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ABSTRACT

Background: The prevalence and incidence of type 2 diabetes (T2D), representing >90% of all cases of diabetes, are increasing rapidly
worldwide. Identification of individuals at high risk of developing diabetes is of great importance as early interventions might delay or even prevent
full-blown disease. T2D is a complex disease caused by multiple genetic loci in interplay with lifestyle and environmental factors. Recently over
400 distinct association signals were published; these explain 18% of the risk of T2D.
Scope of review: In this review there is a major focus on risk factors and genetic and non-genetic biomarkers for the risk of T2D identified
especially in large prospective population-based studies, and studies testing causality of the biomarkers for T2D in Mendelian randomization
studies. Another focus is on understanding genome-phenome interplay in the classification of individuals with T2D into subgroups.
Major conclusions: Several recent large population-based studies and their meta-analyses have identified multiple potential genetic and non-
genetic biomarkers for the risk of T2D. Combination of genetic variants and physiologically characterized pathways improves the classification of
individuals with T2D into subgroups, and is also paving the way to a precision medicine approach, in T2D.
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1. INTRODUCTION

Type 2 diabetes (T2D) and its comorbidities have reached epidemic
proportions. The prevalence and incidence of T2D, representing>90%
of all cases of diabetes, are increasing rapidly throughout the world.
The International Diabetes Federation has estimated that the number of
people with diabetes is expected to rise from 425 million adults in
2017 to 629 million by 2045, and the proportion of people with T2D is
increasing in most countries (https://www.idf.org/). Therefore, the
identification of individuals at high risk of developing T2D is of great
importance as early interventions might delay or even prevent full-
blown disease.
Two major pathophysiological mechanisms characterize T2D, insulin
resistance, especially in skeletal muscle and liver, and defective insulin
secretion from the pancreas [1]. However, not all disease-causing
pathways are completely understood, as T2D is a complex disorder
resulting from an interplay between genes and environment. There is
accumulating evidence that the risk of T2D is strongly influenced by
genetic factors [2]. During the last 10 years the application of the
genome-wide association studies (GWASs) in the genetics of complex
diseases, including T2D, has led to remarkable discoveries and
contributed significantly to population and complex-trait genetics, the
biology of diseases, and translation towards new therapeutics [3].
Recently over 400 distinct association signals were reported,
explaining 18% of T2D risk and offering insights into biological path-
ways causal for T2D [4]. Low-frequency variants contribute much less
to T2D heritability than do common variants [5]. Insulin resistance is
another important component determining the risk of T2D. Obesity is
an insulin resistant state, and ‘obesity epidemic’ usually pays the way
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to ‘diabetes epidemic’. Several lifestyle factors, including a lack of
exercise and unhealthy diet, contribute to insulin resistance, and in-
crease the risk of T2D. Relatively few genetic variants have been
associated with insulin resistance. Functions of several genetic vari-
ants remain unknown [6].
In this review the focus is on risk factors and genetic and non-genetic
biomarkers for T2D, identified especially in large prospective
population-based studies, and studies testing the causality for the risk
of T2D in Mendelian Randomization (MR) studies. Another focus is to
understand genome-phenome interactions in the classification of in-
dividuals with T2D into subgroups.

