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The maternal innate immune system plays an important role both in normal pregnancy as 
well as hypertensive disorders of pregnancy including preeclampsia (PE). We propose four 
pathways that involve excessive innate immunity that lead to most forms of PE. Pre-existing 
endothelial dysfunction plus pregnancy leads to an excessive innate immune response 
resulting in widespread inflammation, placental and renal dysfunction, vasoconstriction, 
and PE. Placental dysfunction due to shallow trophoblast invasion, inadequate spiral artery 
remodeling, and/or low placental perfusion initiates an innate immune response leading to 
excessive inflammation, endothelial and renal dysfunction, and PE. A heightened innate 
immune system due to pre-existing or acquired infections plus the presence of a paternally 
derived placenta and semi-allogeneic fetus cause an excessive innate immune response 
which manifests as PE. Lastly, an abnormal and excessive maternal immune response to 
pregnancy leads to widespread inflammation, organ dysfunction, and PE. We discuss the 
potential role of innate immunity in each of these scenarios, as well as the overlap, and 
how targeting the innate immune system might lead to therapies for the treatment of PE.
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Preeclampsia and innate immunity

Preeclampsia (PE) is a syndrome in which hypertension and proteinuria or end-organ damage 
develops during pregnancy. PE, which affects 5–8% of all pregnancies, usually manifests as early onset 
(<34 weeks) or late onset (≥34 weeks) and is the leading cause of preterm births. While PE typically 
resolves post-partum, there is a strong connection between PE and an increased risk of developing 
cardiovascular disease later in life. In pretty much all studies of women with PE, there are increased 
levels of pro-inflammatory immune cells and cytokines, decreased levels of regulatory immune cells 
and cytokines, and/or the ratio of pro-inflammatory to anti-inflammatory immune cells and cytokines 
is increased. This strongly implicates the maternal immune system as a major contributor to the 
pathogenesis of PE; however, whether excessive activation of the maternal immune system initiates 
the development of PE or participates at a later stage in PE or both is unclear.

The maternal innate immune system acts as both a protector and effector during pregnancy. 
As protector, innate immune cells including macrophages, dendritic cells, natural killer (NK) cells, 
neutrophils, and γδ T cells are upregulated during pregnancy in order to protect the mother from 
pathogens while her adaptive immune system is dampened so as not to elicit a specific immune 
response toward the fetus. As effector during normal pregnancy, innate immune cells are important 
in blastocyst implantation, placentation, trophoblast invasion, and spiral artery remodeling and 
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the cellular regulation and repair of the tissues involved in these 
processes. They are also involved in fetal tolerance throughout 
pregnancy as well as parturition. However, innate immune cells 
can switch from a tolerogenic, anti-inflammatory phenotype to a 
cytotoxic, pro-inflammatory phenotype upon the sensing of patho-
gens or endogenous danger signals such as RNA, DNA, heat shock 
proteins, uric acid, tumor necrosis factor, etc. via their expression 
of highly conserved pattern recognition receptors. As cytotoxic 
effector cells, innate immune cells create a state of oxidative stress 
by releasing reactive oxygen/nitrogen species (ROS/RNS), inflam-
mation via cytokine release and activation of adaptive T and B cells, 
and placental ischemia via reduced angiogenesis and increased 
vasoconstriction, in an attempt to cause cell death, fibrosis, and 
rejection of the fetus. We believe that the timing and level of innate 
immune system activation during pregnancy corresponds to not 
only the severity of PE but also pregnancy outcome.

Does excessive activation of the maternal innate immune 
system initiate the development of PE, participate at a later stage, 
or both? We believe the answer is both. In this review, we present 
evidence that excessive innate immunity during pregnancy can 
lead to the clinical manifestations of PE regardless of the initiating 
pathophysiology which can be divided into four pathways.

