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Purpose: This study aimed to combine the clinical data of acute myeloid leukaemia (AML)
from The Cancer Genome Atlas (TCGA) database to obtain prognosis-related biomarkers,
construct a prognostic risk model using long non-coding RNAs (lncRNAs) in AML and help
patients with AML make clinical treatment decisions.

Methods: We analysed the transcriptional group information of 151 patients with AML
obtained from TCGA and extracted the expressions of lncRNAs. According to themutation
frequency, the patients were divided into the high mutation group (genomic unstable
group, top 25% of mutation frequency) and low mutation group (genomic stable group,
25% after mutation frequency). The ‘limma’ R package was used to analyse the difference
in lncRNA expressions between the two groups, and the “survival,” “caret,” and “glmnet”R
packages were used to screen lncRNAs that are related to clinical prognosis.
Subsequently, a prognosis-related risk model was constructed and verified through
different methods.

Results: According to the lncRNA expression data in TCGA, we found that seven lncRNAs
(i.e. AL645608.6, LINC01436, AL645608.2, AC073534.2, LINC02593, AL512413.1, and
AL645608.4) were highly correlated with the clinical prognosis of patients with AML, so we
constructed a prognostic risk model of lncRNAs based on LINC01436, AC073534.2, and
LINC02593. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway
analyses of differentially expressed lncRNA-related target genes were performed, receiver
operating characteristic (ROC) curves were created, the applicability of the model in
children was assessed using the TARGET database and the model was externally verified
using the GEO database. Furthermore, different expression patterns of lncRNAs were
validated in various AML cell lines derived from Homo sapiens.

Conclusions: We have established a lncRNA prognostic model that can predict the
survival of patients with AML. The Kaplan-Meier analysis showed that this model
distinguished survival differences between patients with high- and low-risk status. The
ROC analysis confirmed this finding and showed that the model had high prediction
accuracy. The Kaplan-Meier analysis of the clinical subgroups showed that this model can
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predict prognosis independent of clinicopathological factors. Therefore, the proposed
prognostic lncRNA risk model can be used as an independent biomarker of AML.
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1 INTRODUCTION

Acute myeloid leukaemia (AML) is a malignant clonal disease of
the haematopoietic stem and progenitor cells (Pelcovits and
Niroula, 2013). In China, leukaemia affects 3–4 individuals per
100,000 populations. Among deaths due to malignant tumours,
leukaemia ranked sixth in men, seventh in women and first in
children and adults aged <35 years. In China, the incidence of
acute leukaemia (AL) was significantly higher than that of chronic
leukaemia, and AML was the most common (1.62/100,000). In
recent years, intensive chemotherapy, haematopoietic stem cell
transplantation and rigorous supportive treatment have greatly
improved the prognosis of patients with AML aged <60 years.
Moreover, 30% of patients with non-acute promyelocytic
leukaemia are expected to survive for a long time (Sasine and
Schiller, 2016). However, for these patients, a good quantitative
model for predicting survival time is still not established (Song
et al., 2018).

With the development of sequencing technology, the detection
of leukaemia-related genes is becoming increasingly impeccable,
which has increasingly attracted the attention of researchers.
Among them, the long noncoding RNA (lncRNA) has
gradually become a research hotspot. LncRNA is an RNA
molecule with a length of >200 bp that originates from the
noncoding region of the genome. It regulates gene expression
at the transcriptional and post-transcriptional levels and
participates in various biological functions (Al-Kershi et al.,
2019). Some studies have shown that lncRNAs play an
important role in many life activities, such as dose
compensation effect, epigenetic regulation, cell cycle regulation
and cell differentiation regulation (Peng et al., 2017). Recent
studies have confirmed that changes in lncRNAs are related to the
occurrence and development hematological malignancy,
especially in AML. Myeloid-specific and polyadenylated
lncRNA LOUP was found to induce myeloid differentiation
and inhibits cell growth, acting as a transcriptional inducer of
the myeloid master regulator. LOUP recruits RUNX1 to both the
LOUP enhancer and the promoter, leading to the formation of an
active chromatin loop (Trinh et al., 2021). Yin et al.(Yin et al.,
2021) found that lncRNA DUBR highly expressed in AML,
resulting in poor prognosis, especially in M4 AML. In vitro
studies elucidated that knockdown of DUBR suppress the
survival colony formation ability in AML cells. Academics
pointed out that the activation of HOXBLINC, a HOXB locus-
associated lncRNA, is a critical downstream mediator of
NPM1c(+)-associated leukemic transcription program and
leukemogenesis. HOXBLINC loss attenuates NPM1c(+)-driven
leukemogenesis by rectifying the signature of NPM1c(+)
leukemic transcription programs. Overexpression of
HOXBLINC in mice enhances hematopoietic stem cell self-
renewal and expands myelopoiesis, leading to the development

