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Abstract

Understanding the mechanisms governing complex traits variation is a requirement for effi-

cient crop improvement. In this study, the molecular characterization, marker-trait associa-

tions and the possibility for genomic selection in a collection of 281 Kersting’s groundnut

accessions were carried out. The diversity panel was phenotyped using an Alpha lattice

design with two replicates in two contrasting environments. Accessions were genotyped

using genotyping by sequencing technology. Genome-wide association analyses were per-

formed between single nucleotide polymorphism markers and yield-related traits across

tested environments. SNP markers were used to calculate the observed (Ho) and expected

heterozygosity (He), and the total gene diversity (Ht). Genetic differentiation among acces-

sions across ecological regions of origin was analysed. Our results revealed 493 quality

SNPs of which 113 had a minor allele frequency>0.05, a total gene diversity of 0.43 and

average Ho and He values of 0.04 and 0.22, respectively. Four clusters, highly differentiated

by seed coat colour (Fst = 0.79), were identified. The population structure analysis showed

two subpopulations with high differentiation across ecological regions (Fst = 0.37). The

GWAS revealed 10 significant marker-trait associations, of which six SNPs were consistent

across environments. The genomic selection through cross-validation showed moderate to

high prediction accuracies for leaflet length, seed dimension traits, 100 seed weight, days to

50% flowering and days to maturity. This demonstrates the existence of genetic variability

within Kersting’s groundnut and shows the potential for the improvement of the species. The

findings also provide a first insight into the phenotype-to-genotype relationships in Kersting’s

groundnut, using SNP markers.
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Introduction

With the challenges of global warming, farming land scarcity, and land demand for non-agri-

cultural uses, the development of high yielding and climate-proof cultivars is one of the most

relevant approaches to feeding the growing population [1, 2]. Currently, increasing the effi-

ciency of breeding programmes requires the combination of conventional and molecular

approaches for accurate selection and quick release of improved cultivars [3–5]. Developing

molecular tools is the first step to applying enabling biotechnologies in cultivar development

[5, 6]. Molecular markers help to dissect the variation of quantitative traits, such as yield, into

the effects of quantitative trait loci (QTLs), and facilitate the transfer of those QTLs in new cul-

tivars [7].

Recent advances in genomic technologies have mainly benefitted major crops species [8, 9],

and the large diversity of other crops with great potential has received very little attention.

Recently, the African Orphan Crop Consortium (AOCC) is sequencing the genome of 101

African crops to make data publicly available to accelerate breeding objectives. Meanwhile,

there is an increase in food and nutritional insecurity, especially in developing countries [10].

Therefore, interventions to increase agricultural productivity and resilience to climate varia-

tions should emphasize crops species adapted to local agroecology [11, 12]. However, informa-

tion on the diversity and the genetic systems governing traits of interest in such crops are still

lacking, particularly for neglected grain legumes [6, 11, 12]. About ten neglected or orphan

grain legume species were reported as nutritionally and economically important in tropical

Africa [13] and these include Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maré-

chal & Baudet].

Kersting’s groundnut originated from west Africa [14, 15]. The crop is grown by local pop-

ulations in countries such as Benin, Ghana, Nigeria and Togo [15–18]. The crop was also

reported in Central Africa especially in Cameroon [19, 20]. Kersting’s groundnut is cultivated

for its grains that have high market value [15, 21]. In most west African countries, Kersting’s

groundnut is preferred to cowpea [Vigna unguiculata (L.) Walp.] and bambara groundnut

[Vigna subterranea (L.) Verdc.] due to the palatable taste of its grains [16, 19]. The grains of

Kersting’s groundnut have a high nutritional value [22] and are considered as a healthy food

especially for paediatric growth [18]. The dry grains of Kersting’s groundnut contain about

21.3% of crude protein and 6.2% of crude fibre [22, 23]. In addition, the grains are character-

ised by a high arginine and low-fat contents [24].

Despite its nutritional and economic importance, Kersting’s groundnut production is

decreasing from year to year [15]. Major bottlenecks to the production of Kersting’s ground-

nut include the absence of high yielding, drought tolerant and disease resistant cultivars [15].

Unfortunately, the genetic diversity of Kersting’s groundnut has not been investigated to

enable the implementation of relevant breeding programmes that will develop improved culti-

vars for farmers. Past studies on the genetic diversity of Kersting’s groundnut used only 19

enzymes on 20 accessions [20] to depict the variation in the crop. Pasquet et al. [20] reported a

lack of genetic diversity among cultivated Kersting’s groundnut landraces. Biochemical mark-

ers on a small sample of Kersting’s groundnut may have revealed a narrow genetic base due to

the low resolution provided by those markers [25, 26]. The renewed interest in orphan crops

and the potential offered by the economical and nutritional values of Kersting’s groundnut call

for actions towards creating high yielding and disease-resistant cultivars, with high nutritional

value and adapted to drought prone environments.

Towards this effort, the development of highly informative DNA markers, including single

nucleotide polymorphisms (SNPs), for a proper molecular characterization of Kersting’s

groundnut germplasm [17] becomes crucial to speed up the selection process. SNP markers
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are abundant, highly polymorphic and informative to reveal with accuracy the existing diver-

sity within crop species at the nucleotide level [5, 27, 28]. Moreover, the exploitation of the

existing genetic diversity for cultivar development requires a clear understanding of the rela-

tionships between the genome and agronomic traits. Genome-wide association study (GWAS)

is one of the popular genomic approaches to decipher genetic mechanisms controlling the var-

iation of phenotypic traits. Among other advantages, the GWAS is a powerful tool offering a

first insight into the genetic architecture of phenotypic traits variation [29–31]. Furthermore,

the rapid and efficient selection of superior genotypes in Kersting’s groundnut breeding

requires the development and the application of strong genomic selection (GS) and genomic-

enabled prediction (GP) models. Unlike GWAS where markers are associated with traits of

interest, GS is an integrated strategy exploiting molecular markers to advance breeding popu-

lations based on genetic estimated breeding values (GEBVs), which is particularly effective for

complex traits like yield and flavour [32, 33]. Genomic selection accelerates the flow of candi-

date genes from genebank accessions to elite breeding lines, resulting in increased gains from

selection [34].

Hence, the objectives of this study are to: (i) characterize the genetic diversity of Kersting’s

groundnut using SNP markers, (ii) identify single nucleotide polymorphisms (SNPs) associ-

ated with morphological traits of interest in Kersting’s groundnut, and (iii) explore possibility

for genomic selection in Kersting’s groundnut for accelerated cultivar development. We

hypothesized that: (i) Kersting’s groundnut germplasm encompasses more genetic diversity,

using SNP markers, contrary to Pasquet et al. [20] who reported an absence of genetic diversity

within the species based on biochemical markers, (ii) polymorphic SNP markers are associated

with traits of interest such as grain yield, flowering time, maturity time, number of seeds per

plant, 100 seeds weight and number of pods per plant in Kersting’s groundnut, and (iii) cross-

validation method revealed high genomic selection accuracies for key traits of interest in Ker-

sting’s groundnut.

Materials and methods

Plant material

The material included 281 accessions of Kersting’s groundnut collected across Benin and Togo

and held in the genebank of the Laboratory of Genetics, Horticulture and Seed Science

(GBioS) of the University of Abomey-Calavi (UAC) in Benin. The diversity panel was collected

from a wide range of agro-ecological regions, namely the Guinean, Sudano-Guinean and the

Sudanian regions of Benin and Togo [15]. Accessions belonged to four landraces based on

seed coat colour e.g. white seed coat (217), red seed coat (18), black seed coat (40) and white

with black eye (6) (Table 1).

