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Abstract

When modeling cell signaling networks, a balance must be struck between mechanistic detail and ease of interpretation. In
this paper we apply a fuzzy logic framework to the analysis of a large, systematic dataset describing the dynamics of cell
signaling downstream of TNF, EGF, and insulin receptors in human colon carcinoma cells. Simulations based on fuzzy logic
recapitulate most features of the data and generate several predictions involving pathway crosstalk and regulation. We
uncover a relationship between MK2 and ERK pathways that might account for the previously identified pro-survival
influence of MK2. We also find unexpected inhibition of IKK following EGF treatment, possibly due to down-regulation of
autocrine signaling. More generally, fuzzy logic models are flexible, able to incorporate qualitative and noisy data, and
powerful enough to produce quantitative predictions and new biological insights about the operation of signaling
networks.
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Introduction

A variety of modeling methods can be applied to understanding

protein signaling networks and the links between signals and

phenotypes [1]. The choice of modeling method depends on the

question being posed (e.g., mechanistic or phenotypic), the quality

and type of experimental data (quantitative or qualitative), and the

state of prior knowledge about the network (interaction map or

detailed biochemical pathway; Figure 1). Abstract techniques are

largely data-driven and aim to discover correlations among signals

or between signals and cellular phenotypes [2–4]; these methods

include principal component analysis (PCA) and partial least-

squares regression (PLSR). Mechanistic differential equation-based

models, in contrast, are highly specified and dependent on

extensive prior knowledge about components and their interac-

tions, but have the advantage that they capture temporal and

spatial dynamics at the level of individual reactions [5–9]. Between

these extremes, modeling methods such as Bayesian statistics,

hidden Markov models, and logic-based models have been used to

construct graph-based representations of influences and depen-

dencies among signals and phenotypes based on experimental data

[10–18]. An advantage of these methods is their applicability to

situations in which mechanistic information is incomplete or

fragmentary but the notion of a network of interacting biochemical

species is nonetheless informative. Moreover, logic-based models

use natural language to encode common logical statements such as

‘‘if the kinase is not active or the phosphatase is overexpressed, the

substrate is not phosphorylated’’. Logic-based models are

commonly depicted as edge-node graphs in which interactions

among species occur at nodes, with gates specifying the logic of the

interactions based on a set of specified rules. The identities of the

gates are typically determined based on prior knowledge or

experimental observables and the input-output relationships of

each gate inferred from experimental data [11,12,19–24].

Among logic-based methods, the simplicity of Boolean models

makes them attractive as a means to render biological networks.

For example, a discrete-state representation of the level of

phosphorylation of insulin receptor substrate 1 (IRS-1) at serine

636 (IRS(S)) might use three input edges for time, TNF and EGF

(see below), one output edge for IRS(S), and one logic gate (where

‘‘1’’ means present or active, and ‘‘0’’ absent or inactive;

Figure 2A). Time is included as an input variable to enable the

representation of transient responses, following cytokine treatment,

for example. In Boolean logic, interactions among inputs are cast

as combinations of elementary ‘‘AND’’, ‘‘OR’’, and ‘‘NOT’’ gates

that generate logic rules such as ‘‘(EGF OR TNF) AND

(NOT(time))’’ and are most easily specified using truth tables

(Figure 2B–C). Truth tables consist of lookup values for the

outputs (consequent value) based on all possible combinations of

input values (antecedents). Despite the appeal of Boolean models a

two-state ‘‘on-off’’ representation of many biological signals is

quite unrealistic [25–27].

In this work, we propose fuzzy logic (FL) as an approach to

logic-based modeling with the easy interpretability of Boolean
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models but significant advantages [28] including the ability to

encode intermediate values for inputs and outputs. We show that

FL can encode probabilistic and dynamic transitions between

network states so as to create simple and fairly realistic depictions

of cell signaling networks [20–23,29–31]. A key advantage of logic-

based approaches, also exemplified by FL, is the ability to

construct models ad hoc based on knowledge of network topology

and data [32–36]. Reverse engineering models from data is an

alternative and complementary approach, which is less biased by a

priori knowledge and assumptions, and is particularly useful for

identifying plausible topology and parameterization given quan-

titative data gathered under several perturbations. Here, we

focused on building models by hand because our goal was to test

whether FL methods could be adapted to test a priori knowledge

and hypotheses against data to refine our understanding of the

network and generate testable hypotheses. We complement our

initial model with model optimization to compare the effects of

fuzzification.

Several means to refine Boolean models have been described,

including kinetic logic and the closely related piecewise-linear

differential equations systems [22,37,38]. Some of these extensions

rely on a differential equation system coupled to the Boolean

network to handle continuous variables. The resulting models

share common steady-state behavior with the underlying Boolean

system (which is especially useful, for example, in development and

cell cycle studies) [39], but take longer to simulate since they

involve solving differential equation systems rather than look-up

tables. Like fuzzy logic, dynamic Bayesian networks (BN) (and the

related probabilistic Boolean networks [40]) are able to handle

data in a non-discrete fashion, and have been used extensively to

reverse engineer biological networks and to model uncertainty in

signaling networks [4,13,41,42]. However, the theoretical foun-

dations are very different from those of FL: BNs are based on

probability distributions, in contrast to membership functions in

FL (see below). Accordingly, the interpretation is also significantly

different: BNs assign a probability that a particular interaction

exists (with pre-defined weights), while FL assigns rule weights to

describe the interactions thought to be present. We argue that FL

models represent a useful addition to the set of mathematical

methods available for analyzing complex cellular biochemistry.

The death-survival decisions made by mammalian cells in

response to environmental stimuli, such as those examined in this

paper, are mediated by the integrated activities of multiple

receptor-dependent and cell-intrinsic processes that coordinate

opposing pro- and anti-apoptotic signaling. We have previously

described a ‘‘cue-signal-response’’ (CSR) compendium of protein

signals and phenotypic responses in HT-29 human colon

carcinoma cells treated with combinations of tumor necrosis

factor-a (TNF), epidermal growth factor (EGF), and insulin [43].

