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ABSTRACT

	

In the search for the biochemical basis of the control of glycosylation of cell surface
carbohydrates, revertant clones were isolated from previously characterized wheat germ
agglutinin-resistant clones of B16 mouse melanoma cells by selection for resistance to Lotus
tetragonolobus lectin or to ricin . Comparison of the wheat germ agglutinin-resistant clones
with the parent and revertant clones indicated that this phenotype was correlated with an
increased sensitivity to the Lotus lectin, a 60- to 70-fold increase in a1 -* 3 fucosyltransferase
activity and a decreased sialic acid content of the N-glycosidic chains of glycoproteins . The
results suggest a novel type of control mechanism for lectin resistance, an increase in a
glycosyltransferase activity . The presence of a1 ---> 3 bound fucose on N-acetylglucosamine
residues would interfere with the addition of sialic acid by a2--> 3 linkages to galactose residues
in the carbohydrate units, and this change could explain the resistance to wheat germ agglutinin
and the increased sensitivity to the Lotus lectin . A change in a regulatory gene for the
fucosyltransferase as a possible primary cause for the changed phenotype is discussed.

The availability of lectin-resistant cell lines with altered car-
bohydrate moieties of cell surface glycoproteins and glycolipids
has provided a powerful tool for the study of the biosynthesis
and function of the complex carbohydrates in animal cells (1-
4). Some of the variant cell lines appear to have a block at
some level of the biosynthetic pathway of protein-bound oli-
gosaccharides, but the enzymatic basis for the changed phe-
notype is usually not known . For the study of the biological
role of glycoproteins and glycolipids, it would be important to
know how the expression of cell surface carbohydrates is
regulated.
Many lectin-resistant variant cell lines differ from the parent

lines with respect to more than one property (5-7). Because the
occurrence of more than one genetic or epigenetic change
even in single-step isolates cannot be ruled out, it is not known
whether all the changes observed could be ascribed to one
primary change. Other evidence should therefore be obtained
by the isolation of independent variants or revenants (7, 8) .
The isolation of independent variants has so far been shown
only for the lectin-resistant cells with a block in a specific N-
acetylglucosaminyltransferase (9, 10), whereas the isolation of
revenants has usually not been successful (1, 7) . We report
here the isolation of variants and revenants that could be
obtained repeatedly as well as their enzymic defect .

Previous work from this laboratory has described a wheat
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germ agglutinin (WGA)-resistant mouse melanoma cell line
with many altered properties, including changes in cell adhe-
sion and metastasis (11) . Analysis of the protein-bound car-
bohydrates revealed a structural change involving increased
fucose-content and decreased sialic acid-content (12). To reveal
a possible correlation between these findings, new independent
mutant and revertant clones were isolated, and analyses were
carried out to reveal a biochemical basis for the changed
phenotype . The results indicate that the changed properties
could be explained by an increase in a specific fucosyltransfer-
ase activity . This suggests a new type of control mechanism in
the regulation of complex carbohydrate biosynthesis in lectin-
resistant cells .

MATERIALS AND METHODS

Cells

F1, a line of B16 melanoma cells, was obtained from Dr. 1 . J. Fidler (13) . The
Wa3 Line and the Wa4 and Wa5 clones were isolated by selection for WGA
resistance in 3, 4, and 5 subsequent steps, respectively, by Dr .T.-W. Tao (11) . A
line selected for ricin resistance from the Wa5 clone was also obtained from Dr.
Tao and was found, in preliminarysurface-labeling experiments, to be composed
ofa mixture of cells with different phenotypes . Severalclones were isolated from
the mixture, and two of them, Wa5Re and Wa5Rx, were chosen for further
studies . For the selection for resistance to the lectin from Lotus tetragonolobus,
Wa4 cells grown on plastic dishes were exposed to 800 pg/ml Lotus lectin for 7
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d with one change ofmedium after 3 d. The medium was replaced by lectin-free
medium, and from the surviving cells two clones, Wa4Lb and Wa4Ld, were
isolated for further studies. The cloned parent line Fa was isolated by recloning
from the uncloned Fl line and was similar in growth properties, morphology,
and lectin sensitivity to the original Fl line . Clone FaWd was obtained in one
step from the Fa clone by selection for WGAresistance (125 jig/nil), and clone
FaRb by selection for ricin resistance (2 ltg/ml) as described above.