Field trials and experimental design

The 281 accessions were phenotyped during the growth season of August 2017 to January

2018 at Sékou and Savè, two contrasting environments in Benin. Sékou is located in the

Table 1. Number of Kersting’s groundnut accessions per region and seed coat colour.

Landrace

Region

White Red Black White with black eye

Guinean 40 11 10 0

Sudano-Guinean 169 1 0 0

Sudanian 8 6 30 6

https://doi.org/10.1371/journal.pone.0234769.t001
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Guinean phytogeographical zone characterized by an average rainfall of 1300 mm/year. Total

rainfall during the growing season was estimated at 361 mm with an average temperature of

27.2˚C. Savè belongs to the Sudano-Guinean zone characterized by an average rainfall of 1100

mm/year. In contrast to Sékou, the total rainfall recorded at Savè during the growing season

was estimated at 161 mm from September to December 2017. The average temperature was

estimated at 27.2˚C. The experimental design was an alpha lattice design with two replications

in each environment. This resulted in 562 experimental units for each trial. Each experimental

unit was a ridge of 3.0 m long, containing 10 plants with 0.30 m inter-plant spacing [17, 35].

The field plan for the alpha lattice design was generated using R version 3.4.3 [36]. Kersting’s

groundnut seeds were sown on 21st-22nd August 2017 and the harvest was done from 3rd to 6th

January 2018. Weeding was done systematically every two weeks in each location. Compound

fertilizer NPK 15:15:15 was applied to plants four weeks after sowing at a rate of 100 kg/ha

[37]. The Conti-Zeb 5_80% WP (mancozeb) fungicide was applied every two weeks with 500

g/ha to control fungal infestations.

Field data collection

In total, 15 morphological traits were recorded during the field characterization (Table 2).

Important traits evaluated were: diameter of the plant (DIP), plant height (PLH), leaflet length

(LEL), leaflet width (LEW), petiole length (PEL), days to 50% flowering (DFF), and days to

maturity (DTM). On a plant basis, the following were determined: grain yield per plant (GRY

in g/plant), the number of seeds per plant (NSP), the number of pods per plant (NPP) and the

number of seeds per pod (NSPod). Seed traits, namely seed length (SIL in mm), seed width

Table 2. Morphological traits and measurement techniques for phenotypic characterization of Kersting’s

groundnut.

Traits Code Measurement techniques

Diameter of plant (cm) DIP Horizontal distance between two opposite points of the canopy

Plant height (cm) PLH Measured on 10 random plants from cotyledon scar to tip of plant

Leaflet length (cm) LEL Distance between the leaflet tip and the pulvinus measured on the third fully

opened leaf from the tip

Leaflet width (cm) LEW Width of the broadest portion of the third fully opened leaf from tip

measured

Petiole length (cm) PEL Measured on 10 plants from the base of petiole to beginning of limber

Date to 50% flowering

(days)

DFF Number of days from sowing when 50% of plants had at least one flower

Days to maturity (days) DTM Number of days from sowing that 50% of plant have mature pods

Number of seeds per pod

(seeds)

NSPod Count the number of seeds developed per pod on five plants randomly

selected on each plot

Number of pods per plant

(pods)

NPP Count the number of pods developed per plant on five plants randomly

selected on each plot

Number of seeds per

plant (seeds)

NSP Count the number of seeds developed per plant on five plants randomly

selected on each plot

Seed length (mm) SIL Record on five seeds per plot. The seeds were chosen on five plants randomly

selected on each plot

Seed width (mm) SWi Record on five seeds per plot. The seeds were chosen on five plants randomly

selected on each plot

Seed thickness (mm) STh Record on five seeds per plot. The seeds were chosen on five plants randomly

selected on each plot

100 seed weight (g) 100SW Average weight of ten samples of 10 seeds at 10.5–11.5% moisture content.

Estimated value is validated at a coefficient of variation below 5%

Grain yield (g/plant) GRY Weight of all seeds from each plant

https://doi.org/10.1371/journal.pone.0234769.t002
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(SWi in mm), seed thickness (STh in mm) and one hundred seeds weight (100SW in g) were

collected (Table 2).

Phenotypic data analysis

Field data were explored for each trait for eventual outliers using the R package “outliers” [38].

For each trait, a mixed linear model was fitted per environment and across environments to

estimate the best linear unbiased estimators (BLUEs) of accessions means using the META-R

programme [39, 40]. The variation of morphological traits across environments was assessed

through the construction of boxplots. We performed the analysis of variance (ANOVA) across

environments, using BLUE-values and the R package “ggpubr” the function “stat_compare_-
means()” [41]. The ANOVA model was:

Yijk ¼ mþ Gi þ Ej þ GEij þ RkðEjÞ þ εijk ð1Þ

where the phenotypic response (Yijk) is function of the overall mean (μ), the fixed effect of the

ith accessions (Gi), the effect of the jth environment (Ej), the kth replication (Rk) within the jth

environment (Ej), the genotype by environment interaction (GEij) and the residual error (εijk).

To assess field heterogeneity, the coefficient of variation (CV) was calculated for each trait,

using the formula:

CV ¼
s

m
x 100 ð2Þ

where CV = coefficient of variation, μ = trait mean and σ = standard deviation

Furthermore, heritability estimates were obtained for each trait across environments using

the META-R programme [40] to assess the feasibility of the GWAS. The formula for the broad

sense heritability estimates was:

H2 ¼
s2
Acc

s2
ACC þ

1

2
s2
Acc:Env þ

1

4
s2
Res

ð3Þ

where s2
Acc = variance of the accessions (Acc), s2

Acc:Env = variance of the accession x environment

(Env) interaction and s2
Res = variance of the residual error.

The Pearson’s correlation matrix was also calculated between grain yield and other mor-

phological traits using R version 3.4.3 [36] in order to select yield-related traits to include in

the GWAS.

DNA extraction and genotyping by sequencing

Kersting’s groundnut plants were grown at the University of Abomey-Calavi (Benin) under

field conditions. Three-week old leaves were collected into 96 deep well samples collection

plates and sent to the Integrated Genotyping Service and Support (IGSS) platform (https://

ordering.igssafrica.org/cgibin/order/login.pl) located at Biosciences Eastern and Central Africa

(BecA-ILRI) Hub in Nairobi for Genotyping. DNA extraction was done using Nucleomag

Plant Genomic DNA extraction kit. The genomic DNA extracted was in the range of 50–100

ng/ul. DNA quality and quantity were checked on 0.8% agarose. Libraries were constructed

according to Kilian et al. [42] Diversity Arrays Technology and Sequencing (DArTSeq) com-

plexity reduction method through the digestion of genomic DNA and ligation of barcoded

adapters followed by Polymorphic Chain Reactions (PCR) amplification of adapter-ligated

fragments. Libraries were sequenced using Single Read sequencing runs for 77 bases. Next

generation sequencing was carried out using Hiseq2500.
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DArTseq markers scoring was achieved using the DArt Proprietary Limited (PL’S) proprie-

tary SNP and SilicoDArt calling algorithms (DArTsoft14). SNP markers were scored as binary

fashion for presence/absence (1 and 0, respectively) of the restriction fragment with the marker

sequence in genomic representation of the sample. SNP markers were aligned to the reference

genomes of mung bean [Vigna radiata (L.) R.Wilczek] and adzuki bean [Vigna angularis
(Willd.) Ohwi & Ohashi] [43, 44], two related species of Kersting’s groundnut, in order to

identify chromosome positions.