2. NON-GENETIC RISK FACTORS FOR T2D

2.1. Biomarkers, lifestyle and environmental factors, dietary
factors, medical history, and psychosocial factors
Previous studies have identified several risk factors for T2D, age, body
mass index (BMI), waist circumference, sex, ethnicity, low physical
activity, smoking, diet including low amount of fiber and high amount
of saturated fat, ethnicity, family history of diabetes, history of
gestational diabetes mellitus, elevated blood pressure, dyslipidemia,
and different drug treatments (diuretics, unselected b-blockers, sta-
tins) [1]. Previous studies have often had limitations, including cross-
sectional study design, a small sample size, and a sample not
representative of the background population.
A recent review covered a total of 86 meta-analyses and Mendelian
randomization studies for the risk factors of T2D, including biomarkers,
lifestyle and environmental factors, dietary factors, medical history,
and psychosocial factors. This review reported that 116 of 142
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associations were statistically significant at the level of p < 0.05, and
46 at the levels of p < 10�6 [7]. The authors concluded that asso-
ciations of alanine transaminase, uric acid, vitamin D, whole grains,
healthy diet, sugar-sweetened beverages, sedentary lifestyle, preterm
birth, metabolically healthy obesity, and conscientiousness had
convincing evidence for the risk of T2D (sample size > 1,000 cases,
p < 10�6).
As an example of large prospective studies is our METabolic Syndrome In
Men (METSIM) study including 10,197 men, aged from 45 to
73 years at entry, and randomly selected from the population register of
the Kuopio town, Eastern Finland [8], and having a follow-up period of 4.6
years. In this study diabetes diagnosis was based on an oral glucose
tolerance test (OGTT) or HbA1c according to the ADA criteria [9]. Obesity
(BMI), and distribution of obesity (waist circumference, fat mass) are
major risk factors for T2D according to several studies [7]. Recently we
showed that short stature also increases the risk of T2D [10].
We have associated several laboratory measurements and biomarkers
with the risk of T2D (Table 1). Among all the metabolites measured
mannose had the strongest association in the METSIM study with T2D
(HR 1.80, 95% CI, 1.32, 2.27) [11]. Mannose is an essential hexose
required for glycoprotein synthesis, and it correlates closely with
glucose [12], and inversely with insulin sensitivity and insulin secre-
tion. However, the exact mechanisms of how mannose contributes to
the risk of T2D remain unknown. We have also shown that fatty acids
[13e15], proinsulin [16], inflammatory markers (glycoprotein acetyls,
interleukin 1 receptor antagonist, hs-CRP) [17], ketone bodies (ace-
toacetate) [18], lipids, lipoproteins and apolipoproteins (total tri-
glycerides, apolipoprotein/LDL cholesterol ratio) [19], glycerol [14],
non-cholesterol sterols (desmosterol) [20], and amino acids (isoleu-
cine, alanine) are associated with increased risk of T2D [21].

2.2. Metabolomics and novel circulating biomarkers
Metabolomics is a comprehensive characterization of metabolic
changes connected to disease development and progression. High
sensitivity and resolution of mass spectrometry achieved with liquid or
gas chromatography allows the detection and quantification of thou-
sands of metabolites. An alternative method to quantify metabolites is
the high-throughput serum nuclear magnetic resonance platform, but
the number of metabolites identified using this method is substantially
lower compared with mass spectrometry [22].
By using high throughput technologies, metabolomics allows the
identification and measurement of metabolites recognizable in a given
Table 1 e Association of different biomarkers with the risk of type 2
diabetes in a 4.6-year follow-up of the METSIM cohort.

Metabolite HR (95% CI) p value Reference

Mannose 1.80 (1.43e2.27) 5.3 � 10�7 [11]
Dihomo-gamma-linoleic acid 1.53 (1.24e1.87) 5.1 � 10�5 [13]
Fasting proinsulin 1.38 (1.33e1.43) 1.0 � 10�8 [16]
Glycoprotein acetyls 1.37 (1.29e1.46) 1.0 � 10�8 [17]
Acetoacetate 1.37 (1.07e1.80) 2.2 � 10�3 [18]
Palmitoleic acid 1.35 (1.07e1.69) 1.0 � 10�4 [15]
Total triglycerides 1.26 (1.11e1.44) 3.9 � 10�4 [14]
Fasting fatty acids 1.19 (1.10e1.29) 3.0 � 10�5 [14]
Desmosterol 1.19 (1.05e1.35) 5.0 � 10�3 [20]
Glycerol 1.18 (1.12e1.24) 5.8 � 10�11 [14]
Interleukin 1 receptor antagonist 1.18 (1.15e1.22) 1.0 � 10�4 [17]
ApoB/LDL cholesterol ratio 1.12 (1.07e1.17) 1.0 � 10�4 [19]
hs-CRP 1.07 (1.04e1.09) 1.0 � 10�4 [17]
Isoleucine 1.10 (1.05e1.15) 3.3 � 10�5 [21]
Alanine 1.02 (1.01e1.04) 6.7 � 10�5 [21]
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biological sample. Identification of small biomolecules (metabolites)
makes it possible to find early biomarkers for a disease of interest,
including T2D and its comorbidities. A recent systematic review and
meta-analysis covering the years from 2008 to 2017 included 14
studies and 4,592 individuals with T2D and 11,492 without T2D [23].
Their report noted a 1.89-, 1.63-, and 1.87-fold higher risk of T2D
associated for leucine, alanine, and oleic acid, respectively, whereas
lysophosphatidylcholine C18:0 and creatinine were associated with
20% and 37% decreased risk of T2D, respectively. Our 4.6-year
follow-up study of the METSIM cohort included 5,181 participants
having metabolomics data available for twenty amino acids at baseline.
Five amino acids (tyrosine, alanine, isoleucine, aspartate and gluta-
mate) were significantly associated with a decrease in insulin secretion
and an increased risk of incident T2D after adjustment for confounding
factors [24]. All essential amino acids, and especially branch-chain
amino acids, stimulate insulin secretion and GLP-1 release [25]. The
mechanisms of reduced insulin secretion of five amino acids in our
study remains to be determined but could be explained, at least in part,
by glucagon regulation [26,27].
Interestingly, a recent study demonstrated a causal relationship be-
tween the gut microbiome, short-chain fatty acids and metabolic
diseases. The host-genetic-driven increase in gut production of the
fecal short-chain fatty acid butyrate was significantly associated with
improved insulin response after an OGTT, and another short-chain fatty
propionate, was causally related to an increased risk of T2D in the MR.
These data provide evidence of a causal effect of the gut microbiome
on metabolic traits [28].
The metabolomics approach has limitations in the identification of
metabolites for the risk of T2D. There is no consensus on how to
standardize metabolomics results, making it difficult to compare the
findings across different studies. Additionally, protocols and statistical
approaches may differ, and instrumentation can yield varied sets of
detectable metabolites [29]. Despite these potential limitations, studies
applying metabolomics have the potential to identify a unique set of
metabolites predictive of T2D.

