	0.3/0.08 1.5/0.49 0.06/0.03 0.5/0.13	1.2 0.84 0.79 0.72	0.01% 0.01% 0.00% 0.00%	Head cabbages/canned Peas (without pods)/boiled Coconuts/milk Peas/canned	0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02 0.1/0.01	0.16 0.07 0.05
0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1	Bartey/cooked Oat/miling (flakes) Rose hips/jam Whostat/miling (flour) Witioofsboiled Quinces/jam Bartey/miling (flour) Celeriacs/juice Guavas/juice Shallotz/boiled Wheat/miling (wholemeal)-1 Renchrillet	4/0.75 3/0.69 0.5/0.13 0.06/0.03 2/0.48 1.5/0.45 4/0.75 0.3/0.08 1.5/0.49	1.6 1.5 1.4 1.4 1.2 0.84	0.03% 0.02% 0.02% 0.01% 0.01% 0.01% 0.01%	Shallots/boiled Beans (without pods)/ Wheat/bread (wholemeal) Head cabbages/canned Peas (without pods)/boiled Coconuts/milk	0.08/0.05 0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02	0.22 0.16 0.16 0.07	0.08% 0.06% 0.05%	Celeriacs/juice Guavas/juice Witloofs/boiled	0.3/0.08 1.5/0.49 0.06/0.03	1.2 0.84 0.79	0.01% 0.01% 0.00%	Head cabbages/canned Peas (without pods)/boiled Coconuts/milk	0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02	0.16
0.4% 0.3% 0.2% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1	Bartey/cooked Cat/miling (flakes) Rose hipsjam Wheat/miling (flour) Wittoofsboiled Quinces/jam Ginger/jam Bartey/miling (flour) Cateriacs/juice Guavas/juice Shallotz/boiled Wheat/miling (wholemeal)-I	4/0.75 3/0.69 0.5/0.13 0.06/0.03 2/0.48 1.5/0.45 4/0.75 0.3/0.08 1.5/0.49 0.07/0.05 0.5/0.13 0.5/0.13	1.6 1.5 1.4 1.4 1.4 0.84 0.81 0.72 0.47	0.03% 0.02% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%	Shallots/boiled Beans (without pods)/ Wheat/bread (wholemeal) Head cabbages/canned Peas (without pods)/boiled Coconuts/milk Peas/canned Turmeric (Curcuma)/boiled	0.08/0.05 0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02 0.1/0.01 1.5/1.04	0.22 0.16 0.07 0.05 0.02	0.08% 0.06% 0.05% 0.05% 0.03% 0.03%	Celeriacs/juice Guavas/juice Wittoofs/boiled Wheat/milling Rye/boiled Rye/milling (wholemeal)-	0.3/0.08 1.5/0.49 0.06/0.03 0.5/0.13 0.5/0.13 0.5/0.13	1.2 0.84 0.79 0.72 0.47 0.46	0.01% 0.01% 0.00% 0.00% 0.00%	Head cabbages/canned Peas (without pods)/boiled Coconuts/milk Peas/canned Turmeric (Curcuma)/boiled	0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02 0.1/0.01 1.5/1.04	0.16 0.07 0.05 0.02
0.4% 0.3% 0.2% 0.2% 0.2% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1	Barteyicoked Cadrimiling (tlakes) Rose hipojlam Whitedimiling (tlour) Witedicticolied Calinacealjam Calinacealjam Barteyiniling (tlour) Caleriaceijace Caleriaceijace Caleriaceijace Shatilatirolied Wheatmiling (wholemeal)-bai Coconstamilik	4/0.75 3/0.69 0.5/0.13 0.06/0.03 2/0.48 1.5/0.45 4/0.75 0.3/0.08 1.5/0.49 0.07/0.05 0.5/0.13 0.5/0.13 0.5/0.13	1.6 1.5 1.4 1.4 1.4 0.84 0.81 0.72 0.47 0.46	0.03% 0.02% 0.01% 0.01% 0.01% 0.01% 0.00% 0.00%	Shallots/boiled Beans (without pods)/ Wheat/bread (wholemeal) Head cabbages/canned Peas (without pods)/boiled Coconuts/milk Peas/canned Turmeric (Curcuma)/boiled	0.08/0.05 0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02 0.1/0.01 1.5/1.04	0.22 0.16 0.07 0.05 0.02	0.08% 0.05% 0.05% 0.05% 0.03% 0.03% 0.03%	Celeriacs/juice Guavas/juice Witoofs/boiled Wheat/milling Rye/boiled Rye/milling (wholemeal)- Shallots/boiled	0.3/0.08 1.5/0.49 0.06/0.03 0.5/0.13 0.5/0.13 0.5/0.13 0.07/0.05	1.2 0.84 0.79 0.72 0.47 0.46 0.35	0.01% 0.01% 0.00% 0.00% 0.00%	Head cabbages/canned Peas (without pods)/boiled Coconuts/milk Peas/canned Turmeric (Curcuma)/boiled	0.5/0.13 0.7/0.03 0.08/0.05 0.04/0.02 0.1/0.01 1.5/1.04	0.16 0.07 0.05 0.02

+	*	d Safety Authority		LOQs (mg/kg) range	From: 0.0		0.10	Details-ch		t values Supplementary resu	ılts–	
	°••e	Sd		ADI (mg/kg bw per da	Toxicological reference		0.03		ment	chronic risk assessm	nent	
Εı	Iropean Foo	d Safety Authority		Source of ADI:	ay): U.U.	Source of ARfD:	0.03	Details-ad		Details-acute ris		
		vision 3.1; 2018/11/18		Year of evaluation:		Year of evaluation:		assessmen	t/children	assessment/adul	ts)
ent	s:				Nor	mal mode						
					Chronic risk assessm		ology (IEDI/TMDI)					
_				No of diets exceeding							Exposure	e resulting
	Calculated exposur	e	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	MRLs set at the LOQ (in % of	t commo under as (in %
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	
	29% 21%	NL toddler	8.80 6.29	13% 17%	Milk: Cattle Lettuces	4% 1%	Apples Milk: Cattle		2% 0.6%	Pears Barley	0.6%	1
T	21%	ES adult SE general	6.29 5.94	17%	Lettuces	1%	Milk: Cattle		0.6%	Barley Bovine: Muscle/meat	0.2%	
	20%	ES child	5.89	13%	Lettuces	3%	Milk: Cattle		0.5%	Apples	0.4%	
	20%	IT adult	5.86	12%	Lettuces	5%	Other lettuce and other salad plan	nts	0.4%	Tomatoes	0.1%	
	19%	DE child	5.67	5%	Apples	4%	Milk: Cattle		2%	Lettuces	0.7%	
	18%	GEMS/Food G10	5.29	10%	Lettuces	1%	Milk: Cattle		0.7%	Barley	0.3%	
	17%	NL child	5.21	5%	Milk: Cattle	2%	Apples		2%	Lettuces	0.5%	
	16%	IT toddler	4.71	9%	Lettuces	4%	Other lettuce and other salad plan	nts	0.5%	Tomatoes	0.2%	
	15%	GEMS/Food G07	4.63	8%	Lettuces	1%	Milk: Cattle		0.7%	Barley	0.4%	
	15%	FR child 3–15 years	4.38	5%	Milk: Cattle	4%	Other lettuce and other salad plan	nts	0.7%	Apples	0.5%	
	14%	GEMS/Food G08	4.26	6%	Lettuces	1%	Milk: Cattle		1%	Barley	0.4%	
	13% 13%	UK infant FR toddler 2–3 years	3.84 3.82	8% 6%	Milk: Cattle Milk: Cattle	0.6%	Apples Apples		0.5%	Carrots Other lettuce and other salad plants	0.5% 0.4%	
	13%	DK child	3.62	4%	Lettuces	3%	Appies Milk: Cattle		0.9%	Apples	0.4%	
	12%	DE women 14–50 vears	3.47	4%	Lettuces	3%	Milk: Cattle		1%	Apples	0.3%	
	12 %	GEMS/Food G15	3.32	3%	Lettuces	2%	Milk: Cattle		0.9%	Barley	0.2%	
	11%	DE general	3.30	3%	Lettuces	3%	Milk: Cattle		1.0%	Apples	0.2%	
	11%	GEMS/Food G11	3.28	2%	Lettuces	2%	Milk: Cattle		0.9%	Barley	0.4%	
	10%	GEMS/Food G06	3.11	3%	Lettuces	1%	Tomatoes		0.5%	Milk: Cattle	0.3%	
	10%	IE adult	2.96	3%	Lettuces	0.9%	Milk: Cattle		0.4%	Other other small fruit & berries	0.6%	
	10%	UK toddler	2.91	4%	Milk: Cattle	0.7%	Apples		0.6%	Lettuces	0.4%	
	9%	FR adult	2.82	5%	Other lettuce and other salad plants	1.0%	Milk: Cattle		0.5%	Tea (dried leaves of Camellia sinens	0.2%	
	9%	NL general	2.69	3%	Lettuces	2%	Milk: Cattle		0.6%	Apples	0.3%	
	7%	UK vegetarian	2.16	4%	Lettuces	0.7%	Milk: Cattle		0.2%	Apples	0.2%	
	7% 7%	FR infant FI adult	2.07 2.02	4% 4%	Milk: Cattle Lettuces	0.7%	Apples Coffee beans		0.4%	Carrots Apples	0.2% 0.1%	
	7%	RO general	1.97	4%	Milk: Cattle	0.6%	Tomatoes		0.6%	Apples	0.1%	
	6%	UK adult	1.84	4%	Lettuces	0.6%	Milk: Cattle		0.2%	Tea (dried leaves of Camellia sinens	0.4%	
	6%	DK adult	1.83	3%	Lettuces	1%	Milk: Cattle		0.4%	Apples	0.2%	
	6%	PT general	1.82	3%	Lettuces	0.4%	Apples		0.4%	Potatoes	0.4%	
	6%	FI 6 years	1.76	3%	Lettuces	0.4%	Raspberries (red and yellow)		0.4%	Oat	0.4%	
	6%	FI 3 years	1.74	1%	Lettuces	0.7%	Oat		0.5%	Raspberries (red and yellow)	0.4%	
	5%	LT adult	1.60	2%	Lettuces	0.9%	Milk: Cattle		0.7%	Apples	0.3%	
- L	3%	PL general IE child	0.85	0.8%	Apples Milk: Cattle	0.4%	Lettuces		0.3%	Tomatoes	0.3%	
	2%	IE Child	0.54	0.8%	MIK: Cattle	0.2%	Lettuces		0.1%	Apples	0.1%	1

	Acute risk assessment/c	hildren		Acute risk a	assessment/adults/gen	eral popul	lation	Ac	cute risk assessment/	children		Acute ris	sk assessment/adults/gene	aral populat	tion
Details	s–acute risk assessmer	ht/childr	en	Detail	s–acuterisk assessme	ent/adul	ts	Ц	lide IESTI new calcu	lations			Show IESTI new calcul	ations	
	assessment is based on the ARfD. is based on the large portion of the r	most critical	consumer grou	ıp.				the residue definition the results are consi	erformed with the MRL and the	calculations, a	a variability fact	tor of 3 is used. Since	unt the residue in the edible portion an ce this methodology is not based on in nsidered as indicative only.	id/or the conven nternationally aç	rsion gree
		Sh	ow result	ts for all crops	5										
Results for chil No. of commodi exceeded (IEST	ities for which ARfD/ADI is		5	Results for adults No. of commodities exceeded (IESTI):	s for which ARfD/ADI is		2	IESTI new Results for childre No. of commodities exceeded (IESTI new	for which ARfD/ADI is		9	IESTI new Results for adults No. of commodities (IESTI new):	s for which ARfD/ADI is exceeded		
ESTI				IESTI				IESTI new				IESTI new			
Highest % c ARfD/ADI	of	MRL/input for RA	Exposure	Highest % of ARfD/ADI	2 una distan	MRL/input for RA	Exposure	Highest % of ARfD/ADI		MRL/input for RA	Exposure	Highest % of ARfD/ADI		MRL/input for RA	
2500%	Commodities Lettuces	(mg/kg) 40/19.7	(µg/kg bw) 750	797%	Commodities Lettuces	(mg/kg) 40/19.7	(µg/kg bw) 239	3046%	Commodities Lettuces	(mg/kg) 40/40	(µg/kg bw) 914	971%	Commodities Lettuces	(mg/kg) 40/40	
319%	Pears	0.7/0.69	96	127%	Red mustards	10/7.2	38	164%	Apricots	1/1	49	158%	Wine grapes	2/2	
248% 107%	Apples Kaki/Japanese	0.7/0.69	74 32	70% 66%	Pears Currants (red black and	0.7/0.69 3/3	21 20	144% 138%	Apples Pears	0.7/0.7	43 42	122% 104%	Blueberries Plums	4/4 0.8/0.8	
103%	Kales	1.5/0.7	31	65%	Apples	0.7/0.69	19	132%	Kales	1.5/1.5	40	100%	Cherries (sweet)	3/3	
99%	Sweet peppers/bell peppers		30	63%	Blueberries	4/2.08	19	122%	Cherries (sweet)	3/3	37	83%	Pears	0.7/0.7	
94% 92%	Lamb's lettuce/corn salads Raspberries (red and	10/10 3/3	28 28	63% 62%	Lamb's lettuce/corn salads Globe artichokes	10/10 2/1.44	19 19	113% 112%	Spinaches Celeries	1.5/1.5 1.5/1.5	34 34	82% 76%	Blackberries Chinese cabbages/pe-tsai	3/3 1.5/1.5	
92%	Mangoes	0.6/0.35	28	59%	Chinese cabbages/pe-tsai	1.5/0.7	18	107%	Blackberries	3/3	34	76%	Red mustards	10/10	
84%	Globe artichokes	2/1.44	25	54%	Raspberries (red and	3/3	16	96%	Chinese cabbages/pe-tsai	1.5/1.5	29	72%	Globe artichokes	2/2	
82%	Strawberries	1.5/1.5	25 24	52%	Cherries (sweet)	3/1.57	16	94% 94%	Mangoes	0.6/0.6	28	70%	Apples Currents (red, block and utits)	0.7/0.7	
79% 78%	Currants (red, black and Spring onions/green onions	3/3 1.5/1.5	24 24	51% 51%	Chards/beet leaves Kaki/Japanese persimmons	1.5/0.81 0.02/0.69	15 15	94% 92%	Lamb's lettuce/corn salads Raspberries (red and	10/10 3/3	28 28	66% 63%	Currants (red, black and white) Lamb's lettuce/corn salads	3/3 10/10	
76%	Celeries	1.5/0.61	23	47%	Strawberries	1.5/1.5	14	90%	Roman rocket/rucola	10/10	27	58%	Kales	1.5/1.5	
75%	Chinese cabbages/pe-tsai	1.5/0.7	22	45%	Gooseberries (green, red	3/3	14	84%	Milk: Cattle	0.03/0.2	25	54%	Raspberries (red and yellow)	3/3	
73% 69%	Apricots	1/0.63 1.5/0.91	22 21	45%	Kales Florence fennels	1.5/0.7	13 11	84% 82%	Globe artichokes Strawberries	2/2 1.5/1.5	25	48%	Celeries	1.5/1.5 0.6/0.6	
69% 65%	Spinaches Roman rocket/rucola	1.5/0.91 10/7.2	21	38% 36%	Florence tennels Blackberries	1.5/0.61 3/1.3	11	82% 79%	Strawberries	1.5/1.5	25 24	47% 47%	Mangoes Strawberries	0.6/0.6	
64%	Cherries (sweet)	3/1.57	19	35%	Quinces	0.7/0.69	10	79%	Currants (red, black and	3/3	24	45%	Gooseberries (green, red and	3/3	
63%	Carrots	0.5/0.3	19	34%	Swedes/rutabagas	0.5/0.3	10	76%	Melons	0.5/0.25	23	44%	Chards/beet leaves	1.5/1.5	
59% 59%	Cucumbers Gooseberries (green, red	0.5/0.27 3/3	18 18	33% 31%	Celeries Head cabbages	1.5/0.61 0.2/0.22	9.8 9.3	68% 68%	Spring onions/green onions Plums	1.5/1.5 0.8/0.8	21 20	43% 40%	Apricots Florence fennels	1/1 1.5/1.5	
Expand/collapse	e list		10	51/0	Heau cannagea	0.2/0.22	5.5				20	410 /0	Fiblence termers	1.5/1.5	
Total number o children and ac (IESTI calculati		fD/ADI in	6					Total number of co ARfD/ADI in childre (IESTI new calculat		the	12				
Results for chil No of processed is exceeded (IES	d commodities for which ARfD/ADI			Results for adults No of processed cor is exceeded (IESTI)	ommodities for which ARfD/ADI			Results for childre No of processed cor ARfD/ADI is exceeded	mmodities for which			Results for adults No of processed co exceeded (IESTI ne	ommodities for which ARfD/ADI is		
IESTI	<u>,</u>			IESTI	:			IESTI new	eu (iEo i i iou).			IESTI new	wy.		
Highest % c	of	MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	
ARfD/ADI 92%	Processed commodities Elorence fennels/boiled	(mg/kg)	(µg/kg bw)	ARfD/ADI 69%	Processed commodities Celeries/boiled	(mg/kg)	(µg/kg bw)	ARfD/ADI 90%	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI 41%	Processed commodities Celeries/boiled	(mg/kg)	
92% 90%	Florence fennels/boiled Currants (red, black and wh		28 27	69% 40%	Celeries/boiled Currants (red, black and	1.5/0.61 3/0.94	21 12	90% 86%	Currants (red, black and Oranges/juice	3/0.94 2/0.49	27 26	41% 40%	Celeries/boiled Currants (red, black and white)/	1.5/0.61 3/0.94	
88%	Escaroles/broad-leaved end	0.4/0.4	27	39%	Florence fennels/boiled	1.5/0.61	12	55%	Florence fennels/boiled	1.5/0.61	17	29%	Elderberries/juice	3/0.94	
86%	Oranges/juice	2/0.49	26	34%	Chards/beet leaves/boiled	1.5/0.81	10	53%	Escaroles/broad-leaved	0.4/0.4	16	25%	Florence fennels/boiled	1.5/0.61	
	Chards/beet leaves/boiled Kales/boiled	1.5/0.81 1.5/0.7	25 19	29% 28%	Elderberries/juice Pumpkins/boiled	3/0.94 0.5/0.15	8.6 8.3	50% 42%	Elderberries/juice Spinaches/frozen; boiled	3/0.94 1.5/0.91	15 13	25% 25%	Spinaches/frozen; boiled Oranges/juice	1.5/0.91 2/0.49	
84%		0.7/0.29	19	28%	Escaroles/broad-leaved	0.4/0.4	8.2	42%	Kales/boiled	1.5/0.91	13	25%	Chards/beet leaves/boiled	2/0.49	
	Leeks/boiled			26%	Cauliflowers/boiled	0.1/0.19	7.9	36%	Chards/beet leaves/boiled	1.5/0.81	11	21%	Escaroles/broad-leaved endives/	0.4/0.4	
84% 64% 55% 51%	Turnips/boiled	0.5/0.3	15			1.5/0.91	7.5	34%	Raspberries/juice	3/0.87	10	20%	Pumpkins/boiled	0.5/0.15	
84% 64% 55% 51% 51%	Turnips/boiled Parsnips/boiled	0.5/0.3	15	25%	Spinaches/frozen; boiled	210.10		32%	Leeks/boiled	0.7/0.29	9.5	20%	Grapefruits/juice	1/0.54	
84% 64% 55% 51%	Turnips/boiled Parsnips/boiled Elderberries/juice	0.5/0.3 3/0.94		25%	Oranges/juice	2/0.49	7.4		Broccoli/boiled	0 1/0 19	9.0	17%	Beetroots/boiled	0.5/0.3	
84% 64% 55% 51% 51% 50%	Turnips/boiled Parsnips/boiled	0.5/0.3	15 15			2/0.49 0.5/0.3 0.5/0.3	7.4 6.6 6.4	30% 27%		0.1/0.19 0.5/0.15	9.0 8.0	17% 16%		0.5/0.3 0.1/0.19	
84% 64% 55% 51% 50% 50% 44% 44%	Turnips/boiled Parsnips/boiled Elderberries/juice Broccoli/boiled Purnpkins/boiled Beetroots/boiled	0.5/0.3 3/0.94 0.1/0.19 0.5/0.15 0.5/0.3	15 15 15 13 13	25% 22% 21% 21%	Oranges/juice Beetroots/boiled Parsnips/boiled Courgettes/boiled	0.5/0.3 0.5/0.3 0.5/0.27	6.6 6.4 6.2	30% 27% 26%	Broccoli/boiled Pumpkins/boiled Cauliflowers/boiled	0.5/0.15 0.1/0.19	8.0 7.9	16% 15%	Beetroots/boiled Cauliflowers/boiled Onions/boiled	0.1/0.19 1.5/0.62	
84% 64% 55% 51% 50% 50% 44%	Turnips/boiled Parsnips/boiled Elderberries/juice Broccoli/boiled Pumpkins/boiled	0.5/0.3 3/0.94 0.1/0.19 0.5/0.15	15 15 15 13	25% 22% 21%	Oranges/juice Beetroots/boiled Parsnips/boiled	0.5/0.3 0.5/0.3	6.6 6.4	30% 27%	Broccoli/boiled Pumpkins/boiled	0.5/0.15	8.0	16%	Beetroots/boiled Cauliflowers/boiled	0.1/0.19	

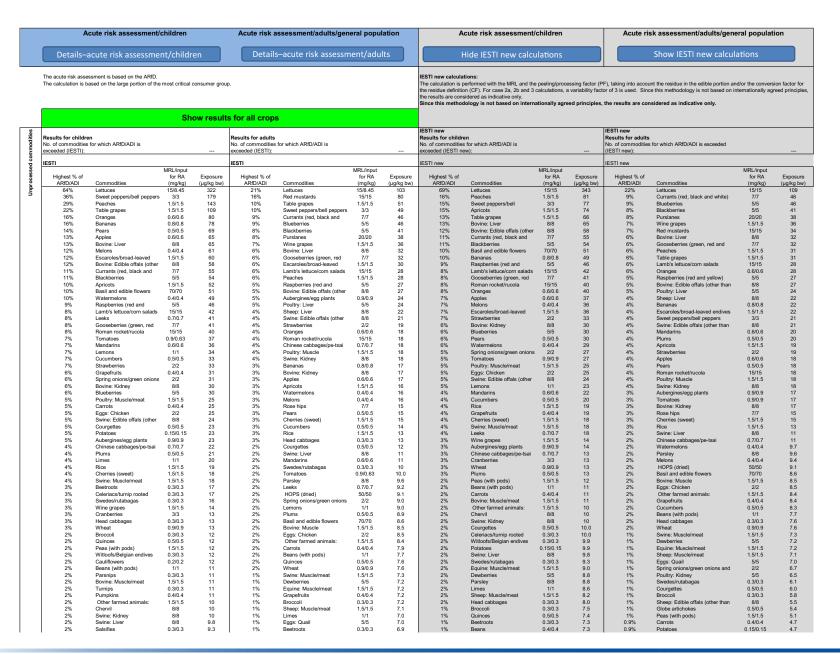
-	×_ *_	1		LOQs (mg/kg) range	Fludioxonil	to:	0.01	Details-ch	ronic risk	Supplementary	results-	
	* * e	fsa			Toxicological reference v			assess		chronic risk ass		
_				ADI (mg/kg bw per da	ay): 0.37	ARfD (mg/kg bw):	0.37	Dataila			a stali	
E	uropean Foo	d Safety Authority		Source of ADI:		Source of ARfD:		Details-ac assessmen		Details-acut assessment/		
		evision 3.0; 2017/12/11		Year of evaluation:		Year of evaluation:		assessmen	d ciliaren	assessmenty	adults)
er	its:											
					Refined calc	ulation mode						
					Chronic risk assessment	: JMPR methodo	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :	-					Exposure	
											MRLs set at the LOQ	common under as
	Calculated exposu	70	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of	(in %)
	(% of ADI)	MS Diet	(µg/kg bw per day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	
	20%	NL toddler	75.31	7%	Apples	3%	Oranges		3%	Pears	0.0%	0
	19%	DE child	70.60	8%	Apples	6%	Oranges		1%	Potatoes		0.
	11%	NL child	42.11	4%	Apples	2%	Oranges		1%	Potatoes	0.0%	0
	11% 9%	IE adult FR child 3–15 years	40.50 31.80	4% 5%	Sweet potatoes Oranges	1% 1%	Oranges Apples		1.0%	Grapefruits Potatoes	0.0%	0.
	9% 8%	FR toddler 2–3 years	28.65	2%	Oranges	2%	Apples		1%	Mandarins	0.0%	0.
	7%	GEMS/Food G11	28.05	2%	Potatoes	1%	Oranges		1.0%	Apples	0.0%	0.
	7%	GEMS/Food G07	26.29	2%	Oranges	2%	Potatoes		0.6%	Apples	0.0%	0.
	7%	ES child	26.10	3%	Oranges	0.9%	Lettuces		0.7%	Potatoes	0.0%	
	7%	SE general	25.88	2%	Potatoes	1%	Oranges		0.9%	Lettuces		0.
	7%	UK toddler	25.17	3%	Oranges	1%	Potatoes		1%	Apples	0.0%	
	7%	DE women 14–50 years	24.98	3%	Oranges	2%	Apples		0.4%	Potatoes	0.0%	0.
	6%	GEMS/Food G10	23.94	2%	Oranges	1%	Potatoes		0.7%	Lettuces	0.0%	0.
	6%	DE general	22.26	2%	Oranges	2%	Apples		0.5%	Potatoes	0.0%	0.
	6%	GEMS/Food G08	22.10	2%	Potatoes	0.8%	Apples		0.7%	Oranges		0.
	6%	GEMS/Food G06	22.00	1%	Oranges	0.8%	Potatoes		0.6%	Tomatoes	0.0%	0.
	6% 5%	PT general	20.54	2% 2%	Potatoes	0.9%	Oranges Lettuces		0.7%	Apples	0.0%	0.
	5% 5%	ES adult UK infant	20.13 19.91	2%	Oranges Oranges	1% 1%	Potatoes		0.5%	Apples Apples	0.0%	
	5%	GEMS/Food G15	19.53	1%	Potatoes	1.0%	Oranges		0.7%	Apples	0.076	0.
	5%	NL general	18.83	1%	Oranges	1.0%	Potatoes		0.9%	Apples	0.0%	0.
	5%	DK child	17.50	1%	Apples	1.0%	Potatoes		0.4%	Pears		.
	5%	FI 3 years	17.07	2%	Potatoes	0.6%	Apples		0.6%	Mandarins		1
	4%	RO general	15.68	2%	Potatoes	0.9%	Apples		0.4%	Oranges	0.0%	1
	4%	IT toddler	15.63	0.7%	Oranges	0.7%	Lettuces		0.6%	Apples		0.
	4%	IT adult	14.99	0.8%	Lettuces	0.5%	Oranges		0.5%	Apples		0.
	4%	FI 6 years	14.20	2%	Potatoes	0.5%	Mandarins		0.4%	Apples		
	4% 4%	FR infant PL general	13.85 13.57	1% 1%	Apples Potatoes	0.8%	Potatoes Apples		0.4%	Spinaches Pears	0.0%	0.
	4%	UK vegetarian	12.57	1%	Oranges	0.6%	Potatoes		0.2%	Apples	0.0%	0.
	3%	LT adult	11.58	1%	Potatoes	1%	Apples		0.1%	Lettuces	0.0%	
	3%	FR adult	11.44	0.8%	Oranges	0.5%	Apples		0.3%	Potatoes	0.0%	0.
	3%	UK adult	9.61	0.8%	Oranges	0.6%	Potatoes		0.3%	Lettuces	0.0%	0.
	3%	DK adult	9.49	0.6%	Apples	0.5%	Potatoes		0.2%	Oranges		
	2%	FI adult	9.09	0.6%	Oranges	0.5%	Potatoes		0.4%	Apples		1
	0.8%	IE child	2.95	0.2%	Potatoes	0.2%	Apples		0.1%	Oranges		1

	Ad	cute risk assessment/	children		Acute risk a	assessment/adults/gen	eral popu	lation	A	cute risk assessment	/children		Acute ris	sk assessment/adults/gene	eral populat	tion
	Details-a	acute risk assessme	nt/childr	en	Detail	s–acute risk assessm	ient/adu	lts	· ·	Hide IESTI new calcı	ulations			Show IESTI new calcul	ations	
		ssment is based on the ARID. ased on the large portion of the							the residue definition the results are const	performed with the MRL and the	calculations,	a variability fact	tor of 3 is used. Sinc	nt the residue in the edible portion an e this methodology is not based on ir sidered as indicative only.		
			Sh	ow result	s for all crop	s										
commodities	Results for children No. of commodities exceeded (IESTI):	n for which ARfD/ADI is		12	Results for adults No. of commodities exceeded (IESTI):	s for which ARfD/ADI is		2	IESTI new Results for childred No. of commodities exceeded (IESTI net	s for which ARfD/ADI is		125	IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		1
	IESTI				IESTI				IESTI new				IESTI new			
rocessed	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
Unpr	412% 358%	Lettuces Oranges	40/40	1523 1326	131% 109%	Lettuces Escaroles/broad-leaved	40/40	486	247% 5%	Lettuces Salsifies	40/40	914 17	127% 89%	Oranges Mandarins	10/10	469
	257%	Peaches	10/10	950	83%	Oranges	10/10	307	4%	Chives	20/20	16	80%	Escaroles/broad-leaved endives	20/20	294
	252% 217%	Kiwi fruits (green, red, Escaroles/broad-leaved	15/15 20/20	933 803	77%	Yams Chards/beet leaves	10/10 20/20	283 250	4% 4%	Cucumbers Parsnins	0.4/0.4	16 15	79% 78%	Lettuces Broccoli	40/40 15/15	291 290
	217% 212%	Grapefruits	20/20	785	56%	Kiwi fruits (green, red.	20/20	250	4%	Sage	20/20	15	78%	Kiwi fruits (green, red, yellow)	15/15	290
	208%	Potatoes	5/5	769	56%	Sweet potatoes	10/10	208	4%	Basil and edible flowers	20/20	15	74%	Yams	10/10	274
	187% 183%	Pears Spinaches	5/5 30/30	692 678	51% 49%	Peaches Chinese cabbages/pe-tsai	10/10 15/7.1	187 180	4% 3%	Onions Gooseberries (green, red	0.5/1.4 2/2	14 12	62% 57%	Chinese cabbages/pe-tsai Grapefruits	15/15 10/10	228 210
	158%	Mandarins	10/10	583	49%	Mandarins	10/10	180	3%	Florence fennels	1.5/1.5	12	55%	Peaches	10/10	204
	146%	Apples	5/5	539	48%	Grapefruits	10/10	179	2%	Beans	0.5/0.5	9.1	53%	Plums	5/5	195
	141% 99%	Lemons Table grapes	10/10 5/5	520 365	46% 46%	Table grapes Broccoli	5/5 15/7.1	170 169	2% 2%	Beans (with pods) Blueberries	1/1 2/2	8.8 8.0	48% 48%	Pears Chards/beet leaves	5/5 20/20	178 176
	84%	Kales	15/7.1	312	40%	Pears	5/5	153	2%	Courgettes	0.4/0.4	8.0	47%	Kales	15/15	173
	84%	Chards/beet leaves	20/20	312	40%	Potatoes	5/5	149	2%	Celeriacs/turnip rooted	0.2/0.2	6.6	42%	Potatoes	5/5	156
	84% 80%	Yams Broccoli	10/10 15/7.1	311 295	38% 37%	Apples Kales	5/5 15/7.1	140 137	2% 1%	Aubergines/egg plants Cranberries	0.4/0.4 2/2	6.0 5.2	41% 39%	Apples Celeries	5/5 15/15	150 144
	79%	Celeries	15/7.8	292	34%	Celeries	15/7.8	125	1%	Milk: Cattle	0.04/0.04	5.0	34%	Pineapples	7/7	124
	77%	Pineapples	7/2.8	283	32%	Spinaches	30/30	120	1%	Garlic	0.5/1.4	4.9	32%	Spinaches	30/30	120
	62% 59%	Chinese cabbages/pe-tsai Spring onions/green onions	15/7.1 5/14	228 220	29% 27%	Red mustards Plums	20/20 5/5	106 99	1% 1%	Pumpkins Guavas	0.3/0.3	4.8 4.7	29% 27%	Sweet potatoes Table grapes	10/10 5/5	106 102
	57%	Plums	5/5	220	26%	Wine grapes	4/4	95	1%	Celery leaves	20/20	3.8	26%	Wine grapes	4/4	95
	54%	Limes	10/10	201	24%	Lemons	10/10	90	0.9%	Peas (with pods)	1/1	3.5	17%	Apricots	5/5	64
	47% 47%	Apricots Tomatoes	5/5 3/3	175 174	23% 22%	Head cabbages Pineapples	2/2 7/2.8	84 83	0.9%	Beans (without pods) Radishes	0.4/0.4 0.3/0.3	3.2 3.2	16% 14%	Tomatoes Head cabbages	3/3 2/2	58 50
	43%	Mangoes	2/2	157	21%	Quinces	5/5	76	0.7%	Lentils	0.4/0.4	2.7	14%	Cherries (sweet)	5/5	50
	33%	Quinces	5/5	123	19%	Limes	10/10	70	0.7%	Peas	0.4/0.4	2.6	13%	Spring onions/green onions and	5/14	47
	30% 24%	Granate Head cabbages	3/2 2/2	110 88	17% 15%	Spring onions/green onions Apricots	5/14 5/5	63 54	0.7%	Peas (without pods) Parsley roots/Hamburg	0.3/0.3	2.5 1.9	13% 12%	Mangoes Quinces	2/2 5/5	47 46
	19%	Mediar	5/5	69	14%	Cherries (sweet)	5/5	50	0.5%	Bovine: Liver	0.2/0.2	1.6	12%	Red mustards	20/20	46
	18%	Strawberries	4/4	65	13%	Tomatoes	3/3	48	0.3%	Equine: Muscle/meat	0.2/0.2	1.2	11%	Blackberries	5/5	41
	17% 17%	Carrots	1/1 5/5	63 61	11%	Mangoes Blackberries	2/2 5/5	42 41	0.3%	Thyme Gherkins	20/20	1.2	10%	Lemons Purslanes	10/10 20/20	38 38
	16%	Cherries (sweet) Sweet peppers/bell peppers	5/5 1/1	60	11% 10%	Purslanes	20/20	38	0.3%	Milk: Goat	0.04/0.04	1.1 0.97	10% 10%	Lamb's lettuce/corn salads	20/20	38
	15%	Lamb's lettuce/corn salads	20/20	56	10%	Lamb's lettuce/corn salads	20/20	38	0.2%	Ginseng root	4/4	0.80	10%	Strawberries	4/4	37
	15% 14%	Roman rocket/rucola Blackberries	20/20 5/5	54 54	10% 10%	Strawberries Granate	4/4 3/2	37 35	0.2%	Bovine: Kidney Eaas: Chicken	0.2/0.2 0.05/0.05	0.75	8% 8%	Limes Granate apples/pomegranates	10/10 3/3	30 30
	14%	Sweet potatoes	10/10	53	9%	Medlar	5/5	34	0.2%	Rosemary	20/20	0.60	7%	Raspberries (red and yellow)	5/5	27
	12%	Raspberries (red and	5/5	46	8%	Florence fennels	1.5/1.5	28	0.1%	Soyabeans	0.2/0.2	0.46	6%	Parsley	20/20	24
	12% 12%	Melons Beetroots	0.3/0.3 1/1	46 44	7% 6%	Raspberries (red and Parslev	5/5 20/20	27 24	0.1%	Shallots Bovine: Fat tissue	0.5/1.4 0.2/0.2	0.43	6% 6%	Mediar Roman rocket/rucola	5/5 20/20	24 24
	11%	Avocados	1.5/0.8	44	6%	Roman rocket/rucola	20/20	24	0.10%	Bovine: Edible offals (other		0.42	5%	Currants (red, black and white)	3/3	24
	10%	Watermelons	0.3/0.3	37	5%	Carrots	1/1	20	0.08%	Swine: Edible offals (other	0.1/0.1	0.30	5%	Avocados	1.5/1.5	18
	10%	Parsnips Salsifies	1/1 1/1	36 31	4% 4%	Sweet peppers/bell peppers Blueberries	1/1 2/1 7	16 16	0.08%	Bovine: Muscle/meat Lentils (fresh)	0.04/0.04	0.29	5% 3%	Blueberries Elorence fennels	2/2 1.5/1.5	18 12
	7%	Leeks	0.8/0.47	28	4%	Onions	0.5/0.95	14	0.07%	Swine: Muscle/meat	0.02/0.02	0.23	3%	Carrots	1/1	12
	7%	Cucumbers	0.4/0.4	26	4%	Parsnips	1/1	14	0.05%	Laurel/bay leaves	20/20	0.20	2%	Gooseberries (green, red and	2/2	9.0
	7% 7%	Chervil Florence fennels	20/20 1.5/1.5	26 24	3% 3%	Beetroots Watermelons	1/1 0.3/0.3	12 12	0.05%	Sweet corn Horseradishes	0.01/0.01	0.19 0.18	2% 2%	Onions Parsnips	0.5/1.4 1/1	8.9 8.5
	6%	Parsley	20/20	22	3%	Avocados	1.5/0.8	12	0.05%	Poultry: Muscle/meat	0.01/0.01	0.17	2%	Watermelons	0.3/0.3	7.3
	6%	Onions	0.5/0.95	22	3%	Melons	0.3/0.3	12	0.04%	Sheep: Muscle/meat	0.04/0.04	0.17	2%	Melons	0.3/0.3	7.1
	5% 4%	Courgettes Chives	0.4/0.4	19 16	3% 3%	Cucumbers Salsifies	0.4/0.4	11 11	0.04%	Wheat Milk: Sheep	0.01/0.01	0.14	2% 2%	Sweet peppers/bell peppers Cucumbers	1/1 0.4/0.4	7.0
	4%	Sage	20/20	15	3%	Parsley roots/Hamburg	1/1	10	0.04%	Asparagus	0.04/0.04	0.14	2%	Beetroots	1/1	5.3
	4%	Basil and edible flowers	20/20	15	3%	Courgettes	0.4/0.4	9.3	0.03%	Swine: Kidney	0.1/0.1	0.13	1%	Aubergines/egg plants	0.4/0.4	5.3
	3% 3%	Gooseberries (green, red Celeriacs/turnip rooted	2/2 0.2/0.2	12 11	2% 2%	Currants (red, black and Gooseberries (green, red	3/1.4 2/2	9.2 9.0	0.03%	Rice Swine: Liver	0.01/0.01 0.1/0.1	0.13 0.12	1% 1%	Salsifies Courgettes	1/1 0.4/0.4	4.9 4.8
	3%	Celeriacs/turnip rooted Currants (red, black and	3/1.4	11	2%	Gooseberries (green, red Aubergines/egg plants	2/2 0.4/0.4	9.0	0.03%	Swine: Liver Other farmed animals:	0.1/0.1	0.12	1%	Leeks	0.4/0.4	4.8
	3%	Aubergines/egg plants	0.4/0.4	10.0	2%	Horseradishes	1/1	7.3	0.02%	Maize/com	0.01/0.01	0.07	1%	Parsley roots/Hamburg roots	1/1	4.4
	2%	Beans (with pods) Pumpkins	1/1	8.8 8.0	2% 1%	Leeks	0.8/0.47 0.3/0.3	6.2 4.4	0.02%	Rye Pistachios	0.01/0.01	0.06	1%	Sage	20/20 0.5/0.5	4.0 3.8
	2% 2%	Radishes	0.3/0.3 0.3/0.3	8.0	1%	Pumpkins Sage	20/20	4.4 4.0	0.02%	Pistachios Barley	0.01/0.01	0.06	1% 0.9%	Guavas Chives	20/20	3.8 3.4
	2%	Blueberries	2/1.7	6.8	0.9%	Chives	20/20	3.4	0.01%	Poultry: Liver	0.05/0.05	0.06	0.9%	Beans	0.5/0.5	3.3