Molecular analysis

We estimated minor allele frequency, observed (Ho) and expected heterozygosity (He), and

total gene diversity (Ht) using the R package “adegenet” [45]. The total gene diversity (Ht),

measured as the total expected heterozygosity, was calculated as follows: [46]

Ht ¼ Hs þ Dst ð4Þ

where Ht = total gene diversity of the total population as estimated from the pooled allele fre-

quencies, Hs = within landrace diversity, Dst = between landraces diversity. Hs was estimated

as follows:

Hs ¼ 1 �
Pi¼k

i¼1
p2 ð5Þ

where p = frequency of the ith allele at the kth locus in each landrace and the value is averaged

over all landraces. Likewise, Dst was calculated as:

Dst ¼ ð
P

i

P
jDijÞ=s

2 ð6Þ

where s = number of landraces, Dst = gene diversity between the ith and jth landrace. Dst was

estimated as:

Dij ¼ ½
P

kðxik � xjkÞ
2
�=2 ð7Þ

Where xik = the frequency of the kth allele in the ith landrace, and xjk = the frequency of the

kth allele in the jth landrace.

Missing marker data were imputed using the forest imputation method on the KDCompute

sever (https://kdcompute.igss-africa.org/kdcompute/login), with the missForest algorithm

based on multivariate unsupervised and supervised splitting techniques [47]. SNP markers

with minor allele frequency (MAF) <0.05 were removed for the GWAS analysis.

Clustering and population structure analysis

To assess the genetic diversity of Kersting’s groundnut accessions, the 493 SNP markers were

used to calculate genetic dissimilarities among the 281 accessions including the four categories

of landraces [48]. The genetic dissimilarities matrix was generating using marker data by cal-

culating the presence/absence dissimilarity index with the “Dice” formula as follows:

dij ¼
ðbþ cÞ

2aþ ðbþ cÞ
ð8Þ

with dij = dissimilarity between accessions i and j;

a = number of markers with xi = presence and xj = presence;

b = number of markers with xi = presence and xj = absence;
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c = number of markers with xi = absence and xj = presence;

xi = SNP allele in the ith accession, xj = SNP allele in the jth accession.

The genetic dissimilarity matrix was used to generate an un-rooted tree using the weighted

Neighbour-Joining (NJ) algorithm. Branches distances were used as criterion to weight the NJ

tree, taking into account that errors in distances estimates are larger for longer distances [49].

Both the genetic dissimilarity matrix and NJ tree were determined in the Darwin software 6.0.4

[50]. To assess the genetic differentiation between pairs of clusters of Kersting’s groundnut

accessions, a pairwise Fst analysis was performed using the R package “adegenet” [45]. Further-

more, the expected heterozygosity (He) was calculated using the function “poppr()” of the R

package “poppr” to assess the level of genetic diversity within clusters of Kersting’s groundnut

accessions [51]. Moreover, an analysis of variance (ANOVA) was conducted using all morpho-

logical traits to assess the phenotypic diversity among clusters, using the following model:

Yi ¼ mþ Ci þ εi ð9Þ

where the ith phenotypic response (Yi) is a function of the overall mean (μ), the fixed effect of

the ith cluster (Ci) and the residual error (εi).

The population structure was also investigated using the Bayesian clustering method in

STRUCTURE version 2.3.4 [52]. The three agro-ecological regions (e.g. Guinean, Sudano-

Guinean and Sudanian regions) were included in the analysis as putative geographic origins of

accessions. The length of the burn-in period and Markov Chain Monte Carlo (MCMC) were

set at 10,000 iterations [53]. To obtain an accurate estimation of the number of populations, 20

runs were performed for each K-value (assumed number of subpopulations), ranging from 1

to 10. Further, Delta K-values were calculated and an appropriate K-value was estimated

according to the Evanno et al. [53] method using STRUCTURE Harvester program [54]. At

the appropriate K-value, Delta K-values make a salient break in slope of the distribution of

likelihood values of K. Given a K-value, divergence rate of each subpopulation from a hypo-

thetical ancestral population is estimated by population Fst values generated by STRUCTURE.

The divergence rates show the extent of differentiation between subpopulations and the ances-

tral population for an accurate estimation of the clustering patterns. To complement the results

of population structure, the pairwise Fst analysis was conducted among agro-ecological

regions using the R software 3.4.3 [36] to check whether genetic differentiation among acces-

sions was explained by their geographical origins. In addition, the two-sided Student test was

performed on all morphological traits to compare means between both subpopulations.

SNP-traits association analysis

The marker-trait association analysis was conducted per environment and across environ-

ments with heritability�0.50. Traits included grain yield per plant, days to 50% flowering,

days to maturity, number of seeds per plant and number of pods per plant. The unified Mixed

Linear Model (MLM) accounting for genetic relatedness (K-matrix) was used on BLUE-values

estimated for each trait in order to control type I errors. The MLM analysis was conducted

with and without including the three first principal components by using the GAPIT package

of R software [55, 56]. The combination of different models is a good approach for the appro-

priate control of false positives and negatives in GWAS [57]. Therefore, only markers that

revealed significant associations with both MLM and MLM-Q were retained as true pheno-

type-to-genotype associations [39]. The significant cut-off threshold was estimated using the

Bonferroni correction threshold as follows: p-value = 0.05/Me with Me = the number of mark-

ers included in the analysis [39].
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Genomic prediction accuracy in Kersting’s groundnut

Genomic selection models were built for each morphological trait using the 493 SNP markers

and the ridge regression analysis in the R package “rrBLUP” [33, 58]. The training and valida-

tion populations were defined through the stratified (all clusters) and “within cluster” sam-

pling techniques [59, 60]. The stratified sampling technique refers to a random selection of

accessions from each cluster in a way the training and validation populations consider the

genetic diversity revealed by the cluster analysis within the crop [59]. In this study, about 75%

of accessions were randomly selected from each cluster and included in the training popula-

tion (211 accessions), while the remainder (70) formed the validation population. Contrary to

the stratified sampling technique, the “within cluster” sampling technique consists in a ran-

dom selection of accessions from one cluster to form both training and validation populations

[59]. This sampling technique considers only the genetic diversity within one cluster of acces-

sions for genomic prediction. Therefore, 162 accessions were randomly selected in cluster I

(essentially composed of white seeded accessions) to form the training population while the

rest of the accessions (55) of this cluster were used as the validation population. Correlation

coefficients between observed and predicted values of all traits were calculated, using the cross

validation approach to assess the accuracy of the genomic selection models.

Results

Morphological traits variation and association patterns in Kersting’s

groundnut

Highly significant (p<0.001) genetic variation was observed among accessions for all morpho-

logical traits, except seed thickness (Table 3). The genotype x environment (GxE) interaction

Table 3. Mean squares of analysis of variance of morphological traits among Kersting’s groundnut accessions across Sékou and Savè environments.