2.3. Circulating microRNAs
MicroRNAs (miRNAs) are short noncoding RNAs (21e23 nucleotides)
that post-transcriptionally regulate gene expression. Multiple miRNAs
are dysregulated in diabetes making them potential biomarkers for the
risk of T2D [30]. However, conflicting results have been published on
miRNAs as biomarkers in the risk of T2D, largely due to different study
designs (cross-sectional vs. prospective), small sample size
(often < 100), and miRNAs measured in the circulation [31e35].
Further validation studies are needed to identify miRNAs consistently
predicting the progression from prediabetes to T2D.

3. GENETIC RISK SCORES

3.1. Cross-sectional studies
Genetic data can be used as a predictive measure of disease sus-
ceptibility by aggregating the effects of individual loci into a single
genetic risk score (GRS). The first efforts to generate the GRSs for the
risk of T2D were based on a small number of genetic variants, and
therefore their predictive power remained of little value compared with
clinical and laboratory risk factors [36]. We investigated the role of
biochemical markers and T2D risk loci in the identification of previously
undiagnosed diabetic subjects beyond the Finnish diabetes risk score
in a cross-sectional study. The receiver operating characteristics area
under the curve (ROC) for the identification of previously undiagnosed
participants with T2D with the FINDRISC alone was 0.727, and 0.772
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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after adding total triglycerides, HDL cholesterol, adiponectin, and ALT
in the model. Adding a total of 20 T2D genetic risk variants did not
further improve the model [37].
In a systematic review including 34 papers from 30 studies published
in 2000e2012, the investigators evaluated improvements in the
performance of T2D risk prediction models after adding novel non-
genetic or genetic biomarkers to traditional risk factors [38]. Eleven
studies reported a modest (ranging from �0.004 to 0.1), but statis-
tically significant change in the ROC curve. The authors concluded that
novel circulating and genetic biomarkers did not substantially improve
T2D risk prediction above and beyond traditional risk factors.
Currently 403 distinct association signals with T2D were found in the
latest genome-wide association studies. Genetic predisposition to T2D
risk is mainly explained by common variants of relatively small effect
size [4]. These 403 signals captured close to 20% of overall risk of
T2D, and the GRSs includingw130,000 variants explained about 50%
in analyses of the UK Biobank data [39]. The value of these new GRSs
is currently not obvious for clinical practice but they show that in
principle the effect of genetic variants on the risk of T2D is possible to
determine.

