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Abstract

Younger age at menarche (AAM) is associated with higher body mass index (BMI) for

young women. Considering that continuous trends in decreasing AAM and increasing BMI

are found in many countries, we attempted to assess whether the observed negative associ-

ation between AAM and young adult BMI is causal. We included 4,093 women from the

Korean Genome and Epidemiology Study (KoGES) and Healthy twin Study (HTS) with rele-

vant epidemiologic data and genome-wide marker information. To mitigate the remarkable

differences in AAM across generations, we converted the AAM to a generation-standard-

ized AAM (gsAAM). To test causality, we applied the Mendelian randomization (MR)

approach, using a genetic risk score (GRS) based on 14 AAM-associated single nucleotide

polymorphisms (SNPs). We constructed MR models adjusting for education level and vali-

dated the results using the inverse-variance weighted (IVW), weighted median (WM), MR-

pleiotropy residual sum and outliers test (MR-PRESSO), and MR-Egger regression meth-

ods. We found a null association using observed AAM and BMI level (conventional regres-

sion; -0.05 [95% CIs -0.10–0.00] per 1-year higher AAM). This null association was

replicated when gsAAM was applied instead of AAM. Using the two-stage least squares

(2SLS) approach employing a univariate GRS, the association was also negated for both

AAM and gsAAM, regardless of model specifications. All the MR diagnostics suggested sta-

tistically insignificant associations, but weakly negative trends, without evidence of con-

founding from pleiotropy. We did not observe a causal association between AAM and young

adult BMI whether we considered the birth cohort effect or not. Our study alone does not

exclude the possibility of existing a weak negative association, considering the modest

power of our study design.
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Introduction

There is good evidence to consider menarche as important for understanding young adult-

hood obesity [1, 2]. Menarche is a landmark in the female reproductive timespan. It is often

preceded by a weight growth spurt during adolescence. A decline in the age at menarche

(AAM) has been globally observed for the past 50 years [3–5] coinciding with the obesity epi-

demic. Girls that experienced early menarche have been observed more prone to overweight/

obesity [6]. Previous studies have shown that later spontaneous recovery of obesity established

in early life is not common [1, 7]. It is worth noting that, even in the context of dramatic

increase in childhood obesity since the 1990s [8], most of obese individuals reported their

onset of obesity as age of 17–18 [1]. Such evidence elicits that young adulthood (18–25 years

old) obesity, rather than childhood obesity, substantially influences obesity in later life. It also

aligns with the hypothesis that menarche as the marked event of female puberty which occurs

at an average age of 12 years, may cause obesity in young adulthood for females.

Mendelian randomization (MR) is an established epidemiological method to infer a causal

relationship between risk factors and health outcomes [9], by utilizing a genetic instrumental

variable (IV) that is robustly associated with the risk factor. Owing to the random independent

assortment of alleles during meiosis, genetic variants with biological effects on risk factors are

free from possible confounding factors. Moreover because the transmitted germline genome

cannot be affected by health outcomes, it should not be biased by reverse causality [9].

Given that the tendency toward a decrease in AAM is still in progress, identifying the causal

relationship between AAM and young adult obesity is crucial for obesity control [10, 11]. This

study aimed to assess the causal relationship between AAM and young adult body mass index

(BMI). In evaluating the causal association between AAM and young adult obesity, birth

cohort effects matter not only for the AAM, but for social determinants such as the length of

education. Thus, using these covariates without considerations of birth cohort effects may

result in biased estimations. For example, the average AAM decreased from 16.9 years for

women born between 1920–1925 and to 13.8 years for those born between 1980–1985 [3]. The

proportion of women with higher than upper-secondary education (corresponding to high

school in most countries) increased from < 5% for women born in 1926, to 95% for those

born in 1970 in South Korea [12]. Given the inverse association between education level and

the risk of young adulthood obesity [13, 14], this transitional change in education level may

confound the association between AAM and young adult BMI. To address the problem of

complex confounding structures, we attempted to introduce a generation-standardized esti-

mation for both AAM and the length of education, using a transgenerational approach. In this

study, we estimated the unconfounded causal association of AAM with young adult BMI

through the MR approach, using generation-standardized measures.