Variables Accession Environment Acc�Env Residuals

df = 280 df = 1 df = 270 df = 532

DIP 10.76��� 1305.11��� 10.51��� 4.73

PLH 6.62��� 2953.04��� 5.19��� 2.54

LEL 0.77��� 734.42��� 0.65��� 0.64

PEL 4.90��� 742.31��� 4.00��� 2.12

LEW 0.41� 245.862��� 0.35ns 0.33

100SW 10.27��� 2322.55��� 4.92��� 3.04

SIL 0.71��� 140.68��� 0.49� 0.40

SWi 0.33��� 53.83��� 0.21�� 0.16

STh 1.40ns 22.10��� 1.44ns 1.43

DFF 45.10��� 4014.20��� 7.90��� 3.20

DTM 92.00��� 55469.00��� 48.00ns 49.00

GRY 14.39��� 516.67��� 15.85��� 8.95

NSP 797.90��� 281.7ns 888.80��� 507.80

NPP 470.23��� 924.12ns 522.87��� 292.66

NSPod 0.02��� 2.30��� 0.01ns 0.01

DIP = diameter of plant (cm), PLH = plant height (cm), LEL = leaflet length (cm), LEW = leaflet width (cm), PEL = petiole length (cm), 100SW = 100 seed weight (g),

SIL = seed length (mm), SWi = seed width (mm), STh = seed thickness (mm), DFF = days to 50% flowering (days), DTM = days to maturity (days), GRY = grain yield

(g/plant), NSP = number of seeds per plant, NPP = number of pods per plant, NSPod = number of seeds per pod; df = degree of freedom, Acc = accession,

Env = environment, ns = non-significant

�, ��, ��� indicate significance at p-values of 0.05, 0.01, and 0.001, respectively.

https://doi.org/10.1371/journal.pone.0234769.t003
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was also highly significant for most traits except leaflet width, seed thickness, days to maturity

and number of seeds per pod (Table 3). Average performances were lower at Savè than

Sékou for all morphological traits (Fig 1). The coefficients of variation (CVs) and broad sense

heritability estimates across environments for the 15 morphological traits are shown in

Table 4. The coefficients of variation were<20% for most traits including the diameter of the

plant, plant height, leaflet length, leaflet width, petiole length, 100 seeds weight, seed length,

seed width, seed thickness, and the number of seeds per pod. In contrast, higher coefficients of

variation were obtained for grain yield per plant (42.2%), the number of seeds per plant

(36.3%) and the number of pods per plant (34.9%), revealing that there was a high variability

for those traits across environments (Table 4). Moreover, the broad sense heritability estimates

were high for 100 seeds weight (0.61), days to 50% flowering (0.86), days to maturity (0.87),

grain yield per plant (0.53), number of seeds per plant (0.55) and number of seeds per pod

(0.52) (Table 4).

Furthermore, the Pearson correlation analysis revealed highly significant (p<0.001) positive

correlations of grain yield per plant with the yield components, 100 seed weight, number of

seeds per plant, number of seeds per pod, and number of pods per plant at Sékou, Savè and

across environments (Table 5). In addition, there were significant negative correlations

between grain yield per plant, days to 50% flowering and days to maturity for all environments.

Moreover, a significant positive correlation was detected between grain yield per plant and

seed thickness at Savè (Table 5). GRY was poorly correlated to leaf morphological traits.

Fig 1. Variation of the 15 morphological traits across environments.

https://doi.org/10.1371/journal.pone.0234769.g001
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Single nucleotide polymorphisms in Kersting’s groundnut

In total, the high density Genotyping by Sequencing (GBS) of the 281 accessions yielded 493

single nucleotide polymorphisms (SNPs) with 0.3–30.9% of missing data. The call rate ranged

from 63 to 100% with an average of 0.96±0.05. The reproducibility of markers ranged from

0.91 to 1.00 with an average of 0.99±0.02. Only 10.9% (54) of SNPs were aligned to the refer-

ence genomes of both adzuki bean and mung bean. The average minor allele frequencies fre-

quency (MAF) was 0.04±0.07. About 22.9% (113) of markers had minor allele frequency

greater than 0.05 (S1 Table). Moreover, mean observed and expected heterozygosity were

Table 4. Coefficients of variation and broad sense heritability estimates of Kersting’s groundnut morphological

traits across Sekou and Savè environments.

Traits Code CV (%) H

Diameter of plant (cm) DIP 8.50 0.47

Plant height (cm) PLH 8.98 0.51

Leaflet length (cm) LEL 6.62 0.41

Petiole length (cm) PEL 8.98 0.46

Leaflet width (cm) LEW 7.57 0.29

Hundred seeds weight (g) 100SW 14.94 0.61

Seed length (mm) SIL 5.62 0.36

Seed width (mm) SWi 5.54 0.39

Seed thickness (mm) STh 4.38 0.15

Days to 50% flowering (days) DFF 7.06 0.86

Days to maturity (days) DTM 3.62 0.87

Grain yield per plant (g/plant) GRY 42.22 0.53

Number of seeds per plant (seeds) NSP 36.26 0.55

Number of pods per plant (pods) NPP 34.89 0.52

Number of seeds per pod (seeds) NSPod 5.65 0.47

CV = coefficient of variation, H = broad sense heritability

https://doi.org/10.1371/journal.pone.0234769.t004

Table 5. Pearson correlations between grain yield per plant and other Kersting’s groundnut morphological traits.

Traits Code Sékou Savè Overall

Diameter of plant (cm) DIP 0.04 0.10 0.02

Plant height (cm) PLH 0.01 0.14� 0.08

Leaflet length (cm) LEL -0.01 0.13� 0.03

Petiole length (cm) PEL 0.02 0.10 0.04

Leaflet width (cm) LEW 0.03 0.09 0.04

Hundred seeds weight (g) 100SW 0.58�� 0.46�� 0.51��

Seed length (mm) SIL 0.10 0.14� 0.24��

Seed width (mm) SWi 0.12� 0.11 0.24��

Seed thickness (mm) STh -0.02 0.44�� 0.09

Days to 50% flowering (days) DFF -0.42�� -0.03 -0.45��

Days to maturity (days) DTM -0.38� -0.04 -0.40��

Number of seeds per plant (seeds) NSP 0.96��� 0.95��� 0.93���

Number of pods per plant (pods) NPP 0.93��� 0.94��� 0.88���

Number of seeds per pod (seeds) NSPod 0.40��� 0.21�� 0.34���

�, ��, ��� indicate significance at p-values of 0.05, 0.01, and 0.001, respectively

https://doi.org/10.1371/journal.pone.0234769.t005
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estimated at 0.04±0.08 (0 to 0.64) and 0.22±0.09 (0.11 to 0.46) respectively. The total gene

diversity (HT) across markers varied from 0.07 to 0.50; the average HT value was 0.43 (S1

Table). Considering the low proportion of markers aligned to the reference genome of related

species, both aligned and non-aligned SNP markers were considered for association analysis.

Genetic diversity of Kersting’s groundnut germplasm

The clustering groups the 281 accessions into four clusters based on shared attributes (Fig 2).

Cluster I (77.2% of accessions) was mainly composed of white seeded accessions, which were

highly related to each other and clearly separated from other accessions. Cluster II (6.4% of

accessions) was composed of red seeded accessions, which were highly related to each other.