of AML-like disease, reminiscent of the phenotypes seen in the
Npm1 mutant knock-in (Npm1(c/+)) mice (Zhu et al., 1956).
Gourvest et al.(Wei and Wang, 2017; Zhao et al., 2018; Liang
et al., 2020; Gourvest et al., 2021) report an identification of
lncRNA LONA overexpressed in NPM1-mutated AML patients.
While NPM1 is nuclear and LONA cytoplasmic in wild-type
NPM1 AML cells, LONA becomes nuclear as mutant NPM1
moves toward the cytoplasm. Gain or loss of function combined
with a genome-wide RNA-seq identified a set of LONA mRNA
targets encoding proteins involved in myeloid cell differentiation
and interaction with its microenvironment. LONA
overexpression exerts an anti-myeloid differentiation effect in
mutant NPM1 established cell lines and primary AML cells. In
vivo, LONA overexpression acts as an oncogenic lncRNA
reducing the survival of mice transplanted with AML cells and
rendering AML tumors more resistant to cytarabine
chemotherapy.

This study aimed to combine the clinical data of AML from
TCGA to obtain prognosis-related biomarkers, construct a
prognostic risk model related to lncRNAs in AML and help
patients with AML make clinical treatment decisions. In this
study, transcription data of 151 patients with AML were
downloaded from The Cancer Genome Atlas (TCGA). Perl
language was used to collate the data, and R language was
used for data analysis in an attempt to determine effective
prognostic biomarkers for AML and construct a prognostic
risk model using lncRNA in patients with AML.

2 METHODS

2.1 Research Objects and Data Acquisition
Transcription group data (transcription profiling) and
corresponding clinical data of 151 patients with AML were
obtained through TCGA website (https://tcga-data.nci.nih.gov/
tcga/). The database contains clinical data such as patient
number, age, survival time and survival status. The genome
mutation data (simple nucleotide variation) of 149 patients
were also downloaded from TCGA.

2.2 Acquisition of the Expression Matrix of
lncRNAs
On the official website of TCGA (https://gdc.nci.nih.gov/), the
TCGA-LAML transcriptional group data (transcription
profiling) were checked on the GDC Data Portal to download
relevant raw htseq-count data, manifest and metadata files. In the
CMD environment, the Perl language script was used to extract
the original count data to form an expression matrix. The
identification transformation of the transcription expression
profile was implemented as Homo_sapiens.GRCh38.95. chr.gtf
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and downloaded from the Ensemble website, the gene expression
profile matrix was obtained after comparison, and lncRNA was
extracted using Perl language script to obtain the lncRNA
expression matrix of patients with myeloid leukaemia.

2.3 Sample Mutation Frequency and
Grouping
In the CMD environment, Perl language scripts were used to
calculate the mutation frequency of the samples. In this study, 31
patients with the top 25% mutation frequency were assigned to
the genomic instability group (high mutation group, genomic
unstable [GU]) and 24 patients with the bottom 25% mutation
frequency to the genomic stability group (low mutation group,
genomic stable [GS]).

2.4 Screening of Differentially Expressed
lncRNAs and mRNAs in the High and Low
Mutation Groups and Gene Ontology and
Kyoto Encyclopedia of Genes and Genomes
Analyses
To determine potential AML biomarkers, R language was used to
calculate the mean value of lncRNA in the GS and GU groups,
and the “limma” R package was then used to set the threshold to
logFC >1.0 and p < 0.05 to screen the differentially expressed
IncRNAs between the two groups. Thereafter, data of the
upregulated and downregulated differentially expressed
IncRNAs and their corresponding expressions were saved, and
the “pheatmap” R package was used to draw a heat map. We used
the “limma” R package to test the correlation between the
expressions of mRNA and lncRNA in the samples and
obtained the correlation coefficient and p value. The mRNAs
of the first 10 related genes were selected as the target genes of the
corresponding differentially expressed lncRNAs. Subsequently,
GO and KEGG enrichment analyses of the target genes were
performed using “clusterProfiler” (version 3.14.3). The minimum
and maximum genes were set to 5 and 5,000, respectively. A p
value of <0.05 and a false discovery rate (FDR) of <0.25 were
considered significant.

2.5 Cox Regression Analysis
To determine which of the differentially expressed genes were
related to prognosis, we extracted the survival time and survival
status of patients with AML and excluded data of patients whose
survival time was less than 30 days. The survival time data were
compared individually with differential gene expression data, and
duplicated samples of expression data were removed; finally, 128
samples with complete prognosis were screened. Thereafter, the
survival time data and differential gene expression data were
combined into a matrix. Furthermore, we used the random
function of R language to randomly divide the 128 samples
into the train and test groups. First, we determined the
prognosis-related lncRNAs from the train group for Cox
analysis. Specifically, the univariate regression analysis was
performed on the train group using the “survival” and
“survminer” R packages. Seven lncRNAs related to prognosis

were obtained, and the corresponding forest map was drawn by R
packages “survival,” “caret,” “glmnet,” and “survminer.”
Thereafter, the “glmnet” and “survival” R packages were used
in the multivariate Cox regression analyses of the seven lncRNAs.