Methods

Study population and variables

The Korean Genome and Epidemiology study (KoGES, http://www.nih.go.kr/NIH/eng/main.

jsp) is a community-based prospective cohort study started in 2001, and comprised of 3 sub-

cohorts (rural, urban, Ansan-Ansung (KARE)) differing in residential areas of the participants

[15]. The Healthy Twin Study (HTS) is a nationwide twin-family cohort study which started in

2005 [16]. Both studies recruited participants of Korean ancestry based on a shared protocol to

allow pooled analysis. Detailed study protocols and information have been previously

described. From both studies, we only included female participants with epidemiological and

genotype information available.
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We defined AAM as age in years at the onset of menstruation. Year of birth, age at menar-

che, and the highest educational attainment, were obtained from self-reported questionnaires.

The highest level of educational attainment was categorized into 5 levels: “under elementary

school”, “elementary school”, “middle school”, “high school”, and “university/college or

higher”. Height measured at enrollment and self-reported body weight at 18–20 years were

used to calculate the young adulthood BMI (kg/m2). We restricted our analysis to a subset of

participants with information on young adulthood BMI. The differences in study variables

between the overall population (N = 10,000) and the subset with young adulthood BMI avail-

able (N = 4,903) were minimal (S1 Table). The protocol of this study is approved by the Insti-

tutional Review Board of Gangnam CHA Hospital (IRB NO: GCI-17-37).

Defining birth cohorts

We constructed birth cohorts to reflect changes in the distribution of AAM, which has a simi-

lar AAM distribution within the year of birth. For example, we started from the birth year of

1927, where the AAM under 14 years was 5.08%, and expanded the birth cohort to include the

next recent birth years to as far as the cumulative proportion of AAM under 14 years of the

birth cohorts was maintained between 5 and 6%. The end point of the birth cohort was selected

when EM at the K-birth year showed more than a 2% difference from that of the (K+1) birth

year. These steps were repeated until the last birth year resulted in four birth cohorts (1927–

1945, 1946–1969, 1970–1978, and 1979–2003) (S2 Table).

Calculating generation-standardized age at menarche (gsAAM) and

education

To control for the effect of different birth cohorts, we developed a generation-standardized

measure of AAM (gsAAM) and education level. We calculated the z-score of AAM taking

individual AAM minus average AAM of the birth year, divided by the standard deviation,

where both the averages and standard deviations of AAM were derived from a large popula-

tion data from the Korea National Health and Nutrition Examination Survey (KNHANES,

https://knhanes.cdc.go.kr/knhanes), 2001–2017.

We created an indicator for the relative level of education (“highly educated”) as a proxy for

socioeconomic status, to allow us to consider the generation gap in educational attainment (S3

Table). The relative definition of those highly educated within each cohort was varied across

birth cohorts: elementary school or higher for 1927–1945, high school or higher for 1946–

1969, university/college or higher for both 1970–1978 and 1979–2003 (S1 Fig).

Selecting genetic markers representing younger AAM

The KoGES and HTS participants were genotyped using Illumina Omni1 (KoGES, rural),

Affymatrix 6.0 (KoGES, urban; HTS) and 5.0 (KoGES, KARE) genotyping arrays. The single

nucleotide polymorphisms (SNPs) were filtered by following genotype quality control (QC)

criteria: (1) genotyping call rate >0.95 (2) minor allele frequency (MAF) >0.01, (3) P value in

Hardy–Weinberg equilibrium (HWE) testing >10e-6 and individual QC criteria: sample call

rate>0.9. Those after QC were imputed using the Korean data from Korean Reference

Genome (KRG) which initiated by Center of Genome Science (CGS) of Korea National Insti-

tuted of Health (KNIH) in 2012 [17] and East Asian (EAS) data from the 1,000 Genomes Proj-

ect Phase 3 (NCBI build 37) as the reference. We used IMPUTE 2.0 software to impute

variants that were not directly genotyped [18]. Only SNPs with INFO score larger than 0.6

were included.
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Among 367 SNPs reported to be associated with AAM from a previous study [19], 297 were

available in our genotype data, and 15 SNPs were replicated at a significance level of 0.05 with

directional consistency of association. One SNP, rs7132908, located at FAIM2, was excluded

because it showed a pleiotropic effect with adulthood BMI [20]. Finally, 14 SNPs were selected

to build the GRS representing earlier menarche: rs157877 (RXRG), rs643428 (SSBP3),

rs142058842 (NR4A2), rs4588499 (GABRG1), rs3113862 (SMARCAD1), rs1428120

(GALNT10), rs13233916 (TTC26), rs7115444 (C11orf67), rs4945266 (GAB2), rs4402316

(DLG2), rs7114175 (C11orf63), rs3764002 (WSCD2), rs10143972 (UNC79), rs12915845

(DET1) (S4 Table). Childhood BMI, a potential confounder of the effect of AAM on young

adulthood BMI, did not show any association at statistical significance (P< 1.0 x 10−5) with

the selected 14 SNPs according to the GWAS catalogue [21].