Cluster III (14.2% of accessions) was essentially composed of black seeded accessions. More-

over, cluster IV (2.1% of accessions) was exclusively composed of white with black eye acces-

sions, revealing a high genetic relatedness among those accessions (Fig 2). The clustering was

supported by results of the pairwise Fst analysis between pairs of clusters (Table 6). The overall

Fst-value was 0.62, showing a high genetic differentiation among clusters of accessions. In addi-

tion, the pairwise Fst-values ranged from 0.30 to 0.92. The lowest Fst was obtained between

Clusters II and IV while the highest Fst-value was revealed between Clusters I and IV (Table 6).

However, the within cluster expected heterozygosity ranged from 0.01 to 0.09, revealing a

low genetic diversity within clusters (cultivated landraces) of Kersting’s groundnut. The high-

est expected heterozygosity was obtained with Cluster 2 (He = 0.09) while Cluster 1 exhibited

the lowest expected heterozygosity (He = 0.01). Clusters 3 and 4 showed an expected heterozy-

gosity of 0.05 and 0.03 respectively.

Fig 2. Un-rooted Neighbour-Joining (NJ) tree showing the relatedness among the 281 accessions of Kersting’s groundnut.

https://doi.org/10.1371/journal.pone.0234769.g002
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Moreover, the analysis of phenotypic variance among clusters revealed high significant phe-

notypic differences between clusters for most morphological traits, including plant height, pet-

iole length, leaflet length, 100 seed weight, seed length, seed width, seed thickness, days to 50%

flowering, days to maturity, grain yield per plant and number of seeds per pod (Table 7). Clus-

ter I was composed of late flowering (49.3±0.98 days) and late maturing (112.7±2.17 days)

accessions with low grain yield per plant (4.34±1.89 g/plant). Clusters II and III were com-

posed early flowering accessions (42.6±2.68 days for cluster II, and 41.5±2.31 days for cluster

III), early maturing accessions (105.6±1.46 days for cluster II, 103.5±1.33 days for cluster III)

with highest grain yield per plant (5.1±2.32 days for cluster II, 5.2±1.62 days for cluster III),

highest seed size and highest 100 seed weight (12.49±2.16 g for cluster II, 13.39±1.25 g for clus-

ter III) (Table 4). In contrast to cluster III, accessions of cluster II exhibited the highest values

for leaf morphological traits. Cluster IV was consisted of earliest flowering (38.6±1.31 days)

Table 6. Results of pairwise Fst analysis among clusters of Kersting’s groundnut accessions.

Global test

Overall Weir and Cockerham’s Fst-valuea = 0.62���

Clusters I II III IV

I (White seeded) -

II (Red seeded) 0.82��� -

III (Black seeded) 0.80��� 0.54��� -

IV (White with black eye) 0.92��� 0.30��� 0.76��� -

a F-statistic measuring the degree of differentiation of the groups

��� indicates significance at p-value<0.001

https://doi.org/10.1371/journal.pone.0234769.t006

Table 7. Phenotypic means and standard deviation of clusters of Kersting’s groundnut accessions and results of F-test of differences among clusters.

Variables Cluster I Cluster II Cluster III Cluster IV F-value

n = 217 n = 18 n = 40 n = 6

DIP 19.68±1.68 20.59±1.72 20.05±1.65 19.73±0.56 1.90ns

PLH 14.28±1.26a 15.45±1.43b 14.33±1.16a 14.95±1.75a 4.53��

LEL 6.75±0.44a 7.03±0.50ab 6.97±0.41b 6.83±0.40ab 4.17��

PEL 7.56±0.67a 8.15±0.60b 7.41±0.62a 7.68±0.75ab 4.90��

LEW 4.23±0.30a 4.02±0.27b 4.37±0.41c 3.94±0.19ab 5.96���

100SW 10.49±1.19a 12.49±2.16b 13.39±1.25c 10.85±1.67a 66.60���

SIL 7.73±0.38a 8.29±0.36b 8.27±0.41b 7.70±0.50a 4.54���

SWi 5.35±0.25a 5.69±0.20b 5.79±0.24b 5.11±0.25a 44.19���

STh 4.11±0.17a 4.19±0.24a 4.14±0.18a 3.84±0.29b 4.48��

DFF 49.25±0.98a 42.56±2.68b 41.52±2.31b 38.57±1.31c 509.00���

DTM 112.7±2.17a 105.64±1.46b 103.47±1.33c 103.81±1.60bc 284.50���

GRY 4.34±1.89a 5.07±2.32b 5.21±1.62b 4.84±1.84a 2.98�

NSP 39.40±14.70 38.83±15.51 37.12±10.09 40.12±13.46 0.30ns

NPP 31.72±11.27 30.83±11.25 27.94±7.56 32.27±11.63 1.37ns

NSPod 1.23±0.07a 1.26±0.07a 1.31±0.07b 1.25±0.08ab 14.30���

DIP = diameter of plant (cm), PLH = plant height (cm), LEL = leaflet length (cm), LEW = leaflet width (cm), PEL = petiole length (cm), 100SW = 100 seed weight (g),

SIL = seed length (mm), SWi = seed width (mm), STh = seed thickness (mm), DFF = days to 50% flowering (days), DTM = days to maturity (days), GRY = grain yield

(g/plant), NSP = number of seeds per plant, NPP = number of pods per plant, NSPod = number of seeds per pod

a, b, c are used to separate means of clusters, values followed by the same superscript letter are statistically identical, ns = non-significant

�, ��, ��� indicate significance at p-values of 0.05, 0.01, and 0.001, respectively.

https://doi.org/10.1371/journal.pone.0234769.t007
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and early maturing (103.8±1.60 days) with low grain yield per plant (4.84±1.84 g/plant) and

100 seed weight (10.85±1.67 g) (Table 4).

Model-based population structure and phenotypic variation between

subpopulations

The admixture model-based clustering, using the 281 accessions, showed two distinct populations

of Kersting’s groundnut accessions (Fig 3). Population I (Pop I) was composed of 64 accessions

(22.78%) while population II (Pop II) consisted of 217 accessions (77.22%). Divergence rates of

populations I and II from the hypothetical ancestral population built by the Bayesian clustering

method, were estimated by mean Fst-values of 0.57 and 0.69, respectively. Therefore, populations

I and II were highly differentiated from the hypothetical ancestral population. Moreover, the two

populations were highly discriminated by agro-ecological origins of accessions and seed coat col-

ours. About 87.5% of accessions of population I were collected in the Sudanian region while only

12.5% of them originated from the Guinean region. In contrast, all accessions of population II

originated from the Sudano-Guinean (71.4%) and the Guinean regions (28.6%). In addition, pop-

ulation I included only white-seeded accessions while population II was composed of colourful

accessions, e.g. red-seeded, black-seeded and white-seeded with black eye accessions. This reveals

a high allelic differentiation between white-seeded and colourful accessions.

Results of Fst statistics depicting the degree of differentiation among accessions from differ-

ent agro-ecological regions are shown in Table 8. High genetic differentiation was observed

among regions with overall Weir and Cockerham’s Fst-value of 0.37. Pairwise Fst-values var-

ied from 0.07 to 0.59 (Table 8). The lowest Fst-value (0.07) was observed between the Guinean

and the Sudano-Guinean regions. Relatively high Fst-value (0.25) was observed between the

Guinean and the Sudanian regions. Moreover, the highest Fst-value (0.59) was detected

between the Sudanian and the Sudano-Guinean agro-ecological regions.