The compendium includes ten measurements of protein modifi-

cation states (phosphorylation and cleavage) and kinase activities

for four proteins downstream of TNF, EGF and insulin receptors

collected over a 24 hr time period in biological triplicate. To date

Author Summary

Cells use networks of interacting proteins to interpret
intra-cellular state and extra-cellular cues and to execute
cell-fate decisions. Even when individual proteins are well
understood at a molecular level, the dynamics and
behavior of networks as a whole are harder to understand.
However, deciphering the operation of such networks is
key to understanding disease processes and therapeutic
opportunities. As a means to study signaling networks, we
have modified and applied a fuzzy logic approach
originally developed for industrial control. We use fuzzy
logic to model the responses of colon cancer cells in
culture to combinations of pro-survival and pro-death
cytokines, making it possible to interpret quantitative data
in the context of abstract information drawn from the
literature. Our work establishes that fuzzy logic can be
used to understand complex signaling pathways with
respect to multi-factorial activity-based protein data and
prior knowledge.

Figure 1. Spectrum of modeling methods. Modeling techniques balance specificity and complexity. Principal component analysis elucidates
correlations among network components (A–E) by a linear transformation of the data, resulting in orthogonal principal components. Bayesian
networks use conditional probabilities to associate correlations and influences between network components. Fuzzy logic uses rule-based gates and
probabilistic representation of input variables to quantify influences and mechanism that regulate network species. Differential-equations models
using mass-action kinetics are highly specified defining regulatory mechanism by defining rates of change in network species concentrations.
doi:10.1371/journal.pcbi.1000340.g001

Fuzzy Logic Modeling of Signaling Networks
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Figure 2. Fuzzy logic modeling process. As an example, local logic gate construction is illustrated for IRS(S) (IRS phosphorylation at serine 636).
(A) Logic-based models use incoming edges to contain activity level of input or regulatory network species (for IRS(S), the inputs were TNF, EGF, and
time) with the logic gate at the node that performs the logic operation to update output signal (IRS(S)). (B) A Boolean logic gate for IRS(S) could be
represented in terms of the logic statement ‘‘(TNF or EGF) and (NOT(time))’’, represented here in schematic form where the top shape is an ‘‘OR-gate’’
the circle is a ‘‘NOT’’ operation, and the lower left shape is an ‘‘AND-gate’’). (C) The truth table for the logic in (B) states the output of IRS(S) (0 for off or
1 for on, in bold) based on the input state. (D) To set up a FL gate, the first step is to assign membership functions (MFs) to the input variables (‘‘TNF’’,
‘‘EGF’’, and ‘‘time’’). In this example, each input variable has two or three membership functions (‘‘L’’, ‘‘M’’, and ‘‘H’’ representing low, medium, and
high states, respectively). An MF relates an input value to that state’s degree of membership (DOM). MFs for Fuzzy and Boolean (2 MFs)/discrete
multi-state (.2 MFs) logic forms are illustrated with the same state thresholds. (E) The simulations from the Boolean logic gate shown in B–C is
compared to experimental data and the Fuzzy logic gates specified in F below (see Figure 5A for the experimental and simulation conditions). The BL
gate is not able to model intermediate state for smooth transitions, and simulations of the FL gate better fit the data as compared to the BL gate. (F)
To set up a FL gate, the MFs for the inputs and the constant values for the outputs are defined. For simplicity, we use normalized input and output
values. Next, logic rules are listed as ‘‘if A (the antecedent), then B (the consequent)’’ using the input and output states as descriptors. Weights
between 0 and 1 are assigned to each rule (indicated in parentheses), which is helpful for rules that should have minor influence (e.g. rule 4). The
rules for IRS(S) are each graphically listed with the outline of the membership functions specified for that rule’s antecedent. Inputs not considered for
an antecedent are indicated by a light gray box. The consequent for each rule is indicated by a bar whose height is proportional to the rule weight.
We do not depict FL rules in a truth table because a row is not necessarily unique in FL (c.f. (C)). (G–H) Two input scenarios are presented to illustrate
FL gate computation (horizontal gray arrows) and defuzzification (vertical gray arrow). The amount of color filled in (yellow for inputs and blue for
output) is representative of the DOM (for inputs) or degree of firing (DOF) given the input values (for outputs). The input values are listed on the top
and indicated graphically by the vertical red lines. For example in scenario 1, rule 1 fires (full dark blue bar) because the antecedent (TNF is H) has a
high DOM (filled in yellow). The firing strength of the rule is the minimum of the antecedents; therefore, rule 2 does not fire because while time has
low DOM to L (,.4) and the DOM of time to H is near zero. To defuzzify (resolve the output value given a set of firing rules), an average is computed
from the output values of each rule weighted according to both firing strength and rule weight (see Methods). The bottom row in the consequent
column shows the aggregated outputs and the small red line is the defuzzified or final, value. The scenario illustrations were adapted from the ‘‘rule
viewer’’ in Matlab’s Fuzzy Logic Toolbox.
doi:10.1371/journal.pcbi.1000340.g002

Fuzzy Logic Modeling of Signaling Networks
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we have used PLSR to predict the phenotypic consequence of

perturbing the signaling network [44] and PCA to identify

autocrine feedback circuits [45].

In this paper we explore the ability of a manually assembled

multi-state FL model to encode the dynamics of a complex

intracellular signaling network. We find that key features of FL,

such as non-discrete input-output relationships (membership

functions – see below) and the possibility that more than one

relationship can be invoked at the same time results in a

remarkably intuitive representation of biology. It was therefore

possible to generate new biological insight into the regulation of

IKK (IkB kinase) and MK2 (mitogen-activated protein kinase-

activated protein kinase 2) kinases simply by inspection of the

model. A closer fit between the FL model and data could

presumably be achieved by automated regression. As a step in this

direction we converted the multi-state FL model into a 2-state FL

model that could be calibrated against data. The calibrated 2-state

FL model exhibited a better fit to data than a discrete model

having the same degrees of freedom. The calibrated 2-state FL

model also exhibited a better fit than the manually assembled

multi-state FL model, but only at the cost of less interpretability.

Overall we conclude that manual assembly of FL models is an

effective means to represent signal transduction and derive

biological insight; development of new approaches to automated

model fitting should also make FL models effective tools for

prediction.

Results

Prior knowledge of signal transduction biochemistry was used to

assemble a topological framework covering all experimental

observables in the CSR dataset and logic then added using an

adaptation of the FL toolbox in Matlab. Once gates were specified,

a global model was constructed by connecting FL gates together

and the behavior of the global model was evaluated with respect to

goodness of fit to data. Specifically, FL gates were used to model

changes in protein concentrations or their states of modification.