Statistical analysis

Validating MR assumptions. We tested whether each SNP included in the GRS and GRS

as a whole satisfied the assumptions of the MR method [22]. The underlying assumptions of

valid IVs are: 1) the IV has a significant association with the exposure; 2) the IV is not related

to any other confounders; and 3) the IV is only related to the outcome through the exposure.

F-statistics and R2 values were used to ensure that the genetic marker was strongly associated

with the risk exposure. Generally, an F-statistic larger than 10 is quoted to reduce the weak

instrument bias [23, 24]. The association between risk exposure and GRS quartiles was also

examined for convenience of interpretation. To test the second IV assumption of independent

association between the genetic IV and young adulthood BMI, the frequencies of potential

confounders per risk allele-increase were examined.

Conventional regressions and genetic IV-based analyses. For conventional epidemio-

logical analyses, linear regressions were performed to examine the relationship between AAM

and young adulthood BMI observationally. We constructed 4 different regression models with

varied groupings of birth cohort and education as follows:

Model 1: BMIyoung adult = AAMyear + Year of birth + Educational level + ℇ
Model 2: BMIyoung adult = AAMyear + Birth cohort (defined by AAM distribution) + Educa-

tional level (generation-adjusted) + ℇ
Model 3: BMIyoung adult = gsAAM+ Educational level + ℇ
Model 4: BMIyoung adult = gsAAM + Educational level (generation-adjusted) + ℇ
Birth cohort variables were treated as dummy variables in the regression models. This anal-

ysis was performed using R (The R Foundation, version 3.3.1). We investigated the causal

effect of AAM on young adulthood BMI using the two-stage least squares (2SLS) regression,

under an additive model assumption through the MR approach [25]. GRS was categorized

into quartiles in the first regression of 2SLS for convenience of interpretation. We applied the

same four models as in the conventional analyses. The standard error of the 2SLS regressions

was obtained by bootstrapping (1000 replications). All MR analyses were performed using

STATA version 14 (StataCorp LLC, College Station, Texas).

Implementing the MR analysis without considering pleiotropy effects could lead to bias. To

confirm that the IV shows a consistent association with the outcome without the condition of

exposure (horizontal pleiotropy), the adjusted MR method using summary data estimation:

weighted median(WM) and MR-Egger method using the R package ‘Mendelian Randomiza-

tion’ [26] and MR-PRSSO using the R package ‘MR-PRSSO’ were employed [27]. The inverse

variance weighted (IVW) method calculates the weighted mean using the inverse variance of

each SNP to minimize the variance effect [28]. IVW theoretically provides asymptotically

equal results from the 2SLS regression when each SNP is fully uncorrelated. The results from
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IVW are used as a reference compared to other adjusted MR methods. The WM method is a

robust estimator that provides consistent estimates even if up to 50% of IVs are invalid [29].

The MR-Egger method is based on Egger’s regression, which is used for adjusting publication

bias in meta-analyses [30]. The difference in the intercept term from the origin gives evidence

of the average pleiotropic effect in IV used in MR. The coefficient from the MR-Egger regres-

sion was used to explore whether the causal effect remains after adjusting for the pleiotropic

effect. Scatter plots of summary data estimation were used to graphically interpret the validity

of the slope estimates and the intercept of the MR-Egger regression. Cochran’s Q statistics

indicating heterogeneity of SNPs [31] were estimated.

To further investigate the influence of AAM on BMI-related traits, we performed additional

analyses for non-alcoholic fatty liver disease (NAFLD) and Homeostatic Model Assessment

for Insulin Resistance (HOMA-IR). Using the MR-Base (http://www.mrbase.org), a public

database and analytic platform of multi-instrument MR [32], the causal association of AAM

with NAFLD and HOMA-IR were investigated. Dataset for exposure AAM was selected from

GWAS-catalogue [21, 33] and those for NAFLD and HOMA-IR were from prior genome-

wide association studies [34–44]. Linkage disequilibrium (LD) clumping method was applied

in the process of selecting SNPs to be included. As in our primary analysis, IVW, WM and

MR-Egger method was used in two-sample MR analysis.

