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Abstract: With the accumulation of scientific knowledge of the genetic causes of common diseases and
continuous advancement of gene-editing technologies, gene therapies to prevent polygenic diseases
may soon become possible. This study endeavored to assess population genetics consequences of
such therapies. Computer simulations were used to evaluate the heterogeneity in causal alleles for
polygenic diseases that could exist among geographically distinct populations. The results show
that although heterogeneity would not be easily detectable by epidemiological studies following
population admixture, even significant heterogeneity would not impede the outcomes of preventive
gene therapies. Preventive gene therapies designed to correct causal alleles to a naturally-occurring
neutral state of nucleotides would lower the prevalence of polygenic early- to middle-age-onset
diseases in proportion to the decreased population relative risk attributable to the edited alleles.
The outcome would manifest differently for late-onset diseases, for which the therapies would result
in a delayed disease onset and decreased lifetime risk; however, the lifetime risk would increase again
with prolonging population life expectancy, which is a likely consequence of such therapies. If the
preventive heritable gene therapies were to be applied on a large scale, the decreasing frequency
of risk alleles in populations would reduce the disease risk or delay the age of onset, even with a
fraction of the population receiving such therapies. With ongoing population admixture, all groups
would benefit over generations.

Keywords: polygenic risk; polymorphism; heritability; polygenic disease; simulation; gene therapy;
gene editing; stratification; lifetime risk; admixture

1. Introduction

Research into the causality and liability of diseases primarily based on familial and populational
observations greatly pre-dates the discovery of DNA structure and the genetic code in 1953 by Watson
and Crick [1]. Initially, it was only possible to estimate the frequency of highly malignant mutations in
human populations [2]. It took several decades for experimental techniques to develop sufficiently to
sequence the human genome [3]. Whole genome sequencing (WGS) and genome-wide association
studies (GWASs) have provided experimental insights into the genetic architecture of polygenic
diseases that could be only hypothesized a decade or two earlier [4].

The search for singular genetic mutations started decades ago and continued with GWASs
and WGS, which led to the discovery of many thousands of highly malignant so-called Mendelian
conditions. Among such conditions are sickle-cell anemia, Tay–Sachs disease, cystic fibrosis,
hemophilia, thalassemia, Huntington disease, early-onset Alzheimer’s disease, and macular
degeneration, as well as mutations in the BRCA1/2 genes, which are causally linked to multiple
types of cancer, especially breast cancer [5]. On its own, the prevalence of each such disease in
the population is relatively low. The mutations that cause the majority of Mendelian conditions
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are known and usually involve single nucleotide variants (SNVs) that are associated with a high
susceptibility to these diseases, with other sequence rearrangements representing an aggregate 13% of
mutations [6,7]. The OMIM Gene Map Statistics [5] database lists over 4000 of such gene mutations
responsible for almost 6500 phenotypic conditions or syndromes, and The Human Genome Mutations
Database [8] lists more than 250,000 disease-causing mutations. It has been estimated that, on average,
an individual carries 0.58 recessive alleles that can lead to complete sterility or death by reproductive
age when homozygous [9]. The fact that this number is an average of a large variety of very rare
mutations distributed throughout the genome indicates that severe events, which occur when these
rare alleles affect a particular gene pair in one descendant, are an infrequent occurrence. However,
in aggregate, less malignant diseases caused by rare mutations affect a noticeable fraction of the
population, with approximately 8% of individuals affected [7,10].

Tests have been conducted on many experimental gene therapy techniques that target diseases
typically caused by a single defective gene or SNV. Ginn et al. [11] identified 287 trials that had
been performed by the end of 2017 on inherited monogenic disorders, with the overall number of
clinical trials of gene therapies, predominantly in the oncology field, exceeding 2600. Philippidis [12]
summarized 25 gene-editing therapies that were under clinical trial during the first quarter of
2019. All therapies in these studies focused exclusively on the clinical or reactive—rather than
prophylactic—treatment of genetic conditions. Although not yet technologically or medically possible,
the potential of applying germline gene-editing therapy to prevent at least some of these diseases is
being increasingly discussed. Public understanding of the expected health benefits of such therapies
is gradually building [13,14], and is notably present in the recommendations of the UK Nuffield
Council on Bioethics [15] report Genome editing and human reproduction: Social and ethical issues (2018).
Hypothetically, when the medical technology becomes available to safely and accessibly correct these
mutations, and if governmental regulations allow it in the future [16], treated individuals and their
descendants (in cases of heritable gene therapies) will be effectively cured and have no need for
concern about the single specific cause of their disease.