	1% 0.9%	Celery leaves Peas (with pods)	20/20	3.8 3.5	0.7%	Celery leaves Shallots	20/20	2.6	0.01%	Sunflower seeds Turmeric/curcuma	0.01/0.01	0.03	0.7%	Pumpkins Celery leaves	0.3/0.3	2.6
	0.9%	Garlic	0.5/0.95	3.5	0.7%	Gherkins	0.4/0.4	2.5	0.00%	Common millet/proso	0.01/0.01	0.02	0.7%	Lentils	0.4/0.4	2.6
	0.9%	Beans (without pods)	0.4/0.4	3.2	0.6%	Ginseng root	4/4	2.4	0.00%	Rapeseeds/canola seeds	0.01/0.01	0.01	0.6%	Ginseng root	4/4	2.4
	0.7%	Peas (without pods) Bovine: Liver	0.3/0.3	2.5	0.6%	Celeriacs/turnip rooted	0.2/0.2 20/20	2.4	0.00%	Oat	0.01/0.01 4/4	0.01	0.5%	Tarragon	20/20 20/20	2.0
	0.4%	Bovine: Liver Thyme	20/20	1.6 1.2	0.5%	Tarragon Rosemary	20/20	2.0	0.00%	Wine grapes Liquorice	4/4 1/1	0.01	0.5% 0.5%	Rosemary Rosemary	20/20	2.0 2.0
	0.3%	Gherkins	0.4/0.4	1.1	0.5%	Rosemary	20/20	2.0	0.00%	Poultry: Fat tissue	0.05/0.05	0.01	0.5%	Rosemary	20/20	2.0
	0.3%	Milk: Cattle	0.04/0.01	0.99	0.5%	Rosemary	20/20	2.0					0.5%	Rosemary	20/20	2.0
	0.2%	Ginseng root	4/4 0 2/0 2	0.80	0.5%	Rosemary	20/20	2.0					0.4%	Chervil Shallots	20/20	1.6
	0.2%	Bovine: Kidney Beans	0.2/0.2	0.75	0.4%	Chervil Beans (without pods)	20/20	1.6 1.6					0.4%	Shallots Beans (without pods)	0.5/1.4	1.6 1.6
	0.2%	Eggs: Chicken	0.05/0.05	0.62	0.3%	Peas (without pods)	0.3/0.3	0.98					0.4%	Milk: Cattle	0.04/0.04	1.5
	0.2%	Rosemary	20/20	0.60	0.2%	Bovine: Liver	0.2/0.2	0.80					0.4%	Celeriacs/turnip rooted celeries	0.2/0.2	1.4
	0.1%	Sweet corn	0.01/0.01	0.43	0.2%	Garlic	0.5/0.95	0.61					0.4%	Radishes	0.3/0.3	1.3
	0.1%	Bovine: Fat tissue Horseradishes	0.2/0.2	0.42	0.2%	Sheep: Liver Bovine: Kidney	0.2/0.2	0.56					0.4%	Peas Sovabeans	0.4/0.4	1.3
	0.10%	Bovine: Edible offals (other	0.05/0.05	0.36	0.1%	Poultry: Edible offals (other	0.05/0.05	0.42					0.3%	Peas (without pods)	0.3/0.3	0.98
	0.08%	Shallots	0.5/0.95	0.30	0.08%	Milk: Cattle	0.04/0.01	0.31					0.3%	Equine: Muscle/meat	0.2/0.2	0.96
	0.08%	Bovine: Muscle/meat Lentils (fresh)	0.04/0.04 0.05/0.05	0.29	0.07%	Beans Lentils	0.5/0.04 0.4/0.04	0.26					0.2%	Garlic Bovine: Liver	0.5/1.4 0.2/0.2	0.90 0.80
	0.07%	Swine: Edible offals (other	0.1/0.09	0.29	0.06%	Poultry: Liver	0.05/0.05	0.25					0.2%	Milk: Goat	0.04/0.04	0.74
	0.07%	Lentils	0.4/0.04	0.27	0.06%	Swine: Edible offals (other	0.1/0.09	0.23					0.2%	Milk: Sheep	0.04/0.04	0.60
	0.07%	Peas	0.4/0.04	0.26	0.06%	Bovine: Muscle	0.04/0.04	0.23					0.2%	Sheep: Liver	0.2/0.2	0.56
	0.07% 0.05%	Swine: Muscle/meat Laurel/bay leaves	0.02/0.02 20/20	0.24	0.06%	Eggs: Chicken Swine: Kidney	0.05/0.05	0.21					0.1%	Bovine: Kidney Poultry: Edible offals (other than	0.2/0.2	0.42
	0.05%	Milk: Goat	0.04/0.01	0.20	0.05%	Bovine: Fat tissue	0.2/0.2	0.20					0.1%	Swine: Edible offals (other than	0.1/0.1	0.26
	0.05%	Poultry: Muscle/meat	0.01/0.01	0.17	0.05%	Sheep: Muscle/meat	0.04/0.04	0.17					0.06%	Poultry: Liver	0.05/0.05	0.24
	0.04%	Sheep: Muscle/meat	0.04/0.04	0.17	0.04%	Bovine: Edible offals (other	0.05/0.05	0.17					0.06%	Bovine: Muscle	0.04/0.04	0.23
	0.04%	Wheat Rice	0.01/0.01 0.01/0.01	0.14 0.13	0.04%	Lentils (fresh) Sweet corn	0.05/0.05	0.17 0.16					0.06%	Swine: Kidney Eggs: Chicken	0.1/0.1 0.05/0.05	0.22 0.21
	0.03%	Swine: Kidney	0.1/0.09	0.13	0.04%	Milk: Goat	0.04/0.01	0.15					0.05%	Bovine: Fat tissue	0.2/0.2	0.19
	0.03%	Asparagus	0.01/0.01	0.11	0.04%	Peas	0.4/0.04	0.13					0.05%	Asparagus	0.01/0.01	0.18
	0.03%	Swine: Liver	0.1/0.09	0.11	0.03%	Swine: Liver Milk: Sheen	0.1/0.09	0.13					0.05%	Sheep: Muscle/meat Bovine: Edible offals (other than	0.04/0.04	0.17
	0.02%	Ginger Other farmed animals:	1/1 0.01/0.01	0.08	0.03%	Poultry: Muscle	0.04/0.01	0.12					0.04%	Lentils (fresh)	0.05/0.05	0.17
	0.02%	Maize/corn	0.01/0.01	0.07	0.03%	Liquorice	1/1	0.10					0.04%	Swine: Liver	0.1/0.1	0.14
	0.02%	Rye	0.01/0.01	0.06	0.03%	Liquorice	1/1	0.10					0.03%	Sweet corn	0.01/0.01	0.13
	0.02%	Equine: Muscle/meat Pistachios	0.2/0.01	0.06	0.02%	Swine: Muscle/meat Rice	0.02/0.02	0.09					0.03%	Poultry: Muscle Liquorice	0.01/0.01	0.12
	0.02%	Barley	0.01/0.01	0.06	0.02%	Wheat	0.01/0.01	0.09					0.03%	Liquorice	1/1	0.10
	0.01%	Poultry: Liver	0.05/0.05	0.06	0.02%	Asparagus	0.01/0.01	0.08					0.02%	Swine: Muscle/meat	0.02/0.02	0.09
	0.01%	Buckwheat and other	0.01/0.01	0.05	0.02%	Eggs: Quail	0.05/0.05	0.07					0.02%	Rice Wheat	0.01/0.01	0.09
	0.01%	Sorghum Sunflower seeds	0.01/0.01 0.01/0.01	0.03	0.02%	Poultry: Kidney Goat: Muscle	0.05/0.05	0.06					0.02%	Wheat Eggs: Quail	0.01/0.01	0.08
	0.01%	Milk: Sheep	0.04/0.01	0.03	0.02%	Other farmed animals:	0.01/0.01	0.06					0.02%	Poultry: Kidney	0.05/0.05	0.06
	0.01%	Turmeric/curcuma	1/1	0.02	0.01%	Soyabeans	0.2/0.01	0.06					0.02%	Goat: Muscle	0.04/0.04	0.06
	0.01%	Soyabeans	0.2/0.01	0.02	0.01%	Rye	0.01/0.01	0.05					0.02%	Other farmed animals:	0.01/0.01	0.06
	0.01%	Swine: Fat tissue Common millet/proso	0.02/0.01	0.02	0.01%	Barley Equine: Muscle/meat	0.01/0.01	0.05					0.01%	Rye Barlev	0.01/0.01	0.05
	0.00%	Rapeseeds/canola seeds	0.01/0.01	0.01	0.01%	Buckwheat and other	0.01/0.01	0.03					0.01%	Swine: Fat tissue	0.02/0.02	0.04
	0.00%	Oat	0.01/0.01	0.01	0.01%	Sheep: Edible offals (other	0.05/0.05	0.03					0.01%	Buckwheat and other pseudo-	0.01/0.01	0.03
	0.00%	Wine grapes	4/4 1/1	0.01	0.01%	Pistachios	0.01/0.01 0.05/0.05	0.03					0.01%	Sheep: Edible offals (other than Pistachios	0.05/0.05	0.03
	0.00%	Liquorice Poultry: Fat tissue		0.01	0.01%	Eggs: Goose										
								0.02					0.01%			
			0.05/0.05		0.01%	Swine: Fat tissue Maize/corn	0.02/0.01 0.01/0.01	0.02					0.01% 0.01%	Eggs: Goose Maize/corn	0.05/0.05 0.01/0.01	0.03
	1		0.05/0.05		0.01%	Maize/corn Sheep: Kidney	0.01/0.01 0.2/0.2	0.02					0.01% 0.01%	Eggs: Goose Maize/corn Sheep: Kidney	0.05/0.05 0.01/0.01 0.2/0.2	0.03 0.02 0.02
			0.05/0.05		0.01% 0.01% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue	0.01/0.01 0.2/0.2 0.05/0.05	0.02 0.02 0.02					0.01% 0.01% 0.00%	Eggs: Goose Maize/corn Sheep: Kidney Poultry: Fat tissue	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05	0.03 0.02 0.02 0.02
			0.05/0.05		0.01% 0.01% 0.00% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01	0.02					0.01% 0.01% 0.00% 0.00%	Eggs: Goose Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds	0.05/0.05 0.01/0.01 0.2/0.2	0.03 0.02 0.02 0.02 0.02 0.01
			0.05/0.05		0.01% 0.01% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01					0.01% 0.01% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Pouthy: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01
			0.05/0.05		0.01% 0.01% 0.00% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poulty: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01					0.01% 0.01% 0.00% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01
			0.05/0.05		0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01					0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
			0.05/0.05		0.01% 0.01% 0.00% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poulty: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01					0.01% 0.01% 0.00% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01
			0.05/0.05		0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01					0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Poultry: Fat tissue Sunflower seds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
	Expand/collapse lis	4			0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01					0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Poultry: Fat tissue Sunflower seds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
	Total number of co	t ommodities exceeding the A			0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01		ommodities found exceeding	g the		0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Poultry: Fat tissue Sunflower seds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
		t ommodities exceeding the Al		12	0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	Total number of co ARfD/ADI in childri (IESTI new calcula	en and adult diets	g the	1	0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Poultry: Fat tissue Sunflower seds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
	Total number of co children and adult (IESTI calculation)	t ommodilies exceeding the Al diets			0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childr (IESTI new calcula	en and adult diets tion)	g the	1	0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Poultry: Fat tissue Sunflower seds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
ities	Total number of co children and adult (IESTI calculation) Results for childre	t ommodilies exceeding the Al diets			0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Maize/corn Sheep: Kidney Poultry: Fat tissue Sunflower seeds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childr	en and adult diets tion) n	g the	1	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Eggs: Goose Maize/com Sheep: Kidney Poultry: Fat tissue Sunflower seds Common millet/proso millet Poppy seeds Oat Rapeseeds/canola seeds Sorghum	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
modities	Total number of co children and adult (IESTI calculation) Results for childre	t ommodities exceeding the Ai dists n mmodifies for which ARID/ADI			0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Maizeiorn Sheep: Kidney Poutty: Fat tissue Sunflower seeds Organon mitletproso mitlet Organon mitletproso mitlet Organon Rapseeds/cancla seeds Sorghum Beans (with pods)	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childr (IESTI new calcula Results for childre	en and adult diets tion) n nmodities for which	g the	1	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Egg: Goose Mazzłoom Sheer, Kidney Poutty, Fat tissue Suntlower seeds Common miletyroso milet Poppy seeds Oat Rapseeds/canola seeds Sophum Beans (with pods)	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
ommodities	Total number of co children and adult (IESTI calculation) Results for childre No of processed co	t ommodities exceeding the Ai dists n mmodifies for which ARID/ADI	RfD/ADI in	12	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Maizeiorn Sheep: Kidney Poutty: Fat tissue Sunflower seeds Organon mitletproso mitlet Organon mitletproso mitlet Organon Rapseeds/cancla seeds Sorghum Beans (with pods)	0.0110.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childre (IESTI new calcula Results for childre No of processed cor	en and adult diets tion) n nmodities for which		1	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Egg: Goose Mazzłoom Sheer, Kidney Poutty, Fat tissue Suntlower seeds Common miletyroso milet Poppy seeds Oat Rapseeds/canola seeds Sophum Beans (with pods)	0.05/0.05 0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1	0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01
sd commodities	Total number of cc children and adult (IESTI calculation) Results for children No of processed co is exceeded (IESTI) IESTI	t ommodities exceeding the Ai dists n mmodifies for which ARID/ADI	RfD/ADI in MRL/input	12 6	0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% It is exceeded (IESTI) IESTI	Maizeiorn Sheep: Kidney Poutty: Fat tissue Sunflower seeds Organon mitletproso mitlet Organon mitletproso mitlet Organon Rapseeds/cancla seeds Sorghum Beans (with pods)	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1 1/1	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childr (IESTI new calcula Results for childre No of processed coi ARfD/ADI is exceed IESTI new	en and adult diets tion) n nmodities for which	MRL/input	1	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Isorcessed to concentrative the second second the second second the second se	Egg: Goose Mazzłoom Sheer, Kidney Poutty, Fat tissue Suntlower seeds Common miletyroso milet Poppy seeds Oat Rapseeds/canola seeds Sophum Beans (with pods)	0.05/0.05 0.2/0.2 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1 1/1	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of ca children and adult (IESTI calculation) Results for children No of processed co is exceeded (IESTI)	t ommodities exceeding the Ai dists n mmodifies for which ARID/ADI	RfD/ADI in	12 6 Exposure	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Maizeiorn Sheep: Kidney Poutty: Fat tissue Sunflower seeds Organon mitletproso mitlet Organon mitletproso mitlet Organon Rapseeds/cancla seeds Sorghum Beans (with pods)	0.0110.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childre (IESTI new calcula Results for childre No of processed con ARfD/ADI is exceed	en and adult diets tion) n nmodities for which		1 4 Exposure (ug/kg bw)	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	Egg: Goose Mazzłoom Sheer, Kidney Poutty, Fat tissue Suntlower seeds Common miletyroso milet Poppy seeds Oat Rapseeds/canola seeds Sophum Beans (with pods)	0.05/0.05 0.01/0.01 0.20/2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of ci children and adult (IESTI calculation) Results for childre No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 358%	t ommodities exceeding the Ai diets an minodities for which ARID/ADI Processed commodities Excarcles/broad-leaved enc	RfD/ADI in MRL/input for RA (mg/kg) i 2020	6 Exposure (µgkg bw) 1325	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 10.00% 10.00% 10.00% 10.00% 0.	Maizeiorn Sheer, Kidney Poulty, Fat tissue Sumflower seeds Common millelproso millet Ord Rapseads/cancla seeds Sorghum Beans (with pods) mmodilies for which ARIDIADI Processed commodilies Escardesbroad-leaved	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childrn (IESTI new calcula Results for childre No of processed oo: ARfD/ADI is exceed IESTI new Highest % of ARfD/ADI 266%	en and adult diets tion) n mmodities for which ed (IESTI new): Processed commodities Spinaches/frozen	MRL/input for RA (mg/kg) 30/30	(µg/kg bw) 983	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% INo of processed to exceeded (IESTI net IESTI net	Egg: Goose Mazzłoom Sheer, Kidney Poutty, Fat Issue Suntlower seeds Common miletyroso milet Propy seeds Oat Rapseeds/canola seeds Sorghum Beens (with pods) mmodilies for which AR/D/ADI is w): Processed commodilies Escaroles/broad-leaved endives/	0.050.05 0.010.01 0.202 0.050.05 0.010.01 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
Processed commodities	Total number of cr children and adult (IESTI calculation) Results for children No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 358%	t diets n mmodilies exceeding the Ai an mmodilies for which ARID/ADI b Processed commodilies Escandes/broad-leaved and Escandes/broad-leaved and Broad-leaved and Broad-leav	RfD/ADI in MRL/input for RA (mg/kg) 5 20/20 30/30	6 Ехрояите (µg/kg bw) 13225 983	0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.00% 0.00%	Maizationn Sheep: Kidney Poulty: Fat itsue Sunflower seeds Common millet/proso millet Poppy seeds Common millet/proso millet Poppy seeds Sorghum Beens (with pods) Beens (with pods) Processed commodities Essarbes/broad-seaved Celeries/bold	0.010.01 0.202 0.50.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1 MRL/input for RA (mg/kg) 20/20 15/7.8	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childrn (IESTI new calcula Results for childre No of processed con ARfD/ADI is exceed IESTI new Highest % of ARfD/ADI 266% 215%	en and adult diets n mmodities for which ed (IESTI new): Processed commodities Spinaches/frozen Escaroles/broad-leaved	MRL/input for RA (mg/kg) 30/30 20/20	(µg/kg bw) 983 795	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.00%	Egg: Goose Mazelcom Sheer, Kidney Pooltry, Fat Issue Sunflower seeds Common milet/proson millet Poory seeds Sorghum Besns (with pods) mmodilies for which ARID/ADI is w): Processed commodilies Escardes/broad-leaved endves/ Celerise/boiled	0.050.05 0.010.01 0.202 0.050.05 0.010.01 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of cr children and adult (IESTI calculation) Results for childre No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 358% 266% 168%	t ommodities exceeding the Al diets an mmodities for which ARID/ADI E Processed commodities Escaroles/broad-leaved and Spinaches/frozan Chards/beel/ever/boiled	RfD/ADI in MRL/input for RA (mg/kg) 3 0/30 20/20	12 6 Exposure (µg/kg bw) 983 682	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Is exceeded (IEST) IESTI Highest % of ARD/ADI 71% 68%	Maizeiorn Sheer: Kidney Poulty: Fat itsue Sunflow: reads Sunflow: reads Common millet/proso millet Common millet/proso millet Porgeseed/canola seeds Sorghum Beans (with pods) mmodities for which ARD/ADI Processed commodilies Escaroles/broad-lawed Celerise/boiled	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childrn (IESTI new calcula Results for childre No of processed oro: ARfD/ADI is exceed IESTI new Highest % of ARfD/ADI 266% 215% 192%	en and adult diets tion) n mnotities for which ed (IESTI new): Processed commodities Spinaches/frozan Escaroles/broad-leaved Broccoli/boiled	MRL/input for RA (mg/kg) 30/30 20/20 15/15	(µg/kg bw) 983 795 709	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% EXECUTION	Egg: Goose Mazzleom Sheer, Kidney Poolity, Fat Issue Sunflower seeds Common miletyroso milet Poppy seeds Odd Rapseeds(anola seeds Sorghum Beens (with pods) mmodifies for which ARID/ADI is w): Processed commodifies Escardes/broad-leaved endives/ Celeries/boiled	0.050.05 0.010.01 0.010.01 0.050.05 0.010.01 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of cr children and adult (IESTI calculation) Results for children No of processed co is exceeded (IESTI) IESTI Highest % of ARTD/ADI 358%	t diets n mmodilies exceeding the Ai an mmodilies for which ARID/ADI b Processed commodilies Escandes/broad-leaved and Escandes/broad-leaved and Broad-leaved and Broad-leav	RfD/ADI in MRL/input for RA (mg/kg) 5 20/20 30/30	6 Ехрояите (µg/kg bw) 13225 983	0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.00% 0.00%	Maizationn Sheep: Kidney Poulty: Fat itsue Sunflower seeds Common millet/proso millet Poppy seeds Common millet/proso millet Poppy seeds Sorghum Beens (with pods) Beens (with pods) Processed commodities Essarbes/broad-seaved Celeries/bold	0.010.01 0.202 0.50.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1 MRL/input for RA (mg/kg) 20/20 15/7.8	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARfD/ADI in childrn (IESTI new calcula Results for childre No of processed con ARfD/ADI is exceed IESTI new Highest % of ARfD/ADI 266% 215%	en and adult diets n mmodities for which ed (IESTI new): Processed commodities Spinaches/frozen Escaroles/broad-leaved	MRL/input for RA (mg/kg) 30/30 20/20	(µg/kg bw) 983 795	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.00%	Egg: Goose Mazelcom Sheer, Kidney Pooltry, Fat Issue Sunflower seeds Common milet/proson millet Poory seeds Sorghum Besns (with pods) mmodilies for which ARID/ADI is w): Processed commodilies Escardes/broad-leaved endves/ Celerise/boiled	0.050.05 0.010.01 0.202 0.050.05 0.010.01 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of cc children and adult (IEST calculation) Results for childre No of processed co is exceeded (IESTI) IESTI Highest % of ARID/ADI 358% 266% 168% 151% 138%	4 ommodities exceeding the Ai diets an ammodities for which ARID/ADI b Processed commodities Escarcles/broad-leaved and Spinuchus/frozan Gpinuchus/frozan Gpinuchus/frozan Spinu	MRL/input for RA (mg/kg) 1 20/20 20/20 15/7.1 10/10 5/5	12 Exposure (µg/kg bw) 1325 983 622 559 504 467	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 18 exceeded (IESTI) IESTI Highest % of ARID/ADI 11% 67% 46% 46%	Maizziorn Sheer, Kidney Poutty, Fat tissue Sunflower aedu Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso Sorghum Beans (with pods) Processed commodities Escarafes/bried/- Series-boiled Celerical-boiled Celerical-boiled Celerical-boiled Spinacher/frazen Brocoliboiled	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1 1/1 5/7.8 20/20 15/7.4 20/20	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARI/ADI in childri (IESTI new calcula Results for childre No of processed con ARID/ADI is exceed IESTI new Highest % of ARID/ADI 266% 215% 143% 80% 75%	en and adult diets tion) n mmodilies for which ed (IESTI new): Processed commodilies Spirachew/fozen Escardes/broad-levard Broccoliboliad Oranges/juice Potatoss/driad (flakes)	MRL/input for RA (mg/kg) 30/30 20/20 15/15 10/10 5/23 10/10	(µg/kg bw) 983 795 709 527 297 279	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% IN of processed to exceeded (IESTI ne IESTI new IESTI new IESTI new 45% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67	Egg: Goose Mazzleom Shee; Kidney Poulty; Fat Issue Suntlower seeds Common milet/proso milet Poppy seeds Orghum Beans (with pods) mmodilies for which ARID/ADI is wj: Processed commodilies Escardea/broad-leaved endives/ Broacoliholied Broacoliholied Broacoliholied Apples/juice	0.050.05 0.010.01 0.202 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of cc children and adult (IESTI calculation) Results for childre No of processed co is exceeded (IESTI) IESTI Highest % of ARD/ADI 266% 168% 151% 136% 126% 76%	t ommodities exceeding the Al idets ommodities for which ARID/ADI remmodities for which ARID/ADI remmodities for which ARID/ADI remmodities for which ARID/ADI remmodities for which are the the the the the the the the the th	MRL/input for RA (mg/kg) 1 20/20 20/20 15/7.1 10/10 5/5 10/5.3	12 6 Exposure (µg/kg bw) 1325 559 524 467 280	0.01% 0.01% 0.00%	Maizeiorn Shee; Kidney Poutty: Fat tissue Suntiover seeds Common milet/proso milet Poppy seeds Grapswaseds/canola seeds Sorghum Beans (with pods) Processed commodities Escarbes/brad-leaved Contractsboles Processed commodities Escarbes/brad-leaved Contractsboles/International Spinschenffrozon Broccolihoolid Sweet potatoes/boiled Sweet potatoes/boiled	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1	0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01	ARR/ADI in childin (IESTI new calcula Results for children No of processed con ARRD/ADI is exceed IESTI new Highest % of ARRD/ADI 266% 215% 192% 143% 143% 143% 575% 75% 75%	n and adult dies tion) n modilies for which ad (ESTI new): Processed commodilies Spirachee/frozen Escardes/broad-leaved Borgesjuice Protatoss/dired (filess) Sweet polatoes/boiled Apples/juice	MRL/input for RA (mg/kg) 30/30 20/20 15/15 10/10 5/23 10/10 5/5	(µg/kg bw) 983 795 709 527 297 279 279 271	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 10.00%	Egg: Goose Mazzłoom Sheer, Kidney Pochty, Fat Issue Sunflower seads Common miletyposo miliet Oat Rapssedt/cancla seads Sorghum Beans (with pods) Processed commodilies Escaroles/broad-leaved endves/ Celerise/boild Brocolibolied Dromotifies Escaroles/broad-leaved endves/ Celerise/boild Brocolibolied Orange/juice	0.050.05 0.010.01 0.202.2 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of cc children and adult (IEST calculation) Results for childre No of processed co is exceeded (IESTI) IESTI Highest % of ARID/ADI 358% 266% 168% 151% 138%	4 ommodities exceeding the Ai diets an ammodities for which ARID/ADI b Processed commodities Escarcles/broad-leaved and Spinuchus/frozan Gpinuchus/frozan Gpinuchus/frozan Spinu	MRL/input for RA (mg/kg) 1 20/20 20/20 15/7.1 10/10 5/5	12 Exposure (µg/kg bw) 1325 983 622 559 504 467	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 18 exceeded (IESTI) IESTI Highest % of ARID/ADI 11% 67% 46% 46%	Maizziorn Sheer, Kidney Poutty, Fat tissue Sunflower aedu Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso mitel Common mitel/proso Sorghum Beans (with pods) Processed commodities Escarafes/bried/- Series-boiled Celerical-boiled Celerical-boiled Celerical-boiled Spinacher/frazen Brocoliboiled	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1 1/1 5/7.8 20/20 15/7.4 20/20	0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01	ARI/ADI in childri (IESTI new calcula Results for childre No of processed con ARID/ADI is exceed IESTI new Highest % of ARID/ADI 266% 215% 143% 80% 75%	en and adult diets tion) n mmodilies for which ed (IESTI new): Processed commodilies Spirachew/fozen Escardes/broad-levard Broccoliboliad Oranges/juice Potatoss/driad (flakes)	MRL/input for RA (mg/kg) 30/30 20/20 15/15 10/10 5/23 10/10	(µg/kg bw) 983 795 709 527 297 279	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% IN of processed to exceeded (IESTI ne IESTI new IESTI new IESTI new 45% 67% 67% 67% 67% 67% 67% 67% 67% 67% 67	Egg: Goose Mazzleom Shee; Kidney Poulty; Fat Issue Suntlower seeds Common milet/proso milet Poppy seeds Orghum Beans (with pods) mmodilies for which ARID/ADI is wj: Processed commodilies Escardea/broad-leaved endives/ Broacoliholied Broacoliholied Broacoliholied Apples/juice	0.050.05 0.010.01 0.202 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of c. children and adult (IESTI calculation) Results for childre No of processed is exceeded (IESTI) IESTI Highest % of ARID/ADI 368% 168% 151% 136% 76% 56% 35% 34%	4 ommodilies exceeding the Ai diets ommodilies for which AR/D(AD) Processed commodilies Processed commodilies Escaroles/broad-leaved en Spinaches/froad Broccolibolied Broccolibolied Broccolibolied Broccolibolied Broccolibolied Rocentibolied Pearbes/froad Pearbes/froad Rocentibolied Pearbes/froad	RfD/ADI in MRL/input for RA (mg/kg) 3 20/20 3 20/20 3 20/20 15/7.1 15/7.1 15/7.3 2/2	12 6 Exposure (µghq bw) 1325 559 554 467 280 207 131 131	0.01% 0.00%	Maizeiorn Sheer, Kidney Poulty, Fat tissue Sumflower seeds Common millelproso millet Ord Rapseeds/cancla seeds Sorghum Beans (with pods) Processed commodities Escaroles/broad-seaved Celerise/boiled Celerise/boiled Celerise/boiled Orange/suice Apples/juice	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1.01/0.01 0.01/0.01 0.01/0.01 1.01/0.01 0.0000000000	0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01	ARR/ADI in childin (tESTI new calcula No of processed cor ARR/ADI is exceed IESTI new Highest % of ARR/ADI is 266% 215% 192% 192% 192% 193% 73% 73% 73% 73% 73% 59%	n and adult dies tion) n mmodilies for which md (ESTI new): Processed commodilies Spinachez/fozan Escaroles/troad-leaved Dranges/uice Protatose/dried flakes) Sweet polatose/boiled Varianges/uice Chardhobed leaves/boiled Chardhobed leaves/boiled	MRL/input for RA (mg/kg) 30/30 20/20 15/15 10/10 5/23 10/10 5/5 15/15 20/20 5/5	(µg/kg bw) 983 795 709 527 297 279 271 269 267 269 267 218	0.01% 0.01% 0.00%	Eggs: Goose Mazzleom Sheer, Kidney Poolity, Fat issue Sunflower seeds Common milet/proso milet Propry seeds Out Registration of the seeds Signium Beans (with pods) Processed commodities Escaroles/broad-leaved end/ves/ Celeries/boiled Spinaches/froam Escaroles/boiled Spinaches/froam Company/uce Sweet polatoes/boiled Grapefults/juce	0.050.05 0.010.01 0.202 0.050.05 0.010.01 0.202 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01 1/1 MRL/input for RA (mg/kg) 2020 15/15	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of cc. children and adult ((EST) calculation) Results for children is exceeded (IEST) IESTI Highnet % of ARD/ADI 266% 151% 156% 35% 34%	t mmmodilies exceeding the Al diets an mmodilies for which ARID/ADI b Processed commodilies Escaroles/broad-leaved no Chards/best feaves/boiled Braccoliboiled Sweet potations/boiled Sweet potations/boiled Processed commod Kik/ Kik/ fruits/jucie Head cabbages/boiled	RfD/ADI in MRL/input for RA (mg/kg) 3 0030 20/20 15/7.13 10/5 10/5 10/5 10/5 20/20 15/7.2 2/2 5/2.3	12 6 Exposure (µq/kg bw) 1325 983 622 559 540 7 280 267 280 207 131 127 125	0.01% 0.01% 0.00%	Maizationn Sheep: Kidney Poutty: Fat itsue Sunflower seds Common millet/proso millet Poppy seds Gat Sogham Beens (with pods) Beens (with pods) Beens (with pods) Processed commodities Escarbes/broad-leaved Chardrobeet (sevesholid Chardrobeet (seve	0.010.01 0.20.2 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01	ARTI/ADI in childin (IESTI new calcula Results for childre No of processed could ARTD/ADI is exceed IESTI new Highest % of ARTD/ADI 266% 215% 102% 143% 80% 75% 73% 73% 73% 73% 73% 73% 73%	n and adult dies tion) n Processed commodities Spinaches/fozan Escarates/fozan Escarates/fozan/Esward Broccolibolid Oranges/juice/faikas) Protosed vine (faikas) Protosed vine (faikas) Pro	MRL/input for RA (mg/kg) 30/30 20/20 15/15 10/10 5/5 15/15 20/20 5/5 4/4	(µg/kg bw) 983 795 709 527 297 279 271 269 269 267 218 175	0.01% 0.01% 0.00%	Eggs: Goose Mazzletorn Sheep: Kidney Poolity: Fat Issue Sunflower seeds Common milet/proson millet Poopy seeds Appsend: Canola seeds Sorghum Beans (with pods)	0.050.05 0.0110.05 0.0110.05 0.050.05 0.0110.01 0.050.05 0.0110.01 0.0100.010	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of cc. children and adult (IESTI calculation) Results for children No of processed on is exceeded (IESTI) IESTI Highest % of ARID/ADI 266% 168% 168% 136% 266% 56% 56% 56% 56% 34% 34%	t mmodilies exceeding the Al didet mmodilies for which ARID/ADI b mmodilies for which ARID/ADI b mmodilies for which ARID/ADI b mmodilies mmodilie	RfD/ADI in MRL/input for RA (mg/kg) 30/30 20/20 30/30 20/20 30/30 20/20 30/30 20/20 30/30 20/20 30/30 20/20 20/20 30/30 20/20	12 6 (µpfig bw) 1325 559 504 467 207 207 217 121 131 131 131 131 135 89	0.01% 0.01% 0.00%	Maizeionn Sheep: Kidney Poulty: Fat tissue Common miliet/proso miliet Common miliet/proso miliet Common miliet/proso miliet Common miliet/proso miliet Sorghum Beans (with pods) mmodities for which ARD/ADI Processed commodilies Escaroles/broad-lawed Calinate-boiled Spina-heifrozon Broccoliboiled Spina-heifrozon Broccoliboiled Sweet potatoes/boiled Spina-heifrozon Broccoliboiled Sweet potatoes/boiled Commons/Lice Cargestwine	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1.01/0.01 0.01/0.01 1.01/0.01 0.01/0.01 1.01/0.01 0.00 0.00	0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01	ARRI/ADI in childre (IESTI new calcular Results for childre No of processed coa ARRI/ADI is exceed Highest % of ARRI/ADI 266% 246% 246% 102%	n and adult dies tion) n mmodilies for which ad (EST1 new): Processed outmotilies ghinaches/focan Escardes/troad-lawod Oranges/uice Protatoes/fride (falses) Sweet polatoes/boiled Apples/uice Protatoes/fride (falses) Sweet polatoes/boiled Wing graps/uice Protatoes/fride (falses) Sweet polatoes/boiled Wing graps/uice	MRL/input for RA (mg/kg) 30/30 20/20 30/30 20/20 15/15 15/15 15/15 15/15 20/20 5/15 5/15 15/15 20/20 5/15 15/15	(µg/kg bw) 983 795 709 527 297 279 279 279 269 267 218 175 166	0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Higherstore for adults No of processed to groups IESTI new Higherst % of ARD/ADI 82% 82% 81% 67% 43% 41% 32% 22% 22% 22% 22% 22%	Eggs: Goose Mazzłoom Sheer, Kidney Podtry, Fat issue Suntiover seads Ormon miletypos miliet Oat Rapseads(anola seads Sorghum Beans (with pods) Processed commodities Elscardes/broad-leaved end/ves/ Brocotiholiol Spinaches/frozan Chardubet euwsboiled Apples/juce Oranges/juce Oranges/juce Oranges/juce Oranges/juce Oranges/juce Oranges/juce Prostocelled Swet polatoes/bled Swet polatoes/bled Purstenseboiled Purstenseboiled Purstenseboiled	0.050.05 0.0110.01 0.210.2 0.050.05 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	Total number of cc. children and adult (IESTI calculation) Results for children No of processed is exceeded (IESTI) IESTI Highest % of ARID/ADI 365% 168% 168% 168% 168% 168% 168% 168% 188%	t mmodifies exceeding the Al didet mmodifies for which ARID/ADI for the advance of the advance o	RfD/ADI in MREL/input for RA 1 20030 2020 16/7.1 10/10 5/5 10/10 5/5.3 10/10 5/5.3 10/10 5/5.3 10/10 5/5.3 1.5/1.5	12 Exposure (µphg bw) 1383 622 504 467 207 131 132 125 68 89 89 89 89 89 80 80 80 80 80 80 80 80 80 80	0.01% 0.01% 0.00%	Maizeicom Maizeicom Sheep: Kidney Poulty: Fat tissue Suntiover seeds Common milet/proso milet Propy seeds Sorghum Beans (with pods) Processed/canola seeds Sorghum Beans (with pods) Processed/canola seeds Escaraties/broad-leaved Celerines/bolied Spinacheaffrozon Broccoliboiled Spinacheaffrozon Broccoliboiled Sweet potatoes/bolied Prasches/bolied Prasches/bolied Processed/canola Sweet potatoes/bolied Processed/canola Sweet potatoes/bolied Prasches/bolied Processed/canola Sweet potatoes/bolied Prasches/bolied Proseches/bolied Proseches/bolied Proseches/bolied Proseches/bolied Proseches/bolied Proseches/bolied Proseches/bolied Proseches/bolied Proseches/bolied Proseches/bolied	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1./1 0.01/0.01 0.00 0.00	0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01	ARRI/ADI in childre (IESTI new calcular Results for childre No of processed cor ARRI/ADI is acceed IESTI new Highest % of ARRI/ADI 266% 265% 102%	n and adult dies tion) n Processed commodities Spinaches/fozan Escarates/fozan Escarates/fozan/Esward Broccolibolid Oranges/juice/faikas) Protosed vine (faikas) Protosed vine (faikas) Pro	MRL/input for RA (mg/kg) 30/30 15/15 15/15 10/10 10/10 5/5 20/20 15/15 15/15 20/20 5/5 4/4 10/10 5/5 7/7 7/7	(µg/kg bw) 983 795 709 527 297 279 271 269 269 267 218 175	0.01% 0.01% 0.00%	Eggs: Goose Mazzłoom Shee; Kidney Pochty; Fat Issue Sunflower seads Common milet/proso milet Oat Rapssed(canola seads Sorghum Beans (with pods) Processed commodilies Escaroles/broad-leaved endycs/ Celerise/boild Brocolibolid Brocolibolid Brocolibolid Charles/biole Processed commodilies Escaroles/broad-leaved endycs/ Celerise/boild Brocolibolid Brocolibolid Charles/biole Charles/biole Protecssed commodilies Processed commodilies Escaroles/boild Brocolibolid Charles/biole Charles/biole Distributed Phalametbolid Prespersione Prespersione Processed commodilies	0.050.05 0.010.01 0.202 0.050.05 0.010.01 0.050.05 0.010.01 0.010.01 0.010.01 0.010.01 0.010.01	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01
	total number of cc. children and adult (IESTI calculation) Results for children No of processed is exceeded (IESTI) IESTI Highest % of ARIDIADI 388%, 165%, 155%, 156%, 56%, 35%, 34%, 24%, 24%, 20%,	t mmodilies exceeding the Ai diets an mmodilies for which ARID/ADI Excertels/broad-leaved enc Spinaches/frozan Charad/belle dave/boiled Broccol/boiled Brocc	RfD/ADI in MRL/input for RA (mg/kg) 1 20/20 30/30 20/20 15/7.1 10/10 5/6 15/7.3 5/6.9 5/2.3 5/6.9	6 6 500 504 467 280 280 280 280 280 280 280 280 280 280	0.01% 0.00%	Maizeiorn Sheer, Kidney Poutty, Fat tissue Sumflower seeds Operation mitlelproso mitlet Operation mitlelproso mitlet Operation mitlelproso mitlet Operation mitlelproso mitlet Rapseeds/canola seeds Sorghum Beans (with pods) Processed commodities Escardles/brad-leaved Collinational Sectors Processed commodities Escardles/brad-leaved Collinational Sectors Processed commodities Escardles/brad-leaved Collinational Sectors Synather Microsoft	0.01/0.01 0.2/0.2 0.05/0.05 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 1/1 1/1 1/1 1/1 1/1 20/20 20/20 15/7.1 10/10 10/7.1 10/10 10/7.3 4/4 7/2.8	0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01	ARRI/ADI in childred (IESTI new calcula Results for children No of processed coordination ARRI/ADI is exceed Highest % of ARRI/ADI activity 266% 215% 102% 143% 80% 75% 73% 73% 47% 45% 44%	n and adult dies tion) n mmodilies for which del (IEST new): Processed commodilies Spinaches/fozan Escarales/broad-leaved Broccolibolied Oranges/juice Potatoschired (fakes) Potatoschired (fakes) Aktin fultis/juice Chardi/back leaves/bolied Potatoschired (fakes) Potatoschired (fakes)	MRL/input for RA (mg/kg) 30/30 20/20 15/15 10/10 5/23 10/10 5/15 15/15 20/20 5/5 5/5 4/4 4/10/10 5/5	(µg/kg bw) 983 795 709 527 297 279 279 279 269 267 218 175 166 163	0.01% 0.01% 0.00%	Eggs: Goose Mazzłorom Sheep: Kidney Poutry: Fat issue Suntlover seeds Common milet/proso milet Popy seeds Grapseed: cancla seeds Sorghum Beans (with pods)	0.050.05 0.0110.01 0.210.2 0.050.05 0.0110.01 0.050.05 0.0110.01 0.0110.01 0.0110.01 0.0110.01 0.0110.01 0.0110.01 0.0110.01 1.11 1	0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01

es

Conclusion: The estimated short-term intake (IESTI) exceeded the toxicological reference value for 12 commodities. For processed commodities, the toxicological reference value was exceeded in one or several cases.



+	× *	ſ		LOQs (mg/kg) range	Mandipropam	to:	0.05	Details–chronic risk	Supplementary	oculto	
	***•	fsa		LOQS (IIIg/kg) range	Toxicological reference v		0.05	assessment	chronic risk asse		
	C			ADI (mg/kg bw per da	y): 0.15	ARfD (mg/kg bw):	not necessary		·	$ \longrightarrow $	
E	uropean Foo	d Safety Authority		Source of ADI:	EFSA 2018	Source of ARfD:	EFSA 2018	Details-acute risk	Details-acute		
	EFSA PRIMo re	vision 3.1; 2018/11/18		Year of evaluation:	2018	Year of evaluation:	2018	assessment/children	assessment/a	dults	
ment	ts:										
_					Refined calc	ulation mode					
					Chronic risk assessment	: JMPR method	ology (IEDI/TMDI)				
				No of diets exceeding	the ADI :	-					resulting f
										MRLs set at the LOQ	commodit under asse
			Expsoure	Highest contributor to		2nd contributor to		3rd contributor to MS		(in % of ADI)	(in % of
	Calculated exposur (% of ADI)	e MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities	MS diet (in % of ADI)	Commodity/ group of commodities	diet (in % of ADI)	Commodity/ group of commodities		
+	5%	NL toddler	7.80	3%	Spinaches	0.9%	Escaroles/broad-leaved endives	0.5%	Table grapes		5
	4%	SE general	5.67	2%	Lettuces	0.8%	Chinese cabbages/pe-tsai	0.5%	Head cabbages		4
	4%	GEMS/Food G10	5.58	1%	Lettuces	0.6%	Chinese cabbages/pe-tsai	0.3%	Head cabbages		4
	4%	IT adult	5.50	1%	Lettuces	0.6%	Other lettuce and other salad plants	0.4%	Spinaches		4
	3%	GEMS/Food G06	4.75	0.8%	Tomatoes	0.4%	Lettuces	0.4%	Table grapes		3
	3%	ES adult	4.66	2%	Lettuces	0.3%	Chards/beet leaves	0.3%	Spinaches		3
	3%	IE adult	4.47	0.7%	Other leafy brassica	0.5%	Spinaches	0.4%	Wine grapes		3
	3%	IT toddler	4.33	1%	Lettuces	0.4%	Other lettuce and other salad plants	0.3%	Tomatoes		3
	3%	GEMS/Food G08 DE child	4.32	0.7%	Lettuces Spinaches	0.4%	Head cabbages Table grapes	0.4%	Wine grapes Lettuces		3
	3% 3%	GEMS/Food G07	4.24 4.03	0.8%	Lettuces	0.5%	l able grapes Wine grapes	0.3%	Tomatoes		3
	3%	ES child	4.03	2%	Lettuces	0.3%	Spinaches	0.2%	Chards/beet leaves		3
	3%	NL child	3.95	0.9%	Spinaches	0.3%	Escaroles/broad-leaved endives	0.3%	Table grapes		3
	3%	GEMS/Food G11	3.89	0.5%	Celeries	0.3%	Spinaches	0.4%	Wine grapes		3
	2%	RO general	3.73	1%	Head cabbages	0.6%	Wine grapes	0.4%	Tomatoes		2
	2%	GEMS/Food G15	3.66	0.7%	Head cabbages	0.4%	Lettuces	0.3%	Wine grapes		2
	2%	PT general	3.54	0.8%	Wine grapes	0.7%	Kales	0.4%	Lettuces		2
	2%	NL general	3.40	0.6%	Spinaches	0.4%	Escaroles/broad-leaved endives	0.4%	Lettuces		2
	2%	FR adult	3.07	0.8%	Wine grapes	0.6%	Other lettuce and other salad plants	0.2%	Spinaches		2
	2%	FR child 3–15 years	2.56	0.4%	Other lettuce and other salad plants	0.4%	Spinaches	0.2%	Tomatoes		2
	2%	DE women 14-50 years	2.42	0.4%	Lettuces	0.3%	Wine grapes	0.2%	Spinaches		2
	2%	DE general	2.39	0.4%	Lettuces	0.3%	Wine grapes	0.2%	Spinaches		2
	1%	UK vegetarian	2.18	0.5%	Lettuces	0.3%	Wine grapes	0.1%	Tomatoes		1
	1%	FR infant	2.16	1%	Spinaches	0.1%	Chards/beet leaves	0.1%	Beans (with pods)		1
	1%	FR toddler 2–3 years	2.01	0.6%	Spinaches	0.1%	Beans (with pods)	0.1%	Tomatoes		1
	1%	UK adult	1.92	0.4%	Lettuces	0.4%	Wine grapes	0.1%	HOPS (dried)		1
	1%	DK adult	1.58	0.3%	Lettuces	0.3%	Wine grapes	0.1%	Tomatoes		1
	1%	Fladult	1.56	0.5%	Lettuces	0.1%	Tomatoes	0.1%	Wine grapes		1
	1% 1.0%	FI 6 years DK child	1.51	0.3%	Lettuces Lettuces	0.2%	Spinaches Tomatoes	0.1%	Chinese cabbages/pe-tsai Table grapes		1
	1.0%	FI 3 years	1.43	0.5%	Spinaches	0.1%	Lettuces	0.1%	Table grapes		0.
	0.9%	PL general	1.34	0.2%	Spinaches Head cabbages	0.1%	Tomatoes	0.1%	Table grapes		0.
	0.8%	LT adult	1.15	0.3%	Head cabbages	0.2%	Lettuces	0.1%	Tomatoes		0.1
	0.6%	UK toddler	0.97	0.1%	Tomatoes	0.1%	Spinaches	0.1%	Table grapes		0.0
	0.3%	UK infant	0.51	0.1%	Tomatoes	0.1%	Head cabbages	0.0%	Spinaches		0.3
	0.1%	IE child	0.21	0.0%	Lettuces	0.0%	Head cabbages	0.0%	Table grapes		0.1
				1		1	1	1		1	1