Results

In the three Korean cohort studies (KHANES, KoGES, HTS), the proportion of those who

reported AAM < 12 was 5–8% in the 1970s group and was 40% in the 1990s group. Mean

AAM decreased from 16.6 in women born in 1929–1945 to 12.4 in those born in 1979–1994

(Table 1). We tested the association of educational attainment with young adulthood BMI and

AAM (S5 Table and S3 Fig). Overall, AAM decreased with higher educational attainment

except the youngest generations (born in 1979―2003). Young adult BMI was lower with

higher education attainment groups. Young adulthood BMI was generally higher in the older

generations (P for trend < 0.01) (S4 Fig).

Assessment of the MR assumptions

We tested GRS to ensure that a higher GRS represents a younger AAM and thus functions as

an IV (Table 2). Both AAM in years and gsAAM changed by -0.08 and -0.04 as GRS increased

Table 1. Characteristics of study participants in the Korean Genome and Epidemiology Study (KoGES) and Healthy Twin Study (HTS), (n = 4,093 women).

Birth Cohort 1927–1945

(N = 690)

1946–1969

(N = 2,879)

1970–1978

(N = 367)

1979–2003

(N = 157)

P for

difference��
P for

trend���

Variables Mean/N (SD/%) Mean/N (SD/%) Mean/N (SD/%) Mean/N (SD/%)

Age at menarche, years 16.52 (1.95) 15.18 (1.86) 13.29 (1.35) 12.43 (1.48) <0.01 <0.01

Generation-standardized age at menarche

(z-score)

0.07 (1.05) -0.01 (1.03) -0.21 (0.92) -0.12 (0.98) <0.01 <0.01

Young adulthood BMI, kg/m2 21.84 (3.25) 20.49 (2.56) 19.45 (3.21) 20.61 (4.03) <0.01 <0.01

University graduation (%) 28 (4.01%) 443 (15.39%) 188 (51.23%) 85 (54.14%) <0.01 <0.01

Highly educated (%)� 438 (63.48%) 1665 (57.83%) 188 (51.23%) 85 (54.14%) <0.01 <0.01

SD, Standard deviation; BMI, Body Mass Index.

�Relatively higher education within the cohort, i.e. in 1929–1945, �elementary school graduation, in 1946–1969,�high school graduation, and in 1970–1994,

�university graduation.

��Statistical difference test was done with analysis of variance (ANOVA) test for continuous variables and chi-square test for categorical variables.

���Statistical trend test was done with linear regression for continuous variables and Cochran-Armitage trend test for categorical variables

https://doi.org/10.1371/journal.pone.0247757.t001
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by one unit (both P<0.01). The F-statistics of GRS on AAM was 57.52, indicating that this can

be strong IV for younger AAM. The associations between GRS and potential confounders

were close to null (S6 Table).

Association of AAM and young adulthood BMI

In conventional analyses, higher AAM in year was associated with lower young adulthood

BMI (coefficient: -0.05, 95% confidence intervals [CI]: -0.10–0.00; P = 0.04; Table 3). This asso-

ciation was not consistently observed in other models, including those that applied the

gsAAM, indicating that the results of conventional analysis could be confounded by how

adjustments were selected. In the 2SLS analysis, the associations of both AAM and gsAAM

with young adulthood BMI were not demonstrated. However, the results showed consistent

trend of negative estimates, in all types of model specifications (Fig 1).

Using the adjusted MR methods (WM, MR-Egger, and MR-PRSSO), we observed larger

negative estimates notwithstanding without statistical significances than that from observa-

tional studies (Table 4). The intercept estimated from the MR-Egger regression model for

AAM (intercept = -0.00, 95% CI: -0.18, 0.18) and gsAAM (intercept = 0.00, 95% CI: -0.18,

0.18) showed no difference from the origin, suggesting that the average pleiotropic effect of

SNPs used did not influence the results of the MR analysis. The scatter plot of genetic associa-

tion with risk factors and outcomes indicated no bias from pleiotropy (S5 Fig). As the

Cochran’s Q statistics estimated with 14 SNPs used for GRS indicated heterogeneity between

SNPs, we performed the same regression after excluding rs1428120, which showed heteroge-

neity with other SNPs (S7 Table). The adjusted MR result without rs1428120 was consistent

with the result showing heterogeneity.