In contrast to Mendelian conditions, polygenic or complex disease liability is attributed to
hundreds and thousands of gene variants or single nucleotide polymorphisms (SNPs) of typically small
effect that, in combination, constitute the polygenic disease risk of an individual [17–19]. The polygenic
risk score (PRS) of an individual at higher risk for a polygenic disease reflects the presence of a higher
number of detrimental gene variants [20] relative to the average distribution of common gene variants
in the population. Polygenic diseases include highly prevalent old-age diseases—termed late-onset
diseases (LODs)—that eventually affect most individuals (for example, cardiovascular disease,
particularly coronary artery disease, cerebral stroke, type 2 diabetes, senile dementia, Alzheimer’s
disease, cancers, and osteoarthritis) [21–28], as well as earlier-onset diseases and phenotypic features
such as susceptibility to asthma and psychiatric disorders and particular height and high body mass
index (BMI) characteristics [4]. Over the past ten years, GWAS results have been reported for hundreds
of complex traits across a wide range of phenotypes. These studies have led to a well-established
consensus that a large number of common low-effect variants can explain the heritability of the
majority of complex traits and diseases [4,29,30]. With increasing cohort sizes and improving analysis
methods, GWASs are finding ever larger sets of SNPs associated with polygenic traits. GWASs still can
explain only a fraction of disease heritability; however, the systematically collected SNP correlations
provide a good indication of the expected effect sizes and allele frequency distribution of as yet
undiscovered SNPs [18]. Research provides strong support for multiplicative effects of common SNPs
and their environment interaction [31,32]. According to Chatterjee et al. [33], “to date, post-GWAS
epidemiological studies of gene-environment interactions have generally reported multiplicative joint
associations between low-penetrant SNPs and environmental risk factors, with only a few exceptions,”
and “investigations of SNP-by-SNP and SNP-by-environment interactions using data from large GWAS
generally suggest that the assumption of multiplicative effects is often adequate.”
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Geographic and local population genetic stratification and variation complicate the ability to
diagnose and treat medical conditions [34] (for additional exposition, see Appendix A.1). The predictive
utility of GWAS and GWAS PRSs also varies broadly if the risk score is applied to a population
other than the one for which the score was initially determined [35–37]. At the same time, there
are many indications of the commonality of causal gene variants for polygenic diseases among
geographically distinct populations [38,39], while admixed populations present an intermediate liability
to diseases [40–42]. A study by Zanetti and Weale [43] found that a combination of Euro-centric SNP
selection and between-population differences in linkage disequilibrium and effect allele frequencies was
sufficient to explain the rate of previously reported trans-ethnic differences, without the need to assume
between-population differences in the true causal SNP effect size, suggesting that the cross-population
consistency is larger than that usually reported.

Even when the majority of causal gene variants are common among populations, they are
difficult to match precisely in genetically stratified populations for two main reasons. First, the GWAS
PRS is composed of representative so-called “tag” SNPs. Rather than being true causal variants,
tag SNPs are from a genomic region that exerts a single or combined effect of multiple detrimental
and protective SNPs in various degrees of linkage disequilibrium and varying allele frequencies in
different subpopulations [44,45] (see Figure 1A). Thus, although only a small fraction of true causal
SNPs for each polygenic condition have been identified, PRSs can be determined since they rely on an
aggregate of implicit determinations that are likely to significantly differ among the population-specific
background of non-causal SNPs [44]. The second reason that underlies this challenge is that, in addition
to differences in SNPs, there are less-researched structural variations that differ among populations
and can influence disease liability [46]. Major projects are underway that aim to comprehensively
catalog the detrimental structural variation in diverse populations [47]. In parallel, the advancement of
biomedical techniques will facilitate the detection of germline structural variants for clinical validation
and research in the future [48].

For LODs, a combination of genetic liability, environmental factors, and the physiological decline
of multiple organ systems leads to individual disease presentations [27]. Earlier research evaluated the
risk allele distributions that accompany aging for polygenic LODs [49], and, leveraging age-specific
incidence rates under Cox’s proportional hazards model [33,50], quantified the potential of future
preventive gene therapies to delay the onset age and reduce the lifetime risk of such LODs [51]. This is
demonstrated in Figure 1B. A recent clinical data analysis confirmed these theoretical predictions [52].

The polygenic diseases with highest incidence in early- and middle-age that are the focus of the
current research, are exemplified by asthma [53,54], chronic migraine [55,56], Dupuytren’s disease [57],
rheumatoid arthritis [58], lupus erythematosus [59], schizophrenia and bipolar disorder [60],
and Crohn’s disease [61,62]. The lower prevalence of these diseases contrasts with the high prevalence
of some LODs, highlighting differences in their evolutionary and causal manifestations [63]. These
diseases are less suitable for the age-specific rates approach [51] because subjects with an earlier
age at disease onset do not necessarily show an increased polygenic risk burden, as exemplified by
schizophrenia incidence [64]. The liability to these diseases is often illustrated using the liability
threshold model proposed by Falconer [65] (see Figure 1C,D).