Four Pathways involving innate immunity 
in the Pathogenesis of Preeclampsia

Based on known risk factors for the development of PE as well 
as experimental and circumstantial clinical evidence, we propose 
four pathways involving excessive innate immune system activa-
tion that can lead to PE. Two pathways consist of excessive innate 
immunity in response to abnormal physiology which in turn leads 
to inflammation, angiogenic imbalance, endothelial/placental/
renal dysfunction, and PE. The other two pathways consist of 
heightened or abnormal innate immunity prior to and/or during 
pregnancy leading to excessive inflammation, angiogenic imbal-
ance, endothelial/placental/renal dysfunction, and PE. The four 
pathways are illustrated in Figure 1.

endothelial dysfunction, Pregnancy, and 
innate immunity

The first pathway involves pre-existing endothelial dysfunction that, 
when coupled with the adaptations of pregnancy, is not sufficient to 
provide blood flow to the appropriate tissues. Pregnancy is considered 
a physiological stress test and the low-grade inflammation evident in 
the vasculature of obese women, women >35 years of age, women 
with either diabetes mellitus type I or II (T1DM and T2DM), and 
hyperlipidemia starts the mother off in a predicament. The increased 
volume, cellular metabolic activity, and tissue demands of pregnancy 
all strain the dysfunctional endothelium of the maternal systemic 
and reproductive vasculature and elicit further damage leading to 
enhanced activation and recruitment of innate immune cells and 
an augmented inflammatory immune response.

Obesity is a known risk factor for PE, but the mechanisms are 
not yet known. Bodnar and colleagues studied the occurrence of PE 
in women who were divided into groups based on their body mass 

index (BMI) and they found a correlation between high pregnancy 
BMI and risk for both mild and severe PE (1). This corroborates 
another study that searched for different risk factors associated 
with severe PE. Stone et al. retrospectively compared women with 
PE versus normotensive pregnant women and found that the only 
risk factors related to severe PE were a history of the disease and 
severe maternal obesity (2). A question that arises is whether the 
pregnant women have a high BMI before becoming pregnant or 
gained the weight during pregnancy and whether or not that has an 
impact on the development of PE. Increased pre-pregnancy BMI 
was found to be significantly associated with an increase in the risk 
for PE in a population-based cohort study done by Ros and col-
leagues (3). They found that 9.1% of overweight (BMI = 26.1–29.0) 
and 12.9% of obese (BMI > 29.0) women developed PE compared 
to 3.1% of underweight (BMI < 19.8) and 4.5% of normal weight 
(BMI = 19.8–26.0) women. The women in the obese category had 
an odds ratio of 5.19 for PE. Another study done by Bianco et al. 
looked at morbidly obese (BMI > 35) pregnant women and found 
that these women were more likely to develop PE compared to 
non-obese women (4). They also reported that gestational weight 
gain did not affect the risk of developing PE. Saftlas et al. studied 
the difference between pre-pregnancy BMI and gestational weight 
gain and whether either one caused an increased risk of developing 
PE (5). They concluded that women who were considered obese 
before pregnancy had a higher risk of PE. In contrast, women who 
gained more weight than expected during pregnancy did not have 
an increased risk for PE; however, they did have a higher risk of 
developing transient hypertension. Gestational weight gain does 
not seem to contribute much to the risk of developing PE compared 
to pre-pregnancy obesity, as it is not always associated with an 
increased BMI and thus is not tightly linked to PE (6). Morbid 
obesity is highly associated with endothelial dysfunction. Mauricio 
and colleagues stated that there are many contributions to endothe-
lial dysfunction in obese patients, but the most outstanding factors 
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included diminished bioavailability of nitric oxide, oxidative stress, 
chronic inflammation, increased amounts of vasoconstrictors, and 
decreased amounts of vasodilators in the body (7). Women with 
a higher BMI begin pregnancy with an increased blood volume, 
cardiac output, and blood pressure as well as chronic inflammation 
and endothelial dysfunction which in turn may cause PE when 
these become exacerbated during pregnancy. We propose that this 
occurs when the innate immune system is excessively activated by 
danger signals stemming from the recurring endothelial injury 
and dysfunction. Innate immune system activation then augments 
the inflammation, oxidative stress, and vasoconstriction which 
manifests as PE. Experimental evidence supports this contention 
as a loss of nitric oxide, vascular endothelial growth factor (VEGF), 
or transforming growth factor beta (TGFβ) bioavailability during 
pregnancy as well as ingesting a high-fat diet can induce PE-like 
features in animals (8–11).