2.6 Construction of the lncRNA Prognostic
Model
Using multivariate regression, a survival-related prognosis model
was constructed based on three lncRNAs out of 7 that screened
through multivariate regression. The model formula is as follows:

Risk score � Σ3
i�1βi.

In this equation, β is the regression analysis coefficient of each
IncRNA after multifactor Cox regression analysis, and i is the
correlation of lncRNA of the multifactor regression. We defined
the risk score of single samples lower than the median risk score
of the training group as low risk and conversely as high risk.
Accordingly, samples were divided into the high-risk subgroup
and the low-risk subgroup in the train and test groups,
respectively.

2.7 Visualization, Evaluation and Testing of
the lncRNA Prognostic Model
2.7.1 Testing the Clinical Characteristic Preference
Between the Train Group and the Test Group
Randomly Divided Into Subgroups
To test whether the clinical characteristics of patients with AML
were consistent, patients with AML were divided into the elderly
(≥60 years) and non-elderly (<60 years) groups and male and
female groups. The chi-square test was used to process the
percentage of age and sex in the two groups.

2.7.2 Survival Analysis Verification
To test the applicability of the prognostic model in the
identification of patients with high- and low-risk status, we
used the “survival” and “survminer” R packages to draw the
high- and low-risk Kaplan–Meier curves of the train, test and
overall groups.

2.7.3 Receiver Operating Characteristic (ROC) Curve
To verify the accuracy of the model in predicting the prognosis of
patients with AML in different periods, we used the “survival,”
“survminer,” and “timeROC” R packages to draw the ROC curves
of the 1-year and 5-year survival rates of the train, test and overall
groups and calculated the area under their ROC curves (AUCs).

2.7.4 Relationship Between Known Clinical Prognostic
Genes and Gene Mutation Frequency and Prognostic
Model
Relationship Between Patient Risk Score and Gene Expression
and Between Patient Score and Genomic Instability
To examine the relationship between the prognostic model and
other factors, we ranked the samples according to the risk score
from low to high. Thereafter, we used the “limma” and
“pheatmap” R packages to visualise the expression of three
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lncRNAs related to multivariate regression in the train, test and
overall groups. Moreover, we visualised the mutation frequency
of each sample and the known mutation-driven genes.

Relationship Between the Prognostic Model and Known
Mutation-Driven Genes Such as TP53
We used the “limma” and “sparcl” R packages to extract the
differentially expressed lncRNAs and mutation statistics of all
samples. Thereafter, the samples were divided into GS (GS-like)

and GU (GU-like) groups by cluster analysis. Then, the mutation
frequency between the two types and the expression of themutant
gene LUNAR1 were evaluated, and the “ggpubr” R package was
used to draw the corresponding box diagram. To examine the
effect of common mutations on this prognostic model, we used
the “survival” and “survminer” R packages to draw the
Kaplan–Meier curves of the first six genes with the highest
mutation frequency in the GS (GS-like) and GU (GU-like)
groups. To test whether there was a significant difference in

FIGURE 1 | (A) Heat map of the top 20 upregulated and downregulated lncRNAs. The upregulated and downregulated genes are marked red and blue,
respectively. The top 10 mRNAs related to differentially expressed lncRNAs were selected as target genes. The Kyoto Encyclopedia of Genes (B) and Genomes and
Gene Ontology (C) analysis maps of the target genes were drawn.
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gene mutations between the high- and low-risk groups, we used
“plyr” and “ggplot2” R packages to draw single mutation
frequency histograms of common mutations in the train, test
and overall groups to verify whether known common mutations
affect the prognostic model of high- and low-risk scores.

2.7.5 Verification of the Prognostic Model With
Different Clinical Characteristics
To test the ability of the prognostic model to evaluate high- and
low-risk groups with different clinical traits, we divided the
samples into the elderly and non-elderly groups, male and
female groups, non-M3 groups and high mutation frequency
and low mutation frequency groups according to the clinical
traits. Note that: 1. the survival analysis of M3 (acute
promyelocytic leukaemia) group is not going to be performed
as the sample size in this group is relatively small. 2. TCGA-AML
data contains mutation data of 134 patients and complete clinical
information 128 patients, taking the intersection of them, there
are 88 patients with complete mutation data and clinical
information. High mutation frequency was defined as single
sample mutation counts ≥ median mutation counts, and low
mutation frequency as single sample mutation counts < median
mutation counts. Then, the “survival” and “survminer” R
packages were used to draw the Kaplan–Meier curves of
above-mentioned groups at high and low risks.