3.2. Prospective studies
The GRSs have been used to investigate prospectively their joint effects
on glycemic traits and the underlying mechanisms leading to hyper-
glycemia, although the number of genetic variants in these studies
have been limited [40e42]. In general these studies showed associ-
ations of the GRSs with increased risk of T2D, and fasting glycemia. A
Danish study recruiting 5,850 individuals showed that the GRS
including 46 genetic variants was associated with a 6% increased risk
of T2D, and a decrease in insulin secretion [41]. We generated the
GRSs to evaluate changes in insulin secretion (GRSIS), insulin sensi-
tivity (GRSIS), and incident T2D (GRST2D) in the prospective METSIM
study [43]. GRST2D including 76 SNPs was significantly associated with
an increased risk of incident T2D that was higher by twofold in the
highest decile compared with the lowest decile. GRSIS was significantly
associated with an increase in fasting glucose, a decrease in insulin
secretion, and an increased risk of incident T2D during follow-up.
These findings emphasise an important role of impaired insulin
secretion in the conversion to diabetes. By contrast, the GRSIR did not
significantly predict changes in glucose levels, or the conversion to
diabetes [43]. A recent 10-year follow-up study in a general Japanese
population showed that the GRS based on 84 T2D risk genetic variants
predicted an increase in incident T2D, independently of conventional
risk factors [44].

3.3. Limitations of the genetic risk scores
The GRSs have, however, limitations because a substantial part of
individual predisposition to T2D comes from non-genetic factors
(lifestyle, behavior, environment). Therefore, it remains unclear what
the clinical utility of the GRSs is. For example, there are differences in
ethnic backgrounds in study populations, and there is no consensus on
what extent genetic risk simply recaptures information through BMI,
family history and ethnic background.

4. MENDELIAN RANDOMIZATION STUDIES

Prospective large population-based studies and their meta-analyses
show associations of the biomarkers with the risk for T2D, but they
do not prove causality. Only the MR studies can claim causality by
using common genetic variants to estimate the contribution of a risk
factor to risk of a given disease outcome [45,46]. The basic principle of
MOLECULAR METABOLISM 27 (2019) S139eS146 � 2019 Published by Elsevier GmbH. This is an open a
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MR is that the genetic variants do not change over time and that the
alleles are randomly allocated. These features of genetic variants help
to avoid confounding in MR studies similarly as in randomized clinical
trials. Thus, genetic variants are proxy measures for exposures (e.g.
clinical traits, biomarkers), and they are considered to be free from
confounding and reverse causation.

4.1. Anthropometric characteristics and lifestyle factors (Table 2)
Low birthweight has been associated with a high risk of T2D in
epidemiological studies, but the causality of this association remained
unclear. The study by Wang and collaborators included 3,627 in-
dividuals with and 12,974 without T2D of European ancestry from the
Nurses’ Health Study and the Health Professionals Follow-Up Study
[47]. The GRS including five genetic variants. Low birthweight was
associated with a 2.94-fold increased risk for T2D supporting the role
of intrauterine exposures in the pathogenesis of T2D.
Several observational follow-up studies have indicated that obesity,
estimated by BMI, is a very important risk factor for T2D [48]. Previ-
ously published MR studies on the causal role of BMI in the risk for T2D
included a limited number of genetic variants. The genome-wide meta-
analysis by Corbin and coworkers included 96 genetic variants and
data from 12,171 cases with T2D and 56,862 controls of mainly Eu-
ropean descent [49]. BMI was causally associated with a 26%
increased risk for T2D. Similarly, waist-to-hip ratio adjusted for BMI
was causally associated with a 38% increased risk for T2D, confirming
previously published epidemiological studies showing that waist-to-hip
ratio is an independent risk factor for T2D [50]. In observational studies
T2D has been associated with an increased risk of hypertension, and
vice versa. An MR study based on the UK Biobank data, including
11,855 individuals with hypertension and T2D as well as 318,664
controls, did not show that hypertension is causally associated with
T2D [51]. Similarly, although the majority of studies including several
large meta-analyses have indicated that coffee intake reduces the risk
of diabetes [52], a MR study including 26,632 cases of diabetes and
171,200 controls did not show, however, a causal association between
coffee intake and lower risk of T2D [53].