Each protein in the network was associated with a single FL gate

whose inputs were specified by the framework topology; the effect

of the inputs on the activity or concentration of the protein

represented by the FL gate was then determined using prior

literature knowledge and data. Specifying the precise operation of

each FL gate involved two distinct concepts: definitions that

assigned to each input a membership to descriptive classes (states such

as ‘‘low’’, ‘‘medium’’, and ‘‘high’’), and logic rules that related these

input classifications to a specific output.

Working with FL models involves manipulating logic gates

based on several adjustable parameters: (i) Membership functions

(MFs) are used to assign values of inputs to a descriptive input

class. (ii) MFs define the degree of membership (DOM) that quantifies

the mapping between inputs and MFs and is always between 0 (no

membership) and 1 (full membership). Fuzzy logic is so-named

because inputs can have non-zero DOM to more than one MF,

unlike discrete-state logic in which MFs and DOMs only take on

values of 0 and 1 [28,46]. Figure 2D illustrates example MFs for

Boolean and fuzzy logic models. (iii) The steepness of the

membership functions is parameterized by the degree of fuzziness

(note that Boolean logic models have a degree of fuzziness of 0).

(iv) Logic rules relate the input state to the output state. In doing so,

these rules encode how the input proteins regulate the activity of

output protein.

Once the logic rules are established, an FL gate is generated by

first fuzzifying the inputs, a step that computes the DOM of each

input state over the current input values and the pre-specified

MFs. The degree of firing (DOF), then specifies whether a rule should

be used (1) or not (0) as determined from the lowest DOM

amongst the antecedents and the rule weight, a value between 0 and

1 that allows additional tuning of a rule’s importance. In contrast

to Boolean logic (BL) gates in which only one rule can fire for any

set of input values (that is, only one row in the truth table is

applied), FL gates allow multiple rules to fire to varying degrees (as

defined by the DOF, Figure 2F). Defuzzification is the final step in

which the superposition of multiple rules is resolved to determine

the output value for the gate. Because of the flexibility of FL gates

at the input and output levels, intermediate levels of activity and

complex processing functions can be modeled using networks

similar in overall structure to familiar BL networks (Figure 2E,G–

H). However, flexibility also comes at the cost of additional free

parameters; to minimize their numbers we use only a subset of

available FL functions. This involves using few intermediate

(between 0 and 1) rule weights or membership classes and allowing

only one degree of fuzziness for all inputs in a given gate.

Data for simulation
Working from a normalized heat map of CSR data and the

pathway scaffold from Gaudet and Janes et al. (Figures 3–5)

[43,44], gates were manually constructed for signals such as

phosphorylation, activation, or total protein levels (Figure 3,

Figure 4B). These intracellular proteins in the model include

MK2, c-jun N-terminal kinase (JNK), extracellular signal-regulat-

ed kinase (ERK), Akt, IKK, Forkhead transcription factor

(FKHR), mitogen-activated protein kinase kinase (MEK), IRS-1,

cleaved caspase-8 (Casp8), and pro-caspase-3 (ProC3). The first

five measurements characterize central nodes in five canonical

kinase pathways governing epithelial cell death: FKHR is a

transcription factor downstream of Akt; MEK is a kinase directly

upstream of ERK; IRS(S) and IRS(Y) represent modifications of

insulin receptor substrate (IRS) by insulin receptor; and cleaved-

caspase-8 is the active form of the initiator caspase that cleaves

caspase-3, an effector caspase responsible for degrading essential

cellular proteins, activating CAD nucleases and killing cells.

Assembling a fuzzy logic gate
To illustrate how FL was used to model an intracellular

signaling protein, consider the gate describing control of IRS-1

phosphorylation at serine 636 (IRS(S)) by EGF and TNF

(Figure 2F–H). For IRS(S), the inputs were TNF concentration,

EGF concentration, and time, and the output was the level of

IRS(S) phosphorylation. The input and output activities were

normalized between 0 and 1 for simplicity. For example, in the

IRS(S) gate, TNF concentrations of 0, 5, and 100 ng/mL were

normalized to 0, 0.5, and 1 as input values to the FL gate (see

Methods). Because we do not explicitly model biochemical

processes such as receptor downregulation that make signals

transient, some of the FL gates had an input corresponding to time

(more generally, this approach makes it possible to model

dynamical processes using a logical framework). In the CSR data,

‘‘low’’ times refer to early signaling responses (0–2 hr) while

‘‘high’’ times refer to late signaling events (2–24 hr). Membership

functions were defined to transform input values to the DOM for

each state. For IRS(S), the EGF input has low (L) and high (H)

states (Figure 2F). When normalized EGF activity was ,0, the

gate assigned a high (,1) DOM to L and low (,0) DOM to H. As

the EGF activity increased to 0.5, DOM = 0.5 for both L and H.

The output level classes (L and H) were treated as constants (see

Figure 2F); MFs were unnecessary here because gradation of the

output was obtained during defuzzification (see below). Once the

membership functions had been defined, logic rules were listed as

Fuzzy Logic Modeling of Signaling Networks
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Figure 3. FL gate specifications. Each subfigure depicts the MFs and logic rules for the FL gates: (A) ERK, (B) MK2, (C) JNK, (D) IKK, (E) MEK, (F)
IRS(Y), (G) ProC3, (H) FKHR, (I) Akt, (J) IRS(S), and (K) Casp8. The notation is identical to Figure 2, except that rule weights are specified only when they
are not 1 and input and output concentrations are normalized (arbitrary units).
doi:10.1371/journal.pcbi.1000340.g003

Fuzzy Logic Modeling of Signaling Networks
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Figure 4. Network diagrams. (A) The original network diagram is adapted from Janes et al. [45] and was used as a starting point to construct the
FL gates. Network species whose concentration was measured by Western blot in the data-compendium are notated with a blue square (‘‘pS’’ for
phospho-serine, ‘‘pY’’ for phospho-tyrosine specific antibodies, ‘‘clv’’ for the cleaved form, and ‘‘pro’’ for the uncleaved form). Brown circles mark data
compendium proteins measured by kinase assay. (B) This diagram depicts the global FL model, comprised of the 11 local FL gates with time delay
and ‘‘max’’ functions. The network topology of the model differs from that of the original diagram.
doi:10.1371/journal.pcbi.1000340.g004

Fuzzy Logic Modeling of Signaling Networks
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‘‘if A (the antecedent), then B (the consequent)’’ statements using

the inputs and output states as descriptors; e.g., rule 2: if TNF is H

and time is L then IRS(S) is H (Figure 2F). Each rule had an

associated weight factor between 0 and 1, which was used to

quantify the relative importance of the rules.