2.7.6 Applicability of the Prognostic Model in Children
We downloaded data of 155 child patients with AML with
complete prognosis-related lncRNA expression and clinical
information from the TARGET database (https://ocg.cancer.
gov/programs/target). Then, Microsoft Excel software was used
to sort out the data into the children group and calculated the
corresponding risk score. Finally, we used the “survival” and
“survminer” R packages to draw the corresponding
Kaplan–Meier curves between different groups of children and
adults to test the applicability of the model in children.

2.7.7 External Verification
GSE106291 (Herold et al., 2018) data from the GEO database, which
included survival information and transcriptome data of 250
patients with AML, were downloaded for further analysis. As not
every lncRNAwas clearly annotated in this data (especially for RNA-
seq data of early year), we calculated the risk score by determining
the RNA-related expression level according to LNCipedia (Volders
et al., 2019) and catRAPID (Armaos et al., 2021), in which different
lncRNA transcripts were considered to belong to a certain gene if
they share at least one (partially) overlapping exon and reside on the
same DNA strand. In this way, transcripts were clustered into genes.
The risk score was thus calculated according to the gene expression
when lncRNA was not clearly annotated. Then, we used the
“survival” and “survminer” packages for prognostic analysis.
Finally, 123 patients with complete survival information and
transcriptome data were included in the validation cohort.

2.7.8 LncRNA Expression Verification in AML Cells
The LncRNAs were detected in AML cell lines derived fromHomo
sapiens with fluorescence in situ hybridisation (FISH) based on the
protocol (Duncan et al., 2019). The methods were as follows: The
specimens were permeabilised with cold 0.1% Triton X-100. The
pre-hybridisation buffer was discarded, and hybridisation was
performed using the LINC01436, AC073534.2 and LINC02593
probe overnight, respectively. After washing with SCC buffer, the
coverslip was dyed with 4′,6-diamidino-2-phenylindole (DAPI),
and the fluorescence test was conducted with laser scanning
confocal microscope. AML cell lines were selected as follows:
HL-60 (derived from the peripheral blood of patients with acute
promyelocytic leukaemia), U937 (derived from the peripheral
blood of patients with acute monocytic leukaemia), MV4-11
(derived from the peripheral blood of patients with
biphenotypic B myelomonocytic leukaemia with FLT3-ITD
mutation) and Kasumi-1 (derived from the peripheral blood of
patients with acute myeloblastic leukaemia with AML1-ETO
fusion gene positive). All cell lines were ATCC sources. Cells
were maintained in RPMI-1640 medium supplemented with
10% foetal calf serum (HyClone Laboratories, Logan, UT,
United States), 100 U/mL penicillin and 100 μg/ml streptomycin
at 37°C in a humidified atmosphere of 5% CO2.

3 STATISTICAL ANALYSIS

Data analyses were performed in R language (R4.0.2), and the
difference was considered significant when p < 0.05.

4 RESULTS

4.1 Establishment of the lncRNA Prognostic
Model for AML
4.1.1 Differentially Expressed lncRNAs in TCGA
Patients With AML
We obtained 149 AML samples with transcriptome data from
TCGA database. A total of 31 patients with the first 25% mutation
frequency were classified as the GU group (high mutation group,

FIGURE 2 | Forest plot of the univariate Cox regression analysis of seven
lncRNAs with prognostic value. The X-axis represents the risk ratio, and the
Y-axis represents the lncRNAs with prognostic value. Red represents a high-
risk factor, which is negatively correlated with the survival time of the
patient. Blue represents a low-risk factor, which is positively correlated with
the survival time of the patient.
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FIGURE 3 | Kaplan–Meier curves of high- and low-risk groups of elderly and non-elderly patients and male and female patients. In the Kaplan–Meier curve of
different clinical subgroups of patients with AML, the X- and Y-axes represent the time and probability of survival, whereas the red and blue lines represent the high- and
low-risk groups, respectively.
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mutCount≥19), and 24 patients with post 25%mutation frequency
were classified as the GS group (low mutation group, mutCount
≤3). The average expressions of lncRNAs in the GS and GU groups
were calculated by R language, differentially expressed lncRNAs
were screened using the “limma” R package and the threshold was
set to (logFC >1.0 and p < 0.05). Finally, 59 differentially expressed
lncRNAs were obtained (Supplementary Table S1). Among them,
heat maps of 20 upregulated and 20 downregulated differentially
expressed lncRNAs were drawn (Figure 1A). To further examine
the human functions these lncRNAs are involved in, we performed
KEGG and GO enrichment analyses of 59 target genes of
differentially expressed lncRNAs. The results (Figures 1B,C)
revealed that the most abundant genes in the KEGG were
enriched in “Herpes simplex virus 1 infection” pathway.
Regarding GO, the most enriched genes were in the ‘DNA-
binding transcription factor activity, RNA polymerase II-
specific’ process.