In this study, computer simulations were used to evaluate the magnitude of the heterogeneity
in alleles causal for polygenic diseases that could exist among geographically distinct populations.
Population genetics simulations were performed for representative scenarios of preventive gene therapies
designed to turn true causal alleles into a naturally existing neutral state of nucleotides for polygenic
Early- to Middle-age-Onset Diseases (EMODs), and evaluated the disease prevalence reduction and
the progression of population admixture that would accompany such therapies. The combination of
these EMOD findings with earlier published LOD conclusions resulted in a comprehensive picture of
preventive polygenic disease gene therapy from a population genetics perspective.
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Figure 1. Illustrations to the concepts in this Introduction. (A) genome-wide association study
(GWAS) assignment of tag single nucleotide polymorphisms (SNPs) differs in geographically diverse
populations because of differences in linkage disequilibrium and study setup. The same causal SNPs
can be assigned to different tag SNPs in different populations (and subpopulations), and different
causal SNPs may overlap in varied ways among populations. Tag SNPs can represent a set of causal
SNPs that are protective (+), detrimental (−), or both [36]; (B) lifetime risk and incidence density
distribution of late-onset disease (LOD) under Cox’s proportional hazards/multiplicative polygenic
risk model. The example shown is coronary artery disease, where the LOD lifetime risk is delayed after
therapy that lowers the population polygenic risk, and the lifetime risk is regained with increasing
life expectancy [51]; (C) Falconer’s liability threshold model with different mean liabilities and the
same variance (Prob. density stands for the probability density of an individual succumbing to a
disease) [65,66]. Under this model, the disease prevalence is a function of the disease liability (as
termed by Falconer), which can be understood as the polygenic risk score of true causal gene variants.
For Population B, the area to the right of the liability threshold is larger, as is the disease prevalence;
the vertical liability threshold line is the initial Falconer interpretation for illustration purposes. Modern
approaches can be perused in [67]; (D) Falconer’s liability threshold model with the same mean liability
and different liability variances. If both distributions are normalized, the prevalence will be larger
for a wider variance, particularly distinct for smallest prevalence values, and it will remain identical
between populations A and B at a prevalence of 50%.

2. Results

2.1. Admixture of Populations with Matching Mean PRSs: To What Extent Can Causal Risk Alleles of
Polygenic Diseases Differ between Populations?

The first set of simulations evaluated the blending admixture of two simulated populations
with equal liability to a disease. The disease heritability was set at 50%, the mid-range heritability
of polygenic diseases [68,69]. The disease SNP sets were built using the common low-effect genetic
architecture, and the population genetics simulation progressed through generations. Four simulated
scenarios, in which the combined effect of SNPs differed between the populations by 100%, 65%, 33%,
and 20%, were considered.

The simulations recorded the changes in the variance of the population PRS and disease prevalence
as generations progressed. The simulated diseases were polygenic EMODs, which are model polygenic
diseases whose maximum incidence occurs at young- to middle-age, with a negligible incidence at
older ages. In this publication, the term “prevalence”, used in reference to EMODs, always means the
prevalence at an age later than the typical age of onset range.
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The results presented in Figure 2 show that, for all scenarios of differing SNP architectures,
the PRS variance gradually increased starting from the second admixed generation, and it continued
to increase in subsequent generations. The consequences of this pattern are illustrated in Figure 1D.
The variance rise was gradual, resulting in the fifth generation in a 3% increase in prevalence for
the scenario in which all causal SNPs differed between the populations, and it increased by just a
fraction of a percent for the scenario in which one-fifth of causal SNPs differed. By the 25th generation,
the prevalence values for the highest and lowest differences in genetic architecture causality scenarios
were 1.12% and 1.03%, or, in relative terms, a 12% and 3% increase above the prevalence in the
populations before admixture. These results are summarized in Table 1. The gradual increases in
variance and prevalence were due to gradual recombination of the population genome. Figure 2B,D
show the result of accelerating the recombination to 1000 crossovers per genome per generation. In this
figure, the population risk variance and prevalence approach the equilibrium within a few generations.
This increase in variance with the admixture of diverse populations was previously reported with
much smaller magnitudes of causal allele stratification based on actual allele frequencies in human
populations [70].
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Figure 2. The admixture of two simulated populations with equal liability to a disease with 50%
heritability and 1% prevalence. The plots represent four scenarios, in which causal SNPs differ between
the populations in a range between 100% (all causal SNPs for this disease are different between the
two populations) and 20% different (one-fifth of causal SNPs are different, with the remaining majority
of causal SNPs in common), as listed in the figure legend. The blending commences at generation 2.
(A) represents the change in variance of the polygenic risk score (PRS) as a result of 100% blending
of two equally sized populations over 25 generations with a relatively typical recombination rate
of 36 recombinations per parental genome; (B) shows accelerated recombination (accel.recomb.) in
which 1000 recombinations were applied per parental genome, resulting in the variance level quickly
stabilizing to equilibrium; (C) represents the change in the prevalence of the disease with a baseline
prevalence of 1%, corresponding to the variance change in the previous plot; (D) shows accelerated
recombination (accel.recomb.) in which 1000 recombinations were applied per parental genome,
resulting in the prevalence level quickly stabilizing to equilibrium.