	Acute risk assessment/children	Acute risk assessment/adults/general population	Acute risk assessment/children	Acute risk assessment/adults/general population
	Details-acute risk assessment/children	Details-acute risk assessment/adults	Hide IESTI new calculations	Show IESTI new calculations
	As an ARID is not necessary/not applicable, no acute risk assessment is performe	ıd.	IESTI new calculations: The calculation is performed with the MRL and the peeling/processing factor (PF residue definition (CF). For case 2a, 2b and 3 calculations, a variability factor of results are considered as indicative only. Since this methodology is not based on internationally agreed principles, t	F), taking into account the residue in the edible portion and/or the conversion factor for the 3 is used. Since this methodology is not based on internationally agreed principles, the the results are considered as indicative only.
	Show results	s for all crops		
commodities	No. of commodities for which ARfD/ADI is	Results for adults No. of commodilies for which ARID/ADI is exceeded (IESTI):	IESTI new Results for children No. of commodities for which ARfD/ADI is exceeded (IESTI new):	IESTI new Results for adults No. of commodilies for which ARID/ADI is exceeded ((ESTI new):
Unprocessed o	HESTI MRU/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	IESTI MRL/input Highest % of for PA Exposure ARID/ADI Commodities (mg/kg) (ug/kg bw)	IESTI new MRU/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	IESTI new MRL/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)
	Expand/collapse list Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)		Total number of commodities found exceeding the ARID/ADI in children and adult diets (IESTI new calculation)	
se	Results for children	Results for adults	Results for children	Results for adults
noditie		No of processed commodities for which ARfD/ADI is exceeded (IESTI):	No of processed commodities for which ARfD/ADI is exceeded (IESTI new):	No of processed commodities for which ARfD/ADI is exceeded (IESTI new):
comr	IESTI MRL/input	IESTI MRL/input	IESTI new MRL/input	IESTI new MRL/input
ocessed	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)
Proc				
	Expand/collapse list			
	Conclusion:			

	× *	1		LOQs (mg/kg) range 1	Fluopyram		0.80	Details–chronic risl	k	Supplementary res	ults-	
	**e	d Safety Authority			Toxicological referen			assessment		chronic risk assessi		
E	uropean Foo	d Safety Authority		ADI (mg/kg bw per da Source of ADI:	y): 0.0	2 ARfD (mg/kg bw): Source of ARfD:	0.5	Details-acute risk		Details-acute ri	sk	
		vision 3.1: 2018/11/18		Year of evaluation:		Year of evaluation:		assessment/childre		assessment/adu	lts	ļ
6	nts:	1011 3.1, 2010/11/10										,
					Refined o	alculation mode						
					Chronic risk assessn	ent: JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :					1	Exposure	
											MRLs set at the LOQ	t commo under as
	Calculated exposu		Expsoure (ug/kg bw per	Highest contributor to MS diet	Commodity	2nd contributor to MS diet	Commoditul	3rd contr MS		Commodity/	(in % of	(in %
	(% of ADI)	MS Diet	(µg/kg bw per day)	(in % of ADI)	Commodity/ group of commodities	(in % of ADI)	Commodity/ group of commodities	(in % c		group of commodities	ADI)	
	99%	NL toddler	11.88	21%	Apples	8%	Pears	8	%	Bananas		9
	73%	DE child	8.72	24%	Apples	7%	Table grapes	5		Oranges	1	7:
	66%	NL child	7.98	11%	Apples	7%	Sugar beet roots	5		Table grapes		6
	51%	GEMS/Food G07	6.11	5%	Lettuces	5%	Poultry: Muscle/meat	5'		Swine: Muscle/meat		51
	50%	FR child 3–15 years	6.04	6%	Bovine: Muscle/meat	6%	Swine: Muscle/meat	5'		Eggs: Chicken		50
	49%	IE adult ES child	5.90	7%	Sheep: Liver	5%	Basil and edible flowers	3		Other other small fruit & berries		4
	47% 47%	ES child GEMS/Food G10	5.69 5.69	9% 7%	Lettuces Lettuces	6% 6%	Bovine: Muscle/meat Poultry: Muscle/meat	5'		Poultry: Muscle/meat Bovine: Muscle/meat		4
	47%	SE general	5.65	19%	Bovine: Muscle/meat	9%	Lettuces	3		Eggs: Chicken		4
	47%	DK child	5.47	9%	Swine: Muscle/meat	6%	Bovine: Muscle/meat	4		Apples		46
	40%	GEMS/Food G08	5.26	8%	Swine: Muscle/meat	4%	Lettuces	4		Poultry: Muscle/meat		4
	42%	GEMS/Food G15	4.99	6%	Swine: Muscle/meat	4%	Poultry: Muscle/meat	3		Swine: Liver		4
	41%	GEMS/Food G06	4.86	6%	Tomatoes	5%	Table grapes	3		Poultry: Muscle/meat		4
	39%	FR toddler 2–3 years	4.74	6%	Apples	5%	Bovine: Muscle/meat	5'	%	Swine: Muscle/meat		39
	39%	GEMS/Food G11	4.63	5%	Swine: Muscle/meat	4%	Poultry: Muscle/meat	3		Apples		39
	35%	ES adult	4.19	12%	Lettuces	3%	Bovine: Muscle/meat	31		Swine: Muscle/meat		3
	34%	DE women 14-50 years	4.04	5%	Apples	4%	Sugar beet roots	4		Swine: Muscle/meat		34
	33%	DE general	3.96	5%	Swine: Muscle/meat	5%	Apples	4		Sugar beet roots		33
	33% 32%	UK toddler UK infant	3.93 3.84	5% 5%	Bovine: Muscle/meat Bovine: Muscle/meat	3% 5%	Eggs: Chicken Eggs: Chicken	3'		Apples Apples		3:
	32%	NL general	3.59	5%	Swine: Muscle/meat	3%	Bovine: Muscle/meat	31		Apples		30
	29%	RO general	3.59	4%	Swine: Muscle/meat	3%	Poultry: Muscle/meat	3		Tomatoes	1	2
	25%	FR adult	3.04	3%	Other lettuce and other salad plants	3%	Swine: Muscle/meat	3		Bovine: Muscle/meat	1	25
	23%	IT adult	2.71	8%	Lettuces	3%	Other lettuce and other salad plants	29		Tomatoes	1	23
	22%	DK adult	2.62	4%	Swine: Muscle/meat	2%	Bovine: Muscle/meat	21	%	Lettuces	1	22
	22%	IT toddler	2.62	6%	Lettuces	2%	Other lettuce and other salad plants	2		Tomatoes	1	22
	19%	LT adult	2.32	4%	Swine: Muscle/meat	4%	Apples	1		Lettuces	1	19
	17%	FI 3 years	2.06	2%	Bananas	2%	Apples	11		Strawberries	1	1
	17%	UK adult	2.00	3%	Bovine: Muscle/meat	3%	Lettuces	2		Poultry: Muscle/meat	1	1
	17% 16%	PT general FR infant	1.99	2% 3%	Lettuces Apples	2% 2%	Apples Swine: Muscle/meat	11		Tomatoes Bovine: Muscle/meat	1	17
	16%	ER infant UK vegetarian	1.89	3%	Apples Lettuces	2%	Swine: Muscle/meat Eggs: Chicken	21		Apples	1	14
	14%	FI 6 years	1.62	2%	Lettuces	1%	Bananas	1		Apples	1	13
	12%	Fladult	1.48	3%	Lettuces	2%	Coffee beans	1		Apples	1	12
	12%	PL general	1.39	4%	Apples	2%	Table grapes	1		Tomatoes		12
	6%	IE child	0.78	0.7%	Swine: Fat tissue	0.7%	Swine: Muscle/meat	0.6	6%	Apples		6

2%	Equine: Muscle/meat Globe artichokes	1.5/1.5	9.0 8.8	1%	Globe artichokes Poultry: Kidney	0.5/0.5	6.5 6.5	1% 1%	Cauliflowers Chives	0.2/0.2	7.0	0.9%	Quinces Rve	0.5/0.5	4.6 4.4
2%	Dewberries	5/5	8.8	1%	Poultry: Kidney Pumpkins	0.4/0.4	5.9	1%	Pumpkins	0.4/0.4	6.4	0.9%	Leeks	0.9/0.9	4.4
2%	Parsley	8/8	8.8	1%	Witloofs/Belgian endives	0.3/0.3	5.5	1%	Globe artichokes	0.5/0.5	6.3	0.8%	Gherkins	0.5/0.5	4.0
2%	Sheep: Muscle/meat Radishes	1.5/1.5 0.3/0.3	8.2 7.4	1%	Sheep: Edible offals (other Peas (with pods)	8/8 1.5/1.5	5.5 5.1	1% 1%	Sage Rve	8/8 0.9/0.9	6.1 5.7	0.8%	Lemons Witloofs/Belgian endives	1/1	3.8 3.8
1%	Beans	0.4/0.4	7.3	0.9%	Cauliflowers	0.2/0.2	4.6	1%	Poultry: Liver	5/5	5.5	0.7%	Pumpkins	0.4/0.4	3.5
1%	Medlar Chives	0.5/0.5 8/8	6.9 6.6	0.9%	Potatoes Rve	0.15/0.15	4.5 4.4	1% 1%	Medlar Salsifies	0.5/0.5	5.1 5.1	0.7%	Cranberries Jerusalem artichokes	3/3 0.3/0.3	3.4 3.2
1%	Sage	8/8	6.1	0.9%	Parsnips	0.3/0.3	4.4	1%	Sorghum	1.5/1.5	5.1 4.8	0.6%	Beetroots	0.3/0.3	3.2
1%	Rye	0.9/0.9	5.7	0.8%	Chards/beet leaves	0.2/0.2	3.8	0.9%	Parsnips	0.3/0.3	4.6	0.6%	Swine: Fat tissue	1.5/1.5	3.0
1%	Poultry: Liver Kohlrabies	5/5 0.1/0.1	5.5 5.2	0.7%	Celeriacs/turnip rooted Medlar	0.3/0.3	3.6 3.4	0.9%	Turnips Spinaches	0.3/0.3	4.6 4.5	0.6%	Limes Cauliflowers	1/1 0.2/0.2	3.0 2.8
1.0%	Sorghum	1.5/1.5	4.8	0.7%	Cranberries	3/3	3.4	0.8%	Celery leaves	8/8	3.8	0.5%	Yams	0.1/0.1	2.7
0.9%	Spinaches	0.2/0.2 0.1/0.1	4.5 4.4	0.7%	Turnips Salsifies	0.3/0.3	3.3 3.2	0.6%	Radishes Bovine: Fat tissue	0.3/0.3 1.5/1.5	3.2 3.1	0.5% 0.5%	Beans Celery leaves	0.4/0.4 8/8	2.6 2.6
0.9%	Kales Celery leaves	8/8	4.4	0.6%	Radishes	0.3/0.3	3.2	0.6%	Kohlrabies	0.1/0.1	3.1	0.5%	Parsnips	0.3/0.3	2.6
0.6%	Chards/beet leaves	0.2/0.2	3.1	0.6%	Parsley roots/Hamburg	0.3/0.3	3.1	0.5%	Lentils	0.4/0.4	2.7	0.5%	Lentils	0.4/0.4	2.5
0.6%	Bovine: Fat tissue Yams	1.5/1.5 0.1/0.1	3.1 3.1	0.6%	Swine: Fat tissue Gherkins	1.5/1.5 0.5/0.5	3.0 3.0	0.5%	Kales Peas	0.1/0.1	2.6 2.6	0.5% 0.5%	Medlar Goat: Muscle	0.5/0.5 1.5/1.5	2.4 2.3
0.5%	Lentils	0.4/0.4	2.7	0.6%	Yams	0.1/0.1	2.8	0.5%	Swine: Fat tissue	1.5/1.5	2.6	0.4%	Celeriacs/turnip rooted celeries	0.3/0.3	2.1
0.5%	Peas Swine: Fat tissue	0.4/0.4 1.5/1.5	2.6 2.6	0.6%	Jerusalem artichokes Beans	0.3/0.3	2.8 2.6	0.5%	Brussels sprouts Sunflower seeds	0.3/0.3	2.5 2.2	0.4%	Eggs: Goose Brussels sprouts	4/4 0.3/0.3	2.0 1.8
0.5%	Brussels sprouts	0.3/0.3	2.6	0.5%	Celery leaves	8/8	2.6	0.4%	HOPS (dried)	50/50	2.2	0.4%	Chards/beet leaves	0.2/0.2	1.8
0.5%	Onions	0.1/0.1	2.3	0.5%	Lentils	0.4/0.4	2.5	0.4%	Yams	0.1/0.1	1.9	0.3%	Soyabeans	0.3/0.3	1.7
0.4%	Sunflower seeds HOPS (dried)	0.7/0.7 50/50	2.2 2.1	0.5% 0.4%	Goat: Muscle Horseradishes	1.5/1.5 0.3/0.3	2.3 2.2	0.3%	Peas (without pods) Beans (without pods)	0.2/0.2 0.2/0.2	1.6 1.6	0.3%	Turnips Sage	0.3/0.3 8/8	1.6 1.6
0.3%	Peas (without pods)	0.2/0.2	1.6	0.4%	Sweet potatoes	0.1/0.1	2.1	0.3%	Gherkins	0.5/0.5	1.4	0.3%	Valerian root	2.5/2.5	1.5
0.3%	Beans (without pods) Gherkins	0.2/0.2	1.6 1.4	0.4%	Eggs: Goose	4/4 0.1/0.1	2.0 1.9	0.3%	Rapeseeds/canola seeds Chards/beet leaves	1/1 0.2/0.2	1.4 1.3	0.3%	Valerian root Salsifies	2.5/2.5 0.3/0.3	1.5 1.5
0.3%	Gherkins Rapeseeds/canola seeds	0.5/0.5	1.4	0.4%	Kales Brussels sprouts	0.3/0.3	1.8	0.3%	Chards/beet leaves Lentils (fresh)	0.2/0.2	1.3	0.3%	Salsities Bovine: Fat tissue	0.3/0.3	1.5 1.5
0.3%	Parsley roots/Hamburg	0.3/0.3	1.3	0.3%	Soyabeans	0.3/0.3	1.7	0.2%	Barley	0.2/0.2	1.1	0.3%	Chives	8/8	1.4
0.2%	Lentils (fresh) Barley	0.2/0.2	1.2 1.1	0.3%	Sage Valerian root	8/8 2 5/2 5	1.6 1.5	0.2%	Buckwheat and other Onions	0.2/0.2	1.00	0.3%	Radishes Peas	0.3/0.3	1.3 1.3
0.2%	Pineapples	0.01/0.01	1.0	0.3%	Valerian root	2.5/2.5	1.5	0.2%	Safflower seeds	0.3/0.3	0.92	0.3%	Parsley roots/Hamburg roots	0.3/0.3	1.3
0.2%	Buckwheat and other Safflower seeds	0.2/0.2	1.00	0.3%	Onions Bovine: Fat tissue	0.1/0.1 1.5/1.5	1.5 1.5	0.1% 0.1%	Soyabeans Pineapples	0.3/0.3 0.01/0.01	0.69	0.2% 0.2%	Kales Peas (without pods)	0.1/0.1 0.2/0.2	1.2 1.1
0.2%	Cassava roots/manioc	0.3/0.3	0.92	0.3%	Kohlrabies	0.1/0.1	1.5	0.1%	Pineappies Peanuts/groundnuts	0.01/0.01	0.58	0.2%	Sweet potatoes	0.2/0.2	1.1
0.2%	Mangoes	0.01/0.01	0.79	0.3%	Chives	8/8	1.4	0.1%	Parsley roots/Hamburg	0.3/0.3	0.58	0.2%	Barley	0.2/0.2	0.97
0.1%	Soyabeans Kiwi fruits (green, red,	0.3/0.3	0.69	0.3%	Peas Peas (without pods)	0.4/0.4	1.3 1.1	0.10%	Valerian root Valerian root	2.5/2.5	0.50	0.2%	Horseradishes Kohlrabies	0.3/0.3 0.1/0.1	0.94 0.85
0.1%	Peanuts/groundnuts	0.2/0.2	0.58	0.2%	Barley	0.2/0.2	0.97	0.10%	Thyme	8/8	0.48	0.2%	Spinaches	0.2/0.2	0.80
0.1%	Coconuts Granate	0.04/0.04	0.58	0.2%	Spinaches	0.2/0.2 8/8	0.80	0.10%	Cassava roots/manioc	0.1/0.1	0.48	0.2%	Rosemary Rosemary	8/8	0.80
0.1%	Sweet potatoes	0.1/0.1	0.55	0.2%	Rosemary Rosemary	8/8	0.80	0.09%	Mangoes Sesame seeds	0.3/0.3	0.47	0.2%	Rosemary	8/8 8/8	0.80
0.1%	Avocados	0.01/0.01	0.50	0.2%	Rosemary	8/8	0.80	0.09%	Pumpkin seeds	0.3/0.3	0.44	0.2%	Rosemary	8/8	0.80
0.10%	Valerian root Valerian root	2.5/2.5	0.50	0.2%	Rosemary Rosemary	8/8 8/8	0.80	0.08%	Kiwi fruits (green, red, Carobs/Staint John's bread	0.01/0.01	0.40	0.2%	Rosemary Beans (without pods)	8/8 0.2/0.2	0.80
0.10%	Thyme	8/8	0.48	0.2%	Beans (without pods)	0.2/0.2	0.79	0.07%	Garlic	0.1/0.1	0.35	0.1%	Sunflower seeds	0.7/0.7	0.70
0.09%	Kaki/Japanese Sesame seeds	0.01/0.01	0.47	0.1%	Sunflower seeds Buckwheat and other	0.7/0.7	0.70	0.07%	Coconuts Linseeds	0.04/0.04	0.35	0.1%	Buckwheat and other pseudo- Lentils (fresh)	0.2/0.2 0.2/0.2	0.69
0.09%	Pumpkin seeds	0.3/0.3	0.44	0.1%	Lentils (fresh)	0.2/0.2	0.66	0.06%	Mustard seeds	0.3/0.3	0.32	0.1%	Chervil	8/8	0.66
0.09%	Sweet corn	0.01/0.01	0.43	0.1%	Chervil	8/8	0.64	0.06%	Pistachios	0.05/0.05	0.29	0.1%	Onions	0.1/0.1	0.64
0.08%	Papayas Carobs/Staint John's bread	0.01/0.01 0.05/0.05	0.42	0.1%	Rapeseeds/canola seeds Pumpkin seeds	1/1 0.3/0.3	0.53	0.05%	Cultivated fungi Rosemary	0.01/0.01 8/8	0.25	0.1%	Rapeseeds/canola seeds Pumpkin seeds	1/1 0.3/0.3	0.53
0.08%	Carambolas	0.01/0.01	0.39	0.09%	Peanuts/groundnuts	0.2/0.2	0.46	0.05%	Granate	0.01/0.01	0.24	0.09%	Peanuts/groundnuts	0.2/0.2	0.46
0.07%	Celeries Rhubarbs	0.01/0.01	0.37	0.09%	Sorghum Coconuts	1.5/1.5	0.45	0.05%	Sweet potatoes Celeries	0.1/0.1	0.23	0.09%	Sorghum Poultry: Eat tissue	1.5/1.5 1/1	0.45
0.07%	Garlic	0.1/0.1	0.35	0.06%	Cassava roots/manioc	0.1/0.1	0.30	0.04%	Oat	0.2/0.2	0.22	0.05%	Kaki/Japanese persimmons	0.01/0.01	0.27
0.06%	Linseeds	0.3/0.3	0.32	0.06%	Poultry: Fat tissue	1/1 0.01/0.01	0.30	0.04%	Avocados	0.01/0.01	0.22	0.05%	Mangoes	0.01/0.01 0.05/0.05	0.23
0.06%	Mustard seeds Pistachios	0.3/0.3	0.31	0.06%	Pineapples Shallots	0.01/0.01	0.30	0.04%	Chestnuts Kaki/Japanese	0.05/0.05	0.21 0.20	0.05%	Chestnuts Poppy seeds	0.05/0.05	0.23
0.05%	Rosemary	8/8	0.24	0.05%	Mangoes	0.01/0.01	0.26	0.04%	Asparagus	0.01/0.01	0.20	0.04%	Poppy seeds	0.3/0.3	0.21
0.04%	Prickly pears/cactus fruits Oat	0.01/0.01 0.2/0.2	0.22	0.05%	Chestnuts Kaki/Japanese persimmons	0.05/0.05	0.23	0.04%	Sweet com Papayas	0.01/0.01	0.19	0.04%	Sesame seeds Coconuts	0.3/0.3 0.04/0.04	0.21 0.21
0.04%	Guavas	0.01/0.01	0.22	0.04%	Poppy seeds	0.3/0.3	0.21	0.04%	Honey and other apiculture	0.05/0.05	0.18	0.04%	Figs	0.01/0.01	0.20
0.04%	Chestnuts	0.05/0.05	0.21	0.04%	Poppy seeds	0.3/0.3	0.21	0.03%	Rhubarbs Walnuts	0.01/0.01	0.17	0.04%	Kiwi fruits (green, red, yellow)	0.01/0.01 0.1/0.1	0.19
0.04%	Asparagus Honey and other apiculture	0.01/0.01 0.05/0.05	0.19	0.04%	Sesame seeds Florence fennels	0.3/0.3	0.21 0.19	0.03%	Walnuts Carambolas	0.05/0.05	0.17	0.04%	Cassava roots/manioc Pineapples	0.1/0.1	0.18
0.03%	Cultivated fungi	0.01/0.01	0.17	0.04%	Guavas	0.01/0.01	0.18	0.03%	HazeInuts/cobnuts	0.05/0.05	0.16	0.04%	Asparagus	0.01/0.01	0.18
0.03%	Walnuts Hazelnuts/cobnuts	0.05/0.05	0.17	0.04%	Granate Carambolas	0.01/0.01	0.18	0.03%	Cocoa beans Almonds	0.05/0.05	0.16	0.03%	Borage seeds Linseeds	0.3/0.3	0.15
0.03%	Florence fennels	0.01/0.01	0.16	0.03%	Celeries	0.01/0.01	0.16	0.03%	Pecans	0.05/0.05	0.14	0.03%	Pistachios	0.05/0.05	0.13
0.03%	Cocoa beans	0.05/0.05	0.16	0.03%	Sweet corn	0.01/0.01	0.16	0.03%	Maize/com Cashew nuts	0.02/0.02	0.13	0.03%	Oat Sweet corn	0.2/0.2 0.01/0.01	0.13
0.03%	Cherimoyas Almonds	0.05/0.05	0.15	0.03%	Avocados Borage seeds	0.01/0.01 0.3/0.3	0.15 0.15	0.03%	Cashew nuts Litchis/lychees	0.05/0.05	0.13 0.12	0.03%	Sweet corn Safflower seeds	0.3/0.3	0.13 0.12
0.03%	Pecans	0.05/0.05	0.14	0.03%	Linseeds	0.3/0.3	0.14	0.02%	Poultry: Fat tissue	1/1	0.10	0.02%	Avocados	0.01/0.01	0.12
0.03%	Maize/corn Cashew nuts	0.02/0.02 0.05/0.05	0.13 0.13	0.03%	Papayas Kiwi fruits (green, red,	0.01/0.01 0.01/0.01	0.14 0.14	0.02%	Figs Prickly pears/cactus fruits	0.01/0.01 0.01/0.01	0.10 0.10	0.02%	Watercress Shallots	0.1/0.1 0.1/0.1	0.12 0.11
0.02%	Horseradishes	0.3/0.3	0.12	0.03%	Pistachios	0.05/0.05	0.13	0.02%	Guavas	0.01/0.01	0.09	0.02%	Pecans	0.05/0.05	0.11
0.02%	Litchis/lychees Fias	0.01/0.01	0.12	0.03%	Oat Safflower seeds	0.2/0.2	0.13	0.02%	Passionfruits/maracujas	0.01/0.01	0.09	0.02%	Walnuts Macadamia	0.05/0.05	0.11
0.02%	Figs Poultry: Fat tissue	1/1	0.10	0.02%	Sattlower seeds Watercress	0.1/0.1	0.12	0.02%	Cherimoyas Laurel/bay leaves	8/8	0.08	0.02%	Macadamia Granate apples/pomegranates	0.01/0.01	0.10
0.02%	Laurel/bay leaves	8/8	0.08	0.02%	Pecans	0.05/0.05	0.11	0.02%	Tea (dried leaves of	0.05/0.05	0.08	0.02%	Celeries	0.01/0.01	0.10
0.02%	Tea (dried leaves of Passionfruits/maracuias	0.05/0.05	0.08	0.02%	Figs Walnuts	0.01/0.01	0.11	0.01%	Florence fennels Horseradishes	0.01/0.01 0.3/0.3	0.07	0.02%	Cashew nuts Cocoa beans	0.05/0.05	0.09 0.08
0.01%	Ginger	0.3/0.72	0.06	0.02%	Cherimoyas	0.01/0.01	0.11	0.01%	Watercress	0.1/0.1	0.05	0.02%	Cultivated fungi	0.01/0.01	0.08
0.01%	Watercress Brazil nuts	0.1/0.1 0.05/0.05	0.05	0.02%	Macadamia Cardoons	0.05/0.05 0.01/0.01	0.11 0.10	0.01% 0.01%	Brazil nuts Fennel seed	0.05/0.05	0.04	0.02%	Florence fennels Guavas	0.01/0.01 0.01/0.01	0.08
0.01%	Brazil nuts Fennel seed	0.05/0.05	0.04	0.02%	Cardoons Prickly pears/cactus fruits	0.01/0.01	0.09	0.01%	Fennel seed Coffee beans	0.05/0.05	0.04	0.02%	Guavas Papayas	0.01/0.01	0.08
0.01%	Coffee beans	0.05/0.05	0.04	0.02%	Rhubarbs	0.01/0.01	0.09	0.01%	Table olives	0.01/0.01	0.03	0.01%	Rhubarbs	0.01/0.01	0.07
0.01%	Table olives Oil palm kernels	0.01/0.01 0.02/0.02	0.03	0.02%	Cashew nuts Cocoa beans	0.05/0.05	0.09	0.01%	Oil palm kernels Dates	0.02/0.02	0.03	0.01%	Almonds Carambolas	0.05/0.05	0.07
Expand/collapse list															
	mmodities exceeding the AF	tfD/ADI in							ommodities found exceeding	the					
children and adult o (IESTI calculation)	alets							ARfD/ADI in child (IESTI new calcula	en and adult diets tion)						

No of processed con is exceeded (IESTI):	nmodities for which ARfD/ADI			No of processed co is exceeded (IESTI)	mmodities for which ARfD/ADI			ARfD/ADI is exceed	mmodities for which led (IESTI new):			No of processed co exceeded (IESTI ne	ommodities for which ARfD/ADI is ew):		
IESTI				IESTI				IESTI new				IESTI new			
Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Expo (µg/k
20%	Escaroles/broad-leaved end	1.5/1.5	99	16%	Purslanes/boiled	20/20	82	12%	Escaroles/broad-leaved	1.5/1.5	60	16%	Purslanes/boiled	20/20	8
8%	Leeks/boiled	0.7/0.7	40	6%	Escaroles/broad-leaved	1.5/1.5	31	7%	Currants (red, black and	7/1.15	33	5%	Escaroles/broad-leaved endives/	1.5/1.5	2
8%	Peaches/canned	1/1.5	39	4%	Pumpkins/boiled	0.4/0.4	22	6%	Peaches/canned	1/1.5	29	3%	Pumpkins/boiled	0.4/0.4	
7%	Pumpkins/boiled	0.4/0.4	35	3%	Currants (red, black and	7/1.15	15	5%	Leeks/boiled	0.7/0.7	23	3%	Currants (red, black and white)/	7/1.15	1
7%	Currants (red, black and wh	7/1.15	33	3%	Wine grapes/wine	1.5/1.5	14	4%	Pumpkins/boiled	0.4/0.4	21	3%	Wine grapes/wine	1.5/1.5	
5%	Witloofs/boiled	0.3/0.3	26	2%	Leeks/boiled	0.7/0.7	12	4%	Elderberries/juice	7/1.15	18	2%	Peaches/canned	1.5/1.5	1
5%	Broccoli/boiled	0.3/0.3	24	2%	Peaches/canned	1.5/1.5	12	3%	Broccoli/boiled	0.3/0.3	14	2%	Elderberries/juice	7/1.15	1
4%	Elderberries/juice	7/1.15	18	2%	Courgettes/boiled	0.5/0.5	11	3%	Witloofs/boiled	0.3/0.3	14	2%	Leeks/boiled	0.7/0.7	g
4%	Courgettes/boiled	0.5/0.5	18	2%	Elderberries/juice	7/1.15	11	3%	Beans (with pods)/boiled	1/1	13	2%	Table grapes/raisins	1.5/7.05	8
3%	Turnips/boiled	0.3/0.3	15	2%	Table grapes/raisins	1.5/7.05	8.6	3%	Apples/juice	0.6/0.23	13	2%	Courgettes/boiled	0.5/0.5	8
3%	Parsnips/boiled	0.3/0.3	15	2%	Cauliflowers/boiled	0.2/0.2	8.3	2%	Sugar beets (root)/sugar	0.1/1.2	11	2%	Apples/juice	0.6/0.23	7
3%	Potatoes/fried	0.15/0.15	14	2%	Apples/juice	0.6/0.23	7.7	2%	Courgettes/boiled	0.5/0.5	11	1%	Witloofs/boiled	0.3/0.3	6
3%	Cauliflowers/boiled	0.2/0.2	14	1%	Broccoli/boiled	0.3/0.3	7.2	2%	Raspberries/juice	5/0.83	9.7	1%	Broccoli/boiled	0.3/0.3	6
3%	Beetroots/boiled	0.3/0.3	13	1%	Beetroots/boiled	0.3/0.3	6.6	2%	Cauliflowers/boiled	0.2/0.2	8.4	1%	Peas (with pods)/boiled	1.5/1.5	5
3%	Beans (with pods)/boiled	1/1	13	1%	Parsnips/boiled	0.3/0.3	6.4	2%	Oranges/juice	0.6/0.15	7.9	1%	Beetroots/boiled	0.3/0.3	5

Conclusion: No exceedance of the toxicological reference value was identified for any unprocessed commodity. A short term intake of residues of Fluopvram (R) is unlikely to present a public health risk. For processed commodities, no exceedance of the ARID/ADI was identified.

1	K. 2	f		LOQs (mg/kg) range	-	ulfoxaflor	to:	0.05	Details-ch	ronic risk	Supplementary	roculte_	
	*•• P	d Safety Authority				ogical reference v			assess		chronic risk ass		
				ADI (mg/kg bw per da	y):	0.04	ARfD (mg/kg bw):	0.25			·		
E	uropean Foo	d Safety Authority		Source of ADI:		Reg. (EU)	Source of ARfD:	Reg. (EU) 2015/1295	Details-a		Details-acu		
	FESA PRIMo re	vision 3.1; 2018/11/18		Year of evaluation:		2015	Year of evaluation:	2015	assessmen	t/children	assessment,	adults	
ner								I					
						Norma	I mode						
					Chronic	risk assessment		ology (IEDI/TMDI)					
				No of diets exceeding	the ADL :							Exposure	e resulting fr
												MRLs set at	t commoditi
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ	under asse (in % of
	Calculated exposur		(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		MS diet	Commodity/	(in % of ADI)	(11 /0 01
_	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
1	34%	NL toddler	13.76	21%	Milk: Cattle		3%	Apples		2%	Spinaches	0.6%	
ľ	18%	DE child	7.30	7%	Milk: Cattle		3%	Apples		3%	Oranges	0.2%	
1	18%	UK infant	7.12	14%	Milk: Cattle		1.0%	Oranges		0.6%	Rice	0.1%	
1	16%	NL child	6.60	9%	Milk: Cattle Milk: Cattle		2%	Apples		1%	Oranges	0.4%	
1	16%	FR toddler 2–3 years	6.53	10%			1%	Oranges		0.9%	Apples		
1	15%	FR child 3–15 years	6.12	8%	Milk: Cattle		3%	Oranges		0.6%	Bovine: Muscle/meat	0.3%	
1	12%	UK toddler	4.87	7%	Milk: Cattle		1%	Oranges		0.6%	Rice	0.1%	
	11%	ES child	4.28	4%	Milk: Cattle		2%	Oranges		0.6%	Lettuces	0.2%	
1	10%	SE general	4.16	4%	Milk: Cattle		2%	Bovine: Muscle/meat		0.6%	Lettuces	0.1%	
	9%	DK child	3.66	4%	Milk: Cattle		0.9%	Swine: Muscle/meat		0.7%	Apples	0.0%	
	9%	DE women 14–50 years	3.65	4%	Milk: Cattle		1%	Oranges		0.7%	Apples	0.2%	
	9%	DE general	3.52	4%	Milk: Cattle		1%	Oranges		0.7%	Apples	0.2%	
	9%	GEMS/Food G10	3.44	2%	Milk: Cattle		1%	Rice		0.9%	Oranges	0.2%	
	9%	FR infant	3.42	6%	Milk: Cattle		0.9%	Spinaches		0.5%	Apples	0.1%	
	8%	GEMS/Food G07	3.33	2%	Milk: Cattle		1%	Oranges		0.5%	Wine grapes	0.2%	
	8%	RO general	3.32	4%	Milk: Cattle		0.6%	Wine grapes		0.5%	Swine: Muscle/meat	0.1%	
	8%	GEMS/Food G11	3.14	3%	Milk: Cattle		0.6%	Oranges		0.5%	Swine: Muscle/meat	0.2%	
	8%	GEMS/Food G15	3.04	2%	Milk: Cattle		0.6%	Swine: Muscle/meat		0.5%	Oranges	0.2%	
	7%	GEMS/Food G06	2.93	2%	Rice		0.9%	Milk: Cattle		0.8%	Oranges	0.2%	
1	7%	NL general	2.89	3%	Milk: Cattle		0.8%	Oranges		0.5%	Spinaches	0.2%	
	7%	GEMS/Food G08	2.85	2%	Milk: Cattle		0.8%	Swine: Muscle/meat		0.4%	Wine grapes	0.2%	
	7%	IE adult	2.67	2%	Milk: Cattle		0.8%	Oranges		0.4%	Wine grapes	0.2%	
1	6%	ES adult	2.51	2%	Milk: Cattle		1.0%	Oranges		0.8%	Lettuces	0.1%	1
ľ	5%	FR adult	2.00	2%	Milk: Cattle		0.8%	Wine grapes		0.4%	Oranges	0.1%	
ľ	4%	DK adult	1.72	2%	Milk: Cattle		0.4%	Swine: Muscle/meat		0.3%	Wine grapes	0.0%	
1	4%	PT general	1.59	0.9%	Wine grapes		0.8%	Rice		0.5%	Oranges	0.1%	
ľ	4%	UK vegetarian	1.49	1%	Milk: Cattle		0.7%	Oranges		0.4%	Rice	0.0%	
ľ	4%	LT adult	1.44		Milk: Cattle		0.5%	Apples		0.4%	Swine: Muscle/meat	0.0%	
ľ	4%	UK adult	1.42	1%	Milk: Cattle		0.4%	Oranges		0.4%	Wine grapes	0.0%	
ľ	3%	IT toddler	1.16	0.4%	Lettuces		0.4%	Wheat		0.4%	Oranges	0.1%	
ľ	3%	FI 3 years	1.08	0.5%	Rice		0.3%	Mandarins		0.3%	Apples	0.1%	
1	3%	IT adult	1.08	0.6%	Lettuces		0.3%	Spinaches		0.3%	Oranges	0.0%	1
ľ	2%	FI 6 years	0.91	0.4%	Rice		0.2%	Mandarins		0.2%	Spinaches	0.1%	
ľ	2%	FI adult	0.91	0.7%	Coffee beans		0.3%	Oranges		0.2%	Lettuces	0.7%	
1	2%	IE child	0.85	1%	Milk: Cattle		0.3%	Rice		0.1%	Apples	0.0%	1
	2%	PL general	0.61	0.6%	Apples		0.2%	Potatoes		0.1%	Tomatoes	0.0%	1

	Details–a	cute risk assessme	nt/childr	en	Detail	s-acute risk assessn	nent/adu	lts		Hide IESTI new calci	ulations			Show IESTI new calc	ulations	
		sment is based on the ARfD. Ised on the large portion of the			p. s for all crop	_			the residue definition the results are con-	performed with the MRL and th	calculations, a	variability fact	tor of 3 is used. Since	unt the residue in the edible portion this methodology is not based or nsidered as indicative only.		
			51	low result		3			IESTI new				IESTI new			
No.	of commodities f eeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			Results for childr	s for which ARfD/ADI is			Results for adults	s for which ARfD/ADI is exceeded		
IES	ті				IESTI				IESTI new				IESTI new			
	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Expo
	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
	61% 58%	Lettuces Table grapes	4/4 2/2	152 146	29% 27%	Broccoli Table grapes	3/3 2/2	72 68	54% 37%	Spinaches Lettuces	6/6 4/4	136 91	23% 19%	Broccoli Wine grapes	3/3 2/2	58
	54%	Spinaches	6/6	136	20%	Chinese cabbages/pe-tsai	2/2	51	35%	Table grapes	2/2	88	16%	Table grapes	2/2	4
	50%	Broccoli	3/3	125	19%	Lettuces	4/4	49	30%	Broccoli	3/3	75	15%	Oranges	0.8/0.8	3
	42%	Oranges	0.8/0.8	106	19%	Wine grapes	2/2	47	21%	Oranges	0.8/0.8	53	12%	Chinese cabbages/pe-tsai	2/2	3
	30% 26%	Melons Chinese cabbages/pe-tsai	0.5/0.5 2/2	76 64	10% 10%	Oranges Spinaches	0.8/0.8 6/6	25 24	18% 15%	Melons Chinese cabbages/pe-tsai	0.5/0.5 2/2	46 39	12% 11%	Lettuces Mandarins	4/4 0.8/0.8	2
	26%	Watermelons	0.5/0.5	61	10%	Celeries	1.5/1.5	24 24	15%	Watermelons	0.5/0.5	39	10%	Spinaches	6/6	2
	22%	Celeries	1.5/1.5	56	8%	Watermelons	0.5/0.5	20	13%	Celeries	1.5/1.5	34	8%	Plums	0.5/0.5	2
	22%	Pears	0.4/0.4	55	8%	Melons	0.5/0.5	20	12%	Mandarins	0.8/0.8	30	6%	Cherries (sweet)	1.5/1.5	1
	19%	Peaches	0.5/0.5	48	7%	Head cabbages	0.4/0.4	17	11%	Peaches	0.5/0.5	27	6%	Celeries	1.5/1.5	1
	19% 17%	Mandarins Apples	0.8/0.8	47 43	6% 6%	Cherries (sweet) Mandarins	1.5/1.5 0.8/0.8	15 14	10% 10%	Milk: Cattle Apples	0.2/0.2 0.4/0.4	25 25	6% 5%	Pears Rice	0.4/0.4 1.5/1.5	1
	13%	Cucumbers	0.5/0.5	33	6%	Cucumbers	0.5/0.5	14	10%	Apricots	0.5/0.5	25	5%	Watermelons	0.5/0.5	1:
	10%	Sweet peppers/bell peppers	0.4/0.4	24	5%	Pears	0.4/0.4	12	9%	Pears	0.4/0.4	24	5%	Apples	0.4/0.4	1:
Tot chil	and/collapse list al number of co Idren and adult o STI calculation)	mmodities exceeding the Al diets	RfD/ADI in							commodities found exceeding ren and adult diets ation)	g the					
No	sults for children of processed com xceeded (IESTI):	nmodities for which ARfD/ADI			Results for adults No of processed co is exceeded (IEST)	mmodities for which ARfD/ADI			Results for childr No of processed or ARfD/ADI is exceed	ommodities for which			Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is		
IES	ті				IESTI				IESTI new				IESTI new			
			MRL/input	-			MRL/input	-			MRL/input	-			MRL/input	-
1	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Expo (µg/kj
	95%	Broccoli/boiled	3/3	236	29%	Broccoli/boiled	3/3	72	57%	Broccoli/boiled	3/3	142	24%	Broccoli/boiled	3/3	(pg/k) 6
	33%	Spinaches/frozen; boiled	6/6	83	20%	Celeries/boiled	1.5/1.5	51	33%	Spinaches/frozen; boiled	6/6	83	20%	Spinaches/frozen; boiled	6/6	5
	18%	Pumpkins/boiled	0.5/0.5	44	20%	Spinaches/frozen; boiled	6/6	50	11%	Pumpkins/boiled	0.5/0.5	27	12%	Celeries/boiled	1.5/1.5	3
	7% 6%	Courgettes/boiled Oranges/juice	0.5/0.5	18 16	11% 8%	Pumpkins/boiled Wine grapes/wine	0.5/0.5 2/2	28 19	6% 4%	Oranges/juice Courgettes/boiled	0.8/0.3	16 11	8% 8%	Pumpkins/boiled Wine grapes/wine	0.5/0.5 2/2	2
	5%	Peaches/canned	1/0.5	10	5%	Table grapes/vine	2/2 2/9.4	19	4%	Peaches/canned	1/0.5	9.7	5%	Table grapes/raisins	2/9.4	1
	5%	Gherkins/pickled	0.5/0.5	11	5%	Courgettes/boiled	0.5/0.5	11	2%	Wine grapes/juice	2/0.14	6.1	3%	Courgettes/boiled	0.5/0.5	8
	2%	Wine grapes/juice	2/0.14	6.1	2%	Oranges/juice	0.8/0.3	4.6	2%	Apples/juice	0.4/0.11	6.1	2%	Oranges/juice	0.8/0.3	4.
	2% 1%	Apples/juice Pears/juice	0.4/0.11 0.4/0.11	6.1 3.6	2% 1%	Peaches/canned Apples/juice	0.5/0.5 0.4/0.11	4.0 3.7	2% 1%	Gherkins/pickled Pears/juice	0.5/0.5 0.4/0.11	4.9 3.6	2% 1%	Peaches/canned Apples/juice	0.5/0.5 0.4/0.11	4. 3.
	1%	Pears/juice Potatoes/fried	0.4/0.11	2.8	1%	Apples/juice Wine grapes/juice	2/0.14	2.9	1.0%	Peaches/juice	0.4/0.11	2.5	1%	Wine grapes/juice	2/0.14	2.
	1%	Cauliflowers/boiled	0.04/0.04	2.8	0.7%	Cauliflowers/boiled	0.04/0.04	1.7	1.0%	Rice/milling (polishing)	1.5/0.16	2.4	0.7%	Grape leaves/canned	2/2	1.
	1.0%	Peaches/juice	0.5/0.15	2.5	0.7%	Grape leaves/canned	2/2	1.7	0.7%	Cauliflowers/boiled	0.04/0.04	1.7	0.6%	Rice/milling (polishing)	1.5/0.16	1.
1	1.0% 0.6%	Rice/milling (polishing) Turnips/boiled	1.5/0.16 0.03/0.03	2.4 1.5	0.6%	Rice/milling (polishing) Head cabbages/canned	1.5/0.16 0.4/0.1	1.5 0.93	0.5%	Potatoes/fried Tomatoes/juice	0.03/0.03	1.3 1.2	0.4%	Cauliflowers/boiled	0.04/0.04 0.4/0.1	1.0
	0.6% and/collapse list	rumps/bolled	0.03/0.03	1.5	0.4%	mead cabbages/canned	U.4/U.1	0.93	0.5%	romatoes/juice	0.3/0.00	1.2	0.4%	Head cabbages/canned	0.4/0.1	0.
Exp																
Exp																
	nclusion:															