We observed a null association between AAM and NAFLD/HOMA-IR which is consistent

with the MR result for adult BMI (S8 Table).

Table 2. The regression of AAM on genetic risk score of AAM, the Korean Genome and Epidemiology Study (KoGES) and Healthy Twin Study (HTS) (n = 10,000).

Coefficients per 1 unit-increase

[95% CI]

P F-statistics Coefficients per 1 quartile-increase

[95% CI]

P F-statistics

Age at menarche, years -0.08 [–0.10, -0.06] <0.01 57.52 -0.11 [–0.14, -0.07] <0.01 34.48

Generation-standardized age at menarche,

z- score

-0.04 [-0.05, -0.03] <0.01 54.13 -0.05 [-0.07, -0.03] <0.01 32.50

CI, confidence interval.

https://doi.org/10.1371/journal.pone.0247757.t002

Table 3. Association between age at menarche (AAM) and young adulthood body mass index (BMI) using observational and conventional MR analysis, the Korean

Genome and Epidemiology Study (KoGES) and Healthy Twin Study (HTS) (n = 4,093 women).

Observational analysis Conventional Mendelian Randomization (2SLS)

Coefficients [95% CI] P R2 Coefficients [95% CI] P R2

Model 1 -0.05 [-0.10, -0.00] 0.04 0.08 -0.18 [-0.91,0.56] 0.64 0.08

Model 2 -0.03 [-0.08, 0.02] 0.28 0.08 -0.20 [-0.95, 0.55] 0.59 0.08

Model 3 0.06 [-0.02, 0.15] 0.15 0.02 -0.30 [-1.85, 1.26] 0.71 0.02

Model 4 -0.003 [-0.09, 0.09] 0.93 0.03 -0.48 [-2.01, 1.04] 0.54 0.03

CI, confidence interval.

Column 1–3 is the result of Observational analysis of AAM and young adulthood BMI and column 4–6 is the result of 2SLS (conventional MR) analysis. Model 1:

BMIyoung adult = AAMyear + Year of birth + Education level + ℇ; Model 2: BMIyoung adult = AAMyear + Birth cohort (defined by AAM distribution) + Highly educated + ℇ;

Model 3: BMIyoung adult = gsAAM + Educational level + ℇ; Model 4: BMIyoung adult = gsAAM + Highly educated + ℇ.

https://doi.org/10.1371/journal.pone.0247757.t003
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Discussion

Our study suggests that younger AAM may not be causally associated with BMI in young

adulthood. The weak but consistently negative association between the AAM and young adult-

hood BMI in various MR sensitivity analyses, however, also might suggest a negative associa-

tion, given the relatively low study power. To reflect the evident secular changes in AAM and

educational attainment, we redefined birth cohorts, classifying the participants so that the

AAM distributions were similar across birth cohorts. The inverse relationship (earlier

Fig 1. Forest plot of observational analysis and Mendelian randomization analysis. Observational analysis, Obs; Mendelian randomization analysis, MR.

https://doi.org/10.1371/journal.pone.0247757.g001

Table 4. Result of adjusted MR method for exploring the association between age at menarche (AAM) and young adulthood body mass index.

AAM gsAAM

MR method Coefficients [95% CI] P-value Cochran’s Q (P value) Coefficients [95% CI] P-value Cochran’s Q (P value)

Conventional MR

IVW -0.71 [-1.71,0.30] 0.17 26.59 (0.01) -1.27 [-3.04, 0.50] 0.16 26.47 (0.01)

Adjusted MR

Weighted median (WM) -0.48 [-1.55,0.60] 0.38 NA -0.86 [-0.28,1.04] 0.38 NA

MR-Egger -0.72 [-3.40,1.93] 0.59 26.59 (0.01) -1.30 [-6.01, 3.46] 0.59 26.47 (0.01)

(MR-Egger intercept) 0.00 [-0.18,0.18] 0.99 0.00 [-0.18, 0.18] 0.99

MR-PRESSO -0.71 [-1.70,0.29] 0.18 NA -1.27 [-3.04, 0.50] 0.18 NA

IVW, Inverse variance weighted; CI, confidence interval; AAM, age at menarche; gsAAM, generation-standardized age at menarche.