To compute the output of a gate for a given set of input values,

we first fuzzified the input variables (see two examples in

Figure 2G–H and described in text below). Next, each rule was

evaluated, and a DOF was calculated as the minimum of the

DOMs for the inputs and the rule weight [28,46]. Finally, the

outcomes of each rule fired were resolved into a net output value

by defuzzification that involved computing the weighted average

of the rule consequences (see Methods). By way of illustration,

consider the two input value scenarios in Figures 2G–H. In

scenario 1 (Figure 2G), EGF = 1 (that is DOM to MF H = 1),

TNF = 0 (DOM to MF L = 1), and time = 0.27 (DOM to MF

L = 0.4 and H = 0.6). Rule 1 fired entirely (output IRS(S) was L)

while rules 5 and 6 fired partially because time had partial

membership to L and H (antecedents for rules 6 and 5,

respectively); rules 2, 3, and 4 did not fire to a meaningful extent.

Combining all these, the aggregate gate output was ,0.2, an

intermediate value between the full L output from rule 1 and the

partial H output from rules 5 and 6. In contrast, scenario 2

(Figure 2H) shows a condition (EGF = 0, TNF = 1, time = 0.19)

that led to full firing of rule 4 (though this rule has a weight of

0.25), partial firing of rules 2 and 3, and negligible firing of rules 1,

5, and 6. The aggregate gate output in this case was ,0.5.

Features of various logic gates
To model CSR data [43], eleven gates were constructed, each

comprising 2–4 inputs, 2–4 MFs per input, and 2–3 outputs (see

Figure 3). The precise structure of each gate was based on the

network scaffold, as described above (Figure 4A). We aimed for as

few inputs, rules, and MFs as possible while still allowing a good fit

to data. The parameter values for MFs and rules were fit manually

to data but future implementation of machine-learning algorithms

or automated fitting would improve the speed and accuracy of the

process (see below). By way of illustration consider the JNK and

MK2 pathways, which are activated by stress and cytokine

treatment and are thought to be co-regulated following EGF or

TNF treatment (Figure 4A, [47]). During the course of

constructing gates for JNK and MK2, we found that the data

Figure 5. The experimental data compendium and simulation of the global FL model. (A) The left heatmap portrays the averaged normalized
data from the experimental compendium [20]. Ten stimulation conditions with TNF, EGF, and insulin (top) are shown with the measurements at 0, 5, 15,
30, 60, 90,120, 240, 480, 720, 960, 1200, and 1440 minutes below. Measurement types (western blot or kinase assay) are indicated in Figure 4A and are
described in detail in Gaudet et al. [43]. In the middle, the heatmap shows the results of simulation using the global model under normalized treatment
conditions, corresponding with the data compendium shown on the right. Identical simulations of an equivalent discrete logic model (DL, built by
changing only the degree of fuzziness from the FL model and leaving the rules and MF thresholds unchanged) are shown on the left (see Methods). The
cytokine treatment concentrations are marked directly on the heatmap in ng/mL for the data and arbitrary units for the models. See Figure S5 for an
alternative depiction of the data and simulation results. The FL and DL models have fitnesses of 44.6 and 96.7, and normalized fitnesses of 0.035 and
0.076, respectively. (B–D) Simulation and data time courses are plotted for three treatment conditions to highlight cases where the FL model fit the data
better than the DL model (B), where both models have similar performance (C), and both models fail (D).
doi:10.1371/journal.pcbi.1000340.g005

Fuzzy Logic Modeling of Signaling Networks
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could be modeled without knowing whether or not cells had been

treated with EGF or insulin, suggesting that activation of JNK and

MK2 was independent of ligand addition (Figure 3B–C). In some

cases, gates based on the pathway scaffold were insufficient to yield

a reasonable fit to data and major changes were required in the

number and/or types of inputs. For example, IRS-1 is the

canonical adapter protein downstream of the insulin receptor,

though some of its many phosphorylation sites are also substrates

of other receptor kinases, including EGFR [48]. In modeling IRS-

1 phosphorylation at two sites, tyrosine 896 (IRS(Y)) and serine

636 (IRS(S)), we observed that both were regulated by TNF and

EGF but not by insulin (Figure 3F and 3J). The rules indicate that

both TNF and EGF treatment induce S636 phosphorylation while

TNF inhibits EGF-induced phosphorylation at Y896 (see Text S1).

During construction of an FL gate for Akt, we included

inhibitory crosstalk from ERK to Akt because it has been observed

in several experimental settings [49–51]. The introduction of

crosstalk greatly simplified the rule-base of the Akt gate, suggesting

that this crosstalk exists in HT-29 cells (Figure 3I). The

mechanistic basis of crosstalk is not fully, and our model includes

a short time delay from ERK to the Akt gate input. Negative

crosstalk from the ERK to Akt pathways may be the mechanism

by which TNF inhibits Akt phosphorylation upon insulin

treatment, as observed by Gaudet et al. [43].

FL network modeling
A model with four inputs (TNF, EGF, insulin, and time) and

describing the full CSR dataset was constructed by joining

together individual gates specified using the approach described

above. Time delays were incorporated to model slow processes

such as the induction of transforming growth factor-a [TGF-a] by

TNF stimulation [45]. TGF-a, which acts in an autocrine fashion

(not shown) was united with the EGF input by taking the

maximum value across both signals at each point in time (using the

‘‘MAX’’ function), as these ligands bind the same receptor and

both affect MEK and Akt FL gates (Figure 4B). To compute model

output, a simulator stepped through small time steps, updating

inputs to each gates at successive steps (see Methods); model state

was then recorded at twelve equal time intervals corresponding to

the experimental time points.