4	× *	r			Chlorfer		F)						
	*	fsa		LOQs (mg/kg) range	rom: Toxicological r	0.01	to:	0.05	Details-ch		Supplementary		
	C	i Ja 🖸		ADI (mg/kg bw per da	•	0.015	ARfD (mg/kg bw):	0.015	assess	sment	chronic risk ass	sessment	
F		d Safety Authority			y)-				Details-a	cute risk	Details-acu	te risk	
_				Source of ADI:		ECCO	Source of ARfD:	ECCO	assessmen	t/children	assessment	/adults	
_		vision 3.1; 2018/11/18		Year of evaluation:		1999	Year of evaluation:	1999					, <u> </u>
en	its:												
						Norma	<u>l mode</u>						
					Chronic risk as	sessment	: JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :							Exposure	e resulting f
٦												MRLs set at	t commoditi
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ (in % of	under asse (in % of
	Calculated exposure (% of ADI)	e MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ aroup of commodities		MS diet (in % of ADI)	Commodity/ group of commodities	ADI)	1
+	(% of ADI) 28%	NL toddler	4,16	(IN % OF ADT) 17%	group or commodities Milk: Cattle		(in % of ADI) 2%	Bovine: Muscle/meat		(in % or ADI) 1%	Swine: Muscle/meat	5%	+
	20%	UK infant	3.06	11%	Milk: Cattle		5%	Tea (dried leaves of Camellia sinensi	5)	2%	Bovine: Muscle/meat	1%	
	19%	IE adult	2.80	11%	Tea (dried leaves of Camellia sinensis)		2%	Other farmed animals: Muscle/meat	-,	1%	Milk: Cattle	2%	
	18%	FR child 3-15 years	2.64	6%	Milk: Cattle		2%	Bovine: Muscle/meat		2%	Swine: Muscle/meat	2%	
	17%	FR adult	2.55	11%	Tea (dried leaves of Camellia sinensis)		1%	Milk: Cattle		1.0%	Swine: Muscle/meat	1%	
	16%	NL child	2.38	7%	Milk: Cattle		2%	Swine: Muscle/meat		1%	Bovine: Muscle/meat	3%	
	15%	FR toddler 2–3 years	2.29	8%	Milk: Cattle		2%	Bovine: Muscle/meat		2%	Swine: Muscle/meat	2%	
	14%	GEMS/Food G07	2.06	4%	Tea (dried leaves of Camellia sinensis)		2%	Milk: Cattle		2%	Swine: Muscle/meat	2%	
	14%	GEMS/Food G11	2.06	3%	Tea (dried leaves of Camellia sinensis)		2%	Milk: Cattle		2%	Swine: Muscle/meat	2%	
	13%	UK toddler	1.96	6%	Milk: Cattle		2%	Tea (dried leaves of Camellia sinensi		2%	Bovine: Muscle/meat	1%	
	13%	GEMS/Food G08	1.91	3%	Swine: Muscle/meat		2%	Tea (dried leaves of Camellia sinensi	5)	2%	Milk: Cattle	2%	
	12%	SE general	1.81	6%	Bovine: Muscle/meat		4%	Milk: Cattle		0.4%	Wheat	1%	
	12%	DK child	1.80	4%	Milk: Cattle Swine: Muscle/meat		3%	Swine: Muscle/meat Milk: Cattle		2%	Bovine: Muscle/meat Swine: Fat tissue	2%	
	12% 12%	GEMS/Food G15 DE child	1.78 1.73	2% 6%	Swine: Muscle/meat Milk: Cattle		2% 0.9%	Swine: Muscle/meat		2% 0.8%	Swine: Fat tissue Apples	2% 3%	
	12%	ES child	1.73	4%	Milk: Cattle		2%	Bovine: Muscle/meat		2%	Swine: Muscle/meat	1%	
	11%	GEMS/Food G10	1.67	2%	Tea (dried leaves of Camellia sinensis)		2%	Milk: Cattle		1%	Bovine: Muscle/meat	2%	
	11%	DE general	1.66	3%	Milk: Cattle		2%	Tea (dried leaves of Camellia sinensi	2)	2%	Swine: Muscle/meat	1%	
	11%	GEMS/Food G06	1.59	4%	Tea (dried leaves of Camellia sinensis)		2%	Tomatoes	.)	1.0%	Wheat	2%	
	10%	DE women 14-50 years	1.57	4%	Milk: Cattle		2%	Tea (dried leaves of Camellia sinensi	5)	1%	Swine: Muscle/meat	1%	
l	10%	NL general	1.49	3%	Tea (dried leaves of Camellia sinensis)		2%	Milk: Cattle		1%	Swine: Muscle/meat	1%	1
	9%	RO general	1.30	3%	Milk: Cattle		2%	Swine: Muscle/meat		0.8%	Tomatoes	2%	1
	7%	UK adult	1.11	4%	Tea (dried leaves of Camellia sinensis)		1.0%	Bovine: Muscle/meat		0.8%	Milk: Cattle	0.6%	1
l	7%	DK adult	1.10	1%	Milk: Cattle		1%	Swine: Fat tissue		1%	Swine: Muscle/meat	0.6%	1
ļ	7%	FR infant	1.07	5%	Milk: Cattle		0.5%	Swine: Muscle/meat		0.5%	Bovine: Muscle/meat	0.7%	
ļ	6%	ES adult	0.94	1%	Milk: Cattle		1%	Bovine: Muscle/meat		1%	Swine: Muscle/meat	0.9%	
l	6%	UK vegetarian	0.94	4%	Tea (dried leaves of Camellia sinensis)		0.9%	Milk: Cattle		0.3%	Wheat	0.7%	1
	5%	LT adult	0.76	1%	Swine: Muscle/meat Milk: Cattle		1%	Milk: Cattle Swine: Fat tissue		0.9%	Swine: Fat tissue	0.6%	1
	3% 3%	IE child Fl adult	0.43	1% 2%	Milk: Cattle Coffee beans		0.9%	Swine: Fat tissue Tomatoes		0.3%	Swine: Muscle/meat Rve	0.3%	1
	3% 2%	FI adult IT toddler	0.40	2%	Wheat		0.2%	Tomatoes		0.1%	Rye Other cereals	2%	1
l	2%	PT general	0.33	0.9%	Wheat		0.6%	Tomatoes		0.2%	Other cereals Potatoes	1%	1
	2%	FI 3 years	0.33	0.3%	Potatoes		0.2%	Tomatoes		0.2%	Wheat	1%	1
	2%	IT adult	0.23	0.6%	Wheat		0.5%	Tomatoes		0.1%	Other cereals	1%	
ļ	1%	FI 6 years	0.20	0.3%	Potatoes		0.2%	Tomatoes		0.1%	Wheat	0.8%	
	1%	PL general	0.15	0.4%	Tomatoes		0.2%	Potatoes		0.1%	Apples	0.4%	1

Deta	Acute risk assessment		en		s-acute risk assessm				cute risk assessmen lide IESTI new calc				sk assessment/adults/ger Show IESTI new calcu		
The acute ris	k assessment is based on the ARID. on is based on the large portion of the							IESTI new calcula The calculation is p the residue definition the results are cons	tions: erformed with the MRL and th	he peeling/proc 3 calculations, a	a variability fac	tor of 3 is used. Since	unt the residue in the edible portion a ce this methodology is not based on	nd/or the convers	sion facto greed prin
	Sho	w result	of IESTI	calculation for	or all crops				lology is not based on lines	nationally agr	ee principies	, the results are con	isidered as indicative only.		
Results for No. of comm exceeded (IE	odities for which ARfD/ADI is		1	Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childr No. of commodities exceeded (IESTI ne	for which ARfD/ADI is		2	IESTI new Results for adults No. of commodities (IESTI new):	s for which ARfD/ADI is exceeded		
IESTI				IESTI				IESTI new				IESTI new			
Highest ARfD/A		MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Expo (µg/k
122%		60/11.99	18	40%	Tea (dried leaves of	60/11.99	6.0	716%	Tea (dried leaves of	60/70.2	107	234%	Tea (dried leaves of Camellia	60/70.2	3
74% 60%		0.4/0.19	11 8.9	20% 16%	Tomatoes Sweet peppers/bell peppers	0.4/0.19 0.3/0.15	3.0 2.4	243% 81%	Melons Tomatoes	0.4/0.4	36 12	63% 51%	Melons Tomatoes	0.4/0.4	9
49%	Papayas	0.3/0.17	7.3	16%	Papayas	0.3/0.17	2.4	62%	Milk: Cattle	0.03/0.08	9.3	22%	Papayas	0.3/0.43	3
35% 29%		0.03/0.04 0.05/0.54	5.3 4.4	14% 14%	Bovine: Liver Swine: Fat tissue	0.05/0.54 0.6/1	2.2 2.0	52% 51%	Papayas Sweet peppers/bell	0.3/0.43 0.3/0.3	7.9 7.7	19% 14%	Milk: Cattle Sweet peppers/bell peppers	0.03/0.08 0.3/0.3	2
26%		0.05/0.54	3.9	12%	Bovine: Edible offals (other	0.05/0.54	1.8	16%	Oranges	1.5/0.04	2.5	14%	Oranges	1.5/0.04	1
19%		1.5/0.02	2.8	12%	Swine: Other products	0.05/0.54	1.8	14%	Kumquats	0.8/1.15	2.1	9%	Milk: Goat	0.03/0.08	1
18% 14%		#VALUE! 0.6/1	2.7 2.1	11% 10%	Milk: Cattle Sheep: Liver	0.03/0.04 0.05/0.54	1.6 1.5	12% 10%	Milk: Goat Swine: Muscle/meat	0.03/0.08 #VALUE!	1.8 1.5	8% 8%	Swine: Fat tissue Milk: Sheep	0.6/0.6	1
12%		0.05/0.48	1.8	9%	Swine: Edible offals (other	0.05/0.54	1.4	8%	Bovine: Fat tissue	0.6/0.6	1.2	5%	Bovine: Muscle	#VALUE!	0.
11%		0.6/1	1.7	8%	Bovine: Muscle	#VALUE!	1.3 1.1	7% 6%	Swine: Fat tissue Bovine: Muscle/meat	0.6/0.6 #VALUE!	1.0 0.87	4% 4%	Bovine: Fat tissue Swine: Muscle/meat	0.6/0.6	0.
11% 11%		0.05/0.54 #VALUE!	1.6 1.6	7% 7%	Bovine: Other products Swine: Muscle/meat	0.05/0.54 #VALUE!	1.1	5%	Bovine: Muscle/meat Watermelons	#VALUE! 0.01/0.01	0.87	4%	Swine: Muscle/meat Equine: Muscle/meat	#VALUE! #VALUE!	0. 0.
10% Expand/colla		0.01/0.01	1.5	7%	Equine: Muscle/meat	#VALUE!	1.1	5%	Equine: Muscle/meat	#VALUE!	0.72	4%	Sheep: Muscle/meat	#VALUE!	0.
	er of commodities exceeding the A d adult diets	RfD/ADI in	1						ommodities found exceedir ren and adult diets ation)	ng the	2				
Results for No of proces is exceeded	sed commodities for which ARfD/ADI		1	Results for adults No of processed co is exceeded (IESTI)	mmodities for which ARfD/ADI			Results for childre No of processed co ARfD/ADI is exceed	mmodities for which		1	Results for adults No of processed co exceeded (IESTI ne	ommodities for which ARfD/ADI is		
IESTI				IESTI				IESTI new				IESTI new			
Highest	% of	MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Expo
ARfD/A	ADI Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/k
2239		1.5/0.63 60/0.12	33 4.2	64% 16%	Oranges/juice Tea (dried leaves of	1.5/0.63 60/0.12	9.6 2.4	223% 28%	Oranges/juice Tea (dried leaves of	1.5/0.63 60/0.12	33 4.2	64% 16%	Oranges/juice Tea (dried leaves of Camellia	1.5/0.63 60/0.12	9
8%	Tomatoes/juice	0.4/0.07	4.2	4%	Pumpkins/boiled	0.01/0.01	0.55	8%	Tomatoes/juice	0.4/0.07	4.2	4%	Tomatoes/sauce/puree	0.4/0.07	0.
7%		0.01/0.12	1.1	4%	Tomatoes/sauce/puree	0.4/0.07	0.53	7%	Sugar beets (root)/sugar	0.01/0.12	1.1	3%	Sugar beets (root)/sugar	0.01/0.12	0.
6% 6%	Potatoes/fried Pumpkins/boiled	0.01/0.01 0.01/0.01	0.93	3% 3%	Sugar beets (root)/sugar Lemons/juice	0.01/0.12 0.8/0.23	0.44	5% 4%	Lemons/jam Tomatoes/sauce/puree	0.8/0.23	0.70	3% 3%	Lemons/juice Pumpkins/boiled	0.8/0.23 0.01/0.01	0. 0.
6%	Witloofs/boiled	0.01/0.01	0.87	3%	Cauliflowers/boiled	0.01/0.01	0.42	4%	Potatoes/dried (flakes)	0.01/0.05	0.59	2%	Apples/juice	0.01/0.01	0.
		0.01/0.01 0.8/0.23	0.79	2% 2%	Celeries/boiled Apples/juice	0.01/0.01	0.34	4% 4%	Apples/juice Pumpkins/boiled	0.01/0.01 0.01/0.01	0.54	2% 2%	Maize/oil Cauliflowers/boiled	0.02/0.5	0. 0.
5%		0.01/0.01	0.70	2%	Maize/oil	0.02/0.5	0.35	3%	Broccoli/boiled	0.01/0.01	0.33	2%	Coffee beans/extraction	0.05/0.01	0.
		0.01/0.01	0.66	2%	Broccoli/boiled	0.01/0.01	0.24	3%	Witloofs/boiled	0.01/0.01	0.47	1%	Witloofs/boiled	0.01/0.01	0.
5% 5% 5% 4%		0.4/0.07		2%	Coffee beans/extraction	0.05/0.01	0.24	3% 3%	Maize/oil Potatoes/fried	0.02/0.5	0.47 0.44	1%	Wine grapes/juice Celeries/boiled	0.01/0.01 0.01/0.01	0. 0.
5% 5% 5%	Tomatoes/sauce/puree	0.4/0.07	0.59	2%	Courgettes/boiled	0.01/0.01									
5% 5% 4% 4% 4%	Tomatoes/sauce/puree Potatoes/dried (flakes) Leeks/boiled	0.01/0.05 0.01/0.01	0.59 0.57	2% 1%	Beetroots/boiled	0.01/0.01	0.22	3%	Wine grapes/juice	0.01/0.01	0.44	1%	Broccoli/boiled	0.01/0.01	0.
5% 5% 4% 4% 4%	Tomatoes/sauce/puree Potatoes/dried (flakes) Leeks/boiled Apples/juice	0.01/0.05	0.59	2%						0.01/0.01 0.01/0.01	0.44 0.42	1% 1%			0. 0.

EFSA Journal

	× 0	fsao		LOQs (mg/kg) range		0.01	to:	1.00	Details-ch		Supplementary		
	**E					ogical reference v			assess	sment	chronic risk ass	essment	
	uranan Faa	d Safety Authority		ADI (mg/kg bw per d	ay):	0.02	ARfD (mg/kg bw):	0.25	Details-a	cute risk	Details-acut	e risk	
	uropean root	a Safety Authority		Source of ADI:		EFSA 12	Source of ARfD:	EFSA 12	assessmen		assessment/		
		vision 3.1; 2018/11/18		Year of evaluation:		2012	Year of evaluation:	2012	assessmen			adales)
me	nts:												
						Norma	<u>Il mode</u>						
					Chronic	c risk assessment	: JMPR methodo	ology (IEDI/TMDI)					
				No of diets exceeding	g the ADI :							Exposure	e resulting fr
												MRLs set al	t commoditi under asse
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ (in % of	(in % of /
	Calculated exposure (% of ADI)	e MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ group of commodities	ADI)	
-	89%	NL toddler	17.83	16%	Apples		8%	Wheat		7%	Pears	0.5%	
	66%	DE child	13.26	19%	Apples		8%	Wheat		7%	Oranges	0.1%	
	60%	GEMS/Food G06	12.08	14%	Wheat		11%	Tomatoes		7%	Rice	0.1%	
	56%	NL child	11.23	9%	Apples		8%	Wheat		6%	Sugar beet roots	0.1%	
	52%	GEMS/Food G10	10.33	8%	Wheat		6%	Barley		5%	Rice	0.1%	
	51%	GEMS/Food G08	10.19	9%	Barley		8%	Wheat		3%	Tomatoes	0.1%	
	50% 49%	GEMS/Food G07 GEMS/Food G15	9.90 9.86	8% 9%	Wheat Wheat		6% 8%	Barley Barley		3% 4%	Wine grapes Tomatoes	0.1%	
	49%	GEMS/Food G11	9.64	8%	Barley		7%	Wheat		3%	Soyabeans	0.1%	
	43%	FR child 3–15 years	8.63	9%	Wheat		6%	Oranges		3%	Sugar beet roots	0.1%	
	42%	DK child	8.30	11%	Rye		9%	Wheat		4%	Oat	0.0%	
	40%	RO general	8.06	10%	Wheat		6%	Tomatoes		4%	Wine grapes	0.1%	
	39%	IE adult	7.83	5%	Wheat		3%	Wine grapes		2%	Peaches	0.1%	
	36%	FR toddler 2–3 years	7.25	6%	Wheat		5%	Apples		3%	Milk: Cattle	0.1%	
	34%	PT general	6.79	8%	Wheat		6%	Wine grapes		3%	Rice	0.0%	
	34%	DE general	6.72	5%	Barley		4%	Wheat		4%	Apples	0.0%	
	33%	SE general	6.54	6%	Wheat		4%	Chinese cabbages/pe-tsai		2%	Tomatoes	0.0%	
	33%	DE women 14-50 years	6.51	4%	Wheat		4%	Apples		3%	Sugar beet roots	0.1%	
	32% 31%	UK toddler IT toddler	6.39 6.12	8% 13%	Wheat		3% 4%	Oranges Tomatoes		3% 3%	Apples Peaches	0.0%	
	31%	NL general	6.12	4%	Wheat		4%	Barley		2%		0.1%	
	30%	ES child	6.07	4% 9%	Wheat		4%	Oranges		3%	Apples Tomatoes	0.0%	
	30%	UK infant	5.91	5%	Wheat		4%	Milk: Cattle		3%	Rice	0.1%	
	28%	FI 3 years	5.51	6%	Oat		2%	Rice		2%	Wheat	0.0%	
	26%	ES adult	5.18	5%	Barley		5%	Wheat		2%	Tomatoes	0.1%	
	24%	IT adult	4.87	8%	Wheat		3%	Tomatoes		3%	Peaches	0.0%	
	23%	FR adult	4.69	5%	Wine grapes		4%	Wheat		1%	Tomatoes	0.0%	
	21%	FI 6 years	4.17	3%	Oat		2%	Wheat		2%	Potatoes	0.0%	
	19%	UK vegetarian	3.71	4%	Wheat		2%	Wine grapes		2%	Tomatoes	0.0%	
	16% 16%	LT adult FR infant	3.23	3%	Apples		2% 2%	Rye Milk: Cattle		2% 2%	Wheat Wheat	0.0%	
	16% 15%	FR infant UK adult	3.21 3.06	3% 3%	Apples Wheat		2%	Milk: Cattle Wine grapes		2%	Wheat Rice	0.0%	
	15%	DK adult	2.96	2%	Wheat		2%	Wine grapes		2%	Tomatoes	0.0%	
	13%	Fl adult	2.62	2%	Tomatoes		1%	Rye		1%	Oat	0.0%	
	13%	PL general	2.51	3%	Apples		3%	Tomatoes		2%	Potatoes	0.0%	
	7%	IE child	1.31	2%	Wheat		1%	Rice		0.5%	Apples	0.0%	1

						ute risk assessment/adults/general population				Acute risk assessment/children				Acute risk assessment/adults/general population			
De	tails–acute r	isk assessmer	nt/childr	en	Detail	s–acute risk assessm	ient/adu	lts	L +	lide IESTI new calcu	ulations			Show IESTI new calcul	ations		
		based on the ARfD. In large portion of the			s for all crops				the residue definition the results are const	erformed with the MRL and the	calculations,	a variability fac	tor of 3 is used. Since	unt the residue in the edible portion ar ce this methodology is not based on in nsidered as indicative only.			
				owresult		•			IESTI new				IESTI new				
	or children modities for which (IESTI):	ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			Results for childre	for which ARfD/ADI is			Results for adults	s for which ARfD/ADI is exceeded			
IESTI					IESTI				IESTI new				IESTI new				
Highes	st % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposu	
ARfD	D/ADI Comm		(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg l	
88	3% Table g 7% Celerie		3/3 9/5.15	219 193	41% 41%	Table grapes Chinese cabbages/pe-tsai	3/3 4/4	102 101	81% 79%	Celeries Witloofs/Belgian endives	9/9 6/6	202 199	35% 33%	Celeries Bananas	9/9 3/3	86 84	
	7% Celerie 7% Rhubai		9/5.15	193	38%	Florence fennels	4/4 9/5.15	96	74%	Bananas	3/3	199	30%	Witloofs/Belgian endives	6/6	76	
62	2% Banana	as	3/1.6	155	33%	Celeries	9/5.15	82	62%	Rhubarbs	9/9	155	29%	Florence fennels	9/9	72	
		s/Belgian endives	6/3.7	147	28%	Wine grapes	3/3	71	53%	Table grapes	3/3	131	28%	Wine grapes	3/3	71	
	7% Peache 1% Chines	e cabbages/pe-tsai	1.5/1.5 4/4	143 129	27% 23%	Witloofs/Belgian endives Chards/beet leaves	6/3.7 3/3	68 57	39% 37%	Escaroles/broad-leaved Lettuces	4/4 4/4	96 91	26% 26%	Rhubarbs Blueberries	9/9 7/7	66 64	
	% Crimes)% Pears	e cabbages/pe-isai	0.9/0.9	125	23%	Cardoons	9/5.15	53	32%	Peaches	1.5/1.5	81	24%	Table grapes	3/3	61	
	% Apples		0.9/0.9	97	19%	Rhubarbs	9/5.15	48	31%	Chinese cabbages/pe-tsai	4/4	77	24%	Chinese cabbages/pe-tsai	4/4	61	
		æ fennels	9/5.15	84	15%	Escaroles/broad-leaved	4/1.8	36	27%	Spinaches	3/3	68	24%	Escaroles/broad-leaved endives	4/4	59	
31		is les/broad-leaved	1/0.58 4/1.8	77 72	14% 14%	Blueberries Bananas	7/3.77 3/1.6	34 34	27% 26%	Oranges Strawberries	1/1 4/4	67 65	23% 19%	Plums Oranges	1.5/1.5 1/1	59 47	
23			4/1.8	69	12%	Broccoli	2/1.27	30	25%	Rice	4/4 5/5	63	17%	Rice	5/5	47	
	7% Spinac		3/3	68	11%	Peaches	1.5/1.5	28	25%	Florence fennels	9/9	63	16%	Cardoons	9/9	40	
25 Expand/co			1.5/1.5	63	11%	Pears	0.9/0.9	27	22%	Apples	0.9/0.9	55	15%	Broccoli	2/2	39	
Total num	ber of commodition	es exceeding the AR	tfD/ADI in						Total number of c ARfD/ADI in child (IESTI new calcula		g the						
Results fo	r children				Results for adults				Results for childre	an			Results for adults	i			
		for which ARfD/ADI			No of processed co is exceeded (IESTI)	mmodities for which ARfD/ADI				mmodities for which				mmodities for which ARfD/ADI is			
is exceede	d (IESTI):								ARfD/ADI is exceed	ied (IESTI new):			exceeded (IESTI ne	ew):			
IESTI			MRL/input		IESTI		MRL/input		IESTI new		MRL/input		IESTI new		MRL/input		
Highes	st % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Exposu	
		sed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg l	
		s/boiled ce fennels/boiled	6/3.7 9/5.15	323 233	70% 40%	Celeries/boiled Florence fennels/boiled	9/5.15 9/5.15	174 100	70% 56%	Witloofs/boiled Florence fennels/boiled	6/3.7 9/5.15	175 140	42% 40%	Celeries/boiled Rhubarbs/sauce/puree	9/5.15 9/5.15	104 100	
		bs/sauce/puree	9/5.15	233	30%	Rhubarbs/sauce/puree	9/5.15	75	50%	Rhubarbs/sauce/puree	9/5.15	140	32%	Witloofs/boiled	6/3.7	80	
48	3% Escaro	les/broad-leaved end	4/1.8	119	27%	Witloofs/boiled	6/3.7	68	29%	Escaroles/broad-leaved	4/1.8	72	25%	Florence fennels/boiled	9/5.15	64	
		li/boiled	2/1.27	100	25%	Cardoons/boiled	9/5.15	63	24%	Broccoli/boiled	2/1.27	60 42	19%	Cardoons/boiled	9/5.15	47	
		/beet leaves/boiled hes/frozen: boiled	3/3 3/3	93 42	15% 15%	Chards/beet leaves/boiled Escaroles/broad-leaved	3/3 4/1.8	38 37	17% 16%	Spinaches/frozen; boiled Chards/beet leaves/boiled	3/3 3/3	42 40	11% 11%	Wine grapes/wine Escaroles/broad-leaved endives/	3/3 4/1.8	28 28	
		es/canned	1/1.5	39	12%	Broccoli/boiled	2/1.27	31	12%	Peaches/canned	1/1.5	29	11%	Chards/beet leaves/boiled	3/3	26	
	1% Leeks/t		0.6/0.6	34	11%	Wine grapes/wine	3/3	28	10%	Beans (with pods)/boiled	2/2	25	10%	Broccoli/boiled	2/1.27	25	
		(with pods)/boiled ss/iuice	2/2 1.5/1.5	25 25	10% 7%	Spinaches/frozen; boiled Table grapes/raisins	3/3 3/14.1	25 17	10% 8%	Peaches/juice Wine grapes/juice	1.5/1.5 3/0.47	25 21	10%	Spinaches/frozen; boiled Table grapes/raisins	3/3 3/14.1	25 17	
8		rapes/juice	1.5/1.5 3/0.47	25 21	6%	Table grapes/raisins Barlev/beer	3/14.1 2/0.4	17	8%	Wine grapes/juice Leeks/boiled	3/0.47	21	6%	l able grapes/raisins Barlev/beer	3/14.1 2/0.4	17	
7	% Orange	s/juice	1/0.33	17	5%	Purslanes/boiled	3/3	12	7%	Oranges/juice	1/0.33	17	5%	Purslanes/boiled	3/3	12	
		beets (root)/sugar	0.15/1.8	17	5%	Peaches/canned	1.5/1.5	12	7%	Sugar beets (root)/sugar	0.15/1.8	17	5%	Peaches/canned	1.5/1.5	12	
6 Expand/co	% Apples Ilapse list	juice	0.9/0.3	16	4%	Leeks/boiled	0.6/0.6	10	6%	Apples/juice	0.9/0.3	16	4%	Apples/juice	0.9/0.3	10.	
Conclusio		gical reference value	was identified	for any unproc	essed commodity												

	*	-			Benz	ovindiflu	ovr			inpu	t values		
	5 🔔	1		LOQs (mg/kg) range		0.01	to:	0.05	Details-ch	ronic risk	Supplementary	results-	
	** P	fsa			Toxicolog	ical reference	/alues		assess	ment	chronic risk as		
				ADI (mg/kg bw per da	ay):	0.05	ARfD (mg/kg bw):	0.1				$ \longrightarrow $	
E	uropean Foo	d Safety Authority		Source of ADI:		EC	Source of ARfD:	EC	Details–a		Details-acu		
	EFSA PRIMo re	vision 3.1; 2018/11/18		Year of evaluation:		2015	Year of evaluation:	2015	assessmen	t/children	assessment,	adults	
nen								ł.					
						Norm	al mode						
					Chronic r			ology (IEDI/TMDI)					
						13K 833633111611	. Swirt Method						
				No of diets exceeding	the ADI :	-	-			1		MRLs set at	commoditie
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ	under asse (in % of
	Calculated exposur		(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		MS diet	Commodity/	(in % of ADI)	(11 /0 01
-	(% of ADI) 16%	MS Diet NL toddler	day) 7.92	(in % of ADI) 4%	group of commodities Apples		(in % of ADI) 3%	group of commodities Table grapes		(in % of ADI) 2%	group of commodities Tomatoes	2%	0.0
	13%	GEMS/Food G06	6.74	4 % 6%	Tomatoes		2%	Table grapes		1%	Wheat	0.3%	0.0
	13%	DE child	6.55	5%	Apples		3%	Table grapes		2%	Tomatoes	0.8%	0.0
	11%	GEMS/Food G15	5.63	2%	Barley		2%	Tomatoes		2%	Wine grapes	0.4%	0.0
	11%	GEMS/Food G08	5.59	3%	Barley		2%	Wine grapes		2%	Tomatoes	0.4%	0.0
	11%	GEMS/Food G08	5.39	3%	Wine grapes		2%	Tomatoes		2%	Barley	0.4%	0.0
	11%	RO general	5.38	3%	Tomatoes		3%	Wine grapes		1%	Wheat	0.4%	0.0
	10%	GEMS/Food G11	5.18	2%	Barley		2%	Wine grapes		2%	Tomatoes	0.4%	0.0
	9%	PT general	4.74	2%	Barley Wine grapes		2%	Tomatoes		0.8%	Wheat	0.4%	0.0
	9%	GEMS/Food G10	4.74	2%	Tomatoes		2%	Barley		0.8%	Wine grapes	0.1%	0.0
	9% 8%	NL child	4.52								Tomatoes	1.0%	0.0
				2% 2%	Apples		2% 2%	Table grapes		1% 1%			
	8%	DE general	3.87		Wine grapes			Barley			Tomatoes	0.5%	0.0
	7%	DE women 14-50 years	3.59	2%	Wine grapes		1%	Tomatoes		1%	Apples	0.5%	0.0
	7%	FR adult	3.58	5%	Wine grapes		0.8%	Tomatoes		0.4%	Wheat	0.2%	0.0
	7%	DK child	3.49	1%	Oat		1%	Rye		1.0%	Tomatoes	0.4%	0.0
	7%	IE adult	3.47	3%	Wine grapes		0.7%	Tomatoes		0.5%	Oat	0.4%	0.0
	6%	FR child 3–15 years	3.05	2%	Tomatoes		0.9%	Wheat		0.7%	Wine grapes	0.9%	0.0
	5%	ES adult	2.73	1%	Barley		1%	Tomatoes		0.8%	Wine grapes	0.3%	0.0
	5%	NL general	2.69	1%	Wine grapes		0.9%	Barley		0.8%	Tomatoes	0.4%	0.0
	5%	IT toddler	2.56	3%	Tomatoes		1%	Wheat		0.4%	Apples	0.1%	0.0
	5%	FI 3 years	2.48	2%	Oat		1%	Tomatoes		0.5%	Table grapes	0.1%	0.0
	5%	FR toddler 2–3 years	2.33	1%	Apples		0.9%	Tomatoes		0.6%	Wheat	0.9%	0.0
	5%	FI adult	2.32	2%	Coffee beans		1%	Tomatoes		0.6%	Wine grapes	0.1%	0.0
	5%	DK adult	2.29	2%	Wine grapes		0.9%	Tomatoes		0.4%	Apples	0.2%	0.0
	4%	ES child	2.18	2%	Tomatoes		0.9%	Wheat		0.5%	Apples	0.5%	0.0
	4%	UK toddler	2.14	1%	Tomatoes		0.8%	Wheat		0.7%	Apples	0.7%	0.0
	4%	UK vegetarian	2.13	2%	Wine grapes		1%	Tomatoes		0.4%	Wheat	0.2%	0.0
	4%	IT adult	2.06	2%	Tomatoes		0.8%	Wheat		0.3%	Apples	0.1%	0.0
	4%	UK infant	2.03	0.8%	Milk: Cattle		0.8%	Oat		0.7%	Tomatoes	1%	0.0
	4%	UK adult	2.02	2%	Wine grapes		0.8%	Tomatoes		0.3%	Wheat	0.2%	0.0
	4%	SE general	1.97	1%	Tomatoes		0.6%	Wheat		0.4%	Apples	0.5%	
	4%	PL general	1.77	2%	Tomatoes		0.8%	Apples		0.6%	Table grapes	0.1%	0.0
	4%	FI 6 years	1.76	1.0%	Oat		0.8%	Tomatoes		0.3%	Table grapes	0.1%	0.0
	3%	LT adult	1.64	1%	Tomatoes		0.7%	Apples		0.3%	Oat	0.1%	
	2%	FR infant	0.93	0.7%	Apples Wheat		0.3%	Milk: Cattle Apples		0.2%	Tomatoes Table grapes	0.5%	0.0
	0.8%	IE child											

The long-term intake of residues of Benzovindiflupyr is unlikely to present a public health concern.

	A	cute risk assessment	/children		Acute risk a	issessment/adults/ge	neral popu	llation	A	cute risk assessmen	t/children		Acute ris	sk assessment/adults/gen	eral popula	tion
	Details-a	acute risk assessme	ent/childi	en	Detail	s–acute risk assess	ment/adu	ilts	ŀ	lide IESTI new cal	culations			Show IESTI new calcul	ations	
		ssment is based on the ARfD. ased on the large portion of th	e most critical	consumer grou	р.				the residue definition the results are const	erformed with the MRL and I	3 calculations, a	a variability fact	tor of 3 is used. Since	Int the residue in the edible portion at the this methodology is not based on i isidered as indicative only .		
	S	how results of IES	TI calcula	ation only	for crops wi	th GAPs under ass	essment						liner			
commodities	Results for childre No. of commodities exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		
a c	IESTI				IESTI				IESTI new				IESTI new			
Unprocessed	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure
npro	ARfD/ADI 0.2%	Commodities Beans	(mg/kg) 0.2/0.01	(µg/kg bw) 0.20	ARfD/ADI 0.07%	Commodities Beans	(mg/kg) 0.2/0.01	(µg/kg bw) 0.07	ARfD/ADI 4%	Commodities Beans	(mg/kg) 0.2/0.2	(µg/kg bw) 3.7	ARfD/ADI 1%	Commodities Beans	(mg/kg) 0.2/0.2	(µg/kg bw) 1.3
^{>}	0.07%	Lentils Peas	0.2/0.01 0.2/0.01	0.07	0.07%	Lentils Peas	0.2/0.01 0.2/0.01	0.07	1% 1%	Lentils Peas	0.2/0.2 0.2/0.2	1.3 1.3	1% 0.7%	Lentils Peas	0.2/0.2 0.2/0.2	1.2 0.66
	Expand/collapse list															
	Total number of co children and adult (IESTI calculation)	mmodities exceeding the A diets	RfD/ADI in						Total number of c ARfD/ADI in child (IESTI new calcula		ng the					
Processed commodities	Results for childre No of processed cor is exceeded (IESTI):	mmodities for which ARfD/AD	I		Results for adults No of processed co is exceeded (IESTI	mmodities for which ARfD/AD	I		Results for childred No of processed co ARfD/ADI is exceed	mmodities for which			Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is		***
C C	IESTI		MRL/input		IESTI		MRL/input		IESTI new		MRL/input		IESTI new		MRL/input	
ssed	Highest % of ARfD/ADI	Processed commodities	for RA	Exposure	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA	Exposure	Highest % of ARfD/ADI	Processed commodities	for RA	Exposure
Loce	2%	Lentils/boiled	(mg/kg) 0.2/0.2	(µg/kg bw) 1.6	1%	Beans/canned	0.2/0.2	1.4	2%	Lentils/boiled	(mg/kg) 0.2/0.2	(µg/kg bw) 1.6	1%	Beans/canned	(mg/kg) 0.2/0.2	(µg/kg bw) 1.4
ē.	1%	Peas/canned	0.2/0.08	1.4	0.5%	Peas/canned	0.2/0.08	0.53	1%	Peas/canned	0.2/0.08	1.4	0.5%	Peas/canned	0.2/0.08	0.53
	Expand/collapse list															
	A short-term intake	e toxicological reference valu of residues of Benzovindiflup nodities, no exceedance of th	r is unlikely to	present a publi	cessed commodity. ic health risk.											

	****	fsa			Cvant	ranilipro	le			Input	: values		
	*	fra		LOQs (mg/kg) range f		0.01	to:	0.05	Details-ch	ronic risk	Supplementary	results_	
	**E					cal reference v	alues		assess		chronic risk asse		
E	uropean Foo	d Safety Authority		ADI (mg/kg bw per da Source of ADI:	y):	0.01	ARfD (mg/kg bw): Source of ARfD:	not necessary Reg. 2016/1414				$ \longrightarrow$	
		, ,		Year of evaluation:		Reg. 2016/1414 2016	Year of evaluation:	2016/1414 2016	Details-a	cute risk	Details-acut	e risk	
me		evision 3.1; 2018/11/18		rear or evaluation:		2016	Year of evaluation:	2016					
11101													
						Refined calc	ulation mode						
					Chronic ris	k assessment:	JMPR methodo	ology (IEDI/TMDI)					
	1		1	No of diets exceeding	the ADI :		1			·			e resulting f
												MRLs set at the LOQ	commodit under asse
	Calculated exposu	re	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of	(in % of
	(% of ADI)	MS Diet	(µg/kg bw per day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	
	152%	NL toddler	15.20	96%	Milk: Cattle		17%	Apples		7%	Pears		152
	79%	DE child	7.94	32%	Milk: Cattle		20%	Apples		6%	Oranges		79
	75%	UK infant	7.49	62%	Milk: Cattle		3%	Apples		2%	Oranges		75
	71%	NL child	7.10	39%	Milk: Cattle		9%	Apples		3%	Table grapes		7
	66%	FR toddler 2-3 years	6.59	47%	Milk: Cattle		5%	Apples		2%	Oranges		66
	59%	FR child 3–15 years	5.88	37%	Milk: Cattle		5%	Oranges		3%	Apples		59
	48%	UK toddler	4.81	33%	Milk: Cattle		3%	Oranges		3%	Apples		48
	47%	ES child	4.68	20%	Milk: Cattle		11%	Olives for oil production		3%	Oranges		47
	44%	RO general	4.40	19%	Milk: Cattle		8%	Head cabbages		5%	Wine grapes		44
	43%	GEMS/Food G08	4.32	12%	Olives for oil production		9%	Milk: Cattle		3%	Wine grapes		43
	42%	DE women 14-50 years	4.17	20%	Milk: Cattle		4%	Apples		3%	Oranges		42
	40%	DE general	3.98	20%	Milk: Cattle		4%	Apples		3%	Wine grapes		40
	39%	GEMS/Food G11	3.94	12%	Milk: Cattle		6%	Celeries		4%	Olives for oil production		39
	38%	GEMS/Food G07	3.82	10%	Milk: Cattle		5%	Wine grapes		4%	Olives for oil production		38
	38%	GEMS/Food G15	3.82	11%	Milk: Cattle		5%	Head cabbages		3%	Wine grapes		
	38% 38%	SE general FR infant	3.80	20% 27%	Milk: Cattle Milk: Cattle		4% 3%	Head cabbages		3% 1%	Lettuces Cauliflowers		38
	38%	GEMS/Food G10	3.75 3.47	27%	Milk: Cattle Milk: Cattle		3% 6%	Apples		1%	Lettuces		38
	33%			9% 6%	Tomatoes		5%	Olives for oil production		4%	Milk: Cattle		
	33%	GEMS/Food G06 DK child	3.32 3.26	20%	Milk: Cattle		5% 4%	Olives for oil production Apples		4%	Lettuces		30
	32%	IE adult	3.20	20%	Milk: Cattle		4% 4%	Wine grapes		3%	Celeries		3
	29%	ES adult	2.93	8%	Milk: Cattle		4% 6%	Olives for oil production		4%	Lettuces		29
	29%	NL general	2.93	14%	Milk: Cattle		2%	Apples		4%	Wine grapes		29
	23%	FR adult	2.92	7%	Wine grapes		7%	Milk: Cattle		1%	Apples		24
	22%	PT general	2.18	8%	Wine grapes		4%	Olives for oil production		2%	Apples		22
	19%	DK adult	1.86	8%	Milk: Cattle		3%	Wine grapes		2%	Apples		19
	17%	UK vegetarian	1.72	5%	Milk: Cattle		3%	Wine grapes		1%	Oranges		1
	15%	LT adult	1.50	6%	Milk: Cattle		3%	Apples		2%	Head cabbages		15
	15%	UK adult	1.48	5%	Milk: Cattle		3%	Wine grapes		0.9%	Lettuces		15
	13%	IT toddler	1.27	2%	Tomatoes		2%	Lettuces		1%	Apples		13
	12%	IT adult	1.23	3%	Lettuces		2%	Tomatoes		1%	Peaches		12
	11%	FI 3 years	1.15	2%	Strawberries		2%	Apples		1.0%	Tomatoes		11
	11%	PL general	1.14	3%	Apples		2%	Head cabbages		2%	Tomatoes		11
	9%	FI 6 years	0.87	1%	Strawberries		0.9%	Apples		0.7%	Tomatoes		9
	9%	FI adult	0.85	1%	Lettuces		1.0%	Wine grapes		0.9%	Tomatoes		9
	8%	IE child	0.82	6%	Milk: Cattle		0.5%	Apples		0.3%	Broccoli		8