Several studies have reported a correlation between obesity 
and neutrophil infiltration of the systemic vasculature in preg-
nant women. Neutrophils help protect the host from infection 
by producing ROS/RNS as well as proteolytic enzymes that are 
helpful in fighting infection, but that can sometimes be toxic to 
the host tissue as a part of a “by-stander” type injury. Leik and 
Walsh reported that neutrophils act as carriers of oxidative stress 
from the placenta to the maternal vasculature by adhering to the 
endothelium (12). They biopsied highly vascularized subcutane-
ous fat at the time of cesarean section from normal pregnant and 
women with PE and stained for interleukin (IL)-8, intercellular 
adhesion molecule-1 (ICAM-1), and cluster of differentiation 
66b (CD66b). There was a greater amount of staining for IL-8, an 
inflammatory marker, observed in the vascular smooth muscle and 
endothelial layers of women with PE. This represented the migra-
tion of neutrophils from the circulation to the vascular smooth 
muscles because neutrophils tend to travel on a concentration 
gradient toward increasing concentrations of IL-8. ICAM-1 was 
found on the endothelium in all groups, but only in the vascular 
smooth muscle layer of the PE group which supports the idea that 
inflammation affects the vascular smooth muscle cells of women 
with PE. Levels of CD66b were significantly greater in women with 
PE suggesting that there were more neutrophils present. There were 
also more vessels containing adhered and flattened neutrophils 
on the endothelium in women with PE. This connection between 
neutrophils and inflammation could be one of the links between 
obesity, innate immunity, and PE.

Overweight and obese women are more likely to be diagnosed 
with chronic disease risk factors such as hypercholesterolemia 
which further complicates their pregnancies. Elevated levels of tri-
glycerides (TG) and low density lipoproteins (LDL) are present in 
many women with PE suggesting that women with hyperlipidemia 
may be at risk for developing PE. The main focus of concern is 
high levels of TGs in the body. Hubel et al. found that women with 
PE had significantly higher amounts of TG in their serum, but the 
high density lipoproteins (HDL) and LDL concentrations did not 
differ between women with PE and normal pregnant women (13). 
Sattar et al. produced similar findings and both groups suggest that 
the oxidation of TGs play a role in the development of endothelial 
dysfunction in women with PE (14). According to Granger et al., 
the significant increase in TG in women with PE correlates with an 

increase in small dense LDLs (15). Fatty acids serve as substrates 
for lipid peroxidation which is also significantly increased in 
women with PE. ApoC3 transgenic mice, which exhibit abnormal 
fatty acid metabolism, display PE-like features (16–18). Oxidation 
of lipids in the body can directly cause endothelial dysfunction as 
well as act as danger signals that activate the innate immune system 
which further worsens endothelial injury. Xu and colleagues found 
the pro-inflammatory innate immune system receptor TLR4 in 
lipid-rich, macrophage-infiltrated atherosclerotic areas of humans 
and apolipoprotein E deficient mice (19). They also discovered that 
TLR4 is upregulated by oxidized LDL in cultured macrophages. 
Tuten et al. investigated the relationship between polymorphisms 
in lectin-like oxidized low-density lipoprotein receptor (LOX-1) 
genes and circulating sLOX-1 and oxLDL levels and the risk of 
PE (20). They found that certain polymorphisms of the LOX-1 
gene (LOX-1 3′UTR188C>T and K167N) and high plasma levels 
of sLOX-1 were significantly associated with an increased risk of 
developing PE. Sankaralingam et al. reported an upregulation of 
LOX-1 and arginase in the vasculature of women with PE which 
can contribute to oxidative stress (21, 22). The mechanism of how 
this occurs is still unclear. However, they found that methylglyoxal, 
which is involved in vascular complications of diabetes mellitus 
and the development of hypertension, is a possible factor that 
affects LOX-1 and arginase because it is able to induce oxidative 
stress in vascular cells. Another finding by Zhang and colleagues 
suggests that LOX-1 accumulation may contribute to the devel-
opment of PE by promoting sFlt-1 production in trophoblasts 
(23). This group was able to inhibit LOX-1 and protect against 
oxidative stress-mediated trophoblast dysfunction. We believe 
that hyperlipidemia, excessive lipid oxidation, and endothelial 
dysfunction coupled with a persistent innate immune response 
during pregnancy can elicit PE in some women.