The cells were kept in culture as described by Fidler (13) . All cell lines were
regularly tested for mycoplasma and were found negative . The relative DNA
content and homogeneity of the cell lines was determined after staining with
mithramycin by flow cytofluorometry (14).

Determination of Lectin Sensitivity
Forthe determinationof lectin sensitivity, 1 x 10" cells were plated on 35-mm

dishes and grown for 24 h in normal medium . The lectins were added to the
medium from sterile stock solutions at the appropriate concentrations. After 48
h the numbers of adherent cells were counted from duplicate samples using a
Coulter counter . Control samples ofeach line were grown similarly, but without
lectin . In preliminary experiments the concentrations ofeach lectin were deter-
mined as those which give no or only slight decrease (0-33%) in the number of
cells with the lectin-resistant phenotypes and a clear decrease (67-100 %) in the
cell number ofthe lectin-sensitive cell lines. Subsequently, these concentrations
of lectin (50)ig/ml WGA, 1.0 fLg/ml ricin, 100 ttg/ml Lotus lectin) were used to
test each cell line for lectin resistance .

Glycopeptide Analysis
Cells (4 x 10°) were plated on 35-mm dishes and, after 24 h, metabolically

labeled by growing them in the presence of 4 jLCi/ml of D-[U-"C]glucosamine
for 48 h. The cells were delipidated, andglycopeptides were prepared by digestion
with pronase as previously described (15). Glycosaminoglycans and nucleic acids
were removed from the pronase digests by precipitation with cetylpyridinium
chloride in the presence of0.4 MNaCI (16) (this salt concentration prevents the
precipitation of the most acidic glycopeptides but does not affect glycosamino-
glycans, because these B16 melanoma cells do not contain hyaluronic acid [12]).
The samples were lyophilized, dissolved in 0.1 ml of 50 mM pyridine-acetate
buffer (pH 5.0), and purified by centrifugation (17) through columns (bed
volume, I ml) of Bio-Gel P-2 (200-400 mesh, Bio-Rad Laboratories, Richmond,
Calif.) prepared in the same buffer . The glycopeptides were treated with 0.05 M
NaOH in 1 .0 M NaBH, at 45°C for 16 h, and the O-glycosidic oligosaccharides
were separated from the N-glycosidic glycopeptides by gel filtration on Sephadex
G-50 in 0.1 M pyridine-acetate buffer (pH 5.0) (15). The N-glycosidic glycopep-
tide fraction was further fractionated by anion-exchange chromatography on
DEAE-Sephadex A-25 eluted with a linear gradient of pyridine-acetate buffer
(18). Treatment of the glycopeptides with Vibrio cholerae neuraminidase was
performed as described previously (12) .

Gel Electrophoresis

Labeling of cell surface components and gel electrophoresis were performed
as described previously (12) . Total cellular samples were also analyzed after
electrophoresis by staining with radioactive WGA and autoradiography (19).
Control gels treated in the presence of 0.1 M N-acetylglucosamine did not
produce labeled bands.

Glycosyltransferase Assays

The frozen, packed cellswere homogenized and solubilized, on ice, by addition
of2 vol of 0.1 Msodium cacodylate buffer (pH 6) containing 25% glycerol, 0.15
M NaCl and 2% Triton CF-54 (wt/vol) . After vortexing for 2 min, the cells were
centrifuged at 4°C for 15 min at 9000 g. The supernatant was used for glycosyl-
transferase assays and protein determination (Lowry).