	Acute risk assessment/ch	ildren	Acute risk assessme	nt/adults/general popu	ulation	A	cute risk assessmen	t/children		Acute ris	k assessment/adults/ge	neral populat	ion
	Details-acute risk assessment	/children	Details-acute r	isk assessment/adu	lts	H	lide IESTI new calc	ulations			Show IESTI new calcu	ulations	
	As an ARID is not necessary/not applicable, no acute					the residue definition the results are const	erformed with the MRL and t	3 calculations, a	variability fact	or of 3 is used. Sinc	nt the residue in the edible portion e this methodology is not based or sidered as indicative only.	and/or the convers internationally ag	sion factor for reed principles,
		Show result	s for all crops										
Unprocessed commodities	Results for children No. of commodities for which ARfD/ADI is exceeded (IESTI):		Results for adults No. of commodities for which AF exceeded (IESTI):	RfD/ADI is		IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		
eq co	IESTI		IESTI			IESTI new		MRL/input		IESTI new		MRL/input	
process	Highest % of	IRL/input for RA Exposure (mg/kg) (µg/kg bw)	Highest % of ARfD/ADI Commodi	input for RA ties (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)
	Expand/collapse list												
	Total number of commodities exceeding the ARfD children and adult diets (IESTI calculation)	/ADI in				Total number of co ARfD/ADI in childr (IESTI new calcula		ng the					
commodities	Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI):		Results for adults No of processed commodities for is exceeded (IESTI):	r which ARfD/ADI		Results for childre No of processed con ARfD/ADI is exceed	mmodities for which			Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is w):		
com	IESTI		IESTI	MRL/		IESTI new				IESTI new			
Processed	Highest % of	IRL/input for RA Exposure (mg/kg) (μg/kg bw)	Highest % of ARfD/ADI Processed	input for RA d commodities (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
	Expand/collapse list												
	Conclusion:												

		fsa		LOQs (mg/kg) range	Cyazofami from: 0.01	to:	0.05	Details-ch	ronic risk	Supplementary resu	ults-	
	* * -	Sdm			Toxicological reference	values		assess	sment	chronic risk assessn	nent	
	-			ADI (mg/kg bw per da	y): 0.17	ARfD (mg/kg bw):	not necessary					
E	uropean Food	d Safety Authority		Source of ADI:	EC 03/2	3 Source of ARfD:	EC 03/23	Details-a		Details-acute ris		
	EFSA PRIMo rev	vision 3.1; 2018/11/18		Year of evaluation:	2003	Year of evaluation:	2003	assessmen	it/children	assessment/adu	ts	
nmen	ts:						K					
					Norn	nal mode						
					Chronic risk assessme	nt: JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :							e resulting fro
											MRLs set at the LOQ	commodities under assess
	Coloridate days		Expsoure	Highest contributor to MS diet		2nd contributor to	a		3rd contributor to MS diet	Common differi	(in % of	(in % of A
	Calculated exposure (% of ADI)	MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities	MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ aroup of commodities	ADI)	
	1%	NL toddler	2.12	0.4%	Milk: Cattle	0.3%	Table grapes		0.1%	Leeks	0.7%	
	0.8%	DE child	1.33	0.3%	Table grapes	0.1%	Milk: Cattle		0.1%	Apples	0.3%	
	0.7%	NL child	1.21	0.2%	Table grapes	0.1%	Milk: Cattle		0.1%	Leeks	0.3%	
	0.7%	GEMS/Food G06	1.16	0.2%	Table grapes	0.1%	Tomatoes		0.1%	Wheat	0.2%	
	0.7%	GEMS/Food G11	1.13	0.2%	Leeks	0.1%	Table grapes		0.0%	Milk: Cattle	0.2%	
	0.6%	FR child 3–15 years	1.08	0.2%	Leeks	0.1%	Milk: Cattle		0.1%	Table grapes	0.3%	
	0.6%	FR toddler 2–3 years	1.04	0.2%	Leeks	0.2%	Milk: Cattle		0.0%	Wheat	0.3%	
	0.5%	GEMS/Food G08	0.80	0.1%	Leeks	0.1%	Table grapes		0.0%	Wheat Wheat	0.2%	
-	0.5%	GEMS/Food G07 IE adult	0.78	0.1%	Table grapes Leeks	0.1%	Leeks Table grapes		0.0%	Wheat Spring onions/green onions and We	0.2%	
	0.4%	GEMS/Food G15	0.75	0.1%	Table grapes	0.1%	Wheat		0.0%	Milk: Cattle	0.2%	
	0.4%	FR infant	0.73	0.1%	Leeks	0.1%	Milk: Cattle		0.0%	Potatoes	0.1%	
	0.4%	DK child	0.72	0.1%	Milk: Cattle	0.1%	Rye		0.1%	Wheat	0.2%	
	0.4%	GEMS/Food G10	0.71	0.1%	Table grapes	0.0%	Wheat		0.0%	Tomatoes	0.2%	
	0.4%	UK infant	0.69	0.2%	Milk: Cattle	0.0%	Wheat		0.0%	Potatoes	0.3%	
	0.4%	RO general	0.68	0.1%	Milk: Cattle	0.1%	Wheat		0.1%	Tomatoes	0.2%	
	0.4%	DE women 14-50 years	0.68	0.1%	Milk: Cattle	0.1%	Leeks		0.1%	Table grapes	0.2%	
	0.4%	DE general	0.67	0.1%	Milk: Cattle	0.1%	Leeks		0.0%	Table grapes	0.2%	
	0.4%	NL general	0.66	0.1%	Leeks	0.0%	Milk: Cattle		0.0%	Table grapes	0.2%	
	0.4%	UK toddler	0.64	0.1%	Milk: Cattle	0.0%	Table grapes		0.0%	Wheat	0.2%	
	0.3%	SE general	0.56	0.1%	Milk: Cattle	0.0%	Leeks		0.0%	Wheat	0.2%	
	0.3%	FR adult	0.55	0.1%	Leeks	0.0%	Wine grapes		0.0%	Milk: Cattle	0.1%	
	0.3%	ES child	0.55	0.1%	Milk: Cattle	0.1%	Wheat		0.0%	Tomatoes	0.2%	1
	0.3%	PT general	0.47	0.1%	Table grapes	0.0%	Wheat		0.0%	Wine grapes	0.1%	1
	0.3%	FI adult	0.46	0.2%	Coffee beans	0.0%	Tomatoes		0.0%	Table grapes	0.2%	
	0.2%	FI 3 years IT toddler	0.40	0.0%	Table grapes Wheat	0.0%	Leeks Tomatoes		0.0%	Potatoes	0.1%	
	0.2%	ES adult	0.37	0.1%	Wheat Milk: Cattle	0.0%	Wheat		0.0%	Table grapes Leeks	0.1%	
	0.2%	UK vegetarian	0.36	0.0%	Leeks	0.0%	Wheat		0.0%	Milk: Cattle	0.1%	1
	0.2%	DK adult	0.34	0.0%	Table grapes	0.0%	Milk: Cattle		0.0%	Leeks	0.1%	
	0.2%	PL general	0.32	0.1%	Table grapes	0.0%	Leeks		0.0%	Tomatoes	0.0%	1
	0.2%	FI 6 years	0.31	0.0%	Table grapes	0.0%	Potatoes		0.0%	Leeks	0.1%	
	0.2%	UK adult	0.29	0.0%	Wheat	0.0%	Wine grapes		0.0%	HOPS (dried)	0.1%	
	0.2%	IT adult	0.29	0.0%	Wheat	0.0%	Tomatoes		0.0%	Table grapes	0.1%	
	0.1%	LT adult	0.23	0.0%	Milk: Cattle	0.0%	Potatoes		0.0%	Tomatoes	0.1%	1
	0.1%	IE child	0.12	0.0%	Milk: Cattle	0.0%	Wheat		0.0%	Table grapes	0.0%	1

	Acute risk assessment/children	Acute risk assessment/adults/general population	Acute risk assessment/children	Acute risk assessment/adults/general population
	Details-acute risk assessment/children	Details-acute risk assessment/adults	Hide IESTI new calculations	Show IESTI new calculations
	As an ARID is not necessary/not applicable, no acute risk assessment is perform	ned.		P), taking into account the residue in the edible portion and/or the conversion factor for for of 3 is used. Since this methodology is not based on internationally agreed principles, , the results are considered as indicative only.
	Show result	s for all crops		
Unprocessed commodities	Results for children No. of commodilies for which AR/D/ADI is exceeded (IESTI): IESTI	Results for adults No. of commodilies for which ARID/ADI is exceeded (IESTI): IESTI	IESTI new Results for children No. of commodilies for which ARID/ADI is exceeded (IESTI new): IESTI new	IESTI new Results for adults No. of commodiles for which ARID/ADI is exceeded (IESTI new): IESTI new
processed	Highest % of MRL/input ARID/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of MRL/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	MRL/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	MRL/input Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)
	Expand/collapse list			
	Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)		Total number of commodities found exceeding the ARfD/ADI in children and adult diets (IESTI new calculation)	
nodities	Results for children No of processed commodities for which ARID/ADI is exceeded (IESTI):	Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI):	Results for children No of processed commodities for which ARID/ADI is exceeded (IESTI new):	Results for adults No of processed commodities for which ARID/ADI is exceeded (IESTI new):
Processed commodities	IESTI Highest % of MRL/input for RA Exposure ARD/ADI Processed commodities (mg/kg) (µg/kg/bw)	IESTI Highest % of for RA Exposure ARIDIADI Processed commodities (mg/kg) (µg/kg bw)	IESTI new MRL/input Highest % of A Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg/bw)	IESTI new Highest % of MRL/input for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)
	Expand/collapse list			
	Conclusion:			

	*	d Safety Authority		LOQs (mg/kg) range			to:	0.05	Detailsch	ronic risk	Supplementary	results-	
	* * E					ogical reference va			assess	ment	chronic risk ass	essment	
с.	Ironoan Eoo	d Safety Authority		ADI (mg/kg bw per da	ау):	0.015	ARfD (mg/kg bw):	not necessary	Details-a	rute risk	Details-acut	e risk	
CU	uropean roo	d Safety Authority		Source of ADI:		Dir 09/77	Source of ARfD:		assessmen		assessment/		
		vision 3.1; 2018/11/18		Year of evaluation:		2009	Year of evaluation:		assessmen	e, ennar en	ussessmenty)
nent	ts:												
						Refined calc							
					Chronic	risk assessment:	JMPR methodo	ology (IEDI/TMDI)					
_				No of diets exceeding	the ADI :							Exposure MRLs set at	
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ	under as
	Calculated exposur	e	(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		MS diet	Commodity/	(in % of	(in %
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	
	83%	NL toddler	12.42	47%	Milk: Cattle		21%	Apples		8%	Pears		8
	47% 39%	DE child NL child	7.02	24% 19%	Apples Milk: Cattle		15% 11%	Milk: Cattle Apples		2% 2%	Oranges Pears		4
	39%	UK infant	5.60	30%	Milk: Cattle		3%	Apples		2%	Pears Bovine: Muscle/meat		3
	36%	FR toddler 2–3 years	5.37	23%	Milk: Cattle		6%	Apples		2%	Bovine: Muscle/meat		3
	31%	FR child 3–15 years	4.68	18%	Milk: Cattle		3%	Apples		2%	Bovine: Muscle/meat		3
	25%	UK toddler	3.70	16%	Milk: Cattle		3%	Apples		2%	Bovine: Muscle/meat		2
	23%	DK child	3.52	10%	Milk: Cattle		4%	Apples		4%	Swine: Muscle/meat		2
	23%	SE general	3.41	10%	Milk: Cattle		7%	Bovine: Muscle/meat		2%	Apples		2
	23%	ES child	3.39	10%	Milk: Cattle		2%	Bovine: Muscle/meat		2%	Apples		2
	20%	DE women 14-50 years	3.04	10%	Milk: Cattle		5%	Apples		1%	Swine: Muscle/meat		2
	20%	DE general	3.02	10%	Milk: Cattle		5%	Apples		2%	Swine: Muscle/meat		2
	19%	FR infant	2.82	13%	Milk: Cattle Milk: Cattle		3%	Apples		0.6%	Swine: Muscle/meat		1
	17% 17%	RO general GEMS/Food G11	2.58	9% 6%	Milk: Cattle		3% 3%	Apples		2% 2%	Swine: Muscle/meat Swine: Muscle/meat		1
	17%	GEMS/Food G15	2.58	5%	Milk: Cattle		2%	Apples Swine: Muscle/meat		2%	Apples		1
	16%	GEMS/Food G08	2.33	4%	Milk: Cattle		3%	Swine: Muscle/meat		2%	Apples		1
	15%	GEMS/Food G07	2.30	5%	Milk: Cattle		2%	Apples		2%	Swine: Muscle/meat		1
	15%	NL general	2.18	7%	Milk: Cattle		3%	Apples		2%	Swine: Muscle/meat		1
	14%	GEMS/Food G10	2.10	4%	Milk: Cattle		1%	Bovine: Muscle/meat		1%	Apples		1
	13%	ES adult	1.97	4%	Milk: Cattle		2%	Lettuces		1%	Apples		1:
	12%	DK adult	1.81	4%	Milk: Cattle		2%	Apples		1%	Swine: Muscle/meat		1:
	12%	IE adult	1.77	3%	Milk: Cattle		2%	Other farmed animals: Muscle/n	neat	1%	Apples		1:
	11% 10%	LT adult GEMS/Food G06	1.64	4% 2%	Apples Milk: Cattle		3%	Milk: Cattle Tomatoes		2% 2%	Swine: Muscle/meat		1
	10%	GEMS/Food G06 FR adult	1.53	2% 4%	Milk: Cattle Milk: Cattle		2% 1%			2%	Apples Swine: Muscle/meat		1
	9% 6%	FR adult UK adult	0.87	4% 2%	Milk: Cattle		1%	Apples Bovine: Muscle/meat		0.8%	Swine: Muscle/meat Apples		6
	6%	UK vegetarian	0.87	3%	Milk: Cattle		1%	Apples		0.5%	Oranges		
	5%	PL general	0.81	4%	Apples		0.5%	Pears		0.5%	Tomatoes		5
	5%	IE child	0.76	3%	Milk: Cattle		1.0%	Swine: Fat tissue		0.6%	Apples		5
	5%	PT general	0.73	2%	Apples		0.7%	Pears		0.5%	Tomatoes		5
	5%	IT toddler	0.72	2%	Apples		1.0%	Lettuces		0.8%	Tomatoes		5
	5%	IT adult	0.68	2%	Apples		1%	Lettuces		0.6%	Tomatoes		5
	3% 3%	FI 3 years FI 6 years	0.52 0.41	2% 1%	Apples Apples		0.3%	Pears Pears		0.3%	Potatoes Lettuces		3
	3%	FI 6 years FI adult	0.41	1%	Apples		0.3%	Lettuces		0.3%	Tomatoes		
	2 70	1 i duuit	0.37	1.70	Abbios		0.3%	Louises		0.370	Tomatoos		1 4

	Acute risk assessment/children	Acute risk assessment/adults/general population	Acute risk assessment/children	Acute risk assessment/adults/general population
	Details-acute risk assessment/children	Details-acute risk assessment/adults	Hide IESTI new calculations	Show IESTI new calculations
	As an ARID is not necessary/not applicable, no acute risk assessment is perform	ned.		PF), taking into account the residue in the edible portion and/or the conversion factor for for of 3 is used. Since this methodology is not based on internationally agreed principles, the results are considered as indicative only.
	Show result	s for all crops		
Unprocessed commodities	Results for children No. of commodities for which AR(D/ADI is exceeded (IESTI):	Results for adults No. of commodities for which AR/D/ADI is exceeded (IESTI):	IESTI new Results for children No. of commodities for which ARID/ADI is exceeded (IESTI new):	IESTI new Results for adults No. of commodities for which ARID/ADI is exceeded (IESTI new):
ed co	IESTI MRL/input	IESTI MRL/input	IESTI new MRL/input	IESTI new MRL/input
rocess	Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	MRL//nput Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Commodities (mg/kg) (µg/kg bw)
5	Expand/collapse list			
	Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)		Total number of commodities found exceeding the ARfD/ADI in children and adult diets (IESTI new calculation)	
es	Results for children	Results for adults		Results for adults
noditi	No of processed commodities for which ARfD/ADI is exceeded (IESTI):	No of processed commodities for which ARfD/ADI is exceeded (IESTI):	No of processed commodities for which ARfD/ADI is exceeded (IESTI new):	No of processed commodities for which ARfD/ADI is exceeded (IESTI new):
comr	IESTI MRL/input	IESTI MRL/input	IESTI new MRL/input	IESTI new MRL/input
Processed commodities	Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)
Ē				
	Expand/collapse list			
	Conclusion:			

1		r			lso	fetamid				ut values		
	*	fsa		LOQs (mg/kg) range		0.01	to:	0.05	Details-chronic risk	Supplementa		
	* * E					al reference v			assessment	chronic risk a	ssessment	
-	-			ADI (mg/kg bw per da	iy):	0.02	ARfD (mg/kg bw):	1	Details–acute risk	Details-ac	uto rick	
E	uropean Foo	d Safety Authority		Source of ADI:		2016/1425	Source of ARfD:	2016/1425	assessment/children	assessmen		
	EFSA PRIMo re	vision 3.1; 2018/11/18		Year of evaluation:		2016	Year of evaluation:	2016	assessment/children	assessmen	t/aduits	
nen	ts:							· · · · ·				
						Norma	l mode					
					Chronic ris	k assessment	: JMPR methodo	ology (IEDI/TMDI)				
				No of diets exceeding	the ADI :		-					resulting fr
											MRLs set at the LOQ	commoditie under asset
	0.1		Expsoure	Highest contributor to			2nd contributor to	Common d'hui	3rd contributor to f		(in % of ADI)	(in % of
	Calculated exposure (% of ADI)	MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ group of commodities	diet (in % of ADI)	Commodity/ group of commodities	l í	
	27%	NL toddler	5.36	7%	Apples		5%	Table grapes	3%	Milk: Cattle	5%	22
	24%	DE child	4.83	8%	Apples		5%	Table grapes	2%	Cherries (sweet)	2%	22
	16%	NL child	3.14	4%	Apples		4%	Table grapes	1%	Milk: Cattle	3%	13
	14%	PT general	2.81	9%	Wine grapes		1%	Peaches	1.0%	Table grapes	0.8%	13
	13%	RO general	2.60	6%	Wine grapes		1%	Sweet peppers/bell peppers	1.0%	Apples	2%	11
	12%	IE adult	2.44	4%	Wine grapes		1%	Peaches	0.9%	Table grapes	1%	11
	12%	FR adult	2.35	8% 4%	Wine grapes		0.5%	Peaches	0.5%	Apples	0.9%	11
	12% 11%	GEMS/Food G06 GEMS/Food G15	2.33 2.27	4% 4%	Table grapes		1% 2%	Sweet peppers/bell peppers Sweet peppers/bell peppers	1% 1%	Peaches Table grapes	2% 2%	10'
	11%	GEMS/Food G15 GEMS/Food G07	2.27	4% 5%	Wine grapes Wine grapes		1%	Table grapes	0.7%	Apples	2%	99
	11%	GEMS/Food G08	2.21	4%	Wine grapes		1%	Table grapes	0.9%	Peaches	2%	99
	10%	DE women 14–50 years	2.14	3%	Wine grapes		2%	Apples	1%	Table grapes	2%	99
	10%	DE general	1.96	3%	Wine grapes		2%	Apples	0.9%	Table grapes	2%	89
	10%	GEMS/Food G11	1.94	4%	Wine grapes		1%	Table grapes	1%	Apples	2%	89
	9%	FR child 3-15 years	1.79	1%	Wine grapes		1%	Table grapes	1%	Milk: Cattle	3%	69
	8%	GEMS/Food G10	1.53	1%	Wine grapes		1%	Table grapes	0.7%	Peaches	2%	69
	7%	DK child	1.44	2%	Apples		1%	Cucumbers	0.6%	Table grapes	2%	5%
	7%	FR toddler 2–3 years	1.43	2%	Apples		1%	Milk: Cattle	0.8%	Wine grapes	3%	5%
	7%	NL general	1.39	2%	Wine grapes		1.0%	Apples	0.9%	Table grapes	1%	69
	7%	DK adult	1.32	3%	Wine grapes		0.6%	Apples	0.6%	Table grapes	0.7%	6
	6% 6%	UK infant	1.24	2% 1%	Milk: Cattle		1% 1%	Apples	0.5%	Strawberries	3%	39
	6%	UK toddler FI 3 years	1.22	0.9%	Apples Strawberries		0.8%	Milk: Cattle Table grapes	0.9%	Table grapes Cucumbers	0.7%	5
	6%	ES adult	1.15	1%	Wine grapes		0.9%	Peaches	0.5%	Apples	0.9%	59
	6%	UK adult	1.14	4%	Wine grapes		0.3%	Apples	0.2%	Table grapes	0.6%	5
	6%	SE general	1.11	0.7%	Apples		0.6%	Milk: Cattle	0.6%	Peaches	2%	49
	5%	IT toddler	1.07	1%	Peaches		0.6%	Apples	0.5%	Cherries (sweet)	0.7%	5%
	5%	ES child	1.06	0.8%	Peaches		0.8%	Apples	0.6%	Milk: Cattle	2%	49
	5%	UK vegetarian	1.05	3%	Wine grapes		0.4%	Apples	0.3%	Table grapes	0.6%	5%
	5%	IT adult	1.01	2%	Peaches		0.5%	Apples	0.5%	Table grapes	0.4%	5%
	5%	FI adult	0.92	1%	Coffee beans		1%	Wine grapes	0.4%	Apples	2%	39
	4% 4%	PL general FI 6 vears	0.88	1% 0.7%	Apples		1% 0.6%	Table grapes Table grapes	0.5%	Cherries (sweet)	0.3%	49
	4% 4%	FI 6 years FR infant	0.86	0.7%	Strawberries Apples		0.6%	Table grapes Milk: Cattle	0.5%	Cucumbers Strawberries	0.6%	49
	4%	LT adult	0.56	1%	Apples		0.3%	Cucumbers	0.4%	Milk: Cattle	0.7%	29
	1%	IE child	0.21	0.2%	Apples		0.2%	Table grapes	0.2%	Milk: Cattle	0.4%	0.7

Details-	acute risk assessmer	nt/childr	en	Details	-acute risk assessn	nent/adu	lts		Hide IESTI new calcu	ulations			Show IESTI new calcu	lations	
	ssment is based on the ARID. ased on the large portion of the r							residue definition (results are conside	erformed with the MRL and the	ulations, a var	iability factor of	3 is used. Since this	the residue in the edible portion and, methodology is not based on interna idered as indicative only.		
		Sn	ow result	s for all crop	S							lunon			
Results for childre No. of commodities exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARID/ADI is exceeded		
IESTI				IESTI				IESTI new				IESTI new			
Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Expos
ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg
45% 43%	Witloofs/Belgian endives Lettuces	0.01/11.38 20/11.38	452 433	22% 21%	Chards/beet leaves Witloofs/Belgian endives	20/11.38 0.01/11.38	215 209	46% 45%	Lettuces Spinaches	20/20 20/20	457 452	18% 15%	Chards/beet leaves Lettuces	20/20 20/20	176 146
43%	Spinaches	20/11.38 20/11.38	433	21%	Witloofs/Belgian endives Lettuces	20/11.38	209	45% 18%	Peaches	20/20 3/3.3	452	15%	Lettuces Wine grapes	20/20	146
23%	Table grapes	4/3.13	228	11%	Table grapes	4/3.13	106	18%	Table grapes	4/4	175	8%	Table grapes	4/4	81
18%	Peaches	3/1.87	178	7%	Wine grapes	4/3.13	74	16%	Apricots	3/3.3	162	8%	Spinaches	20/20	80
18%	Chards/beet leaves	20/11.38	178	5%	Spinaches	20/11.38	46	13%	Chards/beet leaves	20/20	134	7%	Peaches	3/3.3	67
10% 7%	Sweet peppers/bell peppers Apricots	3/1.66 3/1.87	99 65	4% 3%	Peaches Cherries (sweet)	3/1.87 4/3.4	35 34	8% 7%	Sweet peppers/bell peppers Strawberries	3/3 4/4.08	77 67	5% 4%	Blueberries Apricots	5/5 3/3.3	44
6%	Pears	0.6/0.42	58	3%	Strawberries	4/3.16	29	5%	Cherries (sweet)	4/4.00	49	4%	Cherries (sweet)	4/4	40
5%	Strawberries	4/3.16	52	3%	Blueberries	5/3	27	4%	Currants (red, black and	5/5	39	4%	Strawberries	4/4.08	38
5%	Apples	0.6/0.42	45	3%	Sweet peppers/bell peppers	3/1.66	27	4%	Cucumbers	1/1	39	4%	Purslanes	20/20	38
4%	Cherries (sweet)	4/3.4	42	3%	Aubergines/egg plants	1.5/0.94	25	4%	Wine grapes	4/4	37	3%	Plums	0.8/0.88	34
4% 3%	Cucumbers	1/0.56	37	2% 2%	Purslanes	20/11.38 3/1.87	22 20	4% 4%	Apples	0.6/0.6	37	3% 3%	Currants (red, black and white)	5/5 1.5/1.5	33
3%	Wine grapes Courgettes	4/3.13 1/0.56	29 26	2%	Apricots Currants (red, black and	3/1.87 5/3	20	4%	Pears Blackberries	3/3	36 32	3%	Aubergines/egg plants Blackberries	1.5/1.5	29 25
Expand/collapse list		110.00	20	270	Garranto (rea, black and	0,0	20	0,0	Biddibbinitb	0.0		2.10	Bidokborrido	0.0	
Total number of co children and adult (IESTI calculation)	ommodities exceeding the ARI diets	D/ADI in						Total number of c ARfD/ADI in child (IESTI new calcula		the					
Results for childre	n			Results for adults				Results for childre	an			Results for adults			
No of processed co	mmodities for which ARfD/ADI			No of processed cor	mmodities for which ARfD/ADI			No of processed co	mmodities for which ARfD/ADI			No of processed co	mmodities for which ARfD/ADI is		
is exceeded (IESTI)				is exceeded (IESTI):				is exceeded (IESTI	new):			exceeded (IESTI ne	w):		
IESTI				IESTI				IESTI new				IESTI new			
		MRL/input				MRL/input				MRL/input				MRL/input	
Highest % of ARfD/ADI	Dresses of sommadit'	for RA	Exposure	Highest % of ARfD/ADI	Dresses of commedit'	for RA	Exposure (us/ks but)	Highest % of ARfD/ADI	Processed commodities	for RA	Exposure	Highest % of ARfD/ADI	Processed commodition	for RA	Expos
ARID/ADI 99%	Processed commodities Witloofs/boiled	(mg/kg) 0.01/11.38	(µg/kg bw) 993	21%	Processed commodities Witloofs/boiled	(mg/kg) 0.01/11.38	(µg/kg bw) 210	54%	Witloofs/boiled	(mg/kg) 0.01/11.38	(µg/kg bw) 538	25%	Processed commodities Witloofs/boiled	(mg/kg) 0.01/11.38	(µg/kg 24
35%	Chards/beet leaves/boiled	20/11.38	354	14%	Chards/beet leaves/boiled	20/11.38	142	16%	Spinaches/frozen; boiled	20/11.38	158	10%	Chards/beet leaves/boiled	20/11.38	10
16%	Spinaches/frozen; boiled	20/11.38	158	9%	Spinaches/frozen; boiled	20/11.38	94	15%	Chards/beet leaves/boiled	20/11.38	152	9%	Spinaches/frozen; boiled	20/11.38	94
5%	Peaches/canned	1/1.87	49	5% 3%	Purslanes/boiled	20/11.38	47	4%	Peaches/canned	1/1.87 4/0.71	36	5%	Purslanes/boiled	20/11.38 4/3.13	41
3% 2%	Wine grapes/juice Courgettes/boiled	4/0.71 1/0.56	31 20	3%	Wine grapes/wine Table grapes/raisins	4/3.13 4/14.71	30 18	3% 1%	Wine grapes/juice Peaches/juice	4/0.71 3/0.84	31 14	3% 2%	Wine grapes/wine Table grapes/raisins	4/3.13 4/14.71	30 18
2%	Peaches/juice	3/0.84	20	2%	Peaches/canned	3/1.87	15	1%	Courgettes/boiled	3/0.84	14	2%	Peaches/canned	3/1.87	15
1%	Gherkins/pickled	1/0.56	13	1%	Wine grapes/juice	4/0.71	15	0.9%	Currants (red, black and	5/0.31	8.9	1%	Wine grapes/juice	4/0.71	15
0.9%	Currants (red, black and whit	5/0.31	8.9	1%	Courgettes/boiled	1/0.56	13	0.8%	Raspberries/juice	3/0.68	8.0	0.9%	Grape leaves/canned	0.01/11.38	9.
0.8% 0.7%	Raspberries/juice Apples/juice	3/0.68 0.6/0.14	8.0 7.3	0.9%	Grape leaves/canned Apples/juice	0.01/11.38 0.6/0.14	9.5 4.5	0.7% 0.6%	Apples/juice Gherkins/pickled	0.6/0.14 1/0.56	7.3 5.5	0.9%	Courgettes/boiled Apples/juice	1/0.56 0.6/0.14	8.9
0.7%	Apples/juice Beans (with pods)/boiled	0.6/0.14	7.3 4.5	0.4%	Apples/juice Currants (red, black and	0.6/0.14 5/0.31	4.5 4.0	0.6%	Beans (with pods)/boiled	1/0.56	5.5 4.5	0.4%	Apples/juice Currants (red, black and white)/	0.6/0.14 5/0.31	4.5
0.4%	Pears/juice	0.6/0.14	4.4	0.3%	Okra, lady's fingers/boiled	3/1.66	2.7	0.4%	Pears/juice	0.6/0.14	4.4	0.3%	Okra, lady's fingers/boiled	3/1.66	2.7
0.3%	Cranberries/juice	4/0.5	2.9	0.1%	Peas (with pods)/boiled	0.6/0.36	1.2	0.3%	Cranberries/juice	4/0.5	2.9	0.1%	Peas (with pods)/boiled	0.6/0.36	1.2
	Plums/juice	0.8/0.19	1.8	0.06%	Pumpkins/boiled	0.01/0.01	0.55	0.2%	Plums/juice	0.8/0.19	1.8	0.04%	Sugar beets (root)/sugar	0.01/0.12	0.4
0.2%															
0.2%															
0.2% Expand/collapse list Conclusion:	e toxicological reference value v														

3% PT gener 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% RO gene 2% GEMS/F, 2% RC MS/F, 2% FR adult 1% FR adult 1% FR adult 1% FR adult 1% SE gener 1% DE worm 1% DE gener 1% DE gener 1% NL gener 0.9% UK todult 0.9% UK todult 0.9% UK todult 0.9% UK todult 0.9% UK rold 0.8% UK vegat 0.8% DK child 0.8% FI 3 yean 0.8% ES adult 0.7% FI adult 0.7% FI adult	C			Oxathiapiprol	in			пра	t values		
Calculated exposure (% of AD) MS Diet (% of AD) MS Diet 3% NL loddie 3% NL loddie 3% PT gener 2% EE adult 2% GEMSFr 2% GEMSFr 3% GEMSFF 3% GEMSFr 3% GEMSFr 3% GEMSFF 3% GEMSFr	tca		LOQs (mg/kg) range		to:	10.0	Details-ch		Supplementary		
Calculated exposure (% of AD) MS Diet (% of AD) MS Diet 3% NL loddie 3% NL loddie 3% PT gener 2% EE adult 2% GEMSFr 2% GEMSFr 3% GEMSFF 3% GEMSFr 3% GEMSFr 3% GEMSFF 3% GEMSFr				Toxicological reference v			assess	ment	chronic risk asse	ssment	
Calculated exposure (% of AD) MS Diet (% of AD) MS Diet 3% NL loddie 3% NL loddie 3% PT gener 2% EE adult 2% GEMSFr 2% GEMSFr 3% NL kotel 0.9% UK kotel 0.0% FI algener 0.0% FI kotel 0.0% FI kotel 0.0% T kotel 0.0			ADI (mg/kg bw per da	vy): 0.14	ARfD (mg/kg bw):	n.a.	Details-a	outo rick	Details-acute	rick	
Calculated exposure (% of ADI) MS Diet. 3% NL loddli 3% YT gener 2% IE adult 2% FR adult 2% GEMSFF. 0.9% UK adult 0.9% UK adult	Safety Authority		Source of ADI:	EFSA	Source of ARfD:	EFSA	assessmen		assessment/a		
Calculated exposure (% of AD) MS Diet 3% NL toddle 3% PT gener 2% IE adult 2% GENS/FC 2% GENS/FC	sion 3.1; 2018/11/18		Year of evaluation:	2016	Year of evaluation:	2016	assessmen	u chiluren	assessment/a	iuuits	
(% of AD) MS Diet 3% PT gener 3% PT gener 2% GEMS/F, 2% RO gene 1% SE gener 1% DE worn 0.9% UK todrit 0.9% UK todrit 0.9% UK todrit 0.8% ES child 0.8% ES child 0.8% ES child 0.8% ES child 0.7% F1 adutt 0.7% F1 adutt 0.7% T1 toddle											
(% of AD) MS Diet 3% PT gener 3% PT gener 2% GEMS/F, 2% RO gene 1% SE gener 1% DE worn 0.9% UK todrit 0.9% UK todrit 0.9% UK todrit 0.8% ES child 0.8% ES child 0.8% ES child 0.8% ES child 0.7% F1 adutt 0.7% F1 adutt 0.7% T1 toddle											
(% of AD) MS Diet 3% PT gener 3% PT gener 2% GEMS/F, 2% RO gene 1% SE gener 1% DE worn 0.9% UK todrit 0.9% UK todrit 0.9% UK todrit 0.8% ES child 0.8% ES child 0.8% ES child 0.8% ES child 0.7% F1 adutt 0.7% F1 adutt 0.7% T1 toddle				<u>Norma</u>	<u>Il mode</u>						
(% of AD) MS Diet 3% PT gener 3% PT gener 2% GEMS/F, 2% RO gene 1% SE gener 1% DE worn 0.9% UK todrit 0.9% UK todrit 0.9% UK todrit 0.8% ES child 0.8% ES child 0.8% ES child 0.8% ES child 0.7% F1 adutt 0.7% F1 adutt 0.7% T1 toddle				Chronic risk assessment	: JMPR methodo	ology (IEDI/TMDI)					
(% of AD) MS Diet 3% PT gener 3% PT gener 2% GEMS/F, 2% RO gene 1% SE gener 1% DE worn 0.9% UK todrit 0.9% UK todrit 0.9% UK todrit 0.8% ES child 0.8% ES child 0.8% ES child 0.8% ES child 0.7% F1 adutt 0.7% F1 adutt 0.7% T1 toddle			No of diets exceeding	the ADI :	-						e resulting fro
(% of AD) MS Diet 3% PT gener 3% PT gener 2% GEMS/F, 2% RO gene 1% SE gener 1% DE worn 0.9% UK todrit 0.9% UK todrit 0.9% UK todrit 0.8% ES child 0.8% ES child 0.8% ES child 0.8% ES child 0.7% F1 adutt 0.7% F1 adutt 0.7% T1 toddle										MRLs set at the LOQ	commoditie under asses
(% of AD) MS Diet 3% PT gener 3% PT gener 2% GEMS/F, 2% RO gene 1% SE gener 1% DE worn 0.9% UK todrit 0.9% UK todrit 0.9% UK todrit 0.8% ES child 0.8% ES child 0.8% ES child 0.8% ES child 0.7% F1 adutt 0.7% F1 adutt 0.7% T1 toddle		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of	(in % of
3% NL toddie 3% PT gener 2% IE adult 2% GEMS/FC 2% DE child 2% GEMS/FC 2% GEMS/FC 2% GEMS/FC 2% GEMS/FC 2% GEMS/FC 2% GEMS/FC 2% GEMS/FC 2% FR adult 2% FR adult 1% SE gener 1% DE worne 1% DE gener 1% DE worne 1% DE gener 1% NL gener 1% NL gener 1% NL gener 0.9% UK adult 0.9% UK adult 0.9% UK kotdie 0.9% UK k	MS Diet	(µg/kg bw per day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	1
2% IE adult 2% GEMS/F 2% DE child 2% GEMS/F 2% GEMS/F 2% GEMS/F 2% GEMS/F 2% GEMS/F 2% FR adult 2% FR adult 2% FR adult 1% SE gener 1% DE worn 1% DE worn 1% DE gener 1% NL gener 0.9% UK adult 0.9% UK adult 0.9% UK adult 0.9% UK toddi 0.9% FR toddi 0.0% FI 3 year	NL toddler	4.12	0.8%	Table grapes	0.6%	Maize/com		0.4%	Milk: Cattle	0.8%	
2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% FR adult 1% FR adult 1% FR adult 1% SE gener 1% DE worm 1% DE gener 1% NL gener 1% UK toddi 0.9% UK toddi 0.9% UK toddi 0.9% UK toddi 0.9% UK toddi 0.9% UK kott 0.9% UK kott 0.0% FI 3 yean 0.0% FI doll 0.0% TI toddle	PT general	3.68	1%	Wine grapes	0.4%	Potatoes		0.4%	Kales	0.1%	
2% DE child 2% GEMS/FC 2% GEMS/FC 2% RC 0gene 2% GEMS/FC 2% GEMS/FC 2% FR adult 2% FR adult 2% FR adult 1% SE game 1% SE game 1% SE game 1% NL gene 1% NL gene 0.9% UK adult 0.9% FR toddl 0.8% FI 3 year 0.8% FS adult 0.7% FI 6 year 0.7% FI 6 year 0.7% FI 6 year		3.24	0.6%	Wine grapes	0.4%	Other leafy brassica		0.3%	Sweet potatoes	0.1%	
2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% GEMS/F, 2% NL child 2% FR adult 1% FR child 1% SE gener 1% SE gener 1% DE word 0.9% DK adult 0.9% UK tofdt 0.9% UK tofdt 0.9% UK tofdt 0.9% UK tofdt 0.9% UK tofdt 0.8% FI 3 year 0.8% FI 3 year 0.8% FI s adult 0.9% FI s adult 0.9% FI s adult 0.9% FI s adult 0.9% FI s adult 0.7% FI 6 year 0.7% FI 6 year 0.7% FI codel 0.7% FI codel 0.8% TI codel	GEMS/Food G06	3.07	0.5%	Table grapes	0.5%	Tomatoes		0.2%	Potatoes	0.2%	
2% GEMS/FC 2% RO gene 2% GEMS/FC 2% GEMS/FC 2% GEMS/FC 2% FR adult 1% FR adult 1% FR adult 1% SE game 1% DE wome 1% DE wome 1% DE wome 1% DE wome 1% DE wome 1% DE wome 1% FR adult 0.9% UK adult 0.9% UK adult 0.9% UK adult 0.9% UK adult 0.9% UK adult 0.9% UK adult 0.9% FR toddle 0.8% ES adult 0.7% FI adult 0.7% FI adult 0.7% FI adult		2.95	0.7%	Table grapes	0.3%	Grape leaves and similar species		0.2%	Potatoes	0.4%	
2% GEMS/F, 2% RO genes 2% GEMS/F, 2% NL child 2% FR adult 1% FR adult 1% FR child 1% DE worm 1% DE gener 1% DE gener 1% NL gener 0.9% DK adult 0.9% UK toddit 0.9% UK toddit 0.9% UK toddit 0.9% FR toddi 0.8% FI advector 0.8% FI advector 0.8% FI advector 0.8% FI advector 0.8% FI advector 0.8% FI advector 0.8% FI advector 0.7% FI advector 0.6% FI	GEMS/Food G10	2.90	0.4%	Soyabeans	0.4%	Chinese cabbages/pe-tsai		0.2%	Potatoes	0.2%	
2% RO gene 2% GEMS/F, 2% GEMS/F, 2% FR adult 1% FR adult 1% FR child 1% DE gene 1% DE gene 1% NL gene 1% NL gene 1% NL gene 0.9% UK adult 0.9% UK adult 0.9% UK adult 0.9% UK adult 0.9% UK adult 0.9% FR toddl 0.8% FI 3 year 0.8% ES adult 0.7% FI 6 year 0.7% FI 6 year 0.7% FI adult	GEMS/Food G07	2.85	0.7%	Wine grapes	0.3%	Potatoes		0.2%	Soyabeans	0.2%	
2% GEMSF; 2% GEMSF; 2% NL child 2% FR aduit 1% FR child 1% SE gener 1% DE worm 1% DE gener 1% DE gener 1% NL gener 0.9% DK dadut 0.9% UK tofadi 0.9% UK tofadi 0.9% UK tofadi 0.9% FR toddi 0.8% FI 3 yean 0.8% FI 3 yean 0.7% FI 6 yean 0.7% FI 6 yean 0.7% FI coddie	GEMS/Food G11	2.84	0.5%	Wine grapes	0.5%	Soyabeans		0.3%	Potatoes	0.2%	
2% GEMS/FC 2% FR adult 1% FR adult 1% SE gener 1% DE work 0.8% DK adult 0.9% DK adult 0.9% UK toddi 0.8% UK toddi 0.8% UK toddi 0.8% UK toddi 0.8% UK adult 0.8% FR toddi 0.8% FR toddi 0.8% FR toddi 0.8% FR adult 0.8% FR adult 0.7% FI adult		2.69	0.8%	Wine grapes	0.3%	Potatoes		0.3%	Tomatoes	0.2%	
2% NL child 2% FR adult 1% SE gener 1% FR child : 1% DE worm 1% DE gener 1% NL gener 0.9% DK toddl 0.9% UK toddu 0.9% UK toddu 0.9% UK toddu 0.9% UK toddu 0.9% FR toddi 0.8% ES child 0.8% ES child 0.8% FI 3 yean 0.8% FI 3 yean 0.8% FI 3 yean 0.8% FI 3 yean 0.8% FI 3 yean	GEMS/Food G08	2.58	0.5%	Wine grapes	0.3%	Potatoes		0.2%	Soyabeans	0.2%	
2% FR adult 1% SE game 1% FR child 1% DE worm 1% DE game 0.8% UK foddl 0.8% UK foddl 0.8% UK adult 0.8% UK adul 0.8% UK adul 0.8% UK adul 0.8% FR toddl 0.8% FR toddl 0.8% FR toddl 0.8% FS child 0.8% FS child 0.8% FS adult 0.7% FI adult 0.7% FI adult 0.7% FI adult 0.7% FI adult	GEMS/Food G15	2.47	0.5%	Wine grapes	0.3%	Potatoes		0.2%	Soyabeans	0.2%	
1% SE gener 1% DE worn 1% DE gener 1% DE gener 0.9% DK adult 0.9% DK adult 0.9% UK toddut 0.9% UK toddut 0.9% UK toddut 0.9% UK toddut 0.9% FR toddie 0.8% ES child 0.8% ES child 0.7% FI adult		2.35	0.5%	Table grapes	0.3%	Potatoes		0.2%	Milk: Cattle	0.4%	
1% FR child 1% DE worm 1% DE gener 1% DE gener 0.9% DK adult 0.9% UK adult 0.9% FR toddle 0.8% FI 3 year 0.8% ES child 0.9% FI adult 0.7% FI 6 year 0.7% FI 6 year 0.7% FI coddle 0.6% TT coddle		2.19	1%	Wine grapes	0.1%	Tomatoes		0.1%	Potatoes	0.1%	
1% DE worn 1% DE gene 1% NL gene 0.9% DK adult 0.9% UK toddit 0.9% FR toddie 0.8% ES aduit 0.7% FI adult		2.08	0.5%	Chinese cabbages/pe-tsai	0.3%	Potatoes		0.1%	Kales	0.2%	
1% DE gener 1% NL gener 0.9% DK adult 0.9% UK todkl 0.9% UK todkl 0.9% UK todkl 0.9% UK todkl 0.9% DK todkl 0.9% ES child 0.9% ES child 0.7% FI dotkl 0.7% FI dotkl 0.7% FI dotkl 0.7% FI dotkl 0.6% T todkle 0.6% T todkle	FR child 3–15 years	1.71	0.2%	Wine grapes	0.2%	Table grapes		0.2%	Milk: Cattle	0.3%	
1% NL gener 0.9% UK toddk 0.9% UK toddk 0.9% UK toddk 0.9% UK inda 0.9% FR toddk 0.8% UK veget 0.8% UK veget 0.8% UK veget 0.8% ES adult 0.7% F1 adut 0.7% F1 adut 0.7% F1 adut 0.7% F1 adut 0.7% F1 adut 0.7% F1 adut	DE women 14-50 years	1.69	0.4%	Wine grapes	0.2%	Table grapes		0.1%	Tomatoes	0.2%	
0.9% DK adult 0.9% UK toddit 0.9% UK adult 0.9% FR toddit 0.8% FR toddit 0.8% DK chid 0.8% FI 3 year 0.8% ES chid 0.8% FS adult 0.7% FI adult 0.7% FI adult 0.7% FI doyan 0.7% FI ctodde 0.6% T toddie		1.63 1.62	0.4%	Wine grapes	0.1%	Table grapes Potatoes		0.1%	Potatoes Kales	0.2%	
0.9% UK toddi 0.9% UK adult 0.9% UK infant 0.9% FR toddi 0.8% UK veget 0.8% UK veget 0.8% ES child 0.8% ES adult 0.7% FI a year 0.7% FI adult 0.7% FI 6 year 0.7% FI coddi 0.6% TT toddie			0.5%	Wine grapes	0.2%						
0.9% UK fadult 0.9% FR toddle 0.8% FR toddle 0.8% DK child 0.8% ES child 0.8% ES child 0.8% ES child 0.7% FI adult 0.7% FI adult 0.7% FI dotter 0.7% FI child 0.6% TT coddle		1.28 1.26	0.5%	Wine grapes Potatoes	0.1%	Potatoes Milk: Cattle		0.1%	Table grapes	0.1%	
0.9% UK Infant 0.9% FR toddle 0.8% UK veget 0.8% DK child 0.8% ES child 0.8% ES achut 0.7% Fl abut 0.7% Fl abut 0.7% Fl abut 0.7% Fl abut 0.7% Fl o year 0.7% Fl toddle 0.6% TT chodle		1.20	0.5%	Wine grapes	0.1%	Potatoes		0.1%	Table grapes Tomatoes	0.3%	
0.9% FR toddle 0.8% UK veget 0.8% DK child 0.8% FI 3 yean 0.8% ES child 0.7% FI adult 0.7% FI 6 yean 0.7% PL gener 0.6% TT toddle		1.24	0.3%	Milk: Cattle	0.3%	Potatoes		0.1%	Maize/corn	0.1%	
0.8% UK veget 0.8% DK child 0.8% FI 3 year 0.8% ES child 0.8% ES adult 0.7% FI adult 0.7% FI adult 0.7% PL gener 0.6% IT adult	FR toddler 2–3 years	1.23	0.2%	Milk: Cattle	0.2%	Potatoes		0.1%	Wine grapes	0.4%	
0.8% DK child 0.8% FI 3 years 0.8% ES child 0.8% ES adult 0.7% FI adult 0.7% FI 6 years 0.7% PL gener: 0.6% IT adult	UK vegetarian	1.17	0.4%	Wine grapes	0.1%	Potatoes		0.1%	Tomatoes	0.1%	
0.8% FI 3 year 0.8% ES child 0.8% ES adult 0.7% FI adult 0.7% FI 6 year 0.7% PL gener 0.6% IT toddle 0.6% IT adult		1.16	0.2%	Potatoes	0.1%	Cucumbers		0.1%	Table grapes	0.3%	
0.8% ES child 0.8% ES adult 0.7% Fl adult 0.7% Fl 6 year 0.7% PL gener 0.6% IT toddle 0.6% IT adult		1.15	0.4%	Potatoes	0.1%	Table grapes		0.1%	Tomatoes	0.1%	1
0.8% ES adult 0.7% Fl adult 0.7% Fl 6 year 0.7% PL gener 0.6% IT toddlet 0.6% IT adult		1.13	0.2%	Potatoes	0.1%	Tomatoes		0.1%	Lettuces	0.2%	
0.7% FI adult 0.7% FI 6 year 0.7% PL gener 0.6% IT toddler 0.6% IT adult		1.08	0.2%	Wine grapes	0.1%	Lettuces		0.1%	Tomatoes	0.1%	
0.7% FI 6 year 0.7% PL gener 0.6% IT toddler 0.6% IT adult		1.02	0.2%	Coffee beans	0.2%	Wine grapes		0.1%	Potatoes	0.2%	
0.7% PL gener 0.6% IT toddler 0.6% IT adult	FI 6 years	0.99	0.3%	Potatoes	0.1%	Table grapes		0.1%	Chinese cabbages/pe-tsai	0.1%	1
0.6% IT adult	PL general	0.94	0.3%	Potatoes	0.2%	Table grapes		0.1%	Tomatoes	0.0%	1
	IT toddler	0.85	0.2%	Tomatoes	0.1%	Potatoes		0.1%	Lettuces	0.1%	1
0.500 1.75 1.10		0.80	0.2%	Tomatoes	0.1%	Lettuces		0.1%	Other leafy brassica	0.1%	1
0.5% LT adult	LT adult	0.70	0.3%	Potatoes	0.1%	Tomatoes		0.0%	Milk: Cattle	0.1%	
0.4% FR infant		0.61	0.2%	Potatoes	0.1%	Milk: Cattle		0.0%	Courgettes	0.2%	1
0.1% IE child	IE child	0.20	0.1%	Potatoes	0.0%	Table grapes		0.0%	Milk: Cattle	0.1%	
Conclusion:				1		1					<u> </u>
	erm dietary intake (TMDI/NEDI/IEDI) v	was below the ADI									