A chronic disease that can result from obesity and hyper-
lipidemia is T2DM. T2DM is characterized by insulin resistance 
which is usually intensified by pregnancy thus complicating 
maternal health. An outcome analysis of pregnancies in women 
with T2DM showed that diabetic women were diagnosed with 
PE two times more than non-diabetic women (24). Garner et al. 
performed a prospective controlled study comparing the incidence 
of PE and maternal–fetal outcome in diabetic pregnancies and 
non-diabetic pregnancies (25). Diabetic women were 9.9% more 
likely to develop PE compared to 4.3% in non-diabetic pregnant 
women. PE also became more prevalent with the increasing 
severity of diabetes. One might ask whether there is a difference 
between the prevalence of PE in T1DM and T2DM. Cundy et al. 
compared pregnant women with T1DM and T2DM and found that 
the incidence of hypertension was similar, but the subgroups of 
hypertension were different (26). Women with T2DM were more 
inclined to have chronic hypertension whereas women with T1DM 
were more frequently diagnosed with PE. Up to 39% of pregnant 
women with T1DM are affected by PE. This could be explained 
by the hyperglycemia causing endothelial dysfunction in the 
maternal and placental vessels prompting innate immunity and 
the development of PE (27, 28). There are many speculations as to 
how hyperglycemia affects endothelial cell function, but the ideas 
that are most prevalent are that hyperglycemia causes the activa-
tion of the polyol pathway, the activation of protein kinase C, and 
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increases oxidative stress (29). These different pathways seem to 
overlap in certain aspects so they are considered to work together 
in some ways to diminish endothelial cell function. Hyperglycemic 
patients also tend to exhibit increased innate immunity causing 
inflammation. Liu et al. examined the effects of high glucose on 
macrophages and found that proliferation increased with greater 
concentrations of glucose possibly due to increased CSF-1 receptor 
expression (30). Increased macrophages and macrophage polariza-
tion to pro-inflammatory M1 cells result in inflammation because 
of their innate immune system activity (31). The deteriorating 
endothelial dysfunction and innate immune system activation due 
to hyperglycemia may be sufficient in some women to cause PE.

Advanced maternal age (AMA; 35 years or older) is considered 
another risk factor for PE. In the United States, the risk of PE 
increases by 30% every year beyond 34 (32). Little is known as to 
why PE occurs more often in older pregnant women but there has 
been some speculation. Bianco and colleagues found that out of 
1,404 pregnant women, older gravidas were more likely to develop 
PE which correlated with other serious pregnancy related diseases 
(33). Lee et al. studied the prevalence of PE in an Asian population 
and found that women above the age of 34 years were more likely 
to develop PE (34). Dorjgochoo and colleagues measured in vivo 
lipid peroxidation and found that levels of a biomarker significantly 
increased with age in middle-aged and postmenopausal women 
(35). They also found that a marker for oxidative stress was 
positively associated with age. Csiszar and colleagues suggest that 
age-related oxidative stress may promote vascular inflammation 
and endothelial dysfunction (36). Sorescu et al. found that increased 
expression of NOX4/NADPH oxidase (ROS producing enzyme) 
correlated positively with vascular superoxide production and 
atherosclerosis and inflammation in aging humans (37). There is 
also emerging data suggesting that the innate immune system is 
upregulated during aging (38). This supports the notion that the 
innate immune system is involved in inflammation, endothelial 
dysfunction, and PE during AMA pregnancy.

Pregnancy, Placental dysfunction, and 
innate immunity

The second pathway involves placental dysfunction leading to 
innate immune system activation and resulting in inflammation, 
endothelial/renal dysfunction, and PE. Danger signals including 
RNA, DNA, heat shock proteins, uric acid, tumor necrosis fac-
tor, and others released from the placenta “tell” the mother that 
the placenta either did not form properly or is not functioning 
adequately (39). This would lead to fetal rejection as the mother 
attempts to terminate the pregnancy and save herself. As in solid 
organ transplant rejection, the result of innate immune system acti-
vation toward an organ results in innate and adaptive immune cell 
infiltration, inflammation, decreased angiogenesis, and reduced 
perfusion in an effort to cause ischemia, fibrosis, and cell death. It 
has been suggested that the severity of PE is associated with how 
strong or weak the innate immune response is.