The two-sided Student test revealed high significant differences between both populations

for the diameter of plant, leaflet length, 100 seed weight, seed length, seed width, days to 50%

flowering, days to maturity, grain yield per plant and number of seeds per pod (Table 9). Con-

trary to population II, accessions of population I were early flowering (41.6±2.52 days), early

maturing (104.1±1.67 days) and showed the highest 100 seed weight (12.98±1.69 g), seed

length (8.24±0.42 mm), seed width (5.71±0.29 mm), grain yield per plant (5.15±1.82 g/plant)

and number of seeds per pod (1.29±0.07) (Table 9).

Marker-traits associations in Kersting’s groundnut

Based on the 113 SNP markers included in the GWAS analysis, the corrected Bonferroni

threshold for significant marker-trait associations was p-value = 4.42 x 10−4. Significant SNP-

Fig 3. Barplot of populations sorted by Kinship matrix (Pop I = population I, Pop II = population II).

https://doi.org/10.1371/journal.pone.0234769.g003
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traits associations in Kersting’s groundnut in specific sets of environments are shown in

Table 10. Both the MLM and MLM-Q analyses revealed 10 SNP markers significantly associ-

ated with grain yield per plant and related traits across environments. Six of the marker-trait

associations were repeated in at least the two sets of environments while the four other associa-

tions were environment-specific (Table 10). The analysis of Quantile-Quantile (QQ) plots

showed good relationships between the expected and observed p-values for all studied traits

(S1 Fig). The Marker M1 was significantly associated with 100 seeds weight at Sékou, Savè and

for the overall environment and accounted for over 24% of the phenotypic variation. Markers

M2 and M4 were respectively associated with days to 50% flowering and grain yield per plant

at Sékou and for the overall environment (Table 10). Similarly, the markers M2 and M4 were

respectively associated with days to maturity and the number of seeds per plant in all environ-

ments. Markers M5 and M6 were associated respectively with one hundred seeds weight and

Table 8. Results of pairwise Fst analysis among agro-ecological regions of Kersting’s groundnut accessions.

Global test

Overall Weir and Cockerham’s Fst-value = 0.37��

Agro-ecological region Guinean Sudano-Guinean Sudanian

Guinean -

Sudano-Guinean 0.07� -

Sudanian 0.25�� 0.59��� -

a F-statistic measuring the degree of differentiation of agro-ecological regions

�, ��, ��� indicates significance at p-value 0.05, 0 .01 and 0.001, respectively.

https://doi.org/10.1371/journal.pone.0234769.t008

Table 9. Phenotypic means and standard deviation of subpopulations of Kersting’s groundnut accessions and results of Student test of differences between

subpopulations.

Variables Population I Population II t-value

n = 64 n = 217

DIP 20.17±1.63 19.67±1.68 -2.09�

PLH 14.67±1.35 14.28±1.26 -2.00ns

LEL 6.97±0.43 6.75±0.44 -3.50���

PEL 7.63±0.69 7.55±0.67 -0.77ns

LEW 4.24±0.40 4.23±0.30 -0.26ns

100SW 12.98±1.69 10.49±1.19 -10.66���

SIL 8.24±0.42 7.73±0.38 -8.45���

SWi 5.71±0.29 5.34±0.25 -9.05���

STh 4.13±0.22 4.11±0.17 -0.88ns

DFF 41.60±2.52 49.25±0.98 22.94���

DTM 104.08±1.67 112.7±2.17 33.33���

GRY 5.15±1.82 4.34±1.89 -3.04��

NSP 37.79±11.80 39.4±14.70 0.89ns

NPP 29.02±8.92 31.71±11.27 1.97ns

NSPod 1.29±0.07 1.23±0.07 -5.57���

DIP = diameter of plant (cm), PLH = plant height (cm), LEL = leaflet length (cm), LEW = leaflet width (cm), PEL = petiole length (cm), 100SW = 100 seed weight (g),

SIL = seed length (mm), SWi = seed width (mm), STh = seed thickness (mm), DFF = days to 50% flowering (days), DTM = days to maturity (days), GRY = grain yield

(g/plant), NSP = number of seeds per plant, NPP = number of pods per plant, NSPod = number of seeds per pod

�, ��, ��� indicate significance at p-values of 0.05, 0.01, and 0.001, respectively.

https://doi.org/10.1371/journal.pone.0234769.t009
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days to 50% flowering at Savè and for the overall environment. Marker M7 was significantly

associated with the number of pods per plant at Savè and in the overall environment. More-

over, the marker M3 was discovered at Sékou in a significant association with days to maturity.

In addition, the marker M7 was significantly associated with days to maturity and the number

of seeds per plant at Savè. Other significant associations in the overall environment included

markers M8, M9 and M10. The marker M8 was associated with days to 50% flowering and

days to maturity while both markers M9 and M10 were associated with days to 50% flowering

(Table 10). Markers M2, M6, M8, M9 and M10 were associated with days to 50% flowering

with R2 values ranging from 10.6 to 25.4%. M2, M3 and M7 were associated with days to matu-

rity. Grain yield per plant was correlated to the yield components of 100 seed weight, number

of seeds per plant, number of seeds per pod, and number of pods per plant. Marker M4 was

associated with grain yield per plant and number of seeds per pods. M1 and M5 were associ-

ated with 100 seed weight but not grain yield per plant and M7 was associated with number of

seeds per plant but not grain yield per plant.

Genomic selection models and accuracy in Kersting’s groundnut

The ridge regression analysis, including the 493 SNP markers, revealed moderate (0.42–0.44)

to high (0.62–0.79) prediction accuracy for leaflet length, 100 seed weight, seed length, seed

width, days to 50% flowering and days to maturity, using the stratified (involving accessions

from all clusters) cross-validation sampling technique (Table 11). Moderate correlations were

detected between observed and predicted values of leaflet length (0.44), seed length (0.43) and

Table 10. GWAS results within and across environments for grain yield and related traits.