	Ac	cute risk assessment	/children		Acute risk a	ssessment/adults/ge	neral popu	lation	A	cute risk assessmen	t/children		Acute ris	sk assessment/adults/g	eneral populat	tion
	Details-a	acute risk assessme	ent/childr	en	Details	–acute risk assessr	nent/adu	lts	ŀ	lide IESTI new calc	ulations			Show IESTI new cal	culations	
		ssment is based on the ARID. ased on the large portion of th	e most critical	consumer grou	p.				the residue definition the results are const	erformed with the MRL and the	3 calculations, a	a variability fact	tor of 3 is used. Since	In the residue in the edible portion this methodology is not based insidered as indicative only.	n and/or the convers on internationally ag	sion factor for reed principles,
			Sh	ow result	s for all crops	;										
commodities	Results for children No. of commodities exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		
	IESTI				IESTI				IESTI new				IESTI new			
Unprocessed	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
5	Expand/collapse list	nmodifies exceeding the A	P(D/ADL in						Tablanchada	ommodities found exceeding						
	children and adult (IESTI calculation)								ARfD/ADI in childr (IESTI new calcula	en and adult diets	ig the					
commodities	Results for children No of processed con is exceeded (IESTI):	nmodities for which ARfD/AD	l	1	Results for adults No of processed cor is exceeded (IESTI)	nmodities for which ARfD/ADI			Results for childre No of processed co ARfD/ADI is exceed	mmodities for which		1	Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is		
E E	IESTI				IESTI				IESTI new				IESTI new			
Processed o	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure (µg/kg bw)
8	197%	Kales/boiled	(mg/kg) 10/10	276	24%	Grape leaves/canned	(mg/kg) 40/40	(µg/kg bw) 33	118%	Kales/boiled	(mg/kg) 10/10	(µg/kg bw) 165	24%	Grape leaves/canned	(mg/kg) 40/40	(µg/kg bw) 33
۴.	22%	Wine grapes/juice	0.7/0.7	31	10%	Wine grapes/juice	0.7/0.7	15	22%	Wine grapes/juice	0.7/0.7	31	10%	Wine grapes/juice	0.7/0.7	15
	5%	Potatoes/dried (flakes)	0.04/0.53	6.9	5%	Wine grapes/wine	0.7/0.7	6.6	5%	Potatoes/dried (flakes)	0.04/0.53	6.9	5%	Wine grapes/wine	0.7/0.7	6.6
	3% 3%	Tomatoes/juice Potatoes/fried	0.2/0.2 0.04/0.04	3.8 3.7	3% 2%	Table grapes/raisins Courgettes/boiled	0.7/3.29 0.1/0.1	4.0 2.3	3% 2%	Tomatoes/juice Oranges/juice	0.2/0.2 0.05/0.06	3.8 3.0	3% 1%	Table grapes/raisins Tomatoes/sauce/puree	0.7/3.29 0.2/0.2	4.0 1.6
	3%	Courgettes/boiled	0.1/0.1	3.5	1%	Tomatoes/sauce/puree	0.2/0.2	1.6	2%	Maize/oil	0.03/0.08	2.6	1%	Courgettes/boiled	0.1/0.1	1.6
	2%	Oranges/juice	0.05/0.06	3.0	1%	Maize/oil	0.01/2.8	1.4	2%	Courgettes/boiled	0.1/0.1	2.1	1%	Maize/oil	0.01/2.8	1.4
		Maize/oil	0.01/2.8	2.6 2.3	0.7%	Potatoes/chips	0.04/0.12 0.05/0.06	0.98	1%	Tomatoes/sauce/puree Potatoes/fried	0.2/0.2	1.9	0.7%	Potatoes/chips	0.04/0.12 0.05/0.06	0.98
	2%	Charking/picklod				Oranges/juice	0.05/0.06	0.85	1% 0.8%	Potatoes/fried Sweet potatoes/boiled	0.04/0.04 0.04/0.04	1.7 1.1	0.6%	Oranges/juice Potatoes/dried (flakes)	0.05/0.06	0.85 0.67
	2%	Gherkins/pickled Sweet potatoes/boiled	0.1/0.1		0.5%						0.01/0.12	1.1	0.5%	Grapefruits/juice		
		Gherkins/pickled Sweet potatoes/boiled Tomatoes/sauce/puree	0.1/0.1 0.04/0.04 0.2/0.2	2.0	0.5%	Cassava roots/boiled Potatoes/dried (flakes)	0.04/0.53	0.67	0.8%	Sugar beets (root)/sugar					0.05/0.06	0.61
	2% 1% 1% 0.8%	Sweet potatoes/boiled Tomatoes/sauce/puree Sugar beets (root)/sugar	0.04/0.04 0.2/0.2 0.01/0.12	2.0 1.9 1.1	0.5% 0.4%	Potatoes/dried (flakes) Sweet potatoes/boiled	0.04/0.53 0.04/0.04	0.62	0.7%	Sugar beets (root)/sugar Gherkins/pickled	0.1/0.1	0.99	0.3%	Sweet potatoes/boiled	0.04/0.04	0.47
	2% 1% 0.8% 0.6%	Sweet potatoes/boiled Tomatoes/sauce/puree Sugar beets (root)/sugar Pumpkins/boiled	0.04/0.04 0.2/0.2 0.01/0.12 0.01/0.01	2.0 1.9 1.1 0.89	0.5% 0.4% 0.4%	Potatoes/dried (flakes) Sweet potatoes/boiled Grapefruits/juice	0.04/0.53 0.04/0.04 0.05/0.06	0.62 0.61	0.7% 0.5%	Gherkins/pickled Soyabeans/soy milk	0.1/0.1 0.01/0.18	0.99 0.74	0.3% 0.3%	Sweet potatoes/boiled Cassava roots/boiled	0.04/0.04 0.04/0.04	0.47 0.46
	2% 1% 1% 0.8% 0.6% 0.6%	Sweet potatoes/boiled Tomatoes/sauce/puree Sugar beets (root)/sugar Pumpkins/boiled Witloofs/boiled	0.04/0.04 0.2/0.2 0.01/0.12 0.01/0.01 0.01/0.01	2.0 1.9 1.1 0.89 0.87	0.5% 0.4% 0.4% 0.4%	Potatoes/dried (flakes) Sweet potatoes/boiled Grapefruits/juice Pumpkins/boiled	0.04/0.53 0.04/0.04 0.05/0.06 0.01/0.01	0.62 0.61 0.55	0.7% 0.5% 0.5%	Gherkins/pickled Soyabeans/soy milk Raspberries/juice	0.1/0.1 0.01/0.18 0.5/0.06	0.99 0.74 0.66	0.3% 0.3% 0.3%	Sweet potatoes/boiled Cassava roots/boiled Sugar beets (root)/sugar	0.04/0.04 0.04/0.04 0.01/0.12	0.47 0.46 0.44
	2% 1% 0.8% 0.6%	Sweet potatoes/boiled Tomatoes/sauce/puree Sugar beets (root)/sugar Pumpkins/boiled Wittoofs/boiled Broccoli/boiled	0.04/0.04 0.2/0.2 0.01/0.12 0.01/0.01	2.0 1.9 1.1 0.89	0.5% 0.4% 0.4%	Potatoes/dried (flakes) Sweet potatoes/boiled Grapefruits/juice	0.04/0.53 0.04/0.04 0.05/0.06	0.62 0.61	0.7% 0.5%	Gherkins/pickled Soyabeans/soy milk	0.1/0.1 0.01/0.18	0.99 0.74	0.3% 0.3%	Sweet potatoes/boiled Cassava roots/boiled	0.04/0.04 0.04/0.04	0.47 0.46
	2% 1% 1% 0.8% 0.6% 0.6% 0.6%	Sweet potatoes/boiled Tomatoes/sauce/puree Sugar beets (root)/sugar Pumpkins/boiled Wittoofs/boiled Broccoli/boiled	0.04/0.04 0.2/0.2 0.01/0.12 0.01/0.01 0.01/0.01	2.0 1.9 1.1 0.89 0.87	0.5% 0.4% 0.4% 0.4%	Potatoes/dried (flakes) Sweet potatoes/boiled Grapefruits/juice Pumpkins/boiled	0.04/0.53 0.04/0.04 0.05/0.06 0.01/0.01	0.62 0.61 0.55	0.7% 0.5% 0.5%	Gherkins/pickled Soyabeans/soy milk Raspberries/juice	0.1/0.1 0.01/0.18 0.5/0.06	0.99 0.74 0.66	0.3% 0.3% 0.3%	Sweet potatoes/boiled Cassava roots/boiled Sugar beets (root)/sugar	0.04/0.04 0.04/0.04 0.01/0.12	0.47 0.46 0.44
	2% 1% 0.8% 0.6% 0.6% 0.6% Expand/collapse list	Sweet potatoes/boiled Tomatoes/sauce/puree Sugar beets (root)/sugar Pumpkins/boiled Wittoofs/boiled Broccoli/boiled	0.04/0.04 0.2/0.2 0.01/0.12 0.01/0.01 0.01/0.01	2.0 1.9 1.1 0.89 0.87	0.5% 0.4% 0.4% 0.4%	Potatoes/dried (flakes) Sweet potatoes/boiled Grapefruits/juice Pumpkins/boiled	0.04/0.53 0.04/0.04 0.05/0.06 0.01/0.01	0.62 0.61 0.55	0.7% 0.5% 0.5%	Gherkins/pickled Soyabeans/soy milk Raspberries/juice	0.1/0.1 0.01/0.18 0.5/0.06	0.99 0.74 0.66	0.3% 0.3% 0.3%	Sweet potatoes/boiled Cassava roots/boiled Sugar beets (root)/sugar	0.04/0.04 0.04/0.04 0.01/0.12	0.47 0.46 0.44
	2% 1% 1% 0.8% 0.6% Expand/collapse list Conclusion: No exceedance of th	Sweet potatoes/boiled Tomatoes/sauce/puree Sugar beets (root)/sugar Pumpkins/boiled Wittoofs/boiled Broccoli/boiled	0.04/0.04 0.2/0.2 0.01/0.12 0.01/0.01 0.01/0.01 0.01/0.01	2.0 1.9 1.1 0.89 0.87 0.79 d for any unprov	0.5% 0.4% 0.4% 0.4% 0.3%	Potatoes/dried (flakes) Sweet potatoes/boiled Grapefruits/juice Pumpkins/boiled	0.04/0.53 0.04/0.04 0.05/0.06 0.01/0.01	0.62 0.61 0.55	0.7% 0.5% 0.5%	Gherkins/pickled Soyabeans/soy milk Raspberries/juice	0.1/0.1 0.01/0.18 0.5/0.06	0.99 0.74 0.66	0.3% 0.3% 0.3%	Sweet potatoes/boiled Cassava roots/boiled Sugar beets (root)/sugar	0.04/0.04 0.04/0.04 0.01/0.12	0.47 0.46 0.44

+	× *	C		100- (Ethiprole		0.15					
	* A	fsa		LOQs (mg/kg) range	Toxicological reference	to: values	0.15	Details-ch assess		Supplementary chronic risk ass		
	L	JUM		ADI (mg/kg bw per d	ay): 0.005	ARfD (mg/kg bw):	0.005			·	$ \longrightarrow $	
E	uropean Food	Safety Authority		Source of ADI:	JMPR	Source of ARfD:	JMPR	Details-a		Details-acut		
	EFSA PRIMo rev	vision 3.1; 2018/11/18		Year of evaluation:	2018	Year of evaluation:	2018	assessmen	t/children	assessment/	adults	J
men	ts:			1								
					Norr	nal mode						
					Chronic risk assessme	nt: JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :							e resulting fro
											MRLs set al	t commoditie under asses
			Expsoure	Highest contributor to		2nd contributor to			3rd contributor to		the LOQ (in % of	(in % of A
	Calculated exposure (% of ADI)	MS Diet	(µg/kg bw per	MS diet	Commodity/ group of commodities	MS diet	Commodity/		MS diet (in % of ADI)	Commodity/ group of commodities	ADI)	1,
-	(% of ADI) 29%	NS Diet NL toddler	day) 1.46	(in % of ADI) 13%	group of commodities Milk: Cattle	(in % of ADI) 2%	group of commodities Apples		(in % of ADI) 2%	group of commodities Rice	12%	-
	16%	UK infant	0.81	9%	Milk: Cattle	2%	Rice		0.9%	Bovine: Muscle/meat	4%	
	16%	NL child	0.79	5%	Milk: Cattle	2%	Sugar beet roots		1%	Apples	7%	
	15%	FR child 3–15 years	0.75	5%	Milk: Cattle	1%	Rice		1%	Bovine: Muscle/meat	5%	
	15%	FR toddler 2–3 years	0.74	6%	Milk: Cattle	2%	Rice		0.9%	Bovine: Muscle/meat	4%	
	14%	DE child	0.74	4%	Milk: Cattle	2%	Apples		0.8%	Wheat	8%	
	12%	GEMS/Food G10	0.61	4%	Rice	1%	Milk: Cattle		0.8%	Wheat	5%	
	12%	UK toddler	0.61	4 % 5%	Milk: Cattle	2%	Rice		0.8%	Bovine: Muscle/meat	4%	
	12%	GEMS/Food G06	0.61	4%	Rice	1%	Wheat		0.7%	Tomatoes	4 % 6%	
.	12%	DK child	0.58	4%	Milk: Cattle	2%	Swine: Muscle/meat		1%		5%	
	12%	SE general	0.58	3%	Bovine: Muscle/meat	2%	Milk: Cattle		1%	Rye Rice	5%	
	11%	ES child	0.57	3%	Milk: Cattle	3%	Rice		1%	Bovine: Muscle/meat	4%	
	11%	GEMS/Food G11	0.55	2%	Milk: Cattle	0.9%	Swine: Muscle/meat		0.8%	Rice	6%	
	10%	GEMS/Food G07	0.54	1%	Milk: Cattle	1.0%	Rice		0.8%	Wheat	5%	
	10%	GEMS/Food G07 GEMS/Food G15	0.52	2%	Milk: Cattle	1%	Swine: Muscle/meat		0.9%	Wheat	5%	
				2%	Swine: Muscle/meat		Milk: Cattle					
	10%	GEMS/Food G08	0.51		Swine: Muscle/meat Milk: Cattle	1%			0.8%	Wheat Swine: Muscle/meat	5%	
	10%	RO general	0.48	3%	Milk: Cattle	1% 0.7%	Wheat		0.8%		5%	
	9%	IE adult	0.44	1.0%			Sweet potatoes		0.6%	Rice	5%	
	8%	DE general	0.41	3%	Milk: Cattle	0.8%	Sugar beet roots		0.8%	Swine: Muscle/meat	4%	
	8% 8%	DE women 14–50 years	0.41 0.38	3% 2%	Milk: Cattle Milk: Cattle	0.9%	Sugar beet roots Swine: Muscle/meat		0.6%	Swine: Muscle/meat Sugar beet roots	4% 3%	1
		NL general		2%	Milk: Cattle							1
	7%	FR infant	0.35	4%		0.4%	Potatoes		0.3%	Apples	2%	1
-	6%	PT general ES adult	0.31		Rice Milk: Cattle	1% 0.7%	Potatoes		0.8%	Wheat Bovine: Muscle/meat	4%	1
	6%		0.31	1%	Milk: Cattle		Rice		0.5%		2%	
	6% 5%	FR adult DK adult	0.29	1.0% 1%	Milk: Cattle Milk: Cattle	0.5%	Swine: Muscle/meat Swine: Muscle/meat		0.5%	Wine grapes	2%	1
	5% 5%	LT adult	0.25	1%	Milk: Cattle	0.6%	Swine: Muscle/meat		0.4%	Bovine: Muscle/meat Potatoes	2% 2%	1
	5%	FI 3 years	0.25	2%	Rice	0.7%	Potatoes		0.6%	Potatoes Bananas	2%	1
	5% 4%	FI 3 years FI adult	0.24	2%	Coffee beans	0.9%	Rice		0.3%	Bananas Potatoes	3%	1
	4%	UK adult	0.22	1%	Rice	0.4%	Milk: Cattle		0.5%	Potatoes Bovine: Muscle/meat	2%	
	4%	UK adult UK vegetarian	0.22	1%	Rice	0.7%	Milk: Cattle		0.5%	Wheat	2%	1
	4%	IT toddler	0.21	1%	Wheat	0.7%	Rice		0.3%	Other cereals	2%	1
	4%	FI 6 years	0.19	1%	Rice	0.8%	Potatoes		0.2%	Wheat	3%	1
	3%	IE child	0.15	0.8%	Rice	0.8%	Milk: Cattle		0.3%	Swine: Fat tissue	0.7%	
	3%	IT adult	0.15	0.8%	Wheat	0.5%	Rice		0.2%	Tomatoes	2%	1
	2%	PL general	0.10	0.7%	Potatoes	0.4%	Apples		0.2%	Tomatoes	2%	
-	Conclusion:				1		1			1		1
		erm dietary intake (TMDI/NEDI/IEDI)										

	Details–a															
		cute risk assessme	ent/childr	en	Details	s–acute risk assessn	nent/adu	lts	Ļ	lide IESTI new calc	ulations			Show IESTI new calcula	ations	
		sment is based on the ARfD. sed on the large portion of th							the residue definition the results are const	erformed with the MRL and th	calculations,	a variability fac	or of 3 is used. Since	unt the residue in the edible portion and be this methodology is not based on in nsidered as indicative only.		
			Sh	ow results	s for all crops	5										
No	esults for childrer o. of commodities f cceeded (IESTI):	or which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is		1	IESTI new Results for adults No. of commodities (IESTI new):	s for which ARfD/ADI is exceeded		1
IE	STI				IESTI				IESTI new				IESTI new			
			MRL/input				MRL/input				MRL/input				MRL/input	
	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Expos (µg/kg
	35%	Rice	1.5/0.14	(µg/kg bw) 1.8	24%	Rice	1.5/0.14	(µg/kg bw) 1.2	378%	Rice	1.5/1.5	(µg/kg bw) 19	256%	Rice	1.5/1.5	(pg/kg 13
	31%	Potatoes	0.01/0.01	1.5	8%	Milk: Cattle	0.02/0.01	0.42	37%	Milk: Cattle	0.02/0.02	1.9	17%	Other farmed animals:	0.02/0.15	0.8
	30%	Melons	0.01/0.01	1.5	8%	Head cabbages	0.01/0.01	0.42	21%	Other farmed animals:	0.02/0.15	1.0	12%	Milk: Cattle	0.02/0.02	0.5
	28% 27%	Pears Milk: Cattle	0.01/0.01 0.02/0.01	1.4 1.4	8% 8%	Watermelons Melons	0.01/0.01 0.01/0.01	0.41	18% 16%	Melons Bovine: Liver	0.01/0.01	0.91	9% 8%	Oranges Bovine: Liver	0.01/0.01 0.1/0.1	0.4
	27%	Oranges	0.02/0.01	1.4	7%	Swedes/rutabagas	0.01/0.01	0.39	15%	Watermelons	0.01/0.01	0.73	8%	Plums	0.01/0.01	0.0
	24%	Watermelons	0.01/0.01	1.2	7%	Table grapes	0.01/0.01	0.34	15%	Bovine: Edible offals (other		0.73	7%	Pears	0.01/0.01	0.3
	22%	Apples	0.01/0.01	1.1	6%	Bovine: Liver	0.1/0.08	0.32	13%	Oranges	0.01/0.01	0.67	7%	Bovine: Edible offals (other than	0.1/0.1	0.3
	20% 19%	Pineapples Bananas	0.01/0.01 0.01/0.01	1.0 0.97	6% 6%	Oranges Pears	0.01/0.01 0.01/0.01	0.31 0.31	13% 12%	Potatoes Eggs: Chicken	0.01/0.01 0.05/0.05	0.66	7% 6%	Mandarins Potatoes	0.01/0.01	0.3
	19%	Peaches	0.01/0.01	0.97	6%	Pears Potatoes	0.01/0.01	0.31	12%	Apples	0.05/0.05	0.62	6%	Swine: Fat tissue	0.15/0.15	0.0
	16%	Mangoes	0.01/0.01	0.79	6%	Pineapples	0.01/0.01	0.30	12%	Bananas	0.01/0.01	0.61	6%	Apples	0.01/0.01	0.3
	16%	Grapefruits	0.01/0.01	0.79	6%	Yams	0.01/0.01	0.28	12%	Pineapples	0.01/0.01	0.61	6%	Sheep: Liver	0.1/0.1	0.2
	15% 13%	Table grapes Cucumbers	0.01/0.01 0.01/0.01	0.73	6% 6%	Apples	0.01/0.01 0.01/0.01	0.28	12% 11%	Pears Peaches	0.01/0.01 0.01/0.01	0.59	6% 6%	Bananas Milk: Goat	0.01/0.01 0.02/0.02	0.2
E	xpand/collapse list	Cucumbers	0.01/0.01	0.00	0%	Cucumbers	0.01/0.01	0.26	11%	Peaches	0.01/0.01	0.54	0%	Milk: Goat	0.02/0.02	0.2
ch	otal number of con hildren and adult of ESTI calculation)	mmodities exceeding the A diets	RfD/ADI in							ommodities found exceedin ren and adult diets ntion)	ig the	1				
										,						
	esults for children	n modities for which ARfD/AD			Results for adults	mmodities for which ARfD/ADI			Results for childre	en mmodities for which			Results for adults	ommodities for which ARfD/ADI is		
	exceeded (IESTI):				is exceeded (IESTI)				ARfD/ADI is exceed				exceeded (IESTI ne			
IE	STI				IESTI				IESTI new				IESTI new			
			MRL/input				MRL/input				MRL/input				MRL/input	
	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Expo (µg/kg
\vdash	22%	Sugar beets (root)/sugar	0.01/0.12	(µg/kg bw) 1.1	11%	Processed commodities Pumpkins/boiled	0.01/0.01	(µg/kg bw) 0.55	22%	Sugar beets (root)/sugar	0.01/0.12	<u>(µg/кg bw)</u> 1.1	11%	Rice/milling (polishing)	(mg/kg) 1.5/0.06	(µg/ĸ) 0.5
	19%	Potatoes/fried	0.01/0.01	0.93	11%	Rice/milling (polishing)	1.5/0.06	0.54	17%	Rice/milling (polishing)	1.5/0.06	0.86	9%	Sugar beets (root)/sugar	0.01/0.12	0.4
	18%	Pumpkins/boiled	0.01/0.01	0.89	9%	Sugar beets (root)/sugar	0.01/0.12	0.44	12%	Potatoes/dried (flakes)	0.01/0.05	0.59	8%	Pumpkins/boiled	0.01/0.01	0.4
	17% 17%	Witloofs/boiled Rice/milling (polishing)	0.01/0.01	0.87	8% 7%	Cauliflowers/boiled Celeries/boiled	0.01/0.01	0.42	11% 11%	Apples/juice Pumpkins/boiled	0.01/0.01	0.54	7% 5%	Apples/juice Cauliflowers/boiled	0.01/0.01	0.3
	16%	Broccoli/boiled	0.01/0.01	0.88	7%	Apples/juice	0.01/0.01	0.34	11%	Oranges/juice	0.01/0.01	0.53	4%	Witloofs/boiled	0.01/0.01	0.1
	14%	Cauliflowers/boiled	0.01/0.01	0.70	5%	Broccoli/boiled	0.01/0.01	0.24	9%	Broccoli/boiled	0.01/0.01	0.47	4%	Wine grapes/juice	0.01/0.01	0.3
	13% 12%	Escaroles/broad-leaved Potatoes/dried (flakes)	0.01/0.01	0.66	5% 4%	Courgettes/boiled Beetroots/boiled	0.01/0.01	0.23	9% 9%	Witloofs/boiled Potatoes/fried	0.01/0.01	0.47	4% 4%	Celeries/boiled Broccoli/boiled	0.01/0.01	0.2
	12%	Potatoes/dried (flakes) Leeks/boiled	0.01/0.05	0.59	4% 4%	Parsnips/boiled	0.01/0.01	0.22	9% 9%	Wine grapes/juice	0.01/0.01	0.44	4% 4%	Rhubarbs/sauce/puree	0.01/0.01	0.2
	11%	Apples/juice	0.01/0.01	0.54	4%	Kohlrabies/boiled	0.01/0.01	0.21	8%	Cauliflowers/boiled	0.01/0.01	0.42	3%	Beetroots/boiled	0.01/0.01	0.
	11%	Oranges/juice	0.01/0.01	0.53	4%	Wine grapes/juice	0.01/0.01	0.21	8%	Escaroles/broad-leaved	0.01/0.01	0.40	3%	Courgettes/boiled	0.01/0.01	0.1
	10% 10%	Turnips/boiled Parsnips/boiled	0.01/0.01 0.01/0.01	0.51 0.51	4% 4%	Escaroles/broad-leaved Florence fennels/boiled	0.01/0.01 0.01/0.01	0.20	7% 7%	Carrots/juice Leeks/boiled	0.01/0.01 0.01/0.01	0.36	3% 3%	Escaroles/broad-leaved endives/ Oranges/juice	0.01/0.01	0.
	10%	Sweet potatoes/boiled	0.01/0.01	0.51	4%	Turnips/boiled	0.01/0.01	0.19	7%	Pears/juice	0.01/0.01	0.33	3%	Leeks/boiled	0.01/0.01	0.
E)	xpand/collapse list					The second secon										
Cr	onclusion:															
No	o exceedance of the	e toxicological reference valu f residues of Ethiprole is unl														

	÷ 0	fsa		LOQs (mg/kg) range	from:	azinam (F)	to:	0.10	Details-ch		Supplementary		
	* * E					ogical reference v			assess	ment	chronic risk ass	essment	
-	-			ADI (mg/kg bw per da	ay):	0.01	ARfD (mg/kg bw):	0.07	Details-a	eute riek	Details-acut	in viali	
E	uropean Food	Safety Authority		Source of ADI:		08/108	Source of ARfD:	08/108	assessmen		assessment/		
	EFSA PRIMo rev	vision 3.1; 2018/11/18		Year of evaluation:		2008	Year of evaluation:	2008	assessmen	, ciliuren	assessment/	auuits	
men	ts:												
						Norma	l mode						
					Chronie	c risk assessment							
				No. of elleter even eller			. Juir IX method						
				No of diets exceeding	the ADI :							MRLs set at	e resulting fro
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ	under assess
	Calculated exposure		(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		MS diet	Commodity/	(in % of ADI)	(in % of A
	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		
	84% 76%	PT general FR adult	8.44 7.63	75% 70%	Wine grapes Wine grapes		3% 2%	Apples Apples		3% 1%	Tomatoes Tomatoes	2% 2%	
	65%	RO general	6.55	50%	Wine grapes		6%	Tomatoes		4%	Apples	3%	
	62%	NL toddler	6.19	32%	Apples		13%	Pears		6%	Milk: Cattle	12%	
	56%	GEMS/Food G07	5.61	44%	Wine grapes		3%	Tomatoes		3%	Apples	4%	
	49%	DE child	4.94	37%	Apples		3%	Tomatoes		2%	Milk: Cattle	6%	
	46%	IE adult	4.60	38%	Wine grapes		2%	Apples		1%	Pears	3%	
	44%	GEMS/Food G08	4.37	31%	Wine grapes		4%	Apples		3%	Tomatoes	4%	
.	44%	GEMS/Food G11	4.37	31%	Wine grapes		5%	Apples		3%	Tomatoes	4%	
	43%	GEMS/Food G15	4.26	30%	Wine grapes		4%	Tomatoes		3%	Apples	4%	
	40%	DE women 14–50 years	3.99	25% 25%	Wine grapes		8%	Apples		2% 2%	Tomatoes	4%	
	39% 37%	DE general UK adult	3.90 3.69	25% 32%	Wine grapes Wine grapes		7% 1%	Apples Tomatoes		2%	Tomatoes Apples	4% 1%	
	36%	DK adult	3.58	29%	Wine grapes		3%	Apples		2%	Tomatoes	1%	
	30%	NL child	3.01	17%	Apples		4%	Pears		2%	Milk: Cattle	6%	
	30%	UK vegetarian	3.01	24%	Wine grapes		2%	Tomatoes		2%	Apples	1%	
	27%	NL general	2.75	18%	Wine grapes		4%	Apples		1%	Tomatoes	3%	
	26%	FR child 3-15 years	2.55	11%	Wine grapes		5%	Apples		3%	Tomatoes	6%	
	25%	FR toddler 2–3 years	2.49	10%	Apples		7%	Wine grapes		3%	Milk: Cattle	6%	
	25%	GEMS/Food G10	2.47	13%	Wine grapes		4%	Tomatoes		2%	Apples	4%	
÷	21%	GEMS/Food G06	2.09	11%	Tomatoes		3%	Apples		2%	Wine grapes	4%	
	21%	ES adult	2.06	12%	Wine grapes		2%	Tomatoes		2%	Apples	2%	
	19%	Fladult	1.93	9%	Wine grapes		6%	Coffee beans		2%	Apples	6%	
	16%	DK child	1.58	7% 5%	Apples		2%	Pears		2%	Tomatoes	5%	
	14% 14%	UK infant UK toddler	1.39 1.37	5%	Apples		4% 2%	Milk: Cattle Milk: Cattle		1% 2%	Tomatoes Tomatoes	6% 4%	
	14%	ES child	1.37	3%	Apples Apples		2%	Tomatoes		1%	Pears	4%	
	13%	SE general	1.25	3%	Apples		2%	Tomatoes		1%	Pears Milk: Cattle	4%	
	11%	PL general	1.09	6%	Apples		3%	Tomatoes		0.8%	Pears	0.3%	
	10%	IT toddler	1.04	4%	Tomatoes		3%	Apples		1%	Wheat	2%	
	10%	FR infant	1.01	5%	Apples		2%	Milk: Cattle		1%	Wine grapes	3%	
	10%	LT adult	0.99	6%	Apples		2%	Tomatoes		0.6%	Potatoes	1%	
	8%	IT adult	0.82	3%	Tomatoes		2%	Apples		0.8%	Wheat	1%	
	8%	FI 3 years	0.78	3%	Apples		2%	Tomatoes		0.9%	Potatoes	2%	
	6%	FI 6 years	0.59	2%	Apples		1%	Tomatoes		0.8%	Potatoes	1% 0.8%	
	2%	IE child	0.22	1.0%	Apples		0.4%	Milk: Cattle		0.2%	Wheat	0.8%	1

Highert's of the large of the larg		
The status test and the graph of the first of the status test and the status of the st	acute risk assessment/children Details-acute risk assessment/adults Hide IESTI new calculations Show IES	calculations
Rule for calible (not for calible)(not for calible)	ased on the large portion of the most critical consumer group. The calculation is performed with the MRL and the peeling/processing factor (PF), taking into account the residue of the residue definition (CF). For case 2a, 2b and 3 calculations, a variability factor of 3 is used. Since this methods the results are considered as indicative only.	used on internationally agreed p
Results Results <t< th=""><th>Show results for all crops</th><th></th></t<>	Show results for all crops	
Hypert St. Hypert St.	nn Results for adults Results for adults Results for adults for which ARID/ADI is No. of commodifies for which ARID	eded
Image: Note of the process of the proces of the process of the proces of the process of the process of	IESTI IESTI new IESTI new	
9% Pars 0.33 1/2 100% Wire groups 33 1/2 </td <td>for RA Exposure Highest % of for RA Exposure Highest % of for RA Exposure Highest % of</td> <td></td>	for RA Exposure Highest % of for RA Exposure Highest % of for RA Exposure Highest % of	
4/5 4/5		
29% Buscherine 33 18 17% Apples 0.303 4.4 25% Pears 0.303 18 13% Apples 0.303 2% Frankose 0.2012 1.1 3% Valent node 0.33 4.4 2% Pears 0.303 18 9% Valent node 0.333 4% Pears 0.303 14 3% Valent node 0.303 18 9% Pears 0.303 18 9% Valent node 0.303 18 Valent node 0.303 18 9% Valent node 0.303 18 9% Valent node 0.303 18 Valent node 0.303 18 Valent node 0.303 18 Valent node 0.303 18 Valent node	Apples 0.3/0.3 32 39% Blueberries 3/3 27 26% Apples 0.3/0.3 18 39% Blueberries	3/3
29% Tonatoes 0.303 17 7% Tonatoes 0.303 1.8 7% Tonatoes 0.303 1.1 8% Tonatoes 0.303 1.1 8% Tonatoes 0.303 1.1 8% Tonatoes 0.303 1.1 3% Valetan not 33 33 1.3 2% Matice 0.00101 1.2 3% Valetan not 33 33 1.3 2% Matice 0.00101 1.2 3% Valetan not 33 33 Valetan not 33 43 35 Valetan not 33 35 0.60 0.4% Wan 0.0000 0.5% Valetan not 0.00000 Valetan not 0.000	Wine grapes 3/3 28 13% Pears 0.3/0.3 9.2 26% Blueberries 3/3 18 15% Pears	
4% Patalose 0.020,02 3.1 3% Valerian root 3.0 3.6 2% Patalose 0.020,02 1.3 3% Valerian root 3.0 3.8 3.8 Valerian root 3.0 3.8 Valerian root 3.0 3.8 Valerian root 3.3 0.8 0.9 Nature rate 0.0001 0.65 Macro 0.01001 0.4 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9		
2% Moines 0.010.01 1.5 3% Valentian root 33 1.8 2% Mike Catila 0.010.01 1.2 3% Valentian root 33 0.020.02 2% Changa 0.010.01 1.3 0.5% Petados 0.020.02 0.010.01 0.7% Obranga 0.010.01 0.07% Obranga 0.010.01 0.05% Macina dia dia dia dia dia dia dia dia dia di		
2% Oranges 0.010.01 1.2 0.9% Petatoms 0.020.01 0.4% 1% Carabonations 0.010.01 0.7% 0.6% Peras 0.010.01 2% Main: Carlie 0.010.01 1.2 0.6% Watermelons 0.010.01 0.7% 0.6% Peras 0.010.01 0.7% 0.6% Main 0.010.01 0.7% Main Main 0.010.01 Mai	Melons 0.01/0.01 1.5 3% Valerian root 3/3 1.8 2% Milk: Cattle 0.01/0.01 1.2 3% Valerian roo	3/3
2% Mit: Cattle 0.010.01 1.2 0.05% Hand catbages 0.010.01 0.42 1% Watermalons 0.010.01 0.73 0.05% Plansing 0.010.01 1.73 0.05% Plansing 0.010.01 0.73 0.05% Plansing Plansing		0.02/0.02
2% Watermedons 0.010.01 1.2 0.6% Watermedons 0.010.01 0.41 1.0% Dranges 0.010.01 0.67 0.6% Mic: Cattle 0.010.01 0.64 0.05% Diff.01 0.05% Mic: Cattle 0.010.01 0.39 0.9% Preseptes 0.010.01 0.61 0.5% Minacrimic 0.010.01 0.64% Minacrimic 0.010.01 0.65% Minacrimic 0.010.01 0.39 0.9% Vietnin not 33 0.60 0.4% Banaas 0.010.01 0.65% Minacrimic 0.010.01 0.34 0.9% Vietnin not 33 0.60 0.4% Banaas 0.010.01 0.65% Minacrimic 0.010.01 0.34 0.9% Vietnin not 33 0.60 0.4% Banaas 0.010.01 0.6% Minacrimic 0.010.01 0.65% Minacrimic 0.010.01 0.34 0.9% Vietnin not 33 0.60 0.4% Vietnin 0.6% Minacrimic 0.010.01 0.6% Minacrimic 0.010.01 0.6% Minacrimic 0.010.01 0.6% Minacrimic 0.010.01 <		
1% Prescription 0.010.01 0.0% Medica 0.010.01 0.3% Denamina 0.010.01 0.6% Minic Sate 0.010.01 0.3% Denamina 0.010.01 0.6% Minic Sate 0.010.01 0.3% Denamina 0.010.01 0.6% Minic Sate 0.010.01 0.3% Denamina 0.010.01 Denamina 0.010.01 Denamina Denamina 0.010.01 Denamina Denamina Denamina Denamina Denamina Denamina Denamina Denamina Denamina <thdenamina< th=""> Denamina</thdenamina<>		
1% Barmins 0.010.01 0.97 0.6% Mitc. Catlie 0.010.01 0.34 0.0% Valerian roct 0.010.01 0.6% Management 0.010.01 0.05% Valerian roct 0.33 0.060 0.05% Management 0.010.01 0.010.01 0.010.01 0.04% Distribution Distrib		
N Mangoes Equand/callinges 0.010.01 0.79 0.5% Table grapes 0.010.01 0.34 0.9% Valerian root 333 0.60 0.4% Yams 0.010.01 Total number of commodities exceeding the ARTD/ADI in children and Audit diets Total number of commodities for which ARTD/ADI in children and Audit diets Total number of commodities for which ARTD/ADI in children and Audit diets Total number of commodities for which ARTD/ADI in children and Audit diets Total number of commodities for which ARTD/ADI in children and Audit diets Total number of commodities for which ARTD/ADI in children Total number of commodities for which ARTD/ADI in children in the conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of commodities for which ARTD/ADI is conseted (ESTI new): Total number of c		0.01/0.01
Expandiculty products Control of the screeding the ARD/AD in childra mad skult dies (IEST calculation) Image: Commodities screeding the ARD/AD in childra mad skult dies (IEST calculation) Commodities screeding the ARD/AD in childra mad skult dies (IEST calculation) Commodities for which ARD/AD in childra mad skult dies (IEST calculation) Commodities for which ARD/AD in childra mad skult dies (IEST calculation) Commodities for which ARD/AD in the screeded (IEST) Results for childra No of processed commodities for which screeded (IEST) Results for childra No of processed commodities for which screeded (IEST) Results for childra No of processed commodities for which screeded (IEST) Results for childra No of processed commodities for which aRD/AD in screeded (IEST) Itest (IEST) EST IEST IEST new IEST new IEST new IEST new No of processed commodities (mg/kg) (ug/kg)		0.01/0.01
Total number of commodities fourd acceeding the ARID/ADI in differ and adult dies (IEST new calculation) Total number of commodities fourd acceeding the ARID/ADI in clickers and adult dies (IEST new calculation) Total number of commodities fourd acceeding the ARID/ADI in clickers and adult dies (IEST new calculation) Total number of commodities fourd acceeding the ARID/ADI in clickers and adult dies (IEST new calculation) Total number of commodities fourd acceeding the ARID/ADI in clickers and adult dies (IEST new calculation) Total number of commodities for which ARID/ADI in clickers and adult dies (IEST new calculation) Results for adults No of processed commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new): Results for adult No of processed commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new): Total number of commodities for which ARID/ADI in exceeded (IEST new):		0.01/0.01
No of processed commodities for which ARID/ADI No of processed commodities for	ommodities exceeding the ARfD/ADI in tidets and tidets to the tidets and tidets to the	
is exceeded (IESTI): I is exceeded (IESTI): ARD/ADI is exceeded (IESTI new): 1 exceeded (IESTI new): IESTI IESTI IESTI new IESTI	en Results for adults Results for adults Results for children Results for adults	
LESTI IESTI MRL/input Formators IESTI		DI is
MRL/mput		
Highest % of ARD/ADD for RA Exposure (mg/kg) Highest % of (mg/kg) for RA Exposure (mg/kg) for RA<		
ARD/ADI Processed commodilies (mg/kg) (yg/kg bw) ARD/ADI Processed commodilies (mg/kg bw) ARD/ADI Processed commodilies (mg/kg bw) ARD/ADI Procestadian ARD/ADI Proc		
187% Wine grapes/juice 33 131 89% Wine grapes/juice 33 131 89% Wine grapes/juice 33 131 89% Wine grapes/juice 33 23% Apples/juice 0.30.3 16 41% Wine grapes/juice 0.30.3 16 41% Apples/juice 0.30.3		
23% Applesiyuice 0.303 16 41% Wine grapes/wine 3/3 28 23% Applesiyuice 0.303 16 41% Wine grapes/wine 3/3 28 23% Applesiyuice 0.303 16 41% Wine grapes/wine 3/3 28 23% Applesiyuice 0.303 16 41% Wine grapes/wine 3/3 28 11/% Applesiyuice 0.303 5.7 41% Tomatoes/auce/pruce 0.303 5.7 41% Tomatoes/auce/pruce 0.303 41% Tomatoes/auce/pruce 0.303 5.7 41% Tomatoes/auce/pruce 0.303 41% Tomatoes/auce/pruce 0.303 5.7 41% Tomatoes/auce/pruce 0.303 41% Tomatoes/auce/pruce 0.303 2.5 8% Yintoes/auce/pruce 0.303 2.5 8% Tomatoes/auce/pruce 0.302 <td< td=""><td>Wine grapes/juice 33 131 89% Wine grapes/juice 3/3 62 187% Wine grapes/juice 3/3 131 89% Wine grapes</td><td>3/3</td></td<>	Wine grapes/juice 33 131 89% Wine grapes/juice 3/3 62 187% Wine grapes/juice 3/3 131 89% Wine grapes	3/3
8% Tomatoes/juice 0.303 5.7 4% Tomatoes/juice 0.303 2.5 8% Tomatoes/juice 0.303 5.7 4% Tomatoes/juice 0.303 5.7 4% Tomatoes/juice 0.303 2.5 4% Tomatoes/juice 0.303 5.7 4% Tomatoes/juice 0.303 5.7 4% Tomatoes/juice 0.303 2.5 4% Tomatoes/juice 0.303 2.5 4% Tomatoes/juice 0.303 2.5 4% Tomatoes/juice 0.302 2.9 0.7% Coffee baars/end/juice 0.010.01 1.1 0.6% Sugar beds (not/jsugar 0.0110.1 1.1 0.6% Sugar beds (not/jsugar 0.010.01 0.29 0.6% Shallots/boiled 0.010.01 0.53 0.6% Shallots/boiled 0.010.01 0.53 0.6% Shallots/boiled	Apples/juice 0.3/0.3 16 41% Wine grapes/wine 3/3 28 23% Apples/juice 0.3/0.3 16 41% Wine grapes	
4% Tomatoes/issue/pure 0.3/0.3 2.9 0.8% Onionabolied 0.0/0.06 0.56 4% Tomatoes/issue/pure 0.3/0.3 2.9 0.7% Coffee baans/sociation 0.1/0.01 2% Pataloes/find 0.0/0.02 1.9 0.8% Pumphinabolied 0.0/0.01 0.55 2% Sugar baets (root)/sugar 0.0/0.02 1.1 0.6% Opinominabolied 0.0/0.02 0.67 0.6% Shallots/boiled 0.0/0.01 0.44 1% Potaloes/finied 0.0/0.01 0.67 0.6% Shallots/boiled 0.0/0.01 <td></td> <td></td>		
3% Potatoes/field 0.02/0.02 1.9 0.8% Pumphinsboiled 0.01/0.01 0.55 2% Potatoes/field(field(set) 0.02/0.09 1.2 0.6% Sugarbases (root)/sugar 0.01/0.01 2% Sugarbasets (root)/sugar 0.01/0.12 1.1 0.6% Sugarbasets (root)/sugar 0.01/0.12 1.4 1.6% Sugarbasets (root)/sugar 0.01/0.02 1.2 0.6% Sugarbasets (root)/sugar 0.01/0.01 0.87 0.080/0.6 0.080/0.6 0.080/0.6 0.080/0.6 0.080/0.6 0.080/0.6 0.080/0.6 0.080/0.6 0.01/0.01 0.6% Sugarbasets (root)/sugar 0.01/0.1 0.44 1% Potatoes/field 0.01/0.01 0.6% Sugarbasets (root)/sugar 0.01/0.01 0.42 0.8% Pumpkins/boiled 0.01/0.01 0.6% Sugarbasets (root)/sugar 0.01/0.01 0.42 0.8% Pumpkins/boiled 0.01/0.01 0.5% Sugarbasets (root)/sugar 0.01/0.01 0.4% Maizaboil 0.01/0.01 0.5% Sugarbasets (root)/sugar 0.01/0.01 0.4% Maizaboil 0.01/0.01 0.4% Maizaboil 0.01/0.01 0.4% Maizaboil 0.01/0.01		
2% Potatos/drive (fileks) 0.02/0.09 1.2 0.7% Coffee baars/sector/action 0.10.02 0.48 2% Sugar bests (root)/sugar 0.01/0.12 1.1 0.6% Onimosholied 0.000.00 0.08/0 0.01/0.12 1.1 0.6% Onimosholied 0.000.00 0.08/0 0.08/0 0.08/0 0.01/0.01 0.53 0.6% Shallots/holied 0.01/0.01 0.6% Cauliflowers/holied 0.01/0.01 0.53 0.6% Pumpkins/holied 0.01/0.01 0.63/0 0.01/0.01 0.53 0.6% Pumpkins/holied 0.01/0.01 0.5% Shallots/holied 0.01/0.01 0.53 0.6% Pumpkins/holied 0.01/0.01 0.53 0.6% Pumpkins/holied 0.01/0.01 0.5% Shallots/holied 0.01/0.01 0.53 0.6% Pumpkins/holied 0.01/0.01 0.5% Shallots/holied 0.01/0.01	Potatoes/fried 0.02/0.02 1.9 0.8% Pumpkins/boiled 0.01/0.01 0.55 2% Potatoes/dried (flakes) 0.02/0.09 1.2 0.6% Sugar beets	0.01/0.12
1% Shalletsboiled 0.060,06 0.97 0.6% Cauliflowersboiled 0.010,01 0.43 0.0% Pumpkinsboiled 0.010,01 0.53 0.6% Pumpkinsboiled 0.010,01 0.4% Cauliflowersboiled 0.010,01 0.4% Cauliflowersboiled 0.010,01 0.4% Malzaioli 0.020,5 0.4% Wittodsboiled 0.010,01 0.4% Malzaioli 0.020,5 0.4% Wittodsboiled 0.010,01 0.4% 0.010,01 0.4% 0.010,01 0.4% 0.010,01 <	Potatoes/dried (flakes) 0.02/0.09 1.2 0.7% Coffee beans/extraction 0.1/0.02 0.48 2% Sugar beets (root)/sugar 0.01/0.12 1.1 0.6% Onions/boile	0.06/0.06
1% Pumpkins/boiled 0.010_01 0.89 0.5% Shallots/boiled 0.010_01 0.53 0.4% Mazaroli 0.0200 1% Witkods/boiled 0.010_01 0.75% Celeris/boiled 0.010_01 0.53 0.4% Mazaroli 0.0200 1% Brocoli/boiled 0.010_01 0.79 0.4% Maizaroli 0.0200 0.010_01 0.47 0.4% Maizaroli 0.0200 0.010_01 0.47 0.4% Maizaroli 0.0200 0.010_01 0.47 0.3% Witkods/boiled 0.010_01 0.47 Maizaroli 0.010_01 0.47		0.06/0.06
1% Witkofsholied 0.010.01 0.87 0.5% Celeriesboiled 0.010.01 0.47 0.4% Calliforwersboiled 0.010.01 0.47 0.3% Broccallibroiled 0.010.01 0.47 0.3%		
1% Broccoliholied 0.010.01 0.79 0.4% Maizzoil 0.220.5 0.2% Witodsholied 0.010.01 0.47 0.3% Bit and the sholied 0.010.01 0.47 0.3% Bit and the sholied 0.010.01 0.47 0.3% Bit and the sholied 0.010.01 0.47 Mitodsholied 0.060.06 0.45 0.3% Bit and the sholied 0.010.01 0.42 0.3% Rhubarbs/sauce/puree </td <td></td> <td></td>		
0.9% Escaroles/broad-lawol end 0.01/0.01 0.66 0.3% Courgettes/boiled 0.01/0.01 0.23 0.6% Shallots/boiled 0.060.06 0.45 0.3% Broccalibolied 0.01/0.01 0.8% Leeks/boiled 0.01/0.01 0.57 0.3% Beetroots/boiled 0.01/0.01 0.22 0.8% Cauliflowers/boiled 0.01/0.01 0.45 0.3% Rhubarbs/sauce/purce 0.01/0.01 Expand/collapse list 0.3% Rhubarbs/sauce/purce 0.01/0.01 0.03% Rhubarbs/sauce/purce 0.01/0.01 Expand/collapse list 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.01 <	Broccoli/boiled 0.01/0.01 0.79 0.4% Maize/oil 0.02/0.5 0.25 0.7% Withors/solied 0.01/0.01 0.47 0.3% Withors/soli	0.01/0.01
0.3% Leeks/boiled 0.01/0.01 0.57 0.3% Beetroots/boiled 0.01/0.01 0.22 0.6% Cauliflowers/boiled 0.01/0.01 0.42 0.3% Rhubarbs/sauce/puree 0.01/0.01 Expand/collapse list <td< td=""><td></td><td></td></td<>		
Expand/collapse list Conclusion:		
Conclusion:		0.01/0.01
	- I I I I I I I I I I I I I I I I I I I	
The estimated short-term intake (IESTI) exceeded the toxicological reference value for 1 commodities.	Larm intake (IESTI) exceeded the tryicological reference value for 1 commodifies	