Placental dysfunction including shallow trophoblast invasion, 
deficient spiral artery remodeling, and low placental perfusion are 
known to be involved in the development of PE; however, the root 

of this problem is still unknown (40, 41). In normal pregnancy, 
blastocysts latch on to the maternal decidua then the cytotropho-
blast cells (CTBs) proliferate and create extravillous trophoblasts 
on the very tip of their columns. These cells invade the decidua and 
differentiate into either endovascular or interstitial trophoblasts. 
While the interstitial trophoblasts embed themselves into the inner 
myometrium, the endovascular trophoblasts, derived from the 
male, start migrating toward the maternal spiral arteries. At around 
10–12 weeks of gestation in women the trophoblasts break down 
the maternal vessel walls which create low-resistance vessels to 
maintain sufficient placental perfusion. When this process does not 
progress successfully, PE has been shown to develop. This means 
that the maternal innate immune system has to allow the perfect 
interaction between the paternally derived trophoblasts and the 
maternal tissue for proper invasion. Different studies have looked 
into the cause of trophoblast invasion failure.

Zhou et al. suggests that in normal pregnancies, in order for 
the CTBs to invade the uterine interstitium and vasculature the 
CTBs have to alter their adhesion receptor phenotype to model 
the maternal endothelial cells they are to replace (42). In PE 
pregnancies this modification is thought to not occur. CTBs from 
normal pregnant women and CTBs from women with PE were 
examined for whether or not they expressed vascular cell adhe-
sion molecule (VCAM-1) and platelet-endothelial cell adhesion 
molecule (PECAM-1) along with other integrins and cadherins 
that are characteristic of endothelial cells and certain leukocytes. 
They found that VCAM-1 was not found on the villous CTBs but 
on the CTBs within the uterine wall of normal pregnant women. 
PECAM-1 was expressed on the interstitial and endovascular 
CTBs in normal pregnant women; however, neither VCAM-1 nor 
PECAM-1 were found on CTBs in women with PE. Coukos et al. 
reported that PECAM-1 is present in the trophoblast-endothelium 
interaction which suggests that PECAM-1 is an important part 
of proper trophoblast invasion found in normal pregnancies 
(43). They found that certain trophoblasts express PECAM-1, 
suggesting that there is a subpopulation that is required for the 
endovascular differentiation pathway.

If this trophoblast invasion does not occur properly then danger 
signals are released from the placenta which are detected by the 
local and maternal systemic innate immune system and elicit 
a response from innate immune cells including macrophages, 
dendritic cells, NK cells, neutrophils, and γδT cells (39). Once 
these cells are activated excessive inflammation leads to endothelial 
dysfunction and PE. We and others have reported that the innate 
immune system receptors TLR3, TLR4, TLR7, and TLR8 are 
increased significantly in placentas of women with PE (44, 45). 
Additionally, TLR9 activation by mitochondrial DNA/fetal DNA 
or their mimetics during pregnancy in rodents can also cause 
detrimental pregnancy outcomes (46, 47). This supports the notion 
that when trophoblast invasion fails danger signals are released 
that activate the innate immune system.