Figure 5A depicts heatmaps of the CSR dataset and the FL model,

and shows that our FL model recapitulated most major features of

the CSR dataset across ten cytokine combinations (Figure 5A). For

most inputs, the difference between simulation and experimental

data were small, averaging ,2.2%, over the entire CSR data set (as

defined by the root mean square deviation normalized by the mean

of the data). Common to all predicted signals was the absence of a

delay in activation after cytokine stimulation (Figure 5). To model

this delay would require an additional MF for several gates, a feature

we omitted for simplicity. It was also challenging to model FKHR

phosphorylation. Even though Akt is known to regulate FKHR [52],

the model did not effectively match data when Akt was the sole input

to the FKHR gate; thus, we modeled FKHR as having inputs from

TNF, EGF, insulin, and time (Figure 3H). This suggests that in HT-

29 cells, FHKR is subject to more complex regulation than simply

activation by Akt.

One way to evaluate the performance of a model is to ask

whether it can correctly predict data that are not part of the

training set. Data describing the response of HT-29 cells to co-

treatment with TNF and C225, an antibody that blocks ligand

binding to the EGF receptor, was not used to assemble the multi-

state FL model. We therefore asked whether the FL model could

predict the effect of C225 as compared to treatment with TNF

alone. Because EGFR is activated both by exogenous EGF and

autocrine TGF-a (whose production is induced by TNF [45,53])

we modeled the effect of C225 addition by disabling the MAX

function downstream of TNF and EGF (recall that this gate is

present to model activation of EGFR not only by exogenous EGF

but also by TNF-dependent release of TGFa, which acts in an

autocrine manner). The model correctly predicted that cotreat-

ment with TNF and C225 would reduce Akt, MEK, and ERK

signals as compared to treatment with TNF-alone (‘‘2‘‘ vs ‘‘+’’

C225 in Figure 6). However, the model did not predict decreases

in MK2 and JNK signaling because the MAX function

downstream of EGFR activity was not connected to the MK2

and JNK pathways, which are thought to be downstream of TNF

but not TGFa or EGF stimulation [45]. We can reinterpret our

initial assumptions that TGFa signaling only affects Akt and ERK.

The other MAP kinases measured (MK2 and more noticeably

JNK) exhibited less activation in the presence of C225. Likewise,

late IKK signaling was decreased and slightly more caspases were

Figure 6. Model prediction of C225 interference with TNF-
stimulated signaling. A heatmap depicts the experimental and FL-
model predicted response of cells co-treated with 5 ng/mL of TNF and
10 mg/mL of C225 (an antibody that interferes with ligand binding to
the EGF receptor), as compared to TNF alone. The model fitness without
and with C225 are 2.9 and 2.6, respectively.
doi:10.1371/journal.pcbi.1000340.g006
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cleaved compared to C225 alone, but these effects were not

predicted by our model. The discrepancy between the model and

data suggest that MK2, JNK, and IKK are activated in part by

TNF via TGFa by either a direct effect of EGFR or through

crosstalk with the Akt and ERK pathways. Our model enabled us

to predict some of the effects of C225 in interfering with TNF

signaling while providing context to revise our understanding of

TNF-induced signaling through EGFR in the MK2, JNK, and

IKK pathways

Towards a method for optimizing gates
In the work described above, logic rules and membership

functions for each gate were established manually. A better

approach is to use training to optimize the weights of all possible

rules in a gate by minimizing the sum of the squared differences

between the experimental data and local model output (see

Methods). Following optimization, logic rules that are supported

by the data should have weights near 1, while poorly-supported

rules should have weights near 0. We tested the fitting algorithm

on the MK2 gate. For such a gate, which has two MFs each for the

two inputs (TNF and time) and the output (MK2 activity), 23 = 8

explicit rules are possible. MK2 data from the 10 cytokine

treatment conditions were used to optimize a vector containing the

8 rule weights. Our initial optimization attempt failed because

time-dependent MFs were not parameterized so as to capture

rapid increases in signals following cytokine treatment. We had

implicitly ignored this discrepancy when fitting the model by hand.

To improve the automated fitting procedure, an additional MF for

time was included to represent immediate-early responses,

increasing the number of candidate rules to 12. Optimization

yielded a gate with a good fit to data using only six rules with

weights near one (Figure 7A). These six rules were identical to

those assembled manually with the exception of the new rule

needed to represent immediate early signaling (Figure 7B). To test

FL gate regression with more rules, we applied the algorithm to

the same MK2 data using one additional membership function

(for medium activity levels) and compared it to an untrained model

using the same MFs. The training process created several rules

that were nearly identical to those introduced manually as well as

several new ones (Figure S1). The MK2 test case suggests that it is

possible to optimize rule weights as a means to fit logic rules

without bias and is a first step towards a more rigorous approach

to logic-based modeling.

Comparing fuzzy and discrete logic
To compare FL and discrete models we converted our FL

model to a multi-state discrete model (DL) by leaving the rules,

rule weights and MF thresholds the same and changing the degree

of fuzziness of the MFs so as to make the model discrete

(Figure 2D, Methods). Resulting FL and DL models are therefore

identical except in a single global parameter (the degree of

fuzziness) making direct comparison possible. More than one rule

could fire at the same time in both the FL and DL model, making

defuzzification necessary in both (see Figure S2). Thus, the DL

model was not a conventional Boolean model.

To measure the goodness of fit of FL and DL models, we

computed the sum of squared differences (RSS) and normalized

RSS (see Methods). The FL model consistently exhibited a better

fit to the data than the DL model (absolute deviation of 44.6 and

96.7, and normalized deviation of 0.035 and 0.076, respectively).

When we compared simulated and actual data we observed cases

in with FL models were better than DL models, cases in which

they were similarly effective and cases in which neither did a good

job in fitting data. In general, DL models were less effective than

FL models in capturing intermediate activity levels (Figure 5B).

For example, in the DL model ERK activity alternated between

low and high while in the FL model ERK activity was graded, as it

was in experimental data (Figure 5A). More striking breakdowns

between the DL model and data were observed for IRS(S), JNK

and Akt, (Figure 5A). For IRS(S) transient activation was missing

from in the model for 1 of 5 cytokine treatments and for JNK it

was missed for 3 of 6 treatments However, DL models effectively

capture step functions and they are therefore well suited to sharp

transient signals (Figure 5C). We also observed cases where both

models failed to fit the data, especially when two peaks of activity

were observed (Figure 5D). This failure to fit data could be

remedied by adding more input states for time and by altering the

rules (Figure S2).