The incubation mixture for fucosyltransferase assay contained in a final
volume of 100 pl : GDP-["C]fucose 1 nmol (20,000 cpm), sodium morpholino
ethane sulfonate (pH 5.5), 5 Amol; MnC12, 0.5 pmol ; NaCI, 10pmol; and lactose,
16 pmol. Final concentration of glycerol and Triton CF-54 were brought to 25
and 2%, respectively . 201[1 of extract was added, and the mixture was incubated
at 37°C for 15 min. For each cell extract, a control for endogenous or pyrophos-
phatase activities was included by omitting lactose in the assay. Control deter-
minations were also done by mixing Triton extracts from cells with the high and
low activity to reveal possible inhibitory factors . The reaction was stopped by
addition of 1 ml of ice-cold water . The reaction mixture was then transferred to
a column made ofa Pasteur pipette containing 1 ml of settled Dowex 1-X8 resin
(200 x 400mesh) in the Cl- form (20) . The tube was rinsed with another 1 ml of
water, which was also transferred to the Dowex column. The eluate was directly
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collected in a scintillation vial and counted after addition of scintillation fluid.
The incubation conditions for galactosyltransferase assay were identical to

those described for the fucosyltransferase assay except for the substrates which
were, respectively, N-acetylglucosamine, 0.5 pmol and UDP-["C]galactose, 10
nmol (50,000 cpm) . Controls did not contain N-acetylglucosamine . Reaction
products were recovered as described for the fucosyltransferase assay.

Incubation conditions for sialyltransferase assays were identical to those
described for the fucosyltransferase assay, except that CMP-[t`C]sialic acid, 0.1
nmol (50,000 cpm) replaced the GDP-fucose . Incubation time was 30 min, and
the products were recovered as described for the fucosyltransferase assay, except
that the Dowex resin wasin thephosphate formand that the reaction was stopped
by addition of ice-cold sodium phosphate 5 mM pH 6.8 (21).

Materials
Ricin was purchased from Miles-Yeda, Ltd. (Rehovot, Israel) and Lotus

tetragonolobus lectin from Sigma Chemical Co . (St . Louis, Mo .) . Wheat germ
agglutinin, pronase (B grade), and Vibrio cholerae neuraminidase were obtained
from Calbiochem AG (Lucerne, Switzerland) . GDP-["C]fucose, UDP-["C]ga-
lactose, and CMP-["C]sialic acid were obtained from New England Nuclear
(Boston, Mass.), and D-[U-"C]glucosamine (239 mCi/mmol) from The Radi-
ochemical Centre (Amersham, England) .

RESULTS

Selection and Properties of Lectin-resistant Cells
and Their Revertants
Previous multiple-step selections with WGA produced the

lines Wa3, Wa4 and Wa5 from the parent Fl melanoma line
(11). The step from Wa3 to Wa4 was accompanied by an
abrupt change in WGA resistance, whereas little additional
change was observed in the next selection step giving rise to
the Wa5 clone (Table 1) . The structural change in the Wa4
glycoproteins has been shown to involve a decrease in sialic
acid content and an increase in fucose content (12) . As ex-
pected, the Wa4 cells showed an increased sensitivity to the
fucose-binding lectin of Lotus tetragonolobus. This lectin was
therefore used to attempt selection of revertants by the ap-
proach ofcollateral sensitivity (8) . The clones obtained, Wa4Lb
and Wa4Ld, were found to be reverted with respect to the
WGA resistance and Lotus lectin sensitivity concurrently (Ta-
ble 1) . Because the decrease in sialic acid content of Wa4
glycoproteins was accompanied by a corresponding increase in
the proportion of terminal galactose residues (12), an attempt
was made to find revertants with the galactose-binding lectin

TABLE I

Lectin Sensitivities and DNA Contents of Variant Melanoma
Cell Lines

The lectin sensitivities were determined as described in Materials and Method .
The degree of lectin resistance is expressed as the percentage of surviving
cells : (-) 0-33%; (+) 33-67% ; (++) 67-100%. The DNAcontents are expressed
as relative to that of the F1 line .

Cell
line

Selected
from

Selective
lectin

Lectin resistance

WGA Lotus Ricin DNA

F1 - - - ++ - 1 .0
Wa3 Wag WGA - ++ - 1.0
Wa4 Wa3 WGA ++ - - 1.4-1 .6
Wa4Lb Wa4 Lotus lectin - ++ ++ 1.4-1 .6
Wa4Ld Wa4 Lotus lectin - ++ + 1 .4-1 .6
Wa5 Wa4 WGA ++ - - 1 .4-1 .6
Wa5Re Wa5 Ricin - ++ ++ 1 .4-1 .6
Wa5Rx Wa5 Ricin - ++ ++ 1 .4-1 .6
Fa - - - ++ - 1 .0
FaWd Fa WGA ++ - - 1 .0
FaRb Fa Ricin - ++ ++ 1 .0