4.1.2 lncRNA Prognostic Risk Model for AML
To evaluate the prognostic value of lncRNAs in AML, 128
samples were randomly divided into the train and test groups
by R language random function. Thereafter, the differentially
expressed lncRNAs in the train group were analysed by Cox
regression analysis. Seven lncRNAs (AL645608.6, LINC01436,
AL645608.2, AC073534.2, LINC02593, AL512413.1, and
AL645608.4) related to prognosis were obtained, and their
corresponding forest maps were drawn. As shown in Figure 2,
among the seven lncRNAs, only the hazard ratio (HR) of
LINC01436 is greater than 1, which means that LINC01436 is
a risk factor for patients with AML and has a negative correlation
with the clinical prognosis; therefore, the higher the expression,
the worse the prognosis. The rest of the lncRNAs (AL645608.6
[HR = 0.934], AL645608.2 [HR = 0.923], AC073534.2 [HR =
0781], LINC02593 [HR = 0.879], AL512413.1 [HR = 0.681] and
AL645608.4 [HR = 0698]) appeared as protective factors, which

FIGURE 4 | Kaplan–Meier curves of high- and low-risk groups in the train, test, and overall groups. The X- and Y-axes represent the time and probability of survival,
whereas the red and blue lines represent the high- and low-risk groups, respectively.
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were positively correlated with the clinical prognosis of the
patients, i.e. the higher the expression, the better the
prognosis. Furthermore, we used “glmnet” and “survival” R
packages to perform multivariate Cox regression analysis of
the seven lncRNAs, and the key result of model construction

was obtained. As shown in Supplementary Tables S2, S3 of 7
lncRNAs (LINC01436, AC073534.2 and LINC02593) were
selected as major parameters to build the model, and they
were identified as the independent prognostic factors through
multivariate Cox regression analysis (coef [LINC01436] =

FIGURE 5 |Receiver operating characteristic (ROC) curve of the prediction efficiency of the train, test, and overall groups. The X- and Y-axes represent 1-specificity
and sensitivity, respectively. Corresponding ROC curve of the (A) 1-year survival rate and (B) 5-year survival rate.

FIGURE 6 | The X-axes of A, B, and C are all samples sorted according to the increasing values at risk. (A) Heat map of the lncRNAs related to the prognostic
model; the ordinate represents the three lncRNAs that make up the prognostic model. Red represents upregulation of gene expression, while blue represents
downregulation of gene expression. (B) Distribution of gene mutation frequency; the ordinate represents the mutation frequency of each sample. (C) Expression
frequency distribution of UBQLN4, the driver of genomic instability; the ordinate is the expression of UBQLN4 in each sample.
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0.070402, coef [AC073534.2] = −0.303302254, coef [LINC02593]
= −0.139241309). The risk score of each patient could be
calculated according to the regression coefficient and
expression value of the three lncRNAs.

4.2 Visualization, Evaluation, and Testing of
the lncRNA Prognostic Model
4.2.1 Analysis of the Clinical Characteristic Preference
Among Random Groups
To determine the consistency of the clinical characteristics during
model construction, clinical features of all samples were
compared by the chi-square test. As shown in Supplementary
Table S3, the p value between the train and test groups were all
>0.05, indicating that our model grouping has no characteristic
preference.

4.2.2 Clinical Grouping Verification of the Prognostic
Model
According to the clinical characteristics, patients were divided
into the elderly and non-elderly groups and male and female
groups. The “survival” and “survminer” R packages were used

to draw the Kaplan–Meier curves of the high- and low-risk
patients in the elderly and non-elderly groups and male and
female groups. As presented in Figure 3, the Kaplan–Meier
curve showed that the survival time of patients in the low-risk
group was significantly prolonged, and the median survival
time in the non-elderly group was 2.17 years, which was higher
than that in the high-risk group (0.84 years). In the elderly
group, the median survival time in the low-risk group
(1.58 years) was higher than that in the high-risk group
(0.50 years). In the male group, the median survival time of
the low-risk group (1.84 years) was higher than that of the high-
risk group (0.63 years). In the female group, the median survival
time of the low-risk group (1.84 years) was higher than that of
the high-risk group (0.75 years). In the low mutation frequency
group, the median survival time of the low-risk group
(1.17 years) was higher than that of the high-risk group
(0.66 years). In the high mutation frequency group, the
median survival time of the low-risk group (1.66 years) was
higher than that of the high-risk group (0.67 years). In the non-
M3 group, the median survival time of the low-risk group
(1.71 years) was higher than that of the high-risk group
(0.67 years). These results showed that the prognostic model