To ensure that the superior fit of the FL model (as compared to

the DL model) was not biased because the FL model (and not the

DL model) was manually assembled, we independently optimized

simplified FL and DL models. We performed a global optimiza-

Figure 7. Fitting MK2 rule weights. (A) A heatmap depicts the data, untrained model (Figure 3B), and trained model time courses for MK2. (B) The
regressed rule weights are plotted for the 12 candidate rules. The rules are indicated in tabular format; the first two rows describe the state of the
inputs, TNF and time, and the last row is the output MK2 state. L and H represent low and high states, and E is the state describing the early response
lag. Symbols above the plot show whether the rules were present (3) or not applicable ( ) in the untrained model.
doi:10.1371/journal.pcbi.1000340.g007
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tion with 8-fold cross-validation of the rule weights in 2-state FL

and DL models (see below, Methods, and Figures S2). These

models contain two states for each input and the output in every

gate. Optimization of the 2-state FL model improved the

estimated error compared to the 2-state DL model (with averages

and standard deviations of 0.03060.005 and 0.04060.006,

respectively, using a normalized fitness measure (see Methods

and Figure S2). Additionally, we converted the 2-state DL model

to BL by converting the rule weights to a binary value (0 or 1). We

repeated the optimization but over binary rule weights for the BL

and FL 2-state models. The cross-validated error of the binary-

weighted FL model was ,50% lower as compared to the BL

model (0.05660.01 and 0.08360.01, respectively). We therefore

find that a standard Boolean model has poorer performance than

the discrete model (DL) studied here (see Figure 2E, Discussion,

and Figure S2). The improved ability of the DL model (as

compared to the BL model) to predict data following optimization

on a training set suggests that continuous rule weights confer

noticeable flexibility to the models.

Biological predictions
As a second means to evaluate the multi-state FL model we

looked for new and potentially testable biological insights (see also

Text S1).

Mk2 and Erk co-regulation. The CSR dataset included

information on three MAPK pathways. JNK and p38 respond to

TNF and, following cytokine treatment, are jointly regulated by

the upstream kinases MEKK1-4 [47]. Since MK2 is a substrate of

p38, it was not surprising to see a close correlation in the FL model

between JNK and MK2. MEK is the immediate upstream

activator of ERK [47], but the fit to ERK dynamics was much

better if both MEK and MK2 were included as inputs to the ERK

gate; under these circumstances, only five simple rules were

required to capture ERK dynamics (Figure 3A, Figure 5A).

Moreover, we judged MK2 to be superior to TNF, EGF, and

insulin as an input to the ERK gate because the rule-base was

smaller. In the final formulation, MK2 ‘‘OR’’ MEK positively

influence ERK. The unexpected involvement of MK2 in ERK

regulation suggests either that MK2 regulates ERK in an indirect

or direct manner, or that MK2 is tightly correlated with an as-yet

unidentified ERK regulator. In previous PLSR modeling, we had

observed a role for MK2 in cell survival and the current data

suggest that ERK may be an effector of MK2 survival functions

[44]. MK2 has previously been reported to regulate TNF and

TGF-b expression, two ligands that regulate ERK by engaging

cell-surface receptors [54], and it is possible that the action of

MK2 on ERK is autocrine-indirect. However the time-

independence of the interaction in FL model is suggestive of a

more direct link.

EGF-stimulated inhibition of IKK. TNF receptor (but not

EGF receptor) is a potent activator of the canonical Nf-kB

pathway, which involves IKK (Figure 4A, [55,56]). However, IKK

can be activated by EGF in some cell types (e.g. estrogen receptor

negative breast cancer cells) [57]. In building the FL gate for IKK

activity, we were surprised to find that fit to data was improved by

adding a simple rule: ‘‘If EGF is H then IKK is L (weight 0.25)’’

(Figure 3D). The necessity of this rule suggests that EGF is a weak,

but not insignificant inhibitor of TNF-mediated IKK activity.

We have previously reported that in HT-29 cells, TNF induces

a complex autocrine cascade in which TNF-induced TGF-a
secretion leads to EGF receptor activation and subsequent release

of interleukin-1a [IL-1a] [45]. Under these circumstances, IL-1a
had an anti-apoptotic effect that included activation of IKK

,18 hr after TNF treatment. Because activated EGF receptors

are known to be down-regulated rapidly [58,59], we hypothesize

that in HT-29 cells, EGF inhibits IKK activity following TNF

stimulation by inducing EGF receptor down-regulation. This in

turn decreases the number of EGF receptors available to transduce

autocrine TGFa signaling, a necessity for IKK activation

mediated by IL-1a.

From these and similar examples described in Text S1, we

conclude that testable biological predictions can be drawn from

the logic and connectivity of FL gates including insights that were

not apparent from simple inspection of the data.

Discussion

In this paper we describe the assembly and evaluation of a fuzzy

logic model of mammalian signaling networks induced by TNF,

EGF, and insulin. The logic gates and their associated member-

ship functions, which encode input-output relationships for

interactions among various species in the model, were generated

based on study of cellular responses to different cytokine

treatments. The gates were then linked together based on prior

knowledge of network topology and parameterized using induction

or an automatic fitting process that minimized the difference

between simulated and experimental trajectories. The resulting

models were interpretable with respect to known interactions from

the literature, and they generated dynamic trajectories for various

signals that were similar to experimental data. We can therefore

conclude that efficient assembly of a FL network able to encode

complex experimental data is possible.

By building different versions of a FL gate, we were able to

intuit potential biological interactions that had gone unnoticed

during data mining with other analytic tools. For example, the FL

model suggested that MK2 and MEK are co-regulators of ERK.

This offers a new explanation for the previously published

observation that MK2 has pro-survival effects [21]. Similarly, a

link between EGF treatment and IKK inhibition suggests that

EGF-induced downregulation of the EGF receptor might interfere

with IKK activation by inhibiting TGF-a-induced IL-1a autocrine

signaling, which is dependent on EGF receptor activity. Thus, FL

modeling yields predictions about the strength and logic of direct

and autocrine-indirect processes. In the future, the process of

choosing the best FL model can be made more rigorous than what

we have undertaken here by automating the fit of rules and

membership function to data; this would obviously make the

process of extracting hypotheses from models more rigorous.