4.2. Laboratory measurements (Table 2)
Previous MR studies have reported conflicting results on the associ-
ation of 25 (OH)-D on the risk of T2D, probably due to a too small
sample size. Lu and collaborators included 58,000 cases and 370, 000
controls in their study, and reported a 14% decreased risk for T2D,
providing support that higher vitamin D status is causally protective of
T2D [54].
Several studies have indicated that statin treatment increases the risk
of T2D [55]. Statins reduce LDL cholesterol by inhibiting 3-hydroxy-3-
methylglutaryl-coenzyme A reductase (HMGCR). Swerdlow and co-
workers assesses whether this increase in risk is a consequence of
inhibition of the HMGCR gene [56]. Data were available for up to
223,463 individuals from 43 genetic studies. Two genetic variants
were investigated. The association of the rs12916-T allele with T2D
was consistent. In 129,170 individuals belonging to randomized clin-
ical trials, statins increased the risk of T2D (OR 1.12, 95% CI 1.06e
1.18 in all trials; 1.11, 95% CI 1.03e1.20) in placebo or standard care
controlled trials, and 1.12, 95% CI 1.04e1.22 in intensive-dose vs
moderate dose trials. The investigators concluded that the risk of T2D
attributable to statin treatment is at least partially explained by HMGCR
inhibition [56].
Previous studies have suggested that higher concentrations of amino-
terminal proeB-type natriuretic peptide (NT-proBNP) lowers the risk of
T2D [57]. A MR meta-analysis included 7,508 cases and 8,572
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Table 2 e Mendelian randomization studies on clinical characteristics, behavioral traits and biomarkers and type 2 diabetes.

Exposure Genetic intrument Cases/controls Causal effect size OR (95% CI) Reference

Low birth weight GRS 3,627/12,974 2.94 (1.70e5.16) [47]
Body mass index GRS 12,171/56,862 1.26 (1.17e1.34) [49]
Waist/hip ratio GRS 34,840/149,821 1.82 (1.38e2.42) [50]
Hypertension GRS 11,855/318,664 Not significant [51]
Coffee consumption GRS 26,632/171,200 Not significant [53]
Adiponectin GRS 15,960/64,731 Not significant [61]
CRP GRS 6,698/15,872 Not significant [62]
Vitamin D GRS 58,000/370,000 0.86 (0.77e0.97) [54]
IL-1RA GRS 18,715/61,692 Not significant [63]
Urate GRS 26,488/83,964 Not significant [64]
HDL cholesterol GRS 2,587/45,040 Not significant [65]
Total triglycerides GRS 5,637/6,860 Not significant [66]
LDL cholesterol 2 variants 14,976/74,395 1.12 (1.06e1.18) [56]
Natriuretic peptide 1 variant 7,508/8,572 0.82 (0.74e0.90) [58]
Fetuin GRS 34,550/66,266 Not significant [67]
Branch chain amino acids GRS 47,877/267,694 1.44 (1.26e1.65) [60]

GRS, Genetic Risk Score; CI, confidence intervals; CRP, C-reactive protein; IL-1RA, Interleukin receptor 1-A antagonist; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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controls from 11 caseecontrol studies, and supported a causal rela-
tionship between rs198389 within the NT-proBNP locus and a lower
rate of incident T2D (OR ¼ 0.94 per C allele, 95% CI 0.91e0.97).
These results provide evidence for a potential causal role of the BNP
system in the etiology of T2D [58]. Further studies are needed to
investigate the mechanisms underlying this association.
High circulating levels of branched chain amino acids (BCAAs) have
been associated with insulin resistance and T2D in previous obser-
vational studies [59]. In a GWAS of BCAAs the strongest signal was for
leucine, encoding an activator of the mitochondrial branched-chain
alpha-ketoacid dehydrogenase (BCKD) responsible for the rate-
limiting step in BCAA catabolism [60]. They demonstrated that a
genetically predicted difference of 1 SD in amino acid level was
associated with an odds ratio for T2D of 1.44 (95% CI 1.26e1.65,
p ¼ 9.5 � 10�8) for isoleucine, 1.85 (95% CI 1.41e2.42,
p ¼ 7.3 � 10�6) for leucine, and 1.54 (95% CI 1.28e1.84,
p ¼ 4.2 � 10�6) for valine. The authors concluded that their findings
are consistent with a causal role of BCAAs in the etiology of T2D.
However, the mechanisms how amino acids increase the risk of T2D
remain unclear. MR studies on adiponectin [61], CRP [62], IL1RA [63],
urate [64], HDL cholesterol [65], total triglycerides [66], and Fetuin-A
[67] did not demonstrate causal associations with the risk of T2D
(Table 2).