Env Traits Marker Allele identity Allele p-value -log10(p) Add SnpR2 (%) MAF

Sékou 100SW M1 100027985|F|0–60:A>G-60:A>G G:G 2.50E-04 3.60 0.18 24.45 0.08

Sékou DFF M2 100075398|F|0–45:T>C-45:T>C C:C 1.49E-04 3.83 0.09 25.38 0.07

Sékou DTM M3 100030821|F|0–34:A>C-34:A>C C:C 1.28E-04 3.89 -0.02 23.57 0.22

Sékou GRY M4 100032049|F|0–6:G>T-6:G>T T:T 8.53E-05 4.06 -24.20 8.71 0.08

Savè 100SW M5 100031485|F|0–27:G>A-27:G>A A:A 9.99E-05 4.00 0.07 11.46 0.15

Savè 100SW M1 100027985|F|0–60:A>G-60:A>G G:G 1.33E-04 3.87 0.33 25.55 0.08

Savè DFF M6 100048752|F|0–13:G>A-13:G>A A:A 7.49E-07 6.13 -0.07 10.97 0.23

Savè DTM M7 100070037|F|0–60:G>A-60:G>A A:A 2.27E-04 3.64 -0.02 24.60 0.24

Savè NPP M7 100070037|F|0–60:G>A-60:G>A A:A 4.89E-06 5.31 -0.27 80.05 0.24

Savè NSP M7 100070037|F|0–60:G>A-60:G>A A:A 3.67E-04 3.44 -0.25 4.23 0.24

Overall 100SW M1 100027985|F|0–60:A>G-60:A>G G:G 3.28E-04 3.48 4.60 24.23 0.08

Overall 100SW M5 100031485|F|0–27:G>A-27:G>A A:A 7.80E-05 4.11 -0.13 95.80 0.15

Overall DFF M8 100030725|F|0–48:G>T-48:G>T T:T 6.48E-07 6.19 -1.11 10.81 0.08

Overall DFF M9 100031216|F|0–19:C>T-19:C>T T:T 2.66E-04 3.58 2.69 24.36 0.06

Overall DFF M10 100031465|F|0–16:G>T-16:G>T T:T 2.12E-04 3.67 -1.83 24.53 0.15

Overall DFF M6 100048752|F|0–13:G>A-13:G>A A:A 1.99E-04 3.70 -3.92 24.58 0.23

Overall DFF M2 100075398|F|0–45:T>C-45:T>C C:C 1.28E-07 6.89 12.64 10.59 0.07

Overall DTM M8 100030725|F|0–48:G>T-48:G>T T:T 2.14E-04 3.67 1.16 26.26 0.08

Overall DTM M2 100075398|F|0–45:T>C-45:T>C C:C 4.70E-05 4.33 13.71 61.41 0.07

Overall GRY M4 100032049|F|0–6:G>T-6:G>T T:T 6.53E-05 4.19 -56.59 3.71 0.08

Overall NPP M7 100070037|F|0–60:G>A-60:G>A A:A 3.81E-04 3.42 -31.27 4.12 0.24

Overall NSP M4 100032049|F|0–6:G>T-6:G>T T:T 5.17E-05 4.29 -49.20 3.89 0.08

Env = environment, Add = additive effect, MAF = minor allele frequency, SnpR2 = proportion of phenotypic variation explained by marker

https://doi.org/10.1371/journal.pone.0234769.t010
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seed width (0.42). Strong correlations were detected between observed and predicted 100 seed

weight (0.62), days to 50% flowering (0.79) and days to maturity (0.72). Low prediction accu-

racy was observed for the diameter of plant (0.17), plant height (0.15), petiole length (0.11),

leaflet width (0.12), grain yield per plant (0.18), number of seeds per plant (0.20), number of

pods per plant (0.18) and number of seeds per pod (0.16) (Table 11). The cross-validation

approach including only accessions from cluster I (within cluster sampling) revealed low

model accuracy (0.02 to 0.30) for all morphological traits (Table 11).

Discussion

Single nucleotide polymorphism and genetic diversity among Kersting’s

groundnut landraces

The discovery of good quality molecular markers is important to enhance the application of

enabling biotechnologies for orphan crops improvement [6]. This study reports for the first

time 493 SNP markers in Kersting’s groundnut, which were further quality assessed to obtain

113 high polymorphic and informative markers with MAF�0.05 and a high reproducibility

(0.99). Given the relative small number of SNP markers, Kersting’s groundnut is not as poly-

morphic as other self-pollinated species [61–63]. The average heterozygosity (He = 0.22) and

total gene diversity (Ht = 0.43) across markers revealed a high genetic diversity within Ker-

sting’s groundnut and a strong population structure. This finding reveals higher gene diversity

than values reported by Pasquet et al. [20] on Kersting’s groundnut using biochemical mark-

ers, and Wang et al. [64], Ren et al. [65] on peanut (Arachis hypogea L.) based on single

sequence repeat (SSR) markers. Moreover, our results revealed a low alignment (10.9%) of

SNP markers to reference genomes of closely related species such as adzuki bean and mung

bean in contrast to findings of Ho et al. [66] on bambara groundnut [Vigna subterranean (L.)

Verdc.]. Consequently, whole genome sequencing is crucial in Kersting’s groundnut to make a

reference genome available to increase the accuracy of SNPs calling and breeding prospects.

Table 11. Genomic selection models and prediction accuracy in Kersting’s groundnut using stratified and within cluster sampling techniques.

Variables Genomic selection model Accuracy of stratified sampling Accuracy of within cluster sampling

DIP 19.95 + XgDIP + 0.41 0.17 0.17

PLH 14.68 + XgPLH + 1.18 0.15 0.12

LEL 6.87 + XgLEL + 0.34 0.44 0.14

PEL 38.62 + XgPEL + 0.60 0.11 0.19

LEW 4.17 + XgLEW + 0.24 0.12 0.21

100SW 10.94 + Xg100SW + 3.55 0.62 0.02

SIL 8.17 + XgSIL + 0.78 0.43 0.03

SWi 5.50 + XgSWi + 0.63 0.42 0.16

DFF 43.65 + XgDFF + 5.08 0.79 0.06

DTM 108.11 + XgDTM 5.66 0.72 0.30

GRY 4.71 + XgGRY + 0.68 0.18 0.05

NSP 38.62 + XgNSP + 0.95 0.20 0.05

NPP 29.79 + XgNPP + 3.95 0.18 0.07

NSPod 1.27 + XgNSPod + 0.08 0.16 0.19

DIP = diameter of plant (cm), PLH = plant height (cm), LEL = leaflet length (cm), LEW = leaflet width (cm), PEL = petiole length (cm), 100SW = 100 seed weight (g),

SIL = seed length (mm), SWi = seed width (mm), STh = seed thickness (mm), DFF = days to 50% flowering (days), DTM = days to maturity (days), GRY = grain yield

(g/plant), NSP = number of seeds per plant, NPP = number of pods per plant, NSPod = number of seeds per pod, X = SNP markers, g = SNP markers effects.

https://doi.org/10.1371/journal.pone.0234769.t011
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The results also showed the importance of SNP markers in revealing high genetic differenti-

ation among Kersting’s groundnut accessions (Fst = 0.79). Very high genetic differentiation

was observed among the four types of landraces included in this study, that is, white, red, black

and white with black eye seeded accessions. Similar results were reported by Mohammed et al.
[67] who observed genetic variation among five different Ghanaian accessions using 12 single

sequence repeat (SSR) markers. These findings imply that cultivated landraces of Kersting’s

groundnut encompass a high genetic differentiation in contrast to findings of Pasquet et al.
[20] who used 19 enzymes (biochemical markers) on 20 accessions of Kersting’s groundnut.

SNP markers are highly codominant, polymorphic and more appropriate to unveil the existing

genetic diversity within a species as opposed to biochemical markers which are not abundant

and reduce the resolution of the genetic diversity [25, 26]. On the other hand, the population

structure analysis, including geographic origins of accessions, identified two subpopulations

that were found to be highly structured, revealing the influence of geographic origins on the

genetic diversity within Kersting’s groundnut. Large genetic differentiation was observed

among accessions based on agro-ecological regions since the overall Fst = 0.37, which is greater

than 0.25. Low genetic differentiation was detected between the Guinean and Sudano-Guinean

regions. This might be because of the proximity of these regions and seed exchange among

farmers. Kersting’s groundnut farmers in the Guinean and the Sudano-Guinean regions buy

seeds on the markets [15]. However, great genetic differentiation was observed between the

Sudanian and the two other agro-ecological regions. According to Akohoué et al. [15], farmers

in the Sudanian region reused seeds from the previous harvest. The white with black eye

seeded landrace was also reported to be specific to the Sudanian region. Further investigation

in that region may reveal more diversity. The clear separation between early and late acces-

sions as shown by both clustering and structure analyses could be explained by the high corre-

lation between time to flowering and seed coat colour as reported by [68].