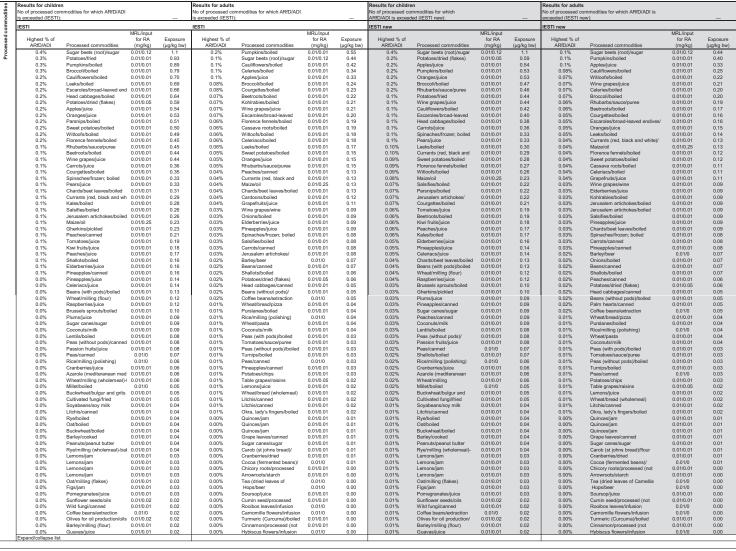
	*0	fsa.		LOQs (mg/kg) range		0.01	to:	0.05	Detailsch		Supplementary		
	C			ADI (mg/kg bw per d		gical reference v	ARfD (mg/kg bw):	1.8	assess	ment	chronic risk ass	sessment	
Fi	Iropean Foo	d Safety Authority			ay).				Details-ad	cute risk	Details-acut	te risk	
		, , ,		Source of ADI: Year of evaluation:		2018/1265 2018	Source of ARfD: Year of evaluation:	2018/1265 2018	assessmen	t/children	assessment/	/adults	
ent		vision 3.1; 2018/11/18		real of evaluation.		2018	real of evaluation.	2018					<u> </u>
ent													
						Refined calc	ulation mode						
					Chronic r	risk assessment:	JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :							Exposure	e resulting
												MRLs set at	t commo
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ (in % of	under as: (in % d
	Calculated exposur		(µg/kg bw per	MS diet	Commodity/		MS diet	Commodity/		MS diet	Commodity/	ADI)	1.
+	(% of ADI) 1.0%	MS Diet DK child	day) 0.48	(in % of ADI) 0.5%	group of commodities Rye		(in % of ADI) 0.4%	group of commodities Wheat		(in % of ADI) 0.0%	group of commodities Bananas	0.0%	1.
	0.7%	GEMS/Food G06	0.48	0.5%	Wheat		0.0%	Bananas		0.0%	Rye	0.0%	0.
	0.6%	IT toddler	0.32	0.6%	Wheat		0.0%	Bananas		0.078	rty6	0.0%	0.
	0.5%	NL toddler	0.26	0.4%	Wheat		0.1%	Bananas		0.0%	Rye	0.0%	0.
	0.5%	DE child	0.25	0.4%	Wheat		0.1%	Rye		0.0%	Bananas		0.
	0.5%	RO general	0.24	0.5%	Wheat		0.0%	Bananas					0.
	0.5%	GEMS/Food G15	0.23	0.4%	Wheat		0.0%	Rye		0.0%	Bananas	0.0%	0.
	0.4%	GEMS/Food G08	0.22	0.4%	Wheat		0.1%	Rye		0.0%	Bananas	0.0%	0.
	0.4%	FR child 3–15 years	0.22	0.4%	Wheat		0.0%	Bananas		0.0%	Rye	0.0%	0.
	0.4%	NL child	0.22	0.4%	Wheat		0.0%	Bananas		0.0%	Rye	0.0%	0.
	0.4%	ES child	0.22	0.4%	Wheat		0.0%	Bananas		0.0%	Bovine: Liver	0.0%	0.
	0.4%	GEMS/Food G07	0.21	0.4%	Wheat		0.0%	Bananas		0.0%	Rye	0.0%	0.
	0.4%	IT adult	0.20	0.4%	Wheat		0.0%	Bananas					0
	0.4%	UK toddler	0.20	0.4%	Wheat		0.0%	Bananas		0.0%	Rye	0.0%	0.4
	0.4%	PT general	0.19	0.4%	Wheat		0.0%	Rye		0.0%	Bananas		0.4
	0.4%	GEMS/Food G10	0.19	0.4%	Wheat Wheat		0.0%	Rye Bananas		0.0%	Bananas	0.0%	0.4
		SE general									Rye	0.00/	
	0.3%	GEMS/Food G11 FR toddler 2–3 years	0.17	0.3%	Wheat Wheat		0.0%	Bananas Bananas		0.0%	Rye Bovine: Liver	0.0%	0.
	0.3%	UK infant	0.15	0.2%	Wheat		0.0%	Bananas Bananas		0.0%	Bovine: Liver Bovine: Liver	0.0%	0.
	0.3%	IE adult	0.14	0.2%	Wheat		0.0%	Bananas		0.0%	Rye	0.076	0.
	0.3%	DE women 14–50 years	0.13	0.2%	Wheat		0.0%	Rye		0.0%	Bananas	0.0%	0.
	0.2%	DE general	0.12	0.2%	Wheat		0.1%	Rye		0.0%	Bananas	0.0%	0.
	0.2%	ES adult	0.11	0.2%	Wheat		0.0%	Bananas		0.0%	Bovine: Liver	0.0%	0.
	0.2%	FR adult	0.11	0.2%	Wheat		0.0%	Bananas		0.0%	Bovine: Liver	0.0%	0.
	0.2%	UK vegetarian	0.10	0.2%	Wheat		0.0%	Bananas		0.0%	Rye		0.
	0.2%	LT adult	0.10	0.1%	Rye		0.1%	Wheat		0.0%	Bananas	0.0%	0.
	0.2%	FI 3 years	0.10	0.1%	Wheat		0.1%	Rye		0.0%	Bananas		0.
	0.2%	NL general	0.10	0.2%	Wheat		0.0%	Rye		0.0%	Bananas	0.0%	0.
	0.2%	UK adult	0.08	0.2%	Wheat		0.0%	Bananas		0.0%	Rye	0.0%	0.
	0.2%	DK adult	0.08	0.1%	Wheat		0.0%	Rye		0.0%	Bananas	0.0%	0.
	0.2%	FI 6 years	0.08	0.1%	Wheat		0.1%	Rye		0.0%	Bananas		0.
	0.1%	IE child	0.06	0.1%	Wheat		0.0%	Bananas		0.0%			0.
	0.1%	FI adult FR infant	0.05	0.1%	Rye Wheat		0.0%	Wheat		0.0%	Bananas	0.0%	0.
1	0.1%	FR infant PL general	0.04	0.1%	Wheat Bananas		0.0%	Bananas FRUIT AND TREE NUTS		0.0%	Sheep: Liver	0.0%	0.
		FL general	1 0.00	0.0%	Ddildild5		1	ILL AND THEE NUTS		1	1	1	1 0.9

	A	cute risk assessment/	children/		Acute risk a	ssessment/adults/ger	neral popu	lation	A	cute risk assessmen	/children		Acute ris	k assessment/adults/ger	eral popula	tion
	Details-a	acute risk assessme	ent/childr	en	Details	–acute risk assessn	nent/adu	lts	ŀ	lide IESTI new calc	ulations			Show IESTI new calcu	lations	
		ssment is based on the ARfD. ased on the large portion of the	e most critical o	consumer grou) .				the residue definition the results are const	erformed with the MRL and the	3 calculations, a	variability fact	or of 3 is used. Sinc	nt the residue in the edible portion a e this methodology is not based on sidered as indicative only.		
			Sh	ow result	s for all crops	i										
Unprocessed commodities	Results for childre No. of commodities exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childred No. of commodities exceeded (IESTI net	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		
ad co	IESTI				IESTI				IESTI new				IESTI new			
ocesse	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
nd n	0.05%	Bananas Wheat	0.15/0.01 0.6/0.05	0.97	0.02%	Wheat Rve	0.6/0.05	0.39 0.23	0.5%	Bananas Wheat	0.15/0.15	9.2 8.7	0.3%	Wheat Bananas	0.6/0.6	5.0
	0.02%	Rye	0.6/0.05	0.30	0.01%	Bananas	0.15/0.01 0.02/0.02	0.21	0.2%	Rye	0.6/0.6	3.8	0.2%	Rye	0.6/0.6	2.9
	0.00%	Bovine: Liver Bovine: Kidney	0.01/0.01 0.02/0.02	0.08	0.00%	Sheep: Liver Bovine: Liver	0.01/0.01	0.04	0.00%	Bovine: Liver Bovine: Kidney	0.02/0.02	0.08	0.00%	Sheep: Liver Bovine: Kidney	0.02/0.02	0.04
					0.00%	Bovine: Kidney Sheep: Kidney	0.02/0.02 0.02/0.02	0.03					0.00%	Bovine: Liver Sheep: Kidney	0.01/0.01 0.02/0.02	0.04 0.00
	children and adult	ommodities exceeding the Al	RfD/ADI in						ARfD/ADI in child	ommodities found exceedir ren and adult diets	ig the					
	(IESTI calculation)								(IESTI new calcula	ation)						
commodities	Results for childre No of processed cor is exceeded (IESTI):	mmodities for which ARfD/ADI			Results for adults No of processed cor is exceeded (IESTI):	nmodities for which ARfD/ADI			Results for childre No of processed co ARfD/ADI is exceed	mmodities for which			Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is w):		
comr	IESTI		MRL/input		IESTI		MRL/input		IESTI new		MRL/input		IESTI new		MRL/input	
Processed	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)
Proc	0.0%	Wheat/milling (flour) Wheat/milling (wholemeal)-	0.6/0.05 I 0.6/0.05	0.57 0.26	0.0%	Wheat/bread/pizza Wheat/pasta	0.6/0.05	0.21 0.18	0.03% 0.01%	Wheat/milling (flour) Wheat/milling	0.6/0.05	0.57 0.26	0.01% 0.01%	Wheat/bread/pizza Wheat/pasta	0.6/0.05 0.6/0.05	0.21 0.18
	0.0% 0.0%	Ryeholled Rye/milling (wholemeal)-ba	0.6/0.05	0.17 0.17	0.01%	Wheat/bread (wholermeal)	0.6/0.05	0.16	0.01%	Ryeboiled [–] Rye/milling (wholemeal)-	0.6/0.05 0.6/0.05	0.17 0.17	0.01%	Wheat/bread (wholemeal)	0.6/0.05	0.16
	Expand/collapse list															
-	Conclusion:															
		ne toxicological reference value of residues of Fennicoxamid (F														

For processed commodities, no exceedance of the ARfD/ADI was identified.

	×. 0	fsa a		LOQs (mg/kg) range f		to:	0.05	Details-ch		Supplementary		
	- E			ADI (mg/kg bw per da	Toxicological reference v			assess	sment	chronic risk ass	essment	
	uranaan Eaa	d Cafaty Authority		ADI (mg/kg bw per da	y): 0.19	ARfD (mg/kg bw):	n.a.	Details–a	cute risk	Details-acut	e risk	
	uropean root	a Safety Authority		Source of ADI:	Reg. (EU)	Source of ARfD:	Reg. (EU) 2015/2085	assessmen		assessment/		
		vision 3.1; 2018/11/18		Year of evaluation:	2015	Year of evaluation:	2015		a crimar cri		J	
mer	its:											
					<u>Norma</u>	<u>ll mode</u>						
					Chronic risk assessment	: JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :							e resulting fro
											MRLs set at the LOQ	commodities under assess
	Calculated exposure	0	Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/	2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of	(in % of A
	(% of ADI)	MS Diet	(pg/kg bw per day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	1
	2%	DE child	3.13	0.6%	Cherries (sweet)	0.4%	Apricots		0.3%	Peaches	0.3%	
	1%	NL toddler	2.46	0.3%	Milk: Cattle	0.3%	Peaches		0.3%	Apricots	0.6%	
	0.9%	NL child	1.66	0.2%	Peaches	0.2%	Apricots		0.1%	Milk: Cattle	0.3%	
	0.8%	GEMS/Food G06	1.49	0.3%	Peaches	0.2%	Cherries (sweet)		0.1%	Apricots	0.2%	
	0.7%	IT toddler	1.36	0.4%	Peaches	0.1%	Cherries (sweet)		0.1%	Apricots	0.1%	
	0.7%	IE adult	1.36	0.3%	Peaches	0.1%	Apricots		0.1%	Plums	0.2%	
	0.7%	IT adult	1.31	0.4%	Peaches	0.1%	Apricots		0.1%	Cherries (sweet)	0.1%	
	0.7%	DE women 14-50 years	1.27	0.2%	Cherries (sweet)	0.2%	Peaches		0.1%	Apricots	0.2%	
	0.6%	RO general	1.20	0.2%	Cherries (sweet)	0.1%	Peaches		0.1%	Apricots	0.2%	
	0.6%	FR child 3–15 years	1.17	0.2%	Peaches	0.1%	Milk: Cattle		0.1%	Apricots	0.3%	
	0.6%	GEMS/Food G15	1.17		Cherries (sweet)	0.1%	Peaches		0.1%	Plums	0.2%	
	0.6%	UK infant	1.17	0.2%	Milk: Cattle	0.1%	Apricots		0.1%	Cherries (sweet)	0.3%	
	0.6%	GEMS/Food G08	1.16 1.14	0.2%	Peaches	0.1%	Cherries (sweet) Peaches		0.1%	Apricots Apricots	0.2%	
		DE general ES child		0.2%	Cherries (sweet)	0.1%				Apricois Milk: Cattle		
	0.6%	PT general	1.12	0.2%	Peaches	0.1%	Cherries (sweet) Cherries (sweet)		0.1%	Milk: Cattle Potatoes	0.2%	
	0.5%	GEMS/Food G10	0.97	0.2%	Peaches Peaches	0.1%	Cherries (sweet)		0.1%	Apricots	0.1%	
	0.5%	GEMS/Food G07	0.97	0.2%	Peaches	0.1%	Apricots		0.0%	Cherries (sweet)	0.2%	
	0.5%	ES adult	0.93	0.2%	Peaches	0.1%	Cherries (sweet)		0.0%	Apricots	0.1%	
	0.4%	SE general	0.80	0.2%	Peaches	0.1%	Milk: Cattle		0.0%	Apricots	0.2%	
	0.4%	DK child	0.72	0.1%	Peaches	0.1%	Milk: Cattle		0.0%	Rye	0.2%	
	0.4%	GEMS/Food G11	0.72	0.1%	Peaches	0.0%	Milk: Cattle		0.0%	Cherries (sweet)	0.2%	
	0.4%	FR toddler 2–3 years	0.69	0.2%	Milk: Cattle	0.0%	Apricots		0.0%	Peaches	0.3%	1
	0.3%	UK toddler	0.66	0.1%	Milk: Cattle	0.1%	Peaches		0.0%	Wheat	0.2%	
	0.3%	FR adult	0.63	0.1%	Peaches	0.0%	Cherries (sweet)		0.0%	Apricots	0.1%	1
	0.3%	NL general	0.61	0.1%	Peaches	0.0%	Cherries (sweet)		0.0%	Milk: Cattle	0.2%	1
	0.3%	PL general	0.57	0.1%	Cherries (sweet)	0.1%	Peaches		0.0%	Plums	0.0%	
	0.3%	FI 3 years	0.53	0.1%	Peaches	0.0%	Apricots		0.0%	Potatoes	0.1%	
	0.2%	FI adult	0.42	0.1%	Coffee beans	0.0%	Peaches		0.0%	Potatoes	0.2%	1
	0.2%	FI 6 years	0.40	0.1%	Peaches	0.0%	Potatoes		0.0%	Cherries (sweet)	0.1%	1
	0.2%	FR infant	0.36	0.1%	Milk: Cattle	0.0%	Apricots		0.0%	Peaches	0.2%	1
	0.2%	DK adult	0.33	0.1%	Peaches	0.0%	Milk: Cattle		0.0%	Plums	0.1%	
	0.2%	UK vegetarian	0.29	0.0%	Peaches	0.0%	Apricots		0.0%	Milk: Cattle	0.1%	1
	0.1%	LT adult	0.25	0.0%	Cherries (sweet)	0.0%	Milk: Cattle		0.0%	Potatoes	0.1%	1
	0.1%	UK adult IE child	0.25	0.0%	Peaches Milk: Cattle	0.0%	Milk: Cattle Cherries (sweet)		0.0%	Apricots Peaches	0.1%	
	U.1%	ine urind	0.12	0.0%	Wilk. Gatue	0.0%	Chernes (Sweet)		0.0%	reacties	0.0%	1

	Ac	ute risk assessment/	children		Acute risk a	ssessment/adults/ger	neral popul	lation	A	cute risk assessmen	t/children		Acute ris	k assessment/adults/gene	eral populat	tion
	Details-a	cute risk assessme	nt/childr	en	Details	–acute risk assessn	nent/adu	lts	L +	lide IESTI new calc	ulations			Show IESTI new calcul	ations	
		sment is based on the ARfD. sed on the large portion of the	most critical	consumer grou	p.				the residue definition the results are const	erformed with the MRL and th	3 calculations, a	a variability fact	or of 3 is used. Sinc	nt the residue in the edible portion an e this methodology is not based on ir sidered as indicative only.		
			Sh	ow result	s for all crops	•										
Unprocessed commodities	Results for children No. of commodities t exceeded (IESTI):	n for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		
θ	IESTI				IESTI				IESTI new				IESTI new			
cesse	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)
	Expand/collapse list															
		mmodities exceeding the Al diets	RfD/ADI in						Total number of c ARfD/ADI in childr (IESTI new calcula		ng the					
commodities	Results for children No of processed com is exceeded (IESTI):	n nmodities for which ARfD/ADI			Results for adults No of processed cor is exceeded (IESTI):	nmodities for which ARfD/ADI			Results for childre No of processed co ARfD/ADI is exceed	mmodities for which			Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is w):		
l li	IESTI				IESTI				IESTI new				IESTI new			
Processed o	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	MRL/input for RA	Exposure (µg/kg bw)
8	27%	Peaches/canned	(mg/kg) 1/2	(µg/kg bw) 52	8%	Peaches/canned	(mg/kg) 2/2	(µg/kg bw) 16	20%	Peaches/canned	(mg/kg) 1/2	(µg/kg bw) 39	9%	Processed commodities Peaches/canned	(mg/kg) 2/2	(µg/kg bw) 16
Ť	17%	Peaches/juice	2/2	33	0.3%	Pumpkins/boiled	0.01/0.01	0.55	17%	Peaches/juice	2/2	33	0.2%	Sugar beets (root)/sugar	0.01/0.12	0.44
	2%	Plums/juice	0.5/0.5	4.7	0.2%	Sugar beets (root)/sugar	0.01/0.12	0.44	2%	Plums/juice	0.5/0.5	4.7	0.2%	Pumpkins/boiled	0.01/0.01	0.40
	0.6%	Sugar beets (root)/sugar Potatoes/fried	0.01/0.12 0.01/0.01	1.1 0.93	0.2%	Cauliflowers/boiled Celeries/boiled	0.01/0.01 0.01/0.01	0.42	0.6%	Sugar beets (root)/sugar Potatoes/dried (flakes)	0.01/0.12 0.01/0.05	1.1 0.59	0.2%	Apples/juice Cauliflowers/boiled	0.01/0.01 0.01/0.01	0.33
	0.5%	Potatoes/med Pumpkins/boiled	0.01/0.01	0.89	0.2%	Apples/juice	0.01/0.01	0.34	0.3%	Apples/juice	0.01/0.05	0.59	0.1%	Coffee beans/extraction	0.05/0.01	0.25
	0.5%	Witloofs/boiled	0.01/0.01	0.87	0.1%	Broccoli/boiled	0.01/0.01	0.24	0.3%	Pumpkins/boiled	0.01/0.01	0.53	0.1%	Witloofs/boiled	0.01/0.01	0.22
	0.4%	Broccoli/boiled	0.01/0.01	0.79	0.1%	Coffee beans/extraction	0.05/0.01	0.24	0.3%	Oranges/juice	0.01/0.01	0.53	0.1%	Wine grapes/juice	0.01/0.01	0.21
	0.4%	Cauliflowers/boiled	0.01/0.01	0.70	0.1%	Courgettes/boiled	0.01/0.01 0.01/0.01	0.23	0.2%	Broccoli/boiled	0.01/0.01	0.47	0.1%	Celeries/boiled	0.01/0.01	0.20
1	0.3%	Escaroles/broad-leaved end Potatoes/dried (flakes)	0.01/0.01 0.01/0.05	0.66	0.1%	Beetroots/boiled Parsnips/boiled	0.01/0.01	0.22 0.21	0.2%	Witloofs/boiled Potatoes/fried	0.01/0.01 0.01/0.01	0.47 0.44	0.1%	Broccoli/boiled Rhubarbs/sauce/puree	0.01/0.01 0.01/0.01	0.20 0.19
	0.3%	Leeks/boiled	0.01/0.01	0.57	0.1%	Kohlrabies/boiled	0.01/0.01	0.21	0.2%	Wine grapes/juice	0.01/0.01	0.44	0.09%	Beetroots/boiled	0.01/0.01	0.17
	0.3%	Apples/juice	0.01/0.01	0.54	0.1%	Wine grapes/juice	0.01/0.01	0.21	0.2%	Cauliflowers/boiled	0.01/0.01	0.42	0.08%	Courgettes/boiled	0.01/0.01	0.16
	0.3%	Oranges/juice Turnips/boiled	0.01/0.01 0.01/0.01	0.53	0.1%	Escaroles/broad-leaved Florence fennels/boiled	0.01/0.01 0.01/0.01	0.20	0.2%	Escaroles/broad-leaved Carrots/juice	0.01/0.01 0.01/0.01	0.40	0.08%	Escaroles/broad-leaved endives/ Oranges/juice	0.01/0.01 0.01/0.01	0.16 0.15
1	Expand/collapse list	r umparbolioù	5.01/0.01	0.01	0.170	Toronoe rennelarboiled	0.01/0.01	0.10	0.270	Gan Jiarjulo	0.01/0.01	0.00	0.0070	orangoarjuice	3.01/0.01	0.15
	Conclusion:															
	No exceedance of the	e toxicological reference value of residues of Mandestrobin is	was identifie	d for any unprocessent a public h	cessed commodity. realth risk.											
		odities, no exceedance of the	1000100													



	*	-			Noi	rflurazon (F)				t values		
	-	tea		LOQs (mg/kg) range	from:	0.01	to:	0.02	Details-ch	ronic risk	Supplementar	/ results–	
	* * H	fsa			Toxicolo	ogical reference v	/alues		assess	sment	chronic risk as	sessment	
				ADI (mg/kg bw per da	ıy):	0.005	ARfD (mg/kg bw):	0.3	\succ				
Eι	uropean Food	d Safety Authority		Source of ADI:		JMPR	Source of ARfD:	JMPR	Details–a		Detail–acut		
	EESA PRIMo rev	vision 3.1; 2018/08/18		Year of evaluation:		2018	Year of evaluation:	2018	assessmen	it/children	assessment	/adults	
nt							1						
						Norma	al mode						
					Chronic	risk assessmen	: JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :	-	-					Exposure	e resulting
ſ												MRLs set at	
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to		the LOQ (in % of	(in % d
1	Calculated exposure (% of ADI)		(µg/kg bw per	MS diet (in % of ADI)	Commodity/		MS diet (in % of ADI)	Commodity/		MS diet (in % of ADI)	Commodity/ group of commodities	(III % OF ADI)	1
ł	(% of ADI) 14%	MS Diet NL toddler	day) 0.71	(in % of ADI) 2%	group of commodities Apples		(in % of ADI) 2%	group of commodities Milk: Cattle		(in % of ADI) 1%	group of commodities Maize/corn	12%	2
l	8%	NL child	0.42	2%	Sugar beet roots		1%	Apples		0.8%	Wheat	7%	0.
l	8%	DE child	0.42	2%	Apples		0.8%	Wheat		0.8%	Oranges	8%	0.
l	7%	GEMS/Food G06	0.35	1%	Wheat		0.7%	Tomatoes		0.4%	Potatoes	7%	0.
l	6%	GEMS/Food G11	0.30	0.8%	Potatoes		0.7%	Soyabeans		0.7%	Wheat	6%	0.
l	6%	GEMS/Food G07	0.29	0.8%	Wheat		0.8%	Potatoes		0.4%	Soyabeans	5%	0.
l	6%	FR child 3-15 years	0.29	0.9%	Wheat		0.7%	Sugar beet roots		0.7%	Oranges	5%	0.
L	6%	GEMS/Food G08	0.29	0.8%	Wheat		0.8%	Potatoes		0.4%	Soyabeans	5%	0.
L	6%	IE adult	0.29	0.7%	Sweet potatoes		0.5%	Wheat		0.5%	Potatoes	5%	0.
l	6%	GEMS/Food G15	0.28	0.9%	Wheat		0.7%	Potatoes		0.3%	Soyabeans	5%	0.
L	6%	GEMS/Food G10	0.28	0.8%	Wheat		0.7%	Soyabeans		0.6%	Potatoes	5%	0.
L	5%	DK child	0.26	1%	Rye		0.9%	Wheat		0.5%	Potatoes	5%	0.
I	5%	UK infant	0.26	1%	Milk: Cattle		0.7%	Potatoes		0.5%	Wheat	4%	1
I	5%	FR toddler 2–3 years	0.26	0.8%	Milk: Cattle		0.6%	Apples		0.6%	Wheat	4%	1.
L	5%	RO general	0.25	1%	Wheat		0.7%	Potatoes		0.4%	Tomatoes	5%	0.
L	5%	UK toddler	0.25	0.8%	Wheat		0.7%	Potatoes		0.6%	Sugar beet roots	4%	0.
L	4% 4%	DE women 14-50 years	0.22	0.9%	Sugar beet roots Potatoes		0.5%	Apples		0.4%	Wheat	4%	0.
l	4% 4%	SE general DE general	0.22 0.21	0.8%	Potatoes Sugar beet roots		0.6%	Wheat Apples		0.4%	Bananas Wheat	4% 4%	0.
l	4%	PT general	0.21	1%	Potatoes		0.8%	Wheat		0.5%	Wine grapes	4%	0.0
l	4%	ES child	0.21	0.9%	Wheat		0.4%	Oranges		0.4%	Potatoes	4%	0.
l	4%	NL general	0.19	0.6%	Sugar beet roots		0.5%	Potatoes		0.4%	Wheat	3%	0.
l	3%	FI 3 years	0.13	0.9%	Potatoes		0.3%	Bananas		0.2%	Wheat	3%	1
l	3%	IT toddler	0.16	1%	Wheat		0.3%	Other cereals		0.3%	Tomatoes	3%	1
I	3%	FR adult	0.14	0.5%	Wine grapes		0.4%	Wheat		0.2%	Sugar beet roots	3%	0.
l	3%	FR infant	0.14	0.5%	Milk: Cattle		0.4%	Potatoes		0.3%	Apples	2%	0.
l	3%	ES adult	0.13	0.5%	Wheat		0.3%	Oranges		0.2%	Potatoes	2%	0.
L	3%	FI 6 years	0.13	0.8%	Potatoes		0.2%	Wheat		0.2%	Bananas	3%	1
l	3%	FI adult	0.13	1%	Coffee beans		0.2%	Potatoes		0.1%	Rye	3%	1
l	2%	IT adult	0.12	0.8%	Wheat		0.2%	Tomatoes		0.2%	Apples	2%	1
l	2%	UK vegetarian	0.11	0.4%	Wheat		0.3%	Potatoes		0.2%	Oranges	2%	0.
l	2%	LT adult	0.11	0.6%	Potatoes		0.4%	Apples		0.2%	Rye	2%	0.2
l	2% 2%	DK adult	0.10	0.3%	Potatoes		0.2%	Wheat		0.2%	Apples	2%	0.3
	2%	PL general UK adult	0.10	0.3%	Potatoes Wheat		0.3%	Apples Potatoes		0.2%	Tomatoes Wine grapes	2% 2%	0.1
1	2%	IE child	0.10	0.3%	Wheat		0.1%	Potatoes		0.2%	Milk: Cattle	0.7%	0.

The long-term intake of residues of Norflurazon (F) is unlikely to present a public health concern.

Α	cute risk assessment/	children		Acute risk a	issessment/adults/ger	eral popu	lation	A	cute risk assessment	/children		Acute ris	sk assessment/adults/gene	ral populat	lion
Details-a	acute risk assessme	nt/childr	en	Detail	s–acute risk assessn	nent/adu	lts	L +	lide IESTI new calcu	ulations			Show IESTI new calcul	ations	
	essment is based on the ARID. ased on the large portion of the							the residue definition the results are cons	erformed with the MRL and the	calculations, a	a variability fact	or of 3 is used. Sinc	int the residue in the edible portion ar e this methodology is not based on in sidered as indicative only.		
Results for childre No. of commodities exceeded (IESTI):	an for which ARfD/ADI is	Sn	ow result	s for all crops Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		
IESTI				IESTI				IESTI new				IESTI new			
Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	MRL/input for RA (mg/kg)	Exposure (µg/kg bw
0.6% 0.5% 0.5%	Bovine: Liver Bovine: Edible offals (other Potatoes	0.3/0.22 0.3/0.22 0.01/0.01	1.8 1.6 1.5	0.3% 0.2% 0.2%	Bovine: Liver Bovine: Edible offals (other Sheep: Liver	0.3/0.22 0.3/0.22 0.3/0.22	0.88 0.73 0.62	0.8% 0.8% 0.7%	Milk: Cattle Bovine: Liver Bovine: Edible offals (other	0.02/0.02 0.3/0.3 0.3/0.3	2.5 2.4 2.2	0.4% 0.3% 0.3%	Bovine: Liver Bovine: Edible offals (other than Sheep: Liver	0.3/0.3 0.3/0.3 0.3/0.3	1.2 1.00 0.84
0.5% 0.5% 0.4%	Melons Pears Oranges	0.01/0.01 0.01/0.01 0.01/0.01	1.5 1.4 1.3	0.2% 0.2% 0.2%	Swine: Edible offals (other Swine: Kidney Bovine: Kidney	0.3/0.22 0.3/0.22 0.3/0.22	0.57 0.48 0.46	0.4% 0.3% 0.3%	Bovine: Kidney Melons Swine: Edible offals (other	0.3/0.3 0.01/0.01 0.3/0.3	1.1 0.91 0.90	0.3% 0.3% 0.2%	Swine: Edible offals (other than Milk: Cattle Swine: Kidney	0.3/0.3 0.02/0.02 0.3/0.3	0.78 0.77 0.66
0.4% 0.4% 0.3%	Watermelons Apples Pineapples	0.01/0.01 0.01/0.01 0.01/0.01	1.2 1.1 1.0	0.1% 0.1% 0.1%	Head cabbages Watermelons Melons	0.01/0.01 0.01/0.01 0.01/0.01	0.42 0.41 0.39	0.2% 0.2% 0.2%	Watermelons Oranges Potatoes	0.01/0.01 0.01/0.01 0.01/0.01	0.73 0.67 0.66	0.2% 0.2% 0.1%	Bovine: Kidney Oranges Swine: Liver	0.3/0.3 0.01/0.01 0.3/0.3	0.63 0.47 0.42
0.3% 0.3% 0.3%	Bananas Peaches Bovine: Kidnev	0.01/0.01 0.01/0.01 0.3/0.22	0.97 0.95 0.83	0.1% 0.1% 0.1%	Swedes/rutabagas Table grapes Swine: Liver	0.01/0.01 0.01/0.01 0.3/0.22	0.34 0.34 0.31	0.2% 0.2% 0.2%	Apples Bananas Pineapples	0.01/0.01 0.01/0.01 0.01/0.01	0.62 0.61 0.61	0.1% 0.1% 0.1%	Plums Milk: Goat Pears	0.01/0.01 0.02/0.02 0.01/0.01	0.39 0.37 0.36
0.3% 0.3% 0.2%	Mangoes Grapefruits Table grapes	0.01/0.01 0.01/0.01 0.01/0.01	0.79 0.79 0.73	0.1% 0.1% 0.10%	Oranges Pears	0.01/0.01 0.01/0.01 0.01/0.01	0.31 0.31 0.30	0.2% 0.2% 0.2%	Pears Peaches Apricots	0.01/0.01 0.01/0.01 0.01/0.01	0.59 0.54 0.49	0.1% 0.1% 0.1%	Mandarins Potatoes	0.01/0.01 0.01/0.01 0.02/0.02	0.30 0.33 0.31 0.30
0.2% Expand/collapse lis		0.01/0.01	0.73	0.10%	Potatoes	0.01/0.01	0.30	0.2%	Apricots	0.01/0.01	0.49	0.1%	Milk: Sheep	0.02/0.02	0.30
Total number of control children and adult (IESTI calculation)		tfD/ADI in						Total number of c ARfD/ADI in child (IESTI new calcula		g the					

EFSA Journal

Conclusion

No exceedance of the toxicological reference value was identified for any unprocessed commodity.

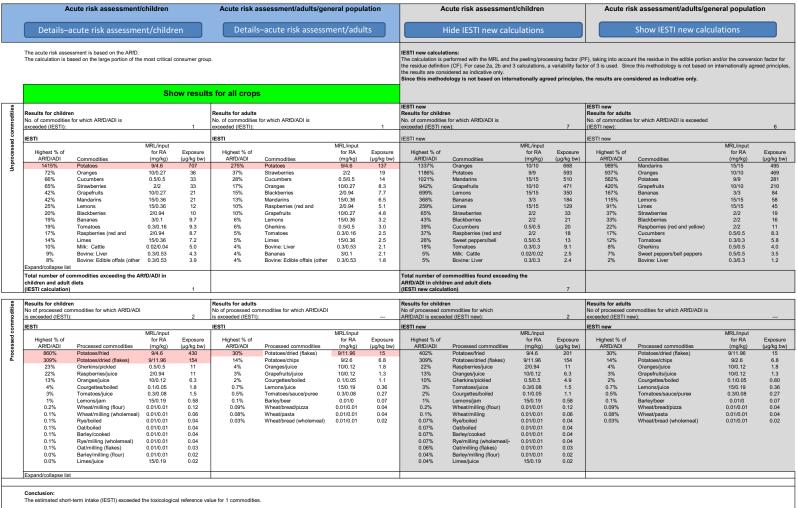
A short-term intake of residues of Norflurazon (F) is unlikely to present a public health risk. For processed commodities, no exceedance of the ARfD/ADI was identified.