4.3. Metabolomics
A Metabolomics approach has been applied to diabetes in several
population-based studies in recent years, summarized in [68].
Metabolomics profiling was previously performed typically in a small
subset of large populations, and the number of metabolites was
limited. In recent studies MR analysis has been combined in metab-
olomics in order to claim causality of the metabolites found to be
associated with the risk of diabetes.
Nowak and collaborators investigated the effects of insulin resistance
and insulin secretion on fatty acid levels [69]. The original cohort
included 910 elderly men (ULSAM cohort). Insulin sensitivity was
determined with gold standard measurement, the hyperinsulinemic
euglycemic clamp, and beta-cell function with a Disposition Index
during an oral glucose tolerance test. A total of 192 metabolites were
measured using untargeted plasma metabolomics by liquid chroma-
tography/mass spectrometry. MR analysis was based on two separate
cohorts (PIVUS and TwinGene, n ¼ 2,613) followed by replication in
S142 MOLECULAR METABOLISM 27 (2019) S139eS146 � 2019 Published by Elsevier GmbH. This is
three independent studies profiled on different metabolomics platforms
(KORA/TwinsUK, n ¼ 7,824; CHARGE consortium, n ¼ 8,961; and
Finnish consortium, n ¼ 8,330). In the observational part of the study
the authors reported that bile acid, glycerophospholipid and caffeine
metabolism were associated with insulin resistance, and fatty acids
biosynthesis markers with impaired insulin secretion. In MR analysis
the authors discovered and replicated causal effects of insulin resis-
tance on lower levels of monosaturated fatty acids, palmitoleic acid
and oleic acid. Beta-cell function did not have causal effects on any
metabolites measured. The limitation of this study is a relatively small
size of the ULSAM cohort, and the limited number of metabolites
measured.
Liu and collaborators developed a MR approach based on genetic risk
scores for metabolite levels utilizing a pathway-based sensitivity
analysis to control for nonspecific effects [70]. They focused on 124
metabolites in 2,564 participants, and tested causal effects of each
metabolite with glucose and T2D and vice versa. The authors
concluded that elevated plasma triglycerides might be partially
responsible for the risk of T2D, which is disagreement with previous
reports (Table 2). They also claimed that genetic predisposition to T2D
associates with increased levels of alanine, decreased levels of
phosphatidylcholine alkyl-acyl C42:5, and phosphatidylcholine alkyl-
acyl C44:4 [70]. Compared to previously published MR studies their
sample size was limited, and therefore the findings need to be repli-
cated in other population-based studies.
Merino and collaborators identified the metabolite profile of in-
dividuals with normal fasting glucose who progressed to T2D among
1150 Framingham Heart Study Offspring cohort participants [71]. In
adjusted Cox proportional hazard models, the T2D risk per 1 SD
increases in glycine and phenylalanine were 0.65 (95% CI 0.54,
0.78) and 1.35 (95% CI 1.11, 1.65), respectively. These results are in
agreement with our results from a randomly selected population-
based METSIM study [24].

5. MECHANISMS INCREASING THE RISK OF TYPE 2 DIABETES

The main pathophysiological characteristics of T2D are impaired in-
sulin secretion and insulin resistance in muscle and liver. T2D is often
preceded by a long period of prediabetes, characterized by insulin
resistance and elevation of fasting (impaired fasting glucose) or 2 h
glucose (impaired glucose tolerance) in an OGTT [72]. Impairment in
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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pancreatic beta-cell function occurs early in the natural history of T2D,
and diabetes is diagnosed when the pancreas is no longer able to
increase insulin secretion to compensate for insulin resistance in pe-
ripheral insulin-sensitive tissues. Additional disturbances affecting
insulin secretion in T2D are incretin hormone deficiency/resistance in
the gastrointestinal tract [73], and hyperglucagonemia [74].

5.1. Insulin secretion
Most of the common genetic variants known to be associated with the
risk of T2D affect insulin processing and insulin secretion and only a
few affect insulin sensitivity [6]. This supports the notion that the main
mechanism for the conversion to T2D is impaired beta-cell function. In
spite of that there are no major efforts to find biomarkers reflecting
changes in insulin secretion, as a mediator for conversion to diabetes.
Insulin resistance has been more on the focus of interest, although
insulin sensitivity is more determined by lifestyle (exercise, diet,
obesity) and environmental factors than is beta-cell function.