IVW was used as a reference to compare results with adjusted MR methods.

https://doi.org/10.1371/journal.pone.0247757.t004
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menarche associated with higher BMI in young adulthood) reported in observational studies

may have been confounded by the secular change of AAM. This notion is supported by the

result of 2SLS analysis. Interpretations of the MR analysis requires caution because all the MR

models and their adjusted diagnostic models suggest weak but constantly negative associations

between AAM and young adulthood BMI. Considering the limited power of the study, we do

not conclude that a negative association exist between AAM and young adulthood BMI. Over-

all, our study suggests a null association, but ours does not exclude the possibility that AAM is

one of the determinants of young adulthood obesity, but at least it is not likely that AAM be a

major determinant even if so. While the relationships between early puberty and childhood

and/or post-pubertal obesity have been investigated, these have not been thoroughly explicated

to explain how birth cohort effects may influence the association. To the best of our knowl-

edge, this study is the first to consider generational differences in AAM in exploring the causal

association between AAM and young adulthood BMI.

The NAFLD and HOMA-IR are strongly associated with BMI [45, 46]. Also, several obser-

vational studies reported that earlier menarche is associated with a higher risk of NAFLD and

insulin resistance, independent of young-adult BMI [47, 48]. We tried to explore the causal

association of AAM and NAFLD/HOMA-IR in public database. The null association between

AAM and NAFLD/HOMA-IR was observed which indicates that AAM does not affect the

incident of NAFLD/high HOMA-IR even through obesity.

According to Gill et al. [49], earlier AAM was causally associated with higher adult BMI,

even pleiotropic SNPs that were also associated with childhood BMI were excluded. Yet, in

another MR study, the inverse association of AAM with BMI at age 18 years was negated when

adjusted for childhood BMI [50]. There is another evidence that childhood BMI roles as a con-

founder of effects of AAM on adulthood BMI [51, 52]. In the 1950s cohort study, the inverse

association of AAM with adulthood obesity was not explained by the confounding effect of

early childhood BMI [53] and was not replicated in the Australian cohort [54]. The effect of

childhood BMI on AAM is somewhat evident but it is still unclear that earlier AAM is one of

the cause of young adulthood obesity [55, 56]. The inconsistency between studies may be

attributed to the different population distributions in adulthood BMI and AAM.

Given that the trend of AAM in Korea over generations are more dramatically decreased

compared to that in western countries and similar patterns are observed worldwide in genera-

tional prevalence of childhood obesity [57–59], generational trend of AAM in Korea is not

thought to be only caused by increasing childhood obesity. The gap between the trend of AAM

and childhood obesity make it necessary to consider the generation effect in the study of causal

association between AAM and young adulthood BMI.

The impact of demographic changes over time at a population level has not been explored

in previous studies [10, 60]. In the setting of rapid socioeconomic changes, such as in Korea,

the historical association between young adulthood obesity and early menarche would not

have been evident. We postulated that old Korean women who survived the Korean War had

experienced a delayed onset of menarche due to the stressful circumstances, despite most hav-

ing sufficient body weight to initiate the menstrual cycle [61]. In contrast, in the younger gen-

erations, social pressure to maintain a low or normal body weight may have contributed to an

overall lower average young adulthood BMI, compared to older women [62, 63]. Individual

socioeconomic factors may also confound the association between the timing of menarche.

Moreover, SES factors have changed across generations, which further necessitates decipher-

ing the generation effect.

There are a few limitations to this study. First, there may be possibility of recall biases.

Those who were obese at the time of the survey might have overestimated their weight in

childhood, assuming that they maintained a similar body shape in the past. However, a
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number of previous studies revealed that self-reported past body weights can provide reliable

estimates independent of current weight status [20, 64]. Second, a potential pleiotropic effect

may have existed between AAM and young adulthood BMI via residual associations from

SNPs not included in the study. As genetic architecture of childhood adiposity and AAM is

highly overlapped [19], using subset of AAM SNPs which is only associated with AAM not

with childhood adiposity as IV does not assure that the confounding effects of childhood obe-

sity is fully removed. Although we examined most of the established genes and the presence of

pleiotropy of IV, there could be a possibility of remaining effect by other genes that were not

included in the study. However, we believe this effect would be minimal given the high genetic

homogeneity of the Korean population [65]. Third, although our MR results showed consis-

tent negative trend, the association was null and with wide CIs. Both limitations in the size and

the strength of the association have resulted in the modest study power, so that further studies

are required to confirm the association. Lastly, childhood BMI was not available and could not

be included in our analysis. Although we believe the potential confounding role of childhood

adiposity was minimized with the use of IV, future studies may benefit from including the

information of childhood adiposity.