As a starting point for optimizing FL models, we show that it is

possible to fit the rules for individual gates to experimental data.

This raises the general possibility that logic-based models can be

improved by global fitting procedures [60,61]. Optimization

algorithms such as genetic algorithms and Monte Carlo simula-

tions can be used to fit membership functions and rule weights

simultaneously (Figure S2). However, a critical step in optimiza-

tion of FL models will be the development of objective functions

that balance complexity and goodness of fit to data. Because

different parameter types encode diverse degrees of freedom,

designing a balanced metric will be challenging. Should a model

be penalized equally for binary and continuous parameters, or for

additional rule weights versus another membership function?

Answering these questions will likely require application of theories

such as Minimum Description Length and Vapnik-Chervonenkis

Theory [62]. These methods employ statistical learning methods

(Vapnik-Chervonenkis Theory) or data compression through

Turing-style languages (Minimum Description Length) to quantify

model complexity. We have already observed that the capacity of

multi-state discrete logic gates to effectively capture quantitative
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data features can be increased by including a greater number of

memberships (states) (see Figure S3). Therefore, either fuzzification

or inclusion of additional states can strengthen a DL model. A

solid metric of model quality would make it possible to compare

FL and BL models rigorously as well as evaluate models of the

same processes that differ in topology or MFs.

The fuzzy logic framework supports several mechanisms for

flexibility including the slope and shape of the membership

functions, rule weights, fuzzification and defuzzification procedures,

and rule structure. Here, we limited our fuzzification of logic models

to a subset of possible FL functions. We used only one degree of

membership and one membership shape for entire models and

chose the simplest fuzzification algorithms and rule structures. Most

of the flexibility in our FL models, as compared to BL models, arose

from fuzzy memberships and continuous rule weights that enabled

multiple rules to fire simultaneously. By optimizing four variants of

the 2-state model (discrete or fuzzy memberships and continuous or

binary rule weights, Figure S2), we were able to demonstrate that

much of the ability of the FL models to fit the CSR data arose by

allowing rule weights to be continuous and not binary. Thus, DL

models may be a useful alternative to BL models. If DL models use

quantized rather than continuous rule weights, they are likely to

achieve a similar flexibility of fuzzified logic models while offering

the benefit of faster optimization and easier interpretability with

fewer degrees of freedom.

We built models by both manually and automatically fitting

model parameters. Though the latter achieved better fits to data, it

came at the expense of a loss of model interpretability. Model

building methods that balance rigor of automatic optimization

with the intuition gained with hand-curated models will be a key

step forward. This might be achieved by optimizing quantized rule

weights instead of continuous values, or by penalizing models for

intermediate weights. Use of a processing algorithm that simplifies

sets of optimized rules by excluding those with low weights or

merging similar rules would ease the interpretability gap between

manually and automatically assembled models. Specialized

software that offers a more limited subset of FL capabilities would

also streamline model development and improve the computa-

tional time required for parameter optimization.

In conclusion, the current FL model of TNF/EGF/insulin-

induced signaling in HT-29 cells begins to explore the potential of

FL methods to model cell signaling networks. the future, the

improvement of automated model fitting, a graphical-user

interface tailored to biological applications, and better means to

mine and incorporate literature data should facilitate the

application of FL modeling methods. Moreover, FL models can

be merged with differential equation models to form hybrid

models with particular utility in cases in which some processes are

well described, receptor-ligand binding and immediate early

signaling for example, but the biochemical details of downstream

processes such as induced gene transcription are less well specified.

One approach to such model fusion would be to reverse engineer

part of a differential-equation model to generate the look-up tables

necessary for construction of various logic gates. We are currently

exploring these and other approaches to expanding the areas of

application of FL from industrial control to interpretation of

complex biological data.

Materials and Methods

Computational programming
Models were written and run using Matlab R2007a. Individual

FL gates were constructed and tested using the Matlab Fuzzy

Logic Toolbox (Figure S4). Defuzzification was implemented using

the Sugeno inference method (‘‘sugeno’’ in the Fuzzy Logic

Toolbox) where for N rules (r) with firing strength s and output

level z, the defuzzification is calculated as follows:

output~

PN

r~1

srzr

PN

r~1

sr

:

To parameterize the ‘‘gauss2mf’’ membership function shape, a

Python script was used to coordinate the MF slope (.250 for FL

and .0001 for BL models) with intersections at a 0.5 DOM. Input

and output values ranged from 0 to 1 for simplicity and were

empirically normalized. Cytokine inputs were scaled non-linearly

(see Figure 4) and signals were scaled linearly. Each of the twelve

time-steps in the data compendium were equally spaced as inputs

to the FL gates even though they were not evenly spaced in real

time. Membership functions and input/output ranges could be

extended and made nonlinear to reflect absolute time and

concentration. We used a default of two states (membership

functions) for each variable and the number was increased as

needed (heuristically). We decreased the number of free param-

eters by imposing a single degree of fuzziness on the model and

constants for output memberships. The global model was built and

run in Simulink, using its standard libraries for the ‘‘max’’

function, time, and time delays. The network is simulated on a

synchronous clock (corresponding with the time variable, with a

sufficiently small time step) with initial values in downstream gates

as 0. Dataset S1 contains the Matlab, Simulink, Fuzzy Logic

Toolbox, and Python code used.

Model fitness
Model fitness was calculated by dividing the sum of the squared

difference (RSS) between a model and the data by the degrees of

freedom (number of data points-number of parameters for the

multi-state models and the number of data points for cross-

validation of the 2-state models). For the whole set of simulations,

there were 1430 data points. The parameters were counted as

fellows: degree of fuzziness (1), MF thresholds (40), and number of

unique antecedents (120). The methodology for fitness of the 2-

state models is described in Text S1 and Figure S2.