5.2. Insulin resistance
Insulin resistance, a condition in which cells fail to respond normally to
insulin, plays an important role in the development of glucose intol-
erance and T2D. Insulin resistance is tissue specific. Skeletal muscle is
a major tissue responsible for glucose uptake in the insulin stimulated
state resulting in increased glycogen synthesis. The liver plays an
important role in maintaining normal glucose levels by regulating
gluconeogenesis and glycogenolysis. Normally, insulin suppresses
liver glucose production and inhibits the genes encoding gluconeo-
genesis. In the fat cell insulin prevents accelerated lipolysis [74].
Insulin resistance has also been in the focus in different non-genetic
risk scores aiming to identify individuals at high risk of T2D. The
Finnish Diabetes Risk Score is composed of eight easily available
parameters (age, BMI, waist circumference, hypertension, physical
activity, diet, history of hyperglycemia, and family history of diabetes)
[75], and it predicts not only T2D, but also cardiovascular disease and
mortality [76]. In the METSIM study, including 8,749 non-diabetic
participants, the FINDRISC was significantly associated with de-
creases in insulin secretion and insulin sensitivity (p < 0.0001), and
with a 4.14-fold increased risk of incident T2D [77]. These results were
unexpected given the fact that practically all questions deal with
clinical characteristics related to insulin resistance, but on the other
hand are in line with studies emphasizing the role of insulin secretion
in the conversion to diabetes.

5.3. Heterogeneity of T2D
T2D is a heterogeneous disease for which disease-causing pathways are
incompletely understood. Although impaired insulin secretion and insulin
resistance are recognized as two major mechanisms in the pathophys-
iology of T2D, many mechanisms are still unknown. Unlike other bio-
markers, genetic markers do not change with disease progression.
Dimas and collaborators examined the association of 37 established
T2D susceptibility loci and indices of proinsulin processing, insulin
secretion, and insulin sensitivity in 58,614 nondiabetic subjects [6].
Cluster analysis classified the risk loci into five major categories on the
basis of their association with glycemic phenotypes. The first cluster
was characterized by the effects of the risk alleles of PPARG, KLF14,
IRS1, GCKR on insulin sensitivity, the second cluster by the effects of
the risk alleles of MTNR1B and GCK on decreased insulin secretion and
fasting hyperglycemia, the third cluster by the effects of the risk alleles
of ARAP1 on insulin processing, the fourth cluster by the effects of the
risk alleles of TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B on
insulin processing and secretion without a change in fasting glucose
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levels, and the fifth cluster including 20 risk loci with no clear-cut
associations with glycemic traits [6]. Therefore, the cluster analysis
summarized for the first time diverse mechanisms whereby T2D
diabetes risk variants impact disease predisposition.
We applied Bayesian nonnegative matrix factorization clustering to
identify new pathways driven by 94 T2D genetic variants based on
recent GWASs, and 47 diabetes-related traits. We identified five robust
clusters of T2D loci and traits [78]. Two of them were related to
reduced insulin secretion (beta-cell cluster with high proinsulin levels,
proinsulin cluster with low proinsulin levels), and three of them were
related to insulin resistance, characterized by obesity (high BMI and
waist circumference), “lipodystrophy-like” fat distribution (low BMI,
low adiponectin, low HDL cholesterol, high triglycerides), and liver/lipid
cluster (low triglycerides). Increased genetic risk scores in these
clusters were associated with distinct clinical outcomes, including
increased blood pressure, coronary artery disease, and stroke [78].
This approach, a combination of genetic variants and physiologically
characterized pathways, demonstrated that cluster analysis is a
powerful method in the classification of individuals with T2D into
subgroups. Our approach is different from that of Ahlqvist and col-
laborators [79] where individuals were clustered using six clinical and
laboratory parameters, and not on gene variants. Phenotypic data
changes with disease progression which is a drawback of this
approach. The limitation of our study is that we used a relatively small
number of genetic variants given the fact that currently >400 genetic
variants have been confirmed to be associated with the risk of T2D [4].