FIGURE 7 | (A) Heat map of all samples after the cluster analysis. The X-axis is the sample type, blue represents the genomic stable type and red represents the
genomic unstable type. The Y-axis represents differentially expressed lncRNAs, red represents upregulation, and blue represents downregulation. (B) Box diagram of
the mutation frequencies of the two types. (C) Expression map of the two types of LUNAR1. (D) Kaplan–Meier curves of the GU-like and GS-like groups. In the
Kaplan–Meier curve of different somatic mutation count of patients with AML, the X- and Y-axes represent the time and probability of survival, whereas the red and
blue lines represent the GU-like and GS-like groups, respectively.
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was not affected by the gender, age, FAB subtypes and mutation
frequency of the patients, and the lncRNA prognostic
prediction model demonstrated good applicability when
patients were divided into high- and low-risk groups
according to the clinicopathological characteristics,
suggesting that the model is an independent index for
predicting the prognosis of patients with AML.

4.2.3 Verification of Survival Prediction
According to the prognostic model, we constructed the high- and
low-risk Kaplan–Meier curves of the train, test and overall groups
and calculated the p value of the high and low survival curves. The
median survival times were 1.84 and 0.67 years in the low- and
high-risk groups of the overall group (Figure 4), 1.715 and
0.58 years in the train group, and 1.92 and 0.92 years in the test
group, respectively. These results revealed that the survival rate of
the low-risk group was higher than that of the high-risk group,
indicating that the lncRNA prognostic prediction model showed
good applicability for the survival prediction of patients with AML.

4.2.4 ROC Curve
To analyse the prognostic model, we constructed the ROC curves
(Figure 5) of the 1-year and 5-year survival rates in the train, test
and overall groups. As shown in Figure 5, the AUCs of the 1-year

and 5-year survival rates were 0.876 and 0.713 in the train group,
0.663 and 0.799 in the test group, and 0.782 and 0.731 in the
overall group, respectively. The results revealed that the lncRNA
model had good prediction accuracy within 1–5 years and can
predict the survival of patients with AML in other independent
cohorts, and the accuracy of this model in predicting the 1-year
survival rate (AUC = 0.782) was better than that of the 5-year
survival rate (AUC = 0.731). The p values of the above-mentioned
analyses were all less than 0.05.

4.2.5 Relationship Between the Prognostic Model and
Clinically Known Prognostic Genes
Relationship Between Sample Risk and Gene Expression,
Patient Risk and Genomic Instability
To evaluate the relationship between predictive model scores and
gene expression, gene mutation frequency, and mutation-driven
genes, we ranked the samples of the train, test and overall groups
according to the risk scores from low to high (from left to right).
Thereafter, the expression heat maps, gene mutation frequency
distribution maps and box maps of related genes of the three
lncRNAs in the prognostic model were drawn. As shown in
Figure 6, the abscissa presents all samples sorted according to
the increasing risk prediction value of the model. The expressions
of AC073534.2 and LINC02593 decreased gradually with the

FIGURE 8 | Kaplan–Meier curves of the genomic stable type and genomic unstable type under different genemutations. The X-axis represents time, and the Y-axis
represents survival probability.
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increase in the risk score (Figure 6A). The median frequency of
gene mutation in the low-risk group (i.e. 16) was higher than that
in the high-risk group (i.e. 12) (Figure 6B). The median frequency
of gene mutation in the low-risk group was higher than that in the
high-risk group. The median UBQLN4 expression of the genes
driven by genomic instability in the low-risk group was 12.39
(mean, 13.12), whereas that of the high-risk group was 11.85
(mean, 12.16) (Figure 6C). From Figure 6, we can conclude
that the frequency of the gene mutation and genomic instability
are negatively correlated with the risk score of the patients.

Relationship Between the Prognostic Model and Known
Mutant Genes Such as TP53
Figure 7 shows the heat map after the cluster analysis. Figure 7A
presents the lncRNA expression heat map of the GS type (GS-
like) and GU type (GU-like). Figure 7B presents a significant
difference in the mutation frequency between the two groups (p <
0.014). A significant difference was found in the expression of the
visible gene LUNAR1 (p < 0.05) (Figure 7C). As presented in
Figure 7D, the Kaplan–Meier curve showed that the survival time
of patients in the GU-like group was significantly prolonged, with

FIGURE 9 | Histogram of the mutation frequency of common mutation genes in the train, test and overall groups. The X-axis represents the high- and low-risk
groups, and the red on the Y-axis represents the ratio of samples with corresponding gene mutations.

TABLE 1 |Clinical characteristics of patients from the TARGET database included
in the validation study.