ricin. The Wa5 clone, which was similar in properties to the
Wa4 clone, was used as an independent source for the selection.
The ricin-selected clones obtained, Wa5Re and Wa5Rx, were
also found to be reverted with respect to their sensitivities to
both lectins (Table I) .
The Wa4 clone and all the clones derived from it were found

to have undergone a major change in their DNA-content, as
compared to the parent F 1 line (Table I) . Because such changes
may produce difficulties in interpretation, the isolation of new
WGA-resistant variants was attempted . Also, single-step mu-
tants would be preferable to multistep mutants (8) . To produce
an independent parental line, the originally uncloned F 1 line
was cloned, and the clone Fa was used for new selections. The
clone FaWd was obtained in a single step by selection for
WGA resistance and was found to be similar in lectin sensitiv-
ities to the Wa4 and Wa5 clones (Table I) . The relative DNA
content was now, however, similar to that ofthe parental clone.
For comparative purposes, a ricin-resistant clone, FaRb, was
also isolated from the Fa clone by single-step selection and did
not change its DNA content either (Table I) .

All the cell lines except for FaWd kept their lectin sensitiv-
ities unchanged during prolonged culture (at least 2 mo) . There
was a gradual loss of the WGA resistance and, concomitantly,
ofthe Lotus-lectin sensitivity of the FaWd clone, which became
apparent after a few weeks of culture . Therefore, only batches
of recently thawed cells taken from a frozen stock were used
for the analyses .
As indicated by the two independent selections for WGA

resistance, and by two independent selections for revenants,
the Lotus-lectin sensitivity was correlated with the WGA-re-
sistant phenotype in the cell studies (Table I). For ease of
discussion, the cells with this property (Wa4, Wa5, FaWd) are
referred to from this point as the WGARLots cells .

Glycosyltransferase Assays
Chemical analyses of WGARLots cells (Wa4 clone) (12)

suggested either an increased fucosylation reaction (by 1 --* 3
linkages to N-acetylglucosamine residues) or a decreased sia-
lylation reaction (by a2 3 linkages to galactose residues) as
two possible enzymatic mechanisms responsible for the
changed phenotype. Glycosyltransferase assays were therefore
performed to investigate these possibilities . There was a 60- to
70-fold increase in the level offucosyltransferase activity in the
WGARLots cells as compared to the parental or revertant cells
(Table II) . Using 2'-fucosyl lactose as an acceptor, the product
was identified as lactodifucotetraose, which indicated that the
transferase was of the species transferring fucosyl residues by
al --~, 3 linkages to glucose and N-acetylglucosamine residues
(22) (a detailed description of the properties and substrate
specificity of this transferase will be published elsewhere) .

In contrast to the fucosyltransferase, there was only slight
variation in the levels of sialyl- and galactosyltransferases
measured (Table II) . The product of the sialyltransferase assay
with lactose as acceptor was predominantly (92-99%) 3'-sialyl
lactose in all cell lines . It is, however, possible that this activity
corresponds to the transferase specific for galactosyl-(,Q1-* 3)-
N-acetylgalactosamine (23) and does, therefore, not necessarily
reflect the sialylation of the N-glycosidic chains of glycopro-
teins .

Glycopeptide Analysis
To find out whether the decrease in a2 --+ 3 sialyl linkages

detected for the Wa4 clone (12) is correlated with the increased
fucosyltransferase activity and the WGARLot s phenotype, a
glycopeptide analysis was performed . As seen in Fig . 1, the
total glycopeptide can be fractionated into two parts by gel
filtration after mild alkaline borohydride treatment . The first
peak corresponds to N-glycosidic glycopeptides and the second
to O-glycosidic oligosaccharides (15) . Gel filtration of samples
from each of the cell lines indicated a decrease in the apparent
molecular size of the N-glycosidic glycopeptides of the
WGARLots cells as compared to the parent and revenant cells .
The molecular sizes of the O-glycosidic oligosaccharides were
similar in all cell lines.
The N-glycosidic glycopeptides were further analyzed by

ion-exchange chromatography. Most of the glycopeptides from
the parent FI line were bound to the DEAE-Sephadex column
(Fig . 2A). After removal of the sialic acid residues by neur-
aminidase treatment and gel filtration, the glycopeptides no
longer bound to the column (Fig. 2A), indicating that the
binding was due to sialic acid .