Global logic gate regression
Rule weight optimization was achieved by using non-linear least

squares regression between the model and the dynamic data under

ten treatment conditions. Because a gate’s output is defuzzified by

using a weighted average of the rules fired, sets of firing rules can

all have low weights without altering the final output. To highlight

firing rules in any circumstance, rule weights were normalized at

each iteration of optimization so that the weights of rules with the

same antecedents sum to 1. Our manually assembled gates were

similar to the fitted gates, but frequently contain condensed and

simpler rules sets. For example, we would write the rules ‘‘If TNF

is L and time is H then MK2 is L’’ and ‘‘If TNF is H and time is H

then MK2 is L’’ in a condensed form: ‘‘If time is H then MK2 is

L’’. Significantly, the condensed form is weighted less heavily in

the defuzzification than the explicit form and therefore a balance

must be struck between interpretability (for condensed rules) and

accuracy (for explicit rules), though we have not encountered

misbehavior of logic gates due to condensed rules. For rule fitting,

we started by generating full description versions of each possible

rule. The optimization procedure was scripted in Matlab R2007a
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and used the Matlab Optimization toolbox (lsqcurvefit). The

Matlab files can be found in Dataset S1. The methodology for

global optimization of the 2-state models is described in Text S1

and Figure S2.

Supporting Information

Text S1 (Supplementary Materials) This file contains the text for

the Supplementary Materials section.

Found at: doi:10.1371/journal.pcbi.1000340.s001 (0.03 MB

DOC)

Figure S1 Fitting MK2 rule weights. (A) A heatmap depicts the

data, trained and untrained model with 2 MFs (as described in the

main text and Figure 6), and trained and untrained model with 3

MFs for MK2. (B) The fitted rule weights are plotted for the model

with 2 MFs (see Figure 6). (C) The regressed rule weights are

plotted for the 36 candidate rules. The rules are indicated in

tabular format; the first two rows describe the state of the inputs,

TNF and time, and the last row is the output MK2 state. L, M,

and H represent low, medium, and high states, and E is the state

describing the early response lag. Symbols above the plot show

whether the rules were present (check), absent (slashed circle), or

not applicable (boxed x) in the untrained model. Rules that are

different in the trained and the untrained model have red symbols.

To compare the optimized rule set with our empirically

determined set, the bar graph of rule weights was annotated to

indicate discrepancies (red symbols). Seven rules were found to be

different, though the differences are easiest understood when

grouped into three sets. The first set of rules (‘‘a’’) involve the

antecedent case ‘‘If TNF is M and time is L’’. In the untrained

model, the output was M while in the trained model, the output

was L and H (partial). Therefore, the logic for the trained and

untrained model was essentially the same and yielded relatively

similar results. In the second set of rules (‘‘b’’) for the case ‘‘If TNF

is H and time if L’’, the trained model includes additional outputs

of M and L (partial) in addition to H, which is the only rule of the

set in the untrained model. The third set of rules (‘‘c’’), ‘‘If TNF is

H or M (partial) and time is M, then MK2 is M’’, was missed when

the untrained model was built. In comparing the heatmaps of the

trained to the untrained model when TNF is H or M and time is

M, it is apparent that the untrained model erroneously omitted

these rules (A) and the trained model’s rules are improvements

over the untrained model.

Found at: doi:10.1371/journal.pcbi.1000340.s002 (0.02 MB PDF)

Figure S2 Differences between logic models. (A) A grid

differentiates logic models based on differences in uniqueness of

rules (whether the rule weights are binary or continuous) and

degree of fuzziness in membership functions. Fuzzy logic (FL)

models differ from Boolean logic (BL) and discrete multi-state logic

(DMSL) models because the membership functions are fuzzy and

the rule based need not be unique (e.g. more than one rule can fire

for a given input state, even when membership to the input states

is discrete). Discrete models (DL) and DMSL models both use

discrete membership function but are different in that DL rule

bases allow multiple rules to fire (rules are not unique). Roman

numerals I–IV map the logic rules to figure (C). The numbers are

the averages and standard deviations of the 8-fold cross-validated

errors of optimized models of each type. (B) The truth table for the

IRS(S) gate described in Figure 2 is expanded to show the case

where multiple rules can fire (DL and FL). IRS(S) output values

are in bold. One value is gray to reflect its rule weight of 0.25.

Where more than one output value is shown, both values result

from conflicting firing rules and must be defuzzified. In this case,

multiple rule firing results from non-unique rules (overlapping

antecedents), not fuzziness in the membership functions. (C)

Simulations of the IRS(S) across the spectrum of logic gate-types

shown and labeled in (A) are shown with the experimental data

(see Figure 5A for cytokine conditions). (D) Non-heatmap

representation of globally optimized 2-state FL (IV, blue), DL

(II, green), and data (black, shown with the earliest three time

points set to their maximum, see above). (E) Non-heatmap

representation of globally optimized 2-state model with Fuzzy

memberships but binary rule weights (I, blue), BL (III, green), and

data (black, shown with the earliest three time points set to their

maximum, see above). Because continuous parameters have a

higher information capacity than binary parameters, we cannot

quantitatively compare BL models with DL or FL models while

accounting for the flexibility imparted by their parameters.

Found at: doi:10.1371/journal.pcbi.1000340.s003 (0.05 MB PDF)

Figure S3 Degree of fuzziness in a default 3-state FL model. The

FL gates described in the main text were built so that only 2-states

(2 MFs) were used when possible. Here, the FL model was built by

preferring 3-states per variable. Simulations from 3-state model

are plotted (as compared to the data as shown in Figure 5A) for

differing degrees of fuzziness [DOFz]. The discrete 3-state model

is more able to reproduce the major feature of the data than the

DL 2-state model (Figure 5A).

Found at: doi:10.1371/journal.pcbi.1000340.s004 (0.10 MB PDF)

Figure S4 Screen shots illustrating FL gate construction. Screen

shots depict the simple graphical user interface used to build the

model in the Matlab Fuzzy Logic Toolbox. (A) In the gate set up

window, input and output variables are declared. (B) The MFs can

be changed graphically by choosing different shapes and altering

the MF location and slope. (C–D) The rule editor and viewer is

used to write and evaluate rules.

Found at: doi:10.1371/journal.pcbi.1000340.s005 (0.07 MB PDF)

Figure S5 Non-heatmap representation of the data, FL, and DL

models. Simulations from the FL model (green) and DL model

(blue) are superimposed on the data (black). The layout and

conditions are identical to Figure 5A.

Found at: doi:10.1371/journal.pcbi.1000340.s006 (0.02 MB PDF)

Dataset S1 Matlab and python scripts for model simulation and

analysis.

Found at: doi:10.1371/journal.pcbi.1000340.s007 (0.08 MB ZIP)
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