Children (n = 155)

Sex
Male 79
Female 76

NPM mutation
Yes 7
No 143

FLT3 PM
Yes 11
No 144

FLT3/ITD positive?
Yes 13
No 142

CNS disease
Yes 10
No 145

Life status
Alive 79
Dead 76

Abbreviation: PM, point mutation; CNS, central nervous system
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a median survival time of 1.340 years, which was higher than that
in the GS-like group (0.666 years). This means that patients with
higher mutation frequencies have better overall survival (OS).
Thereafter, the Kaplan–Meier curves of different gene mutations
in the GS (GS-like) and GU (GU-like) groups were drawn. In
Figure 8, among the first six genes with the highest mutation
frequency, only the unstable gene group and the mutant TP53-
positive group had a synergistic effect on the survival curve (p <
0.001). The specific reason is not clear, which may be related to
the chemical resistance and high risk of recurrence of TP53
mutation (Döhner et al., 2010; Stengel et al., 2017; Welch,
2018; Barbosa et al., 2019). The effect of other gene mutations

on the survival rate of gene instability had no clinical significance.
Thereafter, we drew the bar chart of the mutation frequency of
common genes in the train, test and overall groups. Figure 9
shows no significant difference in the expressions of mutant
DNMT3A, FLT3, IDH2, NPM1, RUNX1, and TP53 among the
groups, indicating that the known prognostic genes do not affect
the prediction of high and low risk in the prognostic model and
that the risk score can be used as a prediction tool independent of
the current prognostic-related genes.

4.3 Applicability of the Model in Child
Patients
The clinical characteristics of child samples from the TARGET
database are summarized in Table 1. The Kaplan–Meier curve in
Figure 10 shows that the median survival time of children is
3.67 years, which is higher than that of adults. In conclusion, the
prognosis of the children group was significantly better than that
of the adult high-risk group, and no significant difference was
found between the children and adult low-risk groups. This
finding suggested that the prediction model was not suitable
for disease prediction and evaluation in children.

4.4 External Verification
Patients with relatively short survival time (OS ≤ 30 days) were
excluded. Asmentioned in 4.2.5.2 of the Results section, highmutant
TP53 expression could most independently affect OS. Patients with
high TP53 mutation expression were also removed from the
analysis. Finally, we performed a prognostic analysis in the
validation cohort, which consisted of 123 samples with complete
survival information and transcriptome data. The clinical
characteristics are summarized in Table 2. The model was
applied to stratify these patients into low-risk and high-risk
groups. The median survival times of the low- and high-risk
groups were 2.89 and 1.19 years, respectively, which indicated

FIGURE 10 | Comparison of the children group from the TARGET database with the high- and low-risk subgroups of the adult group. In the Kaplan–Meier curve,
the X- and Y-axes represent the time and probability of survival, respectively.

TABLE 2 | Clinical characteristics of patients from GSE106291 included in the
validation study.

High risk (n = 56) Low risk (n = 67) P

Age 0.908562
≥60 27 33
<60 29 34
Sex 0.192443
Male 26 39
Female 30 28
RUNX1_mutation 0.642099
Yes 11 11
No 45 56
RUNX1-RUNX1T1_fusion 0.476547
Yes 1 4
No 55 63
Treatment response 0.641233
resistant 19 20
sensitive 34 43
Life status 0.115523
Alive 15 27
Dead 41 40

Abbreviation: RUNX1, runt-related transcription factor 1; RUNX1T1, rUNX1 partner
transcriptional co-repressor 1. Significant P value is in bold typeface.
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that the validation efficiency of the model in an external cohort is
acceptable (Figure 11).

4.5 LncRNA Expression Pattern Verification
in AML Cell Lines
To determine the expression patterns of LINC01436,
AC073534.2 and LINC02593 in various AML cells, we

performed a FISH assay in four AML cell lines that may
represent common clinical conditions. The results showed
that LINC01436 was more expressed in MV4-11, but less
expressed in Kasumi-1, AC073534.2 was significantly reduced
in THP-1 and MV4-11 cells and LINC02593 was less found in
all cell lines, but in Kasumi-1 (Figure 12). FLT3-ITD mutation
is correlated with poor prognosis, and AML1–ETO fusion gene
is associated with good survival in clinical practice. The above

FIGURE 11 | Using the method of LNCipedia (Volders et al., 2019) and catRAPID (Armaos et al., 2021), transcripts are clustered into genes. (A,B) indicate the
presence of protein nucleic-acid-binding domains or RNA recognition motifs in LINC01436 and LINC02593. (C) Kaplan–Meier curves of high- and low-risk groups in the
validation cohort. The X- and Y-axes represent the time and probability of survival, whereas the red and blue lines represent the high- and low-risk groups, respectively.
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expression pattern of lncRNA may indicate their role in
prognosis.