Analysis of the N-glycosidic fractions from other cell lines
revealed that a significant portion of the glycopeptides from
WGARLots cells were not bound to the column, and that those
bound were enriched in the earlier-eluting components as

Glycosyltransferase Activities and Properties of N-Glycosidic
Glycopeptides in Variant Mouse Melanoma Cells

Cell
line Fucosy l S

pmolfmin

F1

	

1 .45
Wa3 0.77
Wa4 92 .9
Wa4Lb 1 .46
Wa4Ld 1 .12
Wa5 99.0
Wa5Re 1 .09
Wa5Rx 0.73
Fa

	

1 .56
FaWd 94 .8
FaRb 0.71

* WT, wild-type .

TABLE II

Transf

6

FIGURE 1

	

Gel filtration of glycopeptides and oligosaccharides from
variant and revertant cell lines. Glycopeptides metabolically labeled
with [' °C]glucosamine were treated with alkaline borohydride and
subjected to gel filtration on a column (2 x 75 cm) of Sephadex G-
50 fine eluted with 0.1 M pyridine-acetate buffer (pH 5.0) . Fractions
of 4.5 ml were collected. The first peak, containing the N-glycosidic
glycopeptides, was subjected to ion-exchange chromatography (Fig .
2) . (---) Wa4; (-) Wa4Lb.
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rase activity

Galac-
ialy l tosy l

Glycopeptides

Sialic acid
(ion-ex-

Size in gel change chro-
filtration matography)

x mg protein

3.15 8.8 WT* WT
2.18 8.7 WT WT
2.11 10 .5 Decreased Decreased
2.58 9.7 WT WT
2.52 10.0 WT WT
1 .87 12 .5 Decreased Decreased
2.21 13 .3 WT WT
1 .94 7.5 WT WT
3.70 12 .2 WT WT
3.54 11 .1 Decreased Decreased
3.85 8.5 WT WT



compared to the glycopeptides from the parent or revertant
cells (Fig . 2B-D) . This indicated that the glycopeptides con-
tained a decreased amount of sialic acid, and that this property
was correlated with the increase in the fucosyltransferase and
the WGARLots phenotype . The results of the gel filtrations
and ion-exchange chromatography are summarized in Table
II .

Gel Electrophoresis of Cellular and Cell Surface
Glycoproteins
Fig. 3 shows the autoradiogram obtained for electrophoret-

ically separated total cellular proteins stained with radio-iodi-
nated WGA. As compared to the parent and revenant cell
lines, there was a decreased binding of the lectin to some of the
bands in the WGARLots cells. However, there was only a slight
reduction in total amount of WGA bound, which is correlated
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Anion-exchange chromatography of glycopeptides . The
N-glycosidic glycopeptide fractions (Fig. 1) were subjected to chro-
matography on a column (1 .5 x 10 cm) of DEAE-Sephadex A-25
equilibrated with 50 mM pyridine-acetate buffer (pH 5 .0) . The
glycopeptides were eluted with a linear gradient ( . . . . . . ) of pyri-
dine-acetate buffer ; fractions of 6 .0 ml were collected . A, F1 (-)
and neuraminidase-treated F1 (---) ; B, Wa4 (---) and Wa4Lb

C, Wa5 (---) and Wa5Re (-) ; D, Fa (-) and FaWd

FIGURE 3 Autoradiograms of total cellular proteins stained with
' 251-labeled wheat germ agglutinin after gel electrophoresis in the
presence of sodium dodecyl sulfate . The positions of the reference
proteins thyroglobulin (TH),,Q-galactosidase (GA), transferrin (TR),
bovine albumin (BA), and ovalbumin (OV), and of the dye front
(OF) are shown on the left. 1, F1 ; 2, Wa3 ; 3, Wa4; 4, Wa4Lb, 5,
Wa4Ld ; 6, Wa5 ; 7, Wa5Re ; 8, Wa5Rx ; 9, Fa ; 10, FaWd ; 11, FaRb . The
cells with the WGA"Lot s phenotype are indicated with an asterisk .
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with the fording that there was only an -25% reduction in the
total amount of protein-bound sialic acid, as determined for
the Wa4 clone (12) .