Moreover, the difference between the number of clusters revealed by the neighbour joining

analysis and results of population structure could be attributed to limitations of the STRUC-

TURE software to adequately describe the structure of the population. Among other limita-

tions, STRUCUTRE results are sensitive to sample size, number of populations, number of

loci scored and the type of markers [53]. Despite these limitations, it was informative to pres-

ent both perspectives so that readers appreciate the possible incongruence of results when

using different computation approaches. Similar incongruence was reported by Al-Abdallat

et al. [39] when the neighbour joining analysis revealed several subgroups of barley (Hordeum
vulgare L.) accessions while STRUCTURE identified two distinct subpopulations.

Broadening the genetic base within Kersting’s groundnut landraces

The improvement of Kersting’s groundnut requires the development of improved varieties for

the most cultivated landraces, e.g. the white-seeded landrace. However, this study revealed a

low genetic diversity within landraces, particularly the white-seeded landrace (He = 0.01)

which is the most cultivated landrace due to the high economic value of its grains in most west

African countries [15]. The low genetic diversity within landraces is likely due to the self-polli-

nation mode of the species, the active geocarpic and chasmogamous nature of the flowers [20,

69]. Among other disadvantages, the geocarpy in Kersting’s groundnut limits seed or fruit dis-

persal, influences gene transfer and population genetic structure, and increases reproductive

costs in the species [69]. Given the high phenotypic differences among clusters for grain yield

and yield-related traits, the successful breeding of Kersting’s groundnut requires intensive

cross pollinations among all landraces (e.g. white-seeded, red-seeded, black-seeded and white-

seeded with black eye landraces) for a broader genetic diversity and improved gains from
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selection. Considering the influence of geographic origins on the distribution of landraces, the

enhancement of the genetic diversity within Kersting’s groundnut requires also the introduc-

tion of new germplasm and crossing among genotypes from different production countries

and regions. In addition, the available germplasm of Kersting’s groundnut could be enhanced

through mutation breeding techniques, using chemical mutagenesis combined with the Tar-

geted Induced Local Lesions in Genomes (TILLING). Mutation breeding has been successfully

used to create genetic diversity and identify favourable mutants in many self-pollinated crops,

including tomato (Solanum lycopersicum L.) [70] and soybean [Glycine max (L.) Merr.] [71].

Marker-trait associations and genomic selection accuracy in Kersting’s

groundnut

Phenotypic evaluation studies in Kersting’s groundnut showed great phenotypic variability

among accessions [17, 72, 73]. From the results of this study, the broad sense heritability of

most morphological traits was greater than 0.50, showing the presence of genetic variability

among accessions across environments. Therefore, GWAS was performed to associate the phe-

notypic variation of yield and related traits with the observed molecular genetic diversity. A

similar approach has been used on major legumes crops including cowpea [74] and peanut

[75] to decipher the genetic basis of morphological traits in a set of environments. The GWAS

analysis detected 10 markers significantly associated with grain yield and related traits. Six of

the markers, including M1, M2, M4, M5, M6 and M7, were consistent across environments.

Nevertheless, the other markers identified in this study were not clearly consistent across the

two environments.

The inconsistency of GWAS results could be explained by the highly significant genotype

by environment (GxE) interaction observed for most morphological traits included in this

study, and different genetic mechanisms under drought conditions as reported by Al-Abdallat

et al. [39], Varshney et al. [76] in barley (Hordeum vulgare L.). In this study, average rainfall

recorded during field trials was lower than the water requirement of 500–900 mm/year of Ker-

sting’s groundnut [14, 19]. In addition, dissecting the genetic basis governing complex traits

using GWAS on a natural population in dry environments could be less informative compared

with bi-parental and specialised mapping populations [76]. Conventional genome-wide associ-

ation studies also perform poorly for rare variants that might be prominent, particularly for

self-pollinated species [77]. The high R2 values (>26%) observed for some marker-trait associ-

ations suggests the presence of confounding phenotypic variation, revealing that including the

three first principal components in the GWAS analysis did not adequately adjust for accessions

clustering and population structure. This confounding effect between some of the markers

and phenotypic variation arises from the high significant differences in the phenotypic vari-

ance among Kersting’s groundnut clusters and subpopulations [78].

Despite these limitations, the GWAS provided a first insight into the genetic basis of farm-

ers’ preferred traits in Kersting’s groundnut. Further investigation on the whole genome

assembly is required for a clear identification of chromosome position of single nucleotide

polymorphisms in the species. In addition, given the low genetic base within landraces, the

development of specialised mapping populations like Multi-parent Advanced Generation

Inter-cross (MAGIC) populations could be relevant for the accurate identification and map-

ping of quantitative traits loci (QTLs) in Kersting’s groundnut as reported in many self-polli-

nated crops including rice (Oryza sativa L.) [79] and cowpea [80]. In contrast to bi-parental

populations (e.g. F2 and backcross populations, recombinant inbred lines, near isogenic lines

and double haploids), MAGIC populations increase the recombination rate and genetic diver-

sity, and reduces the extent of linkage disequilibrium (LD), giving the opportunity to detect
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more QTLs with a higher precision [81, 82]. Cultivated landraces could serve as founder lines

that could be mixed through inter-crossing to form a broader genetic base.

In addition to the GWAS, genomic selection models, using the stratified sampling tech-

nique, revealed moderate to high prediction accuracies for leaflet length, seed dimension traits,

days to 50% flowering and days to maturity. The high prediction accuracy revealed by the

stratified sampling technique could be explained by the existence of high relatedness among

accessions. On the other hand, the within cluster sampling technique revealed very low to

moderate prediction accuracies for all traits. This finding implies that the application of geno-

mic selection for the improvement of the crop requires the development bi-parental and spe-

cialised mapping populations. The utilisation of these populations having low population

structure could maximize accuracy and selection gains and accelerate the deployment of

improved Kersting’s groundnut varieties with farmers’ preferred traits.

Conclusion

In this study, the genetic diversity, marker-trait association patterns and possibility for accu-

rate genomic selection within a west African collection of Kersting’s groundnut are described.

In total, 493 SNP markers were discovered, of which 113 showed a minor allele frequency

�0.05. High mean heterozygosity and total gene diversity were observed within the species.

The analysis of genetic diversity revealed four clusters of accessions significantly discriminated

by seed coat colours namely the white seeded, red seeded, black seeded and the white with

black eye seeded accessions. However, a low genetic diversity was observed within clusters.

The population structure revealed great genetic differentiation across agro-ecological regions

of accessions. Further, the GWAS analysis detected 10 markers associated with yield and

related traits. Six of the markers showed clear consistency across environments while the

remainder were environment-specific. The genomic selection analysis revealed moderate

accuracy for leaflet length and seed dimension traits, and high prediction accuracies for 100

seed weight, days to 50% flowering and days to maturity. SNP markers identified in this study

could be useful for marker-assisted selection in Kersting’s groundnut breeding programmes.

Further investigations are required regarding the creation of broader genetic diversity within

landraces, development of specialized mapping populations and the assembly of the genome

of Kersting’s groundnut to enable appropriate association mapping with clear chromosome

positions.
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Data curation: Félicien Akohoue.

Formal analysis: Félicien Akohoue.
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