In conclusion, our findings alone do not exclude the possibility that AAM is one of the

determinants of young adulthood obesity, but at least it is not likely that AAM be a major

determinant even if so.
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tion of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological can-

cers. PLoS Genet. 2013; 9(1):e1003225. Epub 2013/02/06. https://doi.org/10.1371/journal.pgen.

1003225 PMID: 23382691; PubMed Central PMCID: PMC3561084.

43. Mayerle J, den Hoed CM, Schurmann C, Stolk L, Homuth G, Peters MJ, et al. Identification of genetic

loci associated with Helicobacter pylori serologic status. Jama. 2013; 309(18):1912–20. Epub 2013/05/

09. https://doi.org/10.1001/jama.2013.4350 PMID: 23652523.

44. Jensen RA, Sim X, Li X, Cotch MF, Ikram MK, Holliday EG, et al. Genome-wide association study of ret-

inopathy in individuals without diabetes. PLoS One. 2013; 8(2):e54232. Epub 2013/02/09. https://doi.

org/10.1371/journal.pone.0054232 PMID: 23393555; PubMed Central PMCID: PMC3564946.

45. Ahmed ML, Ong KK, Dunger DB. Childhood obesity and the timing of puberty. Trends in endocrinology

and metabolism: TEM. 2009; 20(5):237–42. Epub 2009/06/23. https://doi.org/10.1016/j.tem.2009.02.

004 PMID: 19541497.

46. Chen G, Liu C, Yao J, Jiang Q, Chen N, Huang H, et al. Overweight, obesity, and their associations with

insulin resistance and β-cell function among Chinese: a cross-sectional study in China. Metabolism:

clinical and experimental. 2010; 59(12):1823–32. Epub 2010/07/27. https://doi.org/10.1016/j.metabol.

2010.06.009 PMID: 20655552.

47. Mueller NT, Pereira MA, Demerath EW, Dreyfus JG, MacLehose RF, Carr JJ, et al. Earlier menarche is

associated with fatty liver and abdominal ectopic fat in midlife, independent of young adult BMI: The

CARDIA study. Obesity (Silver Spring). 2015; 23(2):468–74. Epub 12/17. https://doi.org/10.1002/oby.

20950 PMID: 25521620.

48. Mueller NT, Duncan BB, Barreto SM, Chor D, Bessel M, Aquino EML, et al. Earlier age at menarche is

associated with higher diabetes risk and cardiometabolic disease risk factors in Brazilian adults: Brazil-

ian Longitudinal Study of Adult Health (ELSA-Brasil). Cardiovasc Diabetol. 2014; 13:22–. https://doi.

org/10.1186/1475-2840-13-22 PMID: 24438044.

49. Gill D, Brewer CF, Del Greco MF, Sivakumaran P, Bowden J, Sheehan NA, et al. Age at menarche and

adult body mass index: a Mendelian randomization study. International journal of obesity (2005). 2018;

42(9):1574–81. Epub 2018/03/20. https://doi.org/10.1038/s41366-018-0048-7 PMID: 29549348.

50. Bell JA, Carslake D, Wade KH, Richmond RC, Langdon RJ, Vincent EE, et al. Influence of puberty tim-

ing on adiposity and cardiometabolic traits: A Mendelian randomisation study. PLoS medicine. 2018; 15

(8):e1002641. Epub 2018/08/29. https://doi.org/10.1371/journal.pmed.1002641 PMID: 30153260;

PubMed Central PMCID: PMC6112630 following competing interests: GDS is a member of the Editorial

Board of PLOS Medicine. MVH has collaborated with Boehringer Ingelheim in research, and in accor-

dance with the policy of The Clinical Trial Service Unit and Epidemiological Studies Unit (University of

Oxford), did not accept any personal payment. There are no further interests to declare.
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