If placental trophoblasts invade correctly but the maternal spiral 
arteries do not remodel in a sufficient manner there is also a chance 
of developing PE. Normal pregnancies are characterized by the 
formation of large arterio-venous shunts whereas during PE there 
are minimal shunts resulting in narrower uterine arteries (48). For a 
normal pregnancy to occur, it is essential that the spiral arteries adapt 
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to the placental invasion by dilating the distal segment to ensure the 
delivery of large amounts of blood to the placenta at an appropriate 
rate and pressure. When there is improper remodeling the spiral 
arteries are constricted which results in faster output of blood causing 
the rupturing of anchoring villi as well as the dislodging of tropho-
blastic micro-particulate debris from the villous surface leading to 
maternal endothelial and immune cell activation. Finally, a reduction 
in blood transit time impairs oxygen exchange. During normal spiral 
artery remodeling, the surrounding smooth muscle loses its elasticity, 
but in PE the smooth muscle constricts thus reducing blood supply 
to the placenta. Singh and colleagues reported that pregnant mice 
lacking complement component C1q, necessary for trophoblast 
invasion and spiral artery remodeling, exhibit many features of PE 
supporting a role for innate immunity in placentation that, when 
deficient, can lead to low placental perfusion, innate immune system 
activation, inflammation, angiogenic imbalance, endothelial/renal 
dysfunction, and PE (49). In severe cases, the immunity, inflamma-
tion, angiogenic imbalance, and endothelial dysfunction can cause 
fibrosis of the uterine wall leading to fetal rejection.

infections, innate immunity, and 
Pregnancy

The third pathway involves innate immune system activation in 
response to infections acquired before or during pregnancy coupled 
with the higher sensitivity of the innate immune system during 
pregnancy. We propose that this “double hit” immune response 
exceeds a certain threshold in some women and the excessive 
pro-inflammatory and oxidative state then affects the vasculature, 
placenta, and kidneys. It has been reported that bacterial and viral 
infections significantly increase the risk of developing PE (50). 
Chronic subclinical infections are suggested to be a probable 
cause of inflammation in women that develop PE and that early 
treatment of vaginal and urinary infections reduces the incidence 
of developing PE (51). Another study corroborated these findings 
reporting that not only urinary tract infections are associated with 
an increased risk of PE, but also periodontal infections as well (52).

Highly conserved pattern recognition receptors including TLRs, 
NOD-like receptors (NLRs), and RIG-like receptors (RLRs) detect 
various parts of bacteria and upon receptor activation induce an 
innate immune response. For TLRs, bacterial lipoproteins are 
detected by TLR1, bacterial peptidoclycans and lipoteichoic acid of 
Gram-positive bacteria are detected by TLR2, heat shock proteins 
and lipopolysaccharide of Gram-negative bacteria are detected 
by TLR4, bacterial flagellin is detected by TLR5, mycoplasma is 
detected by TLR6, unmethylated CpG DNA is detected by TLR9, 
and a specific bacterial ribosomal RNA sequence is detected by 
TLR13, all of which reside on the surface of maternal immune 
and non-immune cells as well as cells in the uteroplacental unit. 
Activation of these TLRs leads to a rapid anti-bacterial immune 
response for pathogen clearance followed by adaptive immune 
system activation. While direct cause-and-effect studies in women 
showing that bacterial infections induce PE are obviously lacking, 
there is evidence that bacterial infections are highly associated with 
the development of PE and experimentally can elicit PE in rodents.

Amarasekara and colleagues reported that 12.7% of placentas 
from women with PE were positive for bacteria whereas all 

placentas from normotensive women were negative (53). Bacteria 
found to be present in the placentas of women with PE included 
Bacillus cereus, Listeria, Salmonella, Escherichia, Klebsiella pneu-
monia, Anoxybacillus, Variovorax, Prevotella, Porphyromonas, and 
Dialister. Periodontal infections from Porphyromonas gingivalis, 
Eikenella corrodens, and Micromonas micros were also found 
more often in women with PE (51, 54). Additionally, placental 
TLR4 expression is increased in women with PE compared to 
normotensive women (55, 56). While not all studies report a 
significant association between bacterial infection and PE, many 
do and further suggest that inflammation from chronic subclinical 
infection rather than acute infection or reinfection is associated 
with the development of PE (50). Experimentally, endotoxin/LPS 
given to pregnant rats and mice were able to induce PE-like features 
by inducing excessive inflammation (16, 57). Additionally, TLR9 
activation by CpG oligonucleotides during pregnancy in rats can 
also elicit PE-like features (47). While these animal studies exam-
ined the effects of acute bacterial infection on pregnancy, studies 
in which animals are chronically infected prior to pregnancy are 
needed. Overall, these findings support the notion that bacterial 
infection and subsequent innate immune receptor activation may 
lead to excessive inflammation and PE in some women.