Cell surface labeling and gel electrophoresis revealed a sim-
ilar pattern for all the cell lines except for a slightly increased
mobility of some bands in the WGARLot' cells (Fig. 4) . This
is in accordance with the reduced size of the carbohydrate
chains in these cell lines (Fig. 1), and also with similar findings
in other lectin-resistant cell lines with defects in protein gly-
cosylation (2, 24, 25).

DISCUSSION
Although many different lectin-resistant cell lines have been
isolated from a variety of sources, there are few examples
where a clear correlation can be demonstrated between a
biochemical change and a lectin-resistant phenotype . Inde-
pendent evidence should be obtained to demonstrate that the
pleiotropic changes often found could be due to one genetic
change (7, 8, 24) . Such evidence can be obtained by the
repeated and reproducible selection of isolates of independent
origin . Additional support would come from revertants if they
could be shown to exhibit coordinate changes in different
properties. By both criteria, a strong correlation is indicated in
the cell lines studied for the following findings : increased
fucosyltransferase activity, decreased sialylation of N-glyco-
sidic chains of glycoproteins, decreased WGA binding to elec-
trophoretically separated cellular glycoproteins, increased elec-
trophoretic mobility of surface proteins, as well as WGA
resistance and Lotus-lectin sensitivity .
Among lectin-resistant cells so far characterized, the

WGARLots cells are unique in having a dramatic increase in
a glycosyltransferase activity . An increased sialyltransferase
activity haspreviously been reported for a ricin-resistant mouse
L cell line, but the increase was less marked and its contribution
to the lectin-resistant phenotype was not entirely clear (24).
Many lectin-resistant cell lines described, including a mouse
lymphoma line with defective fucose metabolism (26), appear
in contrast to have a block in the pathway of oligosaccharide
biosynthesis (6, 7) .

There are several possible explanations for the increase in
fucosyltransferase activity . One is an increased activity due to
a mutation in the structural gene of the fucosyltransferase.

FIGURE 4

	

Autoradiograms of cell surface components labeled with
lactoperoxidase-catalyzed [' 25 1] iodination . Electrophoresis was car-
ried out in 8% polyacrylamide gels in the presence of sodium
dodecyl sulfate . Abbreviations and symbols are the same as in Fig .
3 .



Another possibility is that the gene ofthe fucosyltransferase is
present in multiple copies in the variant cells.The latter mech-
anism has been shown for drug-resistant cell variants (27) .
However, with these mutants the resistance is gradually in-
creased with successive selections, in contrast to theWGARLots
cells, which are found after one selection step. The FaWd
clone, however, resembles the drug-resistant mutants in that
the resistance is gradually lost upon prolonged culture, a
phenomenon ascribed to an extrachromosomal location of the
altered gene (27) . Athird possible explanation for the increased
fucosyltransferase could be a change in a putative regulatory
(inhibitory) gene . The existence of such a gene for the fucos-
yltransferase is indicated by the differential expression of the
fucosyl linkages in different tissues. In the rat, brain glycopep-
tides resemble those of the WGARLots cells in having a high
proportion of the a l ~ 3 linked fucose residues, whereas only
trace amounts are found in glycopeptides ofsome other tissues
such as liver or kidney or plasma (28, 29). Furthermore, the
similarity in the level of the changes of the transferase in the
three variant lines (Wa4, Was, and FaWd), as well as the
similarly low levels in the parent and revenant cells, also
suggests that the effects may be due to a regulatory phenome-
non.
The observed decrease in the sialic acid content of the N-