5 DISCUSSION

AML is a serious threat to human health. However, a quantitative
index to predict the prognosis of AML is still lacking. Previous
studies on AML have mainly focused on mutant genes, namely,
FLT3, IDH2, NPM1, RUNX1, TP53, and DNMT3A (Ofran, 2014;
Sudhindra and Smith, 2014; Ohgami et al., 2015; Papaemmanuil
et al., 2016), miRNA (Ali Syeda et al., 2020) and mRNA (Blagden
and Willis, 2011). Researchers have extensively investigated the
expression patterns of mRNAs and miRNAs, and many mRNAs
or miRNAs have been identified as prognostic markers for patients
with AML (Ge et al., 2019; Ibraheem et al., 2019; Elsayed et al., 2020).
In recent years, a new class of noncoding RNA (lncRNA) has
gradually become a research hotspot in various cancer fields (Ferrè
et al., 2016; Paraskevopoulou and Hatzigeorgiou, 2016; Qian et al.,
2019). RNA, which lacks protein-coding ability, is defined as
noncoding RNA, which accounts for >98% of the human gene
sequence. Approximately 90% of the noncoding sequences are
transcribed, producing numerous noncoding transcripts, in which
RNA with a length of more than 200 nucleotides is also known as
lncRNA (Jathar et al., 2017). Some studies have reported the
abnormal expression of lncRNAs in the occurrence and
development of AML and found that some lncRNAs could be
highly related to the prognosis (Garzon et al., 2014). Although some
previous studies have confirmed a series of differences in the
expression of lncRNAs in AML, the research on the value of
lncRNA in predicting the clinical prognosis of AML is still
limited. Except for our study, according to the expression and
mutation degrees of FLT3, DNMT3A, TP53 and other genes and
chromosome changes, cases are classified as low, middle and high
types; as a result, the survival time of patients was roughly estimated
(Infante et al., 2018). However, a good quantitative model to analyse

the survival of patients has not yet been established. Therefore, this
study attempted to construct a prognostic risk model of lncRNA in
patients with AML, to determine a potentially clinically applicable
lncRNA prognostic model and to examine its high repeatability and
practicability in different clinical groups.

Based on the mutation data of 149 samples, we used R language
to divide the patients into a high and a low mutation group.
Thereafter, differential lncRNA expressions of the high and low
mutation groups were screened. We screened out seven lncRNAs
related to prognosis, namely, AL645608.6, LINC01436, AL645608.2,
AC073534.2, LINC02593, AL512413.1, and AL645608.4, using
univariate Cox regression analysis and established the prognostic
risk model formula based on multivariate Cox regression. Among
them, the regression coefficient of LINC01436 was greater than 0,
which was negatively correlated with the survival time, whereas the
regression coefficients of two lncRNAs (AC073534.2 and
LINC02593) were less than 0, which were positively correlated
with the survival time. We extracted the regression coefficients of
lncRNAs through multivariate Cox analysis and constructed three
prognostic risk models composed of lncRNAs. Of the three
lncRNAs, LINC01436 has been reported in gastric cancer, lung
cancer and other diseases (Yuan et al., 2019; Lu et al., 2020; Xu et al.,
2020; Zhang et al., 2020). However, no studies have investigated
AC073534.2 and LINC02593. Furthermore, we used the prognostic
model to calculate the risk score of each sample according to the
median risk score. The sample was divided into high- and low-risk
groups. We used R language to draw relevant heat maps, ROC
curves and Kaplan–Meier curves. The ROC curve showed that the
prognostic model was stable for predicting the 1-year and 5-year
survival of patients with AML, indicating that the model has a good
predictive ability. Moreover, under different clinical characteristics,
theOS rate of the high-risk groupwas significantly lower than that of
the low-risk group, indicating that the prognostic model can
distinguish patients with different prognoses. Therefore, we are
certain that the prognostic model can be used as an independent
prognostic marker with a high clinical value.

FIGURE 12 | FISH staining in LINC01436, AC073534.2, and LINC02593 in AML cell lines HL-60, U937, MV4-11, and Kasumi-1 (original magnification ×630).
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However, this study has some limitations. First, our AML
sample size and clinical data are limited. Second, our research
results are preliminary, mainly based on a previously published
dataset for secondary mining and analysis and thus lacks
functional verification of lncRNAs. Therefore, further
prospective studies are needed to verify our findings.

In conclusion, we have developed a lncRNA prognostic model
that is significantly related to the prognosis of patients with AML.
This model can accurately stratify patients and help determine
whether patients are more active in treatment. Moreover, the
predictive ability of the prognostic model is not influenced by
clinicopathological factors such as age and sex; therefore, it has
good applicability. Compared with the known prognostic
biomarkers, the developed model is more convenient and
intuitive in predicting the prognosis of patients with AML. If
our prognosis model can be combined with the known
biomarkers of AML molecules like FLT3-ITD, C-KIT
mutation, et al. we can further screen high-risk groups and
guide the clinical formulation of individualised treatment
plans. Therefore, we believe that the prognostic model has a
wide application prospect.
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