Other TLRs, NLRs, and RLRs detect viruses and upon ligation 
also induce an innate immune response. For TLRs, maternal and 
uteroplacental cells contain TLR3 which recognizes dsRNA and 
TLR7/8 which recognizes ssRNA in addition to TLR9 and TLR13 
which also recognize patterns of DNA viruses. Activation of these 
TLRs induces a rapid anti-viral immune response mainly mediated 
by type I interferons and also leads to adaptive immune system 
activation. Like bacterial infections, there is circumstantial evidence 
associating viral infections and PE. These include adeno-associated-
virus-2, parvovirus, cytomegalovirus, and herpes simplex virus. 
Other viruses that may be associated with PE include rhinovirus, 
reovirus, enterovirus, coxsackievirus, rhabdovirus, paramyxovirus, 
orthomyxovirus, and picornavirus. We have reported that TLR3, 
TLR7, and TLR8 immunoreactivity is increased in placentas of 
women with PE compared to normotensive women along with 
markedly increased staining for placental dsRNA (44). We have 
also discovered that maternal innate immune system activation 
using TLR3 or TLR7/8 agonists induces PE-like features in rats 
and mice and that treatment with the immunoregulatory cytokines 
IL-10 and IL-4 can prevent these effects (44, 58–62). Supportive of 
this innate immunity-PE pathway is that the induction of PE-like 
features by viral mimetics in rodents is pregnancy-dependent and 
is associated with increased pro-inflammatory immune cells and 
cytokines and excessive inflammation. As mentioned previously, 
TLR9 activation also induces PE-like features in rats (47). Future 
studies examining whether these various pathogens and others can 
directly induce PE in animals as well as testing for these pathogens 
early in pregnant women will help define the connection between 
infections and the development of PE.

Abnormal innate immunity to Pregnancy

The fourth pathway involves an exaggerated maternal immune 
activation relative to a normal pregnancy. Supportive of this 
mechanism are the findings that women with a personal or familial 
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history of autoimmune disease are at a significantly higher risk of 
developing PE. Each person has individualized immune responses 
as determined by the amount and type of major histocompatibility 
complex (MHC) molecules expressed on their cells. Women with 
a hyperactive innate immune system would initiate an exagger-
ated immune response to the cellular necrosis that occurs during 
implantation and placentation as well as to the fetal and paternal 
antigens. This typically manifests not only as excessive inflamma-
tion but also eventually by the presence of autoantibodies against 
various proteins contributing to the development of PE.

Classical studies showing that reduced exposure to paternal 
antigens prior to pregnancy or in vitro fertilization increases the 
risk of PE support the notion that maternal tolerance to the fetus 
is necessary for a normotensive, successful pregnancy. Maternal 
and placental immune cells receiving signals released from the 
fetoplacental unit usually achieve this state of tolerance; however, 
if maternal innate immune cells “over-ride” these signals and do 
not lead to a state conducive to tolerance, then excessive innate 
immune system activation and inflammation occur. This is what 
likely happens in women with autoimmune diseases. Women with 
systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), 
antiphospholipid syndrome, autoimmune thyroid disease, and 
T1DM all have an increased risk of developing PE (25, 63, 64). 
The increased innate immunity in these women could be due to 
altered complement regulatory proteins or in the expression of 
placental sialic acid (64, 65). Some studies have identified that 
the KIR AA genotype of uterine NK cells inhibits fetal HLA-C2 
expressed on trophoblasts, while genetic variants in fetal HLA-G 
do not dampen maternal immune activation that is associated 
with PE (66, 67). Lastly, decreased levels of inducible regulatory 
T cells (iTregs) or the ratio of iTregs to pro-inflammatory T cells 
have been reported to be decreased in women with autoimmune 
diseases as well as in women with PE (41, 68–72). iTregs are known 
to reduce antigen-specific immune cell activation and signaling. 
Hsu and colleagues reported that antigen presenting cells from the 
decidua of normal pregnant women greatly promote the expansion 
of iTregs whereas antigen presenting cells from the decidua of 
women with PE do not (68). This lack of regulatory control of 
immune activation may contribute in some women to the excessive 
inflammation and organ dysfunction that leads to PE.