6. FUTURE OF THE BIOMARKER STUDIES

6.1. Precise measurements of insulin secretion and insulin
resistance
Previous studies aiming to identify biomarkers for the risk of T2D have
weaknesses. Often the diagnosis of diabetes has not been based on
the measurement of fasting glucose, 2-hour glucose or HbA1c levels
causing underestimation of incident T2D. Secondly, even in the case
that new biomarkers have been identified for T2D, it has remained
unclear what are the mechanisms leading to the conversion to T2D.
Especially important is to focus on impaired beta-cell function because
it is the most important mechanism leading to diabetes. Measuring
beta-cell function is also less prone to lifestyle and environmental
effects compared to studies on insulin sensitivity.
In most of the studies HOMA-IR or HOMA-IS, measures of insulin
resistance and insulin secretion, have been used. The limitation of
these methods is that fasting measurements do not allow the esti-
mation of glucose-stimulated insulin response. Furthermore, the
measurement of beta-cell function should be adjusted for prevailing
insulin sensitivity to avoid bias. Measuring insulin sensitivity and beta-
cell function reliably is possible if glucose and insulin levels have been
measured at least three different time points in an OGTT.
We measured insulin and glucose at 0, 30 and 120 min in the METSIM
study which allows the calculation of first phase insulin secretion
(insulin AUC, from 0 to 30 min/divided by corresponding glucose AUC,
InsAUC30/GluAUC30), and insulin sensitivity using the Matsuda Insulin
Sensitivity Index, based on glucose and insulin levels at 0, 30 and
120 min [80]. We found that our measure of beta-cell function had the
highest correlation with a gold standard of insulin secretion (insulin
secretion during the first 10 min in an intravenous glucose tolerance
test) compared to ten other measures of insulin secretion tested
(HOMA-beta, Insulinogenic index, InsAUC120/GluAUC120, InsAUC120/
GluAUC120, First-phase Stumvoll index, Second-phase Stumvoll index,
fasting insulin, insulin at 30 min of an OGTT, insulin at 120 min of an
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OGTT, insulin AUC during an OGTT). Similarly, the Matsuda index had
the highest correlation among five other indices (1/fasting insulin, 1/
HOMA-IR, QUICKI, Matsuda ISI, MCR Stumvoll, ISI Stumvoll) with the M
value from the hyperinsulinemic euglycemic clamp [81]. Based on
these indices we calculated the Disposition Index (Matsuda ISI x
InsAUC30/GluAUC30) which is a measure of beta-cell function adjusted
for prevailing insulin sensitivity, and suitable for large population-
based studies. Mathematical modeling to determine beta-cell func-
tion need multiple measurements in an OGTT, and is not feasible for
large scale population-based studies [82,83].

6.2. Towards a precision medicine approach in type 2 diabetes
The precision medicine approach reflects the expectation that a deeper
understanding of the genome and phenome improves our diagnostic
and prognostic capabilities, and allows the tailoring of the treatment to
the individual characteristics of each patient [84]. Application of pre-
cision medicine is easier in monogenic diabetes because there are
discrete subgroups defined by molecular genetics, in contrast to T2D
[85]. T2D is polygenic in which lifestyle and environmental factors play
an important role, in addition to genetic predisposition. In monogenic
diabetes the first step is to identify a single pathogenic genetic variant
which helps to tailor the treatment according to diagnosis. In T2D over
400 genetic variants have been found [4], and each of them has only a
moderate or small effect on the risk of T2D. These genetic variants
influence multiple processes in tissues and cells, including beta-cells
(islet development, islet senescence, islet function), adipocytes,
skeletal muscle, liver, and other tissues. Importantly, lifestyle and
environmental factors modify the natural course of T2D.
Combination of genetic variants and physiologically characterized path-
ways improves the classification of individuals with T2D into subgroups
which could potentially have different treatments. Recent developments
especially in genomics offer a solid ground to improve our understanding
of subgroups of T2D. Two previous studies have successfully applied
cluster analysis to subdivide individuals with T2D into subgroups char-
acterized by impaired beta-cell function and insulin resistance [6,78]. It is
likely that including in the modelling the most recent genomics and
extensive phenotyping results we can further improve classification of
T2D using >400 genetic variants associated with T2D, and more
detailed phenotypes now available in the biomarker spectrum.
What are the clinical benefits of understanding the heterogeneity of
T2D? With respect to monogenic diabetes subtypes, including MODY,
transient and permanent neonatal diabetes, precise diabetes medicine
is already now successfully applied [85], but T2D is more complex
given the fact that this disease is caused by an interplay of multiple
common variants with lifestyle and environmental factors. Therefore, it
is not likely that new developments in the understanding of the het-
erogeneity of T2D will change the treatment options in near future
because currently available drugs already cover the major patho-
physiological disturbances is T2D, impaired insulin secretion and in-
sulin action. However, efforts should be continued to obtain a better
understanding of the major pathophysiological mechanisms and pro-
cesses in T2D to improve treatment capabilities for patients with T2D.
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