-	*	~			Pydi	flumetofen	(F)				put values		
-	*	fsa		LOQs (mg/kg) range		0.01	to:	0.07	Details-ch		Supplementa	·	
	**E	Dd O				ogical reference v			asses	sment	chronic risk a	ssessment	
F		Cofee Authority		ADI (mg/kg bw per da	iy):	0.09	ARfD (mg/kg bw):	0.3	Details-a	cuto rick	Details-ac	uto rick	
Eul	ropean Food	Safety Authority		Source of ADI:		Peer review	Source of ARfD:	Peer review (not	assessmer		assessmen		
		vision 3.1; 2018/11/18		Year of evaluation:		2018	Year of evaluation:	2018	ussessmen	ity enhancen	dissessmen	() dudits	
ents:	:												
						Refined calc	ulation mode						
					Chroni	c risk assessment		ology (IEDI/TMDI)					
				No of diets exceeding		o nok usocooment						Exposure	resulting fr
Т				ne or dicto exceeding								MRLs set at	commoditi
			Expsoure	Highest contributor to			2nd contributor to			3rd contributor to MS		the LOQ (in % of ADI)	under asses (in % of A
C	Calculated exposure (% of ADI)	MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ group of commodities		diet (in % of ADI)	Commodity/ group of commodities	(,0 0. ADI)	
+	0.9%	PT general	0.80	0.8%	Wine grapes		0.1%	Table grapes			Brook of commonings		0.9
	0.8%	FR adult	0.71	0.7%	Wine grapes		0.0%	Table grapes					0.8
	0.6%	RO general	0.54	0.5%	Wine grapes		0.1%	Table grapes					0.6
	0.6%	GEMS/Food G07	0.53	0.5%	Wine grapes		0.1%	Table grapes					0.6
	0.5%	NL toddler	0.45	0.5%	Table grapes			FRUIT AND TREE NUTS					0.5
	0.5%	IE adult	0.44	0.4%	Wine grapes		0.1%	Table grapes					0.5
	0.5%	GEMS/Food G11	0.42	0.3%	Wine grapes		0.1%	Table grapes					0.5
	0.4% 0.4%	DE child GEMS/Food G08	0.40	0.4%	Table grapes Wine grapes		0.0%	Wine grapes Table grapes					0.4
	0.4%	GEMS/Food G08 GEMS/Food G15	0.40	0.3%	Wine grapes		0.1%	Table grapes					0.49
	0.4%	DE women 14-50 years	0.33	0.3%	Wine grapes		0.1%	Table grapes					0.49
	0.4%	UK adult	0.33	0.3%	Wine grapes		0.0%	Table grapes					0.4
	0.4%	DK adult	0.33	0.3%	Wine grapes		0.1%	Table grapes					0.49
	0.4%	GEMS/Food G06	0.32	0.3%	Table grapes		0.0%	Wine grapes					0.49
	0.4%	DE general	0.32	0.3%	Wine grapes		0.1%	Table grapes					0.4
	0.3%	NL child	0.30	0.3%	Table grapes		0.0%	Wine grapes					0.3
	0.3%	UK vegetarian	0.26	0.3%	Wine grapes		0.0%	Table grapes					0.3
	0.3%	NL general	0.24	0.2%	Wine grapes		0.1%	Table grapes					0.3
	0.2%	GEMS/Food G10	0.21	0.1%	Wine grapes		0.1%	Table grapes					0.2
	0.2%	FR child 3–15 years	0.21	0.1%	Wine grapes		0.1%	Table grapes					0.2
	0.1% 0.1%	ES adult FI adult	0.13	0.1% 0.1%	Wine grapes		0.0%	Table grapes Table grapes					0.1
	0.1%	PL general	0.09	0.1%	Wine grapes Table grapes		0.0%	FRUIT AND TREE NUTS					0.1
	0.1%	UK toddler	0.08	0.1%	Table grapes		0.0%	Wine grapes					0.1
	0.1%	FR toddler 2–3 years	0.07	0.1%	Wine grapes		0.0%	Table grapes					0.19
	0.1%	FI 3 years	0.07	0.1%	Table grapes		0.0%	Wine grapes					0.1
	0.1%	DK child	0.05	0.1%	Table grapes			FRUIT AND TREE NUTS					0.1
	0.1%	FI 6 years	0.05	0.1%	Table grapes		0.0%	Wine grapes					0.1
	0.0%	IT adult	0.04	0.0%	Table grapes			FRUIT AND TREE NUTS					0.0
	0.0%	IT toddler	0.03	0.0%	Table grapes			FRUIT AND TREE NUTS					0.0
	0.0%	IE child	0.02	0.0%	Table grapes			FRUIT AND TREE NUTS					0.0
	0.0%	ES child	0.01	0.0%	Table grapes		0.0%	Wine grapes					0.0
	0.0%	UK infant FR infant	0.01	0.0%	Table grapes Wine grapes		0.0%	Wine grapes Table grapes					0.0%
	0.0%	LT adult	0.01	0.0%	Table grapes		0.0%	FRUIT AND TREE NUTS					0.0
		Column7			FRUIT AND TREE NUTS			FRUIT AND TREE NUTS					
	onclusion:												

	Ac	ute risk assessment	children/		Acute risk a	ssessment/adults/ge	neral popu	lation	Δ	cute risk assessmen	t/children		Acute risk assessment/adults/general population			
	Details-ad	cute risk assessme	ent/childr	en	Details	–acute risk assessr	ment/adu	ilts	H	Hide IESTI new cal	culations			Show IESTI new calc	ulations	
		sment is based on the ARID. sed on the large portion of the	most critical c	onsumer group.					residue definition (0 results are consider	erformed with the MRL and th	lculations, a varia	ability factor of	3 is used. Since this	t the residue in the edible portion an methodology is not based on interr idered as indicative only.	d/or the conversio nationally agreed p	n factor for the rinciples, the
			Sh	ow result	s for all crop	S										
Unprocessed commodities	Results for children No. of commodities for exceeded (IESTI):				Results for adults No. of commodities exceeded (IESTI):	for which ARfD/ADI is			IESTI new Results for childre No. of commodities exceeded (IESTI ne	for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new):	for which ARfD/ADI is exceeded		
sed co	IESTI		MRL/input		IESTI		MRL/input		IESTI new		MRL/input		IESTI new		MRL/input	
roces	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Commodities	for RA (mg/kg)	Exposure (µg/kg bw)
dun	21% 3%	Table grapes Wine grapes	1.5/0.85 1.5/0.85	62 7.9	10% 7%	Table grapes Wine grapes	1.5/0.85 1.5/0.85	29 20	22% 5%	Table grapes Wine grapes	1.5/1.5 1.5/1.5	66 14	12% 10%	Wine grapes Table grapes	1.5/1.5 1.5/1.5	36 31
	Expand/collapse list															
		nmodities exceeding the Al liets	RfD/ADI in							ommodities found exceedir ren and adult diets ation)	ng the					
Processed commodities	Results for children No of processed com is exceeded (IESTI):	modities for which ARfD/ADI			Results for adults No of processed con is exceeded (IESTI):	nmodities for which ARfD/ADI			Results for childred No of processed co is exceeded (IESTI	mmodities for which ARfD/AD	וכ		Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is		
1 com	IESTI		MRL/input		IESTI		MRL/input		IESTI new		MRL/input		IESTI new		MRL/input	
cessed	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)	Highest % of ARfD/ADI	Processed commodities	for RA (mg/kg)	Exposure (µg/kg bw)
Proc	0.3%	Wine grapes/juice	1.5/0.02	0.76	0.9% 0.8% 0.1%	Table grapes/raisins Wine grapes/wine Wine grapes/juice	1.5/2.08 1.5/0.27 1.5/0.02	2.6 2.5 0.36	0.3%	Wine grapes/juice	1.5/0.02	0.76	0.9% 0.8% 0.1%	Table grapes/maisins Wine grapes/wine Wine grapes/juice	1.5/2.08 1.5/0.27 1.5/0.02	2.6 2.5 0.36
-	Expand/collapse list															
	A short-term intake of	e toxicological reference value f residues of Pydiflumetofen (odities, no exceedance of the	F) is unlikely to	present a publ	ssed commodity. ic health risk.											

*		faa		LOQs (mg/kg) range		Pyriofenone	to:	1.5	Details-ch	ronic risk	Supplementary res	ults–	
	`* * С	fsa				logical reference v	/alues		assess	ment	chronic risk assess	ment	
				ADI (mg/kg bw per d	ay):	0.07	ARfD (mg/kg bw):	not necessary	► Details–a	suto rick	Details-acute ri	c.k	
Eu	ropean Food	d Safety Authority		Source of ADI:		EFSA 2013	Source of ARfD:	EFSA 2013	assessmen		assessment/adu		
E	FSA PRIMo re	vision 3.1; 2018/11/18		Year of evaluation:		2013	Year of evaluation:	2013	assessmen	y children	assessment/aut	lits)
nents	-					Norma	al mode						
					Chron	ic risk assessment	: JMPR method	ology (IEDI/TMDI)					
				No of diets exceeding	the ADI :								e resulting
												MRLs set at the LOQ	t commod under ass
	Calculated exposure		Expsoure (µg/kg bw per	Highest contributor to MS diet	Commodity/		2nd contributor to MS diet	Commodity/		3rd contributor to MS diet	Commodity/	(in % of	(in % o
1	(% of ADI)	MS Diet	(µg/kg bw per day)	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	
1	2%	NL toddler	1.71	0.9%	Milk: Cattle		0.2%	Table grapes		0.2%	Currants (red, black and white)	2%	
	1%	DE child	1.02	0.3%	Milk: Cattle		0.2%	Table grapes		0.2%	Apples	0.8%	1
	1%	NL child	1.01	0.3%	Milk: Cattle		0.1%	Table grapes		0.1%	Currants (red, black and white)	0.8%	
	1% 1%	GEMS/Food G06	0.92	0.3%	Watermelons Wine grapes		0.2%	Table grapes Milk: Cattle		0.1%	Cucumbers Watermelons	0.4%	
	1%	RO general IE adult	0.86	0.6%	Wine grapes		0.2%	Milk: Cattle Melons		0.1%	Milk: Cattle	0.4%	
	1%	GEMS/Food G07	0.82	0.5%	Wine grapes		0.1%	Milk: Cattle		0.1%	Wheat	0.4%	
	1%	GEMS/Food G15	0.81	0.3%	Wine grapes		0.1%	Watermelons		0.1%	Milk: Cattle	0.4%	
	1%	PT general	0.81	0.8%	Wine grapes		0.1%	Potatoes		0.1%	Wheat	0.2%	
	1%	FR child 3–15 years	0.79	0.3%	Milk: Cattle		0.1%	Wine grapes		0.1%	Melons	0.7%	
	1%	GEMS/Food G08	0.79	0.3%	Wine grapes		0.1%	Milk: Cattle Milk: Cattle		0.1%	Wheat	0.4%	
	1% 1%	FR adult DK child	0.79	0.8%	Wine grapes Cucumbers		0.1%	Milk: Cattle Milk: Cattle		0.0%	Melons Rye	0.2%	
	1%	GEMS/Food G11	0.72	0.3%	Wine grapes		0.1%	Milk: Cattle		0.1%	Table grapes	0.4%	
	1.0%	UK infant	0.68	0.6%	Milk: Cattle		0.1%	Strawberries		0.0%	Potatoes	0.8%	
	1.0%	DE women 14-50 years	0.67	0.3%	Wine grapes		0.2%	Milk: Cattle		0.1%	Sugar beet roots	0.4%	
	1.0%	FR toddler 2–3 years	0.67	0.4%	Milk: Cattle		0.1%	Wine grapes		0.0%	Apples	0.7%	
	0.9%	GEMS/Food G10	0.65	0.1%	Wine grapes		0.1%	Milk: Cattle		0.1%	Cucumbers	0.4%	
	0.9%	DE general UK toddler	0.64	0.3%	Wine grapes Milk: Cattle		0.2%	Milk: Cattle		0.1%	Sugar beet roots	0.4%	1
	0.9%	UK toddler SE general	0.61	0.3%	Milk: Cattle Milk: Cattle		0.1%	Currants (red, black and white) Cucumbers		0.1%	Wheat Bovine: Muscle/meat	0.6%	1
	0.8%	FI 3 years	0.55	0.2%	Cucumbers		0.1%	Strawberries		0.1%	Raspberries (red and yellow)	0.5%	1
	0.7%	NL general	0.54	0.2%	Wine grapes		0.1%	Milk: Cattle		0.0%	Sugar beet roots	0.4%	1
	0.7%	DK adult	0.47	0.3%	Wine grapes		0.1%	Milk: Cattle		0.1%	Cucumbers	0.2%	1
	0.6%	ES child	0.44	0.2%	Milk: Cattle		0.1%	Wheat		0.0%	Watermelons	0.4%	1
	0.6%	FR infant	0.43	0.2%	Milk: Cattle		0.1%	Courgettes		0.0%	Strawberries	0.4%	1
	0.6% 0.6%	UK adult FI 6 years	0.41	0.4%	Wine grapes Cucumbers		0.0%	Milk: Cattle Strawberries		0.0%	Wheat Watermelons	0.1%	1
	0.6%	UK vegetarian	0.40	0.2%	Wine grapes		0.0%	Milk: Cattle		0.0%	Wheat	0.1%	
	0.5%	ES adult	0.36	0.1%	Wine grapes		0.1%	Milk: Cattle		0.1%	Melons	0.2%	1
	0.4%	FI adult	0.31	0.1%	Wine grapes		0.1%	Cucumbers		0.1%	Coffee beans	0.1%	
	0.4%	IT toddler	0.25	0.1%	Wheat		0.0%	Courgettes		0.0%	Strawberries	0.1%	1
	0.4%	LT adult	0.25	0.1%	Cucumbers		0.1%	Milk: Cattle		0.0%	Potatoes	0.2%	1
	0.3%	IT adult	0.22 0.17	0.1%	Wheat Potatoes		0.0%	Courgettes Table grappe		0.0%	Melons	0.1%	1
- 1	0.2%	PL general IE child	0.17	0.0%	Potatoes Milk: Cattle		0.0%	Table grapes Wheat		0.0%	Apples Currants (red, black and white)	0.1%	1

	Acute risk assessment/children	Acute risk assessment/adults/general population	Acute risk assessment/children	Acute risk assessment/adults/general population
	Details-acute risk assessment/children	Details-acute risk assessment/adults	Hide IESTI new calculations	Show IESTI new calculations
	As an ARID is not necessary/not applicable, no acute risk assessment is perforn	ned.		F), taking into account the residue in the edible portion and/or the conversion factor for or of 3 is used. Since this methodology is not based on internationally agreed principles, the results are considered as indicative only.
	Show result	s for all crops		
Unprocessed commodities	Results for children No. of commodities for which ARID/ADI is exceeded (IESTI):	Results for adults No. of commodities for which ARID/ADI is exceeded (IESTI):	IEST new Results for children No. of commodities for which ARID/ADI is exceeded (IESTI new):	IEST new Results for adults No. of commodities for which ARID/ADI is exceeded (IESTI new):
sed or	IESTI MRL/input	IESTI MRL/input	IESTI new MRL/input	IESTI new MRL/input
proces	Highest % of for RA Exposure ARfD/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Commodities (mg/kg) (µg/kg bw)
	Expand/collapse list			
	Total number of commodities exceeding the ARfD/ADI in children and adult diets (IESTI calculation)		Total number of commodities found exceeding the ARfD/ADI in children and adult diets (IESTI new calculation)	
Processed commodities	Results for children No of processed commodities for which ARID/ADI is exceeded (IESTI):	Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI):	Results for children No of processed commodities for which ARfD/ADI is exceeded (IESTI new):	Results for adults No of processed commodities for which ARfD/ADI is exceeded (IESTI new):
com	IESTI MRL/input	IESTI MRL/input	IESTI new MRL/input	IESTI new MRL/input
cessed	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARfD/ADI Processed commodities (mg/kg) (µg/kg bw)	Highest % of for RA Exposure ARID/ADI Processed commodities (mg/kg) (µg/kg bw)
ōđ				
	Expand/collapse list			
	Conclusion:			



	****	d Safety Authority			Tioxazafen				Input	nput values		
	* *			LOQs (mg/kg) range		to:	4.0	Details-ch	ronic risk	Supplementary	results_	
	** A				Toxicological reference v			assess		chronic risk ass		
				ADI (mg/kg bw per da	iy): 0.05	ARfD (mg/kg bw):	0.5			·		
E	European Foo	d Safety Authority		Source of ADI:		Source of ARfD:		Details–a		Details-acut		
	EFSA PRIMo re	vision 3.1; 2018/11/18		Year of evaluation:		Year of evaluation:		assessmen	t/children	assessment/	adults	
nme	nts:					•						
						<u>l mode</u>						
				1	Chronic risk assessment	: JMPR methodo	ology (IEDI/TMDI)					
	1			No of diets exceeding	the ADI :				T	1	Exposure MRLs set at	e resulting fro
			Expsoure	Highest contributor to		2nd contributor to			3rd contributor to		the LOQ	under asses
	Calculated exposur		(µg/kg bw per	MS diet	Commodity/	MS diet	Commodity/		MS diet	Commodity/	(in % of	(in % of A
_	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities		(in % of ADI)	group of commodities	ADI)	<u> </u>
	4%	NL toddler	1.88	2%	Milk: Cattle	0.2%	Apples		0.1%	Maize/corn	1%	0.1
	3%	FR toddler 2–3 years	1.57	1%	Milk: Goat	1%	Milk: Cattle		0.1%	Apples	0.4%	0.19
	2%	FR child 3–15 years	1.01	0.9%	Milk: Cattle	0.4%	Milk: Goat		0.1%	Wheat	0.5%	0.19
	2% 2%	UK infant NL child	1.01	2% 1.0%	Milk: Cattle Milk: Cattle	0.1%	Potatoes		0.1%	Eggs: Chicken Milk: Goat	0.4%	0.09
	2%	DE child	0.98	0.8%	Milk: Cattle Milk: Cattle	0.2%	Sugar beet roots		0.2%	Milk: Goat Wheat	0.8%	0.1
		GEMS/Food G06	0.87	0.5%	Milk: Goat	0.4%	Apples Milk: Sheep		0.1%	Wheat	0.6%	0.0
	2% 1%	DE women 14–50 vears	0.84	0.5%	Milk: Goat Milk: Cattle	0.4%	Milk: Sheep Milk: Sheep		0.1%	Wheat Milk: Goat	0.6%	0.1
	1%	GEMS/Food G15	0.73	0.5%	Milk: Cattle Milk: Sheep	0.3%	Milk: Cattle		0.1%	Wheat	0.4%	0.0
	1%	UK toddler	0.71	0.8%	Milk: Sneep Milk: Cattle	0.1%	Wheat		0.1%	Potatoes	0.5%	0.09
	1%	DE general	0.65	0.8%	Milk: Cattle	0.1%	Milk: Sheep		0.1%	Milk: Goat	0.5%	0.09
	1%	DE general DK child	0.54	0.5%	Milk: Cattle	0.2%	Rye		0.1%	Wheat	0.5%	0.03
	1%	ES child	0.53	0.5%	Milk: Cattle	0.1%	Wheat		0.1%	Milk: Goat	0.4%	0.19
	1%	GEMS/Food G07	0.51	0.3%	Milk: Cattle	0.1%	Milk: Goat		0.1%	Wheat	0.5%	0.19
	1%	SE general	0.51	0.5%	Milk: Cattle	0.1%	Bovine: Muscle/meat		0.1%	Potatoes	0.4%	0.19
	1.0%	RO general	0.50	0.5%	Milk: Cattle	0.1%	Wheat		0.1%	Potatoes	0.5%	0.09
	1.0%	GEMS/Eood G11	0.48	0.3%	Milk: Cattle	0.1%	Soyabeans		0.1%	Potatoes	0.5%	0.29
	1.0%	GEMS/Food G08	0.48	0.2%	Milk: Cattle	0.1%	Wheat		0.1%	Milk: Goat	0.5%	0.19
	1.0%	GEMS/Food G10	0.48	0.2%	Milk: Cattle	0.1%	Milk: Goat		0.1%	Soyabeans	0.5%	0.29
	1.0%	FR infant	0.48	0.7%	Milk: Cattle	0.0%	Potatoes		0.0%	Milk: Goat	0.2%	0.0
	0.9%	FR adult	0.45	0.4%	Milk: Goat	0.2%	Milk: Cattle		0.0%	Wine grapes	0.3%	0.0
	0.8%	NL general	0.38	0.3%	Milk: Cattle	0.1%	Sugar beet roots		0.0%	Potatoes	0.4%	0.09
	0.7%	IE adult	0.37	0.2%	Milk: Cattle	0.1%	Sweet potatoes		0.0%	Wheat	0.5%	0.09
	0.5%	ES adult	0.27	0.2%	Milk: Cattle	0.0%	Wheat		0.0%	Milk: Goat	0.3%	0.0
	0.4%	DK adult	0.22	0.2%	Milk: Cattle	0.0%	Potatoes		0.0%	Wheat	0.2%	0.0%
	0.4%	PT general	0.21	0.1%	Potatoes	0.1%	Wheat		0.0%	Wine grapes	0.4%	0.0
	0.4%	LT adult	0.20	0.2%	Milk: Cattle	0.1%	Potatoes		0.0%	Apples	0.2%	0.0
	0.4%	UK vegetarian	0.18	0.1%	Milk: Cattle	0.0%	Wheat		0.0%	Potatoes	0.2%	0.0
	0.3%	UK adult	0.17	0.1%	Milk: Cattle	0.0%	Wheat		0.0%	Potatoes	0.2%	0.0
	0.3%	FI 3 years	0.17	0.1%	Potatoes	0.0%	Bananas		0.0%	Wheat	0.3%	0.0
	0.3%	IT toddler	0.16	0.1%	Wheat	0.0%	Other cereals		0.0%	Tomatoes	0.3%	0.0
	0.3%	FI 6 years	0.13	0.1%	Potatoes	0.0%	Wheat		0.0%	Bananas	0.3%	0.0
	0.3%	FI adult	0.13	0.1%	Coffee beans	0.0%	Potatoes		0.0%	Rye	0.3%	0.0
	0.2%	IT adult	0.12	0.1%	Wheat	0.0%	Tomatoes		0.0%	Apples	0.2%	0.0
	0.2%	IE child	0.12	0.1%	Milk: Cattle	0.0%	Wheat		0.0%	Potatoes	0.1%	0.0
		PL general	0.10	0.1%	Potatoes	0.0%	Apples		0.0%	Tomatoes	0.2%	0.0%

	A	cute risk assessment	children		Acute risk a	ssessment/adults/ger	ieral popu	lation	A	cute risk assessment	/children		Acute risk assessment/adults/general population			
	Details-a	acute risk assessme	nt/childr	en	Details	s–acute risk assessn	nent/adu	lts		Hide IESTI new calci	ulations			Show IESTI new calcul	ations	
	The calculation is ba	ssment is based on the ARID. ased on the large portion of the how results of IES			-	h GAPs under asse	essment		the residue definition the results are con-	performed with the MRL and th	calculations,	a variability fac	tor of 3 is used. Since	int the residue in the edible portion an this methodology is not based on ir isidered as indicative only.		
8		n for which ARfD/ADI is				for which ARfD/ADI is				s for which ARfD/ADI is			IESTI new Results for adults No. of commodities (IESTI new);	for which ARfD/ADI is exceeded		
com	exceeded (IESTI):				exceeded (IESTI):				exceeded (IESTI no	ew):			(IESTI new):			
	IESTI				IESTI				IESTI new				IESTI new			
SSS	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure	Highest % of		MRL/input for RA	Exposure
Unprocessed	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)
: 1	0.07%	Poultry: Muscle/meat	0.01/0.02	0.34	0.05%	Poultry: Muscle	0.01/0.02	0.23	0.05%	Bovine: Liver	0.03/0.03	0.24	0.04%	Soyabeans	0.04/0.04	0.22
	0.05%	Swine: Muscle/meat	0.01/0.02	0.24	0.04%	Soyabeans	0.04/0.04	0.22	0.04%	Bovine: Edible offals (other		0.22	0.02%	Bovine: Liver	0.03/0.03	0.12
	0.04%	Bovine: Liver	0.03/0.03	0.20	0.02%	Bovine: Muscle	0.01/0.02	0.11	0.03%	Poultry: Muscle/meat	0.01/0.01	0.17	0.02%	Poultry: Muscle	0.01/0.01	0.12
	0.04%	Bovine: Edible offals (other Bovine: Muscle/meat	0.03/0.03 0.01/0.02	0.18 0.14	0.02%	Other farmed animals: Bovine: Liver	0.01/0.02 0.03/0.03	0.11 0.10	0.02%	Swine: Muscle/meat Bovine: Kidney	0.01/0.01 0.03/0.03	0.12	0.02%	Bovine: Edible offals (other than Sheep: Liver	0.03/0.03 0.03/0.03	0.10 0.08
	0.03%	Other farmed animals:	0.01/0.02	0.14	0.02%	Swine: Muscle/meat	0.03/0.03	0.10	0.02%	Sovabeans	0.03/0.03	0.09	0.02%	Swine: Edible offals (other than	0.03/0.03	0.08
	0.02%	Equine: Muscle/meat	0.01/0.02	0.12	0.02%	Equine: Muscle/meat	0.01/0.02	0.10	0.02%	Swine: Edible offals (other	0.03/0.03	0.09	0.01%	Swine: Kidney	0.03/0.03	0.07
	0.02%	Sheep: Muscle/meat	0.01/0.02	0.11	0.02%	Sheep: Muscle/meat	0.01/0.02	0.09	0.01%	Bovine: Muscle/meat	0.01/0.01	0.07	0.01%	Bovine: Kidney	0.03/0.03	0.06
	0.02%	Bovine: Kidney	0.03/0.03	0.09	0.02%	Poultry: Liver	0.01/0.02	0.09	0.01%	Other farmed animals:	0.01/0.01	0.07	0.01%	Swine: Fat tissue	0.03/0.03	0.06
	0.02%	Soyabeans	0.04/0.04	0.09	0.02%	Bovine: Edible offals (other	0.03/0.03	0.08	0.01%	Bovine: Fat tissue	0.03/0.03	0.06	0.01%	Bovine: Muscle	0.01/0.01	0.06
	0.02%	Swine: Edible offals (other Bovine: Fat tissue	0.03/0.03	0.08	0.01%	Sheep: Liver Swine: Edible offals (other	0.03/0.03	0.07	0.01%	Equine: Muscle/meat Sheep: Muscle/meat	0.01/0.01	0.06	0.01%	Other farmed animals: Swine: Muscle/meat	0.01/0.01 0.01/0.01	0.06
	0.01%	Swine: Fat tissue	0.03/0.03	0.05	0.01%	Swine: Edible onals (other Swine: Kidney	0.03/0.03	0.07	0.01%	Swine: Fat tissue	0.03/0.03	0.05	0.01%	Equine: Muscle/meat	0.01/0.01	0.05
	0.01%	Swine: Kidney	0.03/0.03	0.03	0.01%	Bovine: Kidney	0.03/0.03	0.05	0.01%	Swine: Kidney	0.03/0.03	0.04	0.01%	Sheep: Muscle/meat	0.01/0.01	0.05
	0.01%	Swine: Liver	0.03/0.03	0.03	0.01%	Swine: Fat tissue	0.03/0.03	0.05	0.01%	Swine: Liver	0.03/0.03	0.04	0.01%	Poultry: Liver	0.01/0.01	0.05
ſ	Expand/collapse list Total number of co children and adult (IESTI calculation)	ommodities exceeding the A diets	RfD/ADI in							commodities found exceeding ren and adult diets ation)	g the					
	Results for childre No of processed cor is exceeded (IESTI):	mmodities for which ARfD/ADI			Results for adults No of processed co is exceeded (IESTI)	mmodities for which ARfD/ADI			Results for childr No of processed co ARfD/ADI is excee	ommodities for which			Results for adults No of processed co exceeded (IESTI ne	mmodities for which ARfD/ADI is		
commoditi	IESTI				IESTI				IESTI new				IESTI new			
			MRL/input				MRL/input				MRL/input				MRL/input	
	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
ŀ	ARfD/ADI 0.0%	Processed commodities Sovabeans/sov milk	(mg/kg) 0.04/0.01	(µg/kg bw) 0.05	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI 0.01%	Processed commodities Sovabeans/sov milk	(mg/kg) 0.04/0.01	(µg/kg bw) 0.05	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw
	0.0%	Soyabeans/boiled	0.04/0.01	0.02					0.00%	Soyabeans/boiled	0.04/0.01	0.02				
	Expand/collapse list	1														
	A short-term intake	ne toxicological reference value of residues of Tioxazafen is u modities, no exceedance of the	nlikely to prese	ent a public hea												

	×. 0	fsa		LOQs (mg/kg) range		to:	0.02	Details-ch		Supplementary		
	- C				Toxicological reference			assess	ment	chronic risk asse	essment	
с.	uronoan Eoo	d Safety Authority		ADI (mg/kg bw per da	ay): 0.025	ARfD (mg/kg bw):	0.05	Details-ad	ute risk	Details-acut	e risk	
Еι	uropean Food	a Safety Authority		Source of ADI:	EFSA	Source of ARfD:	EFSA	assessmen		assessment/		
_		vision 3.1; 2018/08/18		Year of evaluation:	2010	Year of evaluation:	2010	dissessiment	çermaren	ussessment,	laanco	<u> </u>
ent	ts:											
					Norma	al mode						
					Chronic risk assessment		ology (IEDI/TMDI)					
				No of diets exceeding		-					Exposure	e resulting
Τ											MRLs set a	
			Expsoure	Highest contributor to		2nd contributor to			3rd contributor to		the LOQ (in % of	(in %
	Calculated exposure (% of ADI)	e MS Diet	(µg/kg bw per day)	MS diet (in % of ADI)	Commodity/ group of commodities	MS diet (in % of ADI)	Commodity/ group of commodities		MS diet (in % of ADI)	Commodity/ group of commodities	ADI)	
t	(% 0FADI) 61%	NL toddler	15.32	(IN % OF ADT) 44%	Potatoes	(IN % 0T ADI) 10%	Milk: Cattle		(IN % OF ADI) 3%	group or commodities Strawberries		5
L	57%	PT general	14.20	55%	Potatoes	0.3%	Strawberries		0.3%	Oranges		5
	56%	FI 3 years	13.92	49%	Potatoes	3%	Strawberries		2%	Cucumbers		5
L	50%	SE general	12.52	43%	Potatoes	2%	Milk: Cattle		1%	Strawberries		4
L	46%	NL child	11.51	36%	Potatoes	4%	Milk: Cattle		3%	Strawberries		4
L	45%	FI 6 years	11.34	40%	Potatoes	2%	Strawberries		1%	Cucumbers		4
L	45% 45%	GEMS/Food G11 GEMS/Food G08	11.17	41% 41%	Potatoes	1% 0.9%	Milk: Cattle Milk: Cattle		0.8% 0.8%	Strawberries Strawberries		4
L	45%	UK toddler	11.15 11.02	36%	Potatoes Potatoes	3%	Milk: Cattle		2%	Strawberries		4
L	44%	UK infant	10.94	34%	Potatoes	6%	Milk: Cattle		2%	Strawberries		3
L	44%	GEMS/Food G07	10.94	39%	Potatoes	1%	Milk: Cattle		0.7%	Oranges		4
L	43%	RO general	10.74	39%	Potatoes	2%	Milk: Cattle		0.6%	Tomatoes		4
L	41%	GEMS/Food G15	10.23	37%	Potatoes	1%	Milk: Cattle		0.4%	Strawberries		3
L	39%	DE child	9.86	27%	Potatoes	4%	Strawberries		3%	Milk: Cattle		3
L	36%	PL general	9.12	36%	Potatoes	0.3%	Tomatoes		0.2%	Strawberries		3
	35%	LT adult	8.82	33%	Potatoes	0.8%	Cucumbers		0.6%	Milk: Cattle		3
L	35%	GEMS/Food G10	8.81	31%	Potatoes	0.9%	Strawberries		0.9%	Milk: Cattle		3
L	33%	DK child	8.30	25%	Potatoes	3%	Cucumbers		2%	Milk: Cattle		3
L	29%	IE adult	7.30	24%	Potatoes	1%	Strawberries		0.7%	Milk: Cattle		2
	29% 28%	NL general FR toddler 2–3 years	7.23	25% 19%	Potatoes Potatoes	1% 5%	Milk: Cattle Milk: Cattle		0.7%	Strawberries Strawberries		2
	28%	FR toddler 2–3 years GEMS/Food G06	6.48	21%	Potatoes	5%	Milk: Cattle Cucumbers		1%	Strawberries Tomatoes		2
	25%	FR child 3–15 years	6.14	16%	Potatoes	4%	Milk: Cattle		2%	Strawberries		2
	25%	FR infant	6.13	20%	Potatoes	3%	Milk: Cattle		1%	Strawberries		2
	24%	ES child	6.06	19%	Potatoes	2%	Milk: Cattle		1%	Oranges		2
	18%	DE general	4.44	13%	Potatoes	2%	Milk: Cattle		0.9%	Strawberries		1
	17%	DE women 14-50 years	4.20	11%	Potatoes	2%	Milk: Cattle		1.0%	Strawberries		1
	17%	UK vegetarian	4.15	14%	Potatoes	0.6%	Strawberries		0.5%	Milk: Cattle		1
	16%	UK adult	4.10	15%	Potatoes	0.5%	Milk: Cattle		0.4%	Strawberries		1
	16%	DK adult	3.95	13%	Potatoes	0.8%	Milk: Cattle		0.6%	Strawberries		1
	15% 13%	FI adult ES adult	3.73 3.14	12% 10%	Potatoes Potatoes	1% 0.8%	Strawberries Milk: Cattle		0.7%	Cucumbers Oranges		1
	12%	IT toddler	2.90	9%	Potatoes	1.0%	Strawberries		0.5%	Tomatoes		1:
	10%	FR adult	2.59	8%	Potatoes	1.0%	Strawberries		0.7%	Milk: Cattle		g
	8%	IT adult	1.91	6%	Potatoes	0.4%	Strawberries		0.4%	Tomatoes		8
	7%	IE child	1.84	6%	Potatoes	0.6%	Milk: Cattle		0.2%	Strawberries		7

For processed commodities, the toxicological reference value was exceeded in one or several cases.

Appendix B – Comments on draft Codex MRL proposals maintained at step 4 or 7

In the following table, EFSA provides some background information on MRL proposals presented in previous CCPR meetings that were not advanced due to concerns raised by the governmental delegations or other procedural reasons.

Active substance	Commodity	Step	CXL proposal/ existing CXL	Discussions in previous CCPR meetings	EU MRL	Recent EU assessments
Diquat (31)	Beans (dry)	4	0.05/0.2	In 2014, Canada asked to maintain the	0.2	See EFSA report. Section 5.1
	Edible offal (Mammalian)	4	0.01*/0.05*	existing CXLs for bean (dry) (0.2 mg/kg);	0.05*	Conclusion:
	Eggs	4	0.01*/0.05*	and lentil (dry) (0.2 mg/kg) under the	0.05	In the light of the new residue definitions
	Meat (from mammals other than marine mammals)	4	0.01*/0.05*	4 year rule awaiting data from Canada. In 2014, the CCPR also decided to maintain the proposed draft MRLs for edible offal (mammalian), eggs, meat (from mammals	0.05*	derived in the EU, the proposed MRLs would not be compatible with the EU residue definitions derived in the peer review
	Milks	4	0.001*/0.01*	other than marine mammals), poultry	0.01*	Following the 4-year rule, a decision
	Poultry meat	4	0.01*0.05*	(edible offal), poultry meat (all 0.01*)	0.05*	should be taken in 2019 CCPR meeting to
	Poultry, edible offal of	4	0.01*/0.05*	and milks (0.001*) at step 4 (CCPR 46, REP14/PR,-para 40)	0.05*	withdraw the CXLs and the Codex MRL proposals at step 4
				CCPR 2015: The proposed draft MRL for beans dry and livestock commodities were retained at step 4 waiting data from Canada and Australia CCPR 2016: No discussion CCPR 2017: No discussion CCPR 2018: No discussion CCPR 2019: New MRL proposals have been derived by JMPR for the commodities under discussion, except edible offal mammalian, eggs, milk and poultry edible offal. In the 2018, JMPR report the withdrawal of the existing CXLs was recommended		
Oxamyl (126)	Peppers chili, dried	4	0.01*	The Codex MRL proposals were kept at step	0.01*	The EU position of 2018 is still valid where
	Peppers subgroup of (includes all commodities in this subgroup, except martynia, okra and roselle)	4	0.01*	4 awaiting a re-evaluation of the issue related to the setting of MRLs for the subgroup of peppers (in 2017 JMPR proposed to exclude martynia, okra and roselle)	0.01*	the EU supported the advancement of the proposed MRLs for the two commodities It is noted that for dried chili peppers, usually the EU would not express its support, since it is a processed commodity for which no EU MRLs are established

Table B.1:	Detailed information on the MRL proposals maintained at step 4 or 7	
------------	---	--

Active substance	Commodity	Step	CXL proposal/ existing CXL	Discussions in previous CCPR meetings	EU MRL	Recent EU assessments
				In 2018, JMPR confirmed the previous MRL proposals since the GAPs under consideration do not cover the minor crops listed in the subgroup of peppers		
Propamocarb	Cabbages, Head	4	1	In 2015, CCPR agreed to hold the proposed	0.7	In 2015 CCPR, EU made a reservation
148	Kale	4	20	draft MRLs for cabbages and kale at step 4, awaiting new data (livestock feeding study) from the manufacturer and re-evaluation by JMPR in 2018 No new information was provided for the 2018 JMPR meeting	20	regarding the advancement of the proposed MRLs for the two crops because a different policy on establishing MRLs for animal feed commodities when livestock dietary burdens exceed the dose levels used in animal feeding studies The renewal process of the approval of propamocarb is currently ongoing; EFSA expert meeting is planned for April 2019 Conclusion: In 2019, no discussion is expected for this substance Overall, the advancement of the proposed MRLs is not supported as long as the expected residues in food of animal origin were not assessed, taking into account the residues in cabbage and kale
Propiconazole 160	Cherries, subgroup of (including all commodities in this subgroup)	4	3Po	In 2018, the EU proposed that the MRLs should be derived using a different calculation method (using the mean	0.01*	Conclusions: See comments in EFSA report Section 5.5
	Lemons and Limes (including citron) Subgroup of (including all commodities in this subgroup)	4	10Po	residue + 4SD). CCPR agreed to keep all the proposed draft MRLs at step 4 awaiting JMPR re-evaluation in 2018 In 2018 JMPR, revised MRL proposals were derived by JMPR	5	
	Mandarins (including mandarin-like hybrids) Subgroup of (including all commodities in this subgroup)	4	10Po		5	

Active substance	Commodity	Step	CXL proposal/ existing CXL	Discussions in previous CCPR meetings	EU MRL	Recent EU assessments
	Orange oil	4	2800		_	
	Oranges, sweet, sour (including orange-like hybrids) subgroup of (including all commodities in this subgroup)	4	15Po		9	
	Peach	4	0.7Po		5	
	Pineapple	4	4Po		0.02*	
	Plums, subgroup of (includes all commodities in this subgroup)	4	0.5Po		0.01*	
	Pumelo and grapefruit (including Shaddock-like hybrids) subgroup of (including all commodities in this subgroup)	4	6Po		5	
Bifenthrin	Okra	7	0.2	For the proposed Codex MRLs for	0.2	In 2012 the EU proposed to withdraw the
(178)	Strawberry	4	3/1	strawberries, celery and lettuce JMPR	0.1	MRL for strawberries, due to acute intake
	Celery	4	3	identified acute intake concerns; the proposals was retained at step 4 awaiting	0.01*	concerns identified by JMPR. For the
	Lettuce head	4	4	data from the manufacturer for an alternative GAP to be assessed by 2017 JMPR In 2017, CCPR decided to retain the draft MRL proposals for okra at step 7, awaiting information on authorised GAP to be submitted by India before 2019 Bifenthrin is now scheduled for 2019 JMPR (BARLEY, BARLEY (STRAW FODDER) – 4- year rule granted in 2014/STRAWBERRY, LETTUCE HEAD, CELERY (alternative GAP)/okra – India) If data will not be submitted by 2019, a decision on withdrawal of the MRL proposal will be taken	0.01*	remaining MRL proposals no EU reservation was made In the MRL review under Article 12 (Reg. (EU) 2017/170, the MRL derived for okra was identical with the proposed CXLs. For celery and lettuce the MRL is set at the LOQ in the EU Conclusion: No discussion is expected in 2019, since the data are expected to be assessed by 2019 JMPR

Active substance	Commodity	Step	CXL proposal/ existing CXL	Discussions in previous CCPR meetings	EU MRL	Recent EU assessments		
Fenpyroximate	Apricot	4	0.4	In 2018, the EU opposed the advancement		Conclusion:		
(193)	Cherries, subgroup of (includes all commodities in this subgroup)	4	2	of the proposed MRLs for cherries, peaches, plums subgroup, watermelons and tomatoes because of acute intake concerns		No discussion expected for 2019 CCPR		
	Cherry tomato	4	0.3	identified by JMPR				
	Peach	4	0.8	In 2018, CCPR agreed to keep the proposed				
	Plums, subgroup of (including fresh prunes) (includes all commodities in this subgroup)	4	0.8	draft MRLs for apricot; cherries (subgroup); cherry tomato; peach; plums (subgroup); watermelon; and tomato at step 4, awaiting evaluation of the additional toxicological data				
	Tomato	4	0.8	by the 2020 JMPR				
	Watermelon	4	0.05			_		
Cyprodinil 207	Pomegranate	4	10	In 2018, the EU proposed that the MRL should be derived using a different calculation method (using the mean residue + 4SD). CCPR agreed to keep the proposed draft MRL at step 4 awaiting JMPR re-evaluation in 2018 In 2018, JMPR revised MRL proposals were derived by JMPR	0.02*	Conclusion: See comments in EFSA report 2019, Section 5.12		
Sulfoxaflor (252)	Tree nuts	4	0.015	In 2015, CCPR decided to retain the MRL proposal at step 4 awaiting JMPR evaluation in 2016. (the proposed MRL at step 4 was not advanced since the GAP authorised in US differed from the GAP that was reported to JMPR) In 2016, JMPR reported that data on tree nuts have been provided, but since the label was submitted too late, no assessment was performed CCPR 2016: no discussion In 2016, JMPR assessed sulfoxaflor for new uses. However, since no information on the authorised GAPs was provided, no new MRL proposal was derived	0.02*	Conclusion: See comments in EFSA report 2019, Section 5.17 If the new MRL proposal for tree nuts is advanced in 2019 CCPR, the previous proposal should be withdrawn		

Active substance	Commodity	Step	CXL proposal/ existing CXL	Discussions in previous CCPR meetings	EU MRL	Recent EU assessments
				CCPR 2017: It was decided to assess tree nuts together with the new uses on other crops that were scheduled for the 2018 JMPR In 2018, JMPR derived a MRL proposal of 0.03 mg/kg for tree nuts		
Cyclaniliprole (296)	Cherries, subgroup of (includes all commodities in this subgroup)	4	0.9	In 2017, JMPR used a model to estimate MRLs for the crops listed since the submitted residue trials did not match with	0.01*	Conclusion: No discussions are expected for 2019 CCPR
	Cherry tomato	4	0.1	the GAP. The EU and other Codex Members	0.01*	
	Edible offal (mammalian)	4	0.01 (*)	noted that the model needed validation to ensure that the derived MRL proposals were	0.01*	
	Eggplants, subgroup of (includes all commodities in this subgroup)	4	0.1	ensure that the derived MRL proposals were appropriate. In 2018, CCPR agreed to keep all the proposed draft MRLs at step 4 pending the evaluation of new data and revised GAP information by the 2019 JMPR. CCPR also invited JMPR to engage with national regulators to continue validation of the model	0.01*	
	Flowerhead brassicas, subgroup of (includes all commodities in this subgroup)	4	1		0.01*	
	Fruiting vegetables, cucurbits- cucumbers and summer squashes, subgroup of (includes all commodities in this subgroup)	4	0.06		0.01*	
	Fruiting vegetables, cucurbits – melons, pumpkins and winter squashes (subgroup of) (includes all commodities in this subgroup)	4	0.15		0.01*	
	Grapes	4	0.8		0.01*	
	Head brassicas, subgroup of (includes all commodities in this subgroup)	4	0.7		0.01*	

Active substance	Commodity	Step	CXL proposal/ existing CXL	Discussions in previous CCPR meetings	EU MRL	Recent EU assessments
	Leaves of Brassicaceae, subgroup of, (includes all commodities in this subgroup)	4	15		0.01*	
	Mammalian fats (except milk fats	4	0.01 (*)		0.01*	
	Meat (from mammals other than marine mammals)	4	0.01 (*) (fat)		0.01* (muscle)	
	Milk fats	4	0.01 (*)		-	
	Milks	4	0.01 (*)		0.01*	
	Peaches, subgroup of (including apricots and nectarine) (includes all commodities in this subgroup)	4	0.3		0.01*	
	Peppers chili, dried	4	2		-	
	Peppers, subgroup of (includes all (except martynia, okra and roselle) commodities in this subgroup)	4	0.2		0.01*	
	Plums, subgroup of (including fresh Prunes) (includes all commodities in this subgroup)	4	0.2		0.01*	
	Pome fruits, group of (includes all commodities in this group)	4	0.3		0.01*	
	Prunes, dried	4	0.8		-	
	Straw and fodder (dry) of cereal grains	4	0.45 (dw)		_	
	Tomato	4	0.1		0.01*	
	Tomato, dried	4	0.4		_	