Links Between innate immunity and the 
Manifestation of Preeclampsia

Regardless of the pathway involved, excessive activation of the 
innate immune system may ultimately lead to the features of PE 
including hypertension, proteinuria, and end-organ damage. This is 
likely mediated by both the innate and adaptive arms of the immune 
system via their effects on endothelial function (73, 74). Cytotoxic 
molecules produced by innate immune cells including IL-17, ROS/
RNS, and IFNs all have detrimental effects on vascular function and 
excessive levels of these molecules in the systemic and reproduc-
tive vasculature would cause vasoconstriction and lead to organ 
dysfunction and damage (renal, placental, and possibly neural) 
(75–77). Activation of adaptive immunity by innate immune cells 
also occurs and numerous studies have shown that vasoactive mol-
ecules produced by T and B cells decrease endothelial function and 

induce PE-like features in animals (78–83). At the vascular level, 
endothelial cell injury due to excessive inflammation and oxidative 
stress leads to the production, secretion, and expression of cytokines 
including IL-6, chemokines such as chemokine ligand 5 (CCL5), 
and adhesion molecules such as VCAM, ICAM, and E-selectin. 
Additionally, studies in women with PE and animals with experi-
mental PE consistently demonstrate that there is increased vascular 
endothelin-1 production and decreased nitric oxide bioavailability 
which likely results from the excessive inflammation mediated by 
immune system activation. More studies are needed to determine 
the molecular mechanisms by which innate immune system activa-
tion leads to endothelial dysfunction during pregnancy.

Pathway interplay and therapeutic 
targets

We believe that each pathway is independent with respect to the 
initiating insult; however, subsequently there is considerable over-
lap between the pathways. For example, excessive innate immune 
system activity at the beginning of pregnancy would tend to inhibit 
trophoblast invasion, spiral artery remodeling, and fetal tolerance 
which would then exacerbate innate immune system activity. 
Likewise, pre-existing endothelial dysfunction would have similar 
effects on placental development leading to innate immunity and 
PE. Experimentally there is evidence that one can induce PE-like 
features in animals through any of the four pathways, including 
inducing endothelial dysfunction by inhibiting NOS/VEGF/TGFβ 
or high-fat feeding, inducing shallow trophoblast invasion and 
defective placentation, or excessively activating the maternal innate 
immune system via bacterial or viral mimetics. However, trying to 
identify the initial insult in women proves tougher. Current clinical 
testing and technologies likely miss the initial insult but rather 
examine the spectrum of downstream and convergent effects fol-
lowing innate immune system activation which differs between 
women. Improving endothelial function prior to pregnancy, early 
imaging of placental development, treatment of infections before 
pregnancy or early in pregnancy, and control of autoimmune 
diseases before and during pregnancy may all be beneficial in 
reducing the incidence and severity of PE.

Given the potential central role of innate immunity in all four 
pathways leading to PE, novel therapeutics targeting this arm of 
the immune system is needed. While current immunosuppressive 
therapies are not feasible for pregnant women, future research 
identifying the innate immune cells that are persistently activated 
in these pathways during pregnancy as well as unique charac-
teristics of these activated cells would aid in the development of 
targeted therapies that eliminate just these specific cells and leave 
other innate immune cells alone.

conclusion

Based on clinical and experimental evidence to date, we propose 
that PE develops through four independent pathways that either 
involve excessive innate immune system activation in response 
to abnormal physiology during pregnancy or excessive innate 
immunity before and/or during pregnancy. The excessive innate 
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immunity and subsequent inflammation then converge, leading 
to angiogenic imbalance, endothelial/placental/renal dysfunction, 
and PE. The timing and severity of excessive innate immunity likely 
determine the onset and severity of PE. Studies that explore these 
proposed pathways in detail are needed to definitively determine 

the role of innate immune system activation under the various 
circumstances encountered during pregnancy. Ultimately, 
elimination of hyper-activated innate immune cells in PE 
may reduce the inflammation and endothelial dysfunction 
and improve maternal and fetal outcomes.
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