glycosidic oligosaccharide chains provides an indication as to
the substrate specificity ofthe sialyltransferase . Previous chem-
ical analyses revealed that the sialic acid is bound mainly by
a2 ---> 3 linkages to galactose residues in the parent Fl cells,
and that the increase in fucosyl 1 --> 3 linkages to N-acetylglu-
cosamine in the Wa4 cells was accompanied by a specific
decrease of these sialyl residues (12) . This would indicate that
the presence of the fucose residues interferes with the addition
ofthe sialic acid residues. In the Lotus-lectin selected revertants
(Wa4Lb, Wa4Ld) the absence of fucose would thus lead to
increased sialylation . The importance of the fucose residues in
controlling sialylation is underlined in the case of the ricin-
selected variants (Wa5Re, Wa5Rx) . Although ricin does not
bind to fucose, the activity of the fucosyltransferase was de-
creased to the normal level in these cells. It thus appears that
low fucosyltransferase activity not only results in increased
sialylation (Lotus-revenants) but that the low activity is a
prerequisite for a complete sialylation (ricin-revenants) .
The influence of the a1 --* 3 fucosyl residues on the a2 -+ 3

sialyltransferase could be analogous to the observations made
on the specificity of an a2 --> 6 sialyltransferase, which has
been shown to be unable to transfer sialyl residues to acceptors
with this fucose substitution (21) . It seems, however, that in the
case of the a2 -> 3 sialyltransferase the block is not complete,
because structures containing both the sialyl and fucose substi-
tution have been described (28, 30). Alternatively, the occur-
rence of the latter structures could indicate the presence of
another a2 -), 3 sialyltransferase for the fucosylated structures .
The observations on the sialylation specificity are of particular
interest, because it has not yet been possible to isolate the
a2 --> 3 sialyltransferase. The observations also indicate that it
may be fruitful to use variant cells to study the control of
glycosyltransferase reactions under the actual intracellular con-
ditions, as a complementary approach to studies performed
with purified transferases and substrates under in vitro condi-
tions.
The glycosylation change observed for the WGARLots cells

is in accordance with their WGA resistance . This lectin is
known to have specificity for sialic acid and N-acetylglucosa-

mine residues (31). The decrease in the total sialic acid content
of the cells and in the total WGA binding to glycoproteins is,
however, only slight . Also, not all cell surface components
seem to be affected by the glycosylation change . The different
glycosylation changes so far described for various WGA-re-
sistant cell lines (3, 25) affect only the N-glycosidic chains of
glycoproteins. It is thus possible that the specific target for the
toxic action of this lectin on cell growth is one or several
glycoproteins with this class of carbohydrate chains .
The increased sensitivity of the variant cells to the Lotus

lectin may be explained by their increased fucose content.
Although the most effective oligosaccharide inhibitors of this
lectin are structures containing al ---> 2 bound fucose on
galactose residues, structures with the a1 --* 3 linked fucose on
N-acetylglucosamine residues are also known to interact with
the lectin (32) . It is possible that the fucose also contributes to
the WGA resistance, because substituents on C-3 of N-acetyl-
glucosamine are known to block the interaction of this sugar
with the lectin (33) .
The ricin-sensitivity ofthese cell lines seems not to be directly

correlated with the WGARLot" phenotype. Although the var-
iant cells contain an increased amount ofnonsubstituted galac-
tose residues (12), an increased sensitivity of these particular
cell lines to ricin is difficult to demonstrate. Some link between
the ricin sensitivity and theWGARLot' phenotype is, however,
indicated by the finding of increased resistance to ricin not
only in the ricin-selected revenants but also in the Lotus-
selected revenants.

Lectin-resistant cell lines are not only valuable tools for the
study ofthe control of glycosylation reactions but, as indicated
by the present study, some of them may also serve as a way to
produce a rich source for the isolation ofspecific glycosyltrans-
ferases (Prieels et al., manuscript in preparation) . Furthermore,
lectin-resistant cell lines are important tools in the study ofthe
biological function and other properties of specific oligosac-
charide structures . Fucose has been shown to be a part of
antigenic determinants, including the so called X-antigen (34),
and may be also be part of the receptor for the macrophage
migration inhibitory factor (35) . A specific hepatic uptake
system for the a l ---+ 3 linked fucose has also been described
(36) . One oftheWGARLots cell lines has been shown to differ
from the parent cells with respect to cell adhesion and metas-
tasis (11) . The availability of independently selected variant
and revertant cell lines with defined biochemical changes will
make possible a reliable evaluation of the contribution of a
specific oligosaccharide sequences in such biological interac-
tions .
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