This phenomenon can be simplistically explained using an example of two risk alleles, each
unique to one of two identically sized populations with identical disease risk. When these populations
blend together, the frequency of risk alleles is expected to be average in the resulting population,
with the resulting average effect size, or PRS, remaining unchanged. At the same time, following
Equation (A1), the sum of the variance will increase relative to each initial population. As illustrated
in Figure 1D, this will cause the risk probability distribution to widen, leading to increase in the risk of
low-prevalence diseases, with no change at all for diseases with a prevalence of 50%.
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Table 1. Summary of the admixture of two simulated populations with equal liability to a disease and
varied fractions of differing causal SNPs.

Fraction of Differing Causal SNPs 100% 65% 33% 20%

Second-generation prevalence increase, % 1 <1 <1 <1
Fifth-generation prevalence increase, % 2.7 1.4 1.3 0.8
Asymptotic prevalence increase limit, % 45 22 11 6.3

The simulated values are for a disease with early- to middle-age onset, 50% heritability, and a 1%
prevalence/lifetime risk. The relative prevalence increase is calculated in comparison to the baseline
prevalence, where, for example, the prevalence increase from 1% to 1.45% represents a 45% relative increase.

The results of these simulations suggest that the true causal SNPs of polygenic diseases may easily
differ by more than 30%, perhaps even by up to 100%, between geographically stratified populations,
and clinical or epidemiological observations will be unlikely to register small and gradual increases in
disease prevalence over successive generations because of the increase in the combined variance of a
large number of risk alleles. A simulation of accelerated recombination, with 1000 recombinations per
parental generation genome, resulted in the equilibrium level being reached within a few generations
with a maximum relative prevalence increase by 45% when all SNPs differed between the original
populations and 6.3% relative increase when one-fifth of the SNPs differed. However, it would take
many generations to reach this equilibrium in real populations, and, on such a timescale, this process is
likely to be indistinguishable in clinical practice from ongoing admixture with other populations and
confounded by genetic drift, mutations, selection, stratification, environmental, and lifestyle changes.

2.2. Admixture of Populations with Differing PRSs

This scenario evaluated the admixture of two populations with similar polygenic EMOD
architectures, where the higher-risk Population 2 was characterized by a common frequency of
a small subset of alleles that had a very low frequency in Population 1, giving Population 2 an
average relative risk (RR) of 10.0 (PRS difference in units of log(RR) = 2.30), as displayed in Figure 3.
Accordingly, the initial disease prevalence was equal to 0.1% for Population 1 and 1% for Population
2. As expected from the conclusions of the preceding section, the relative PRS variance between the
two initial populations before admixture differed by just 1.1%, even with the 10-fold difference in
disease risk between the populations. This population liability is almost exactly reflected in Figure 1C,
but not Figure 1D. The PRS effect size after admixture settled at the average between the two original
populations, as is typical of the observational reports cited in the Introduction. The variance level of
the combined population stabilized closer to the variance of the higher-risk Population 2, as would be
expected from Equation (A1), with a negligible effect on the disease prevalence.

Figure 3A,B show that the normalized PRS effect size difference between the populations
accounted by the simulation almost exactly follows the proportion of population mixing under
all admixture scenarios. This behavior matches the reported polygenic disease risk averaged in
proportion to the population admixture noted in the publications referenced in the Introduction and
Appendix A.1. While the admixture of two equally sized populations results in a precisely averaged
PRS, the prevalence after mixing is close to the geometric mean of the initial prevalence values, resulting
in a smaller-than-arithmetic average of the prevalence values of the initial populations. Thus, in this
example, the prevalence is 0.32% rather than 0.55% (see Figure 3C,D). The PRSs will generally equalize
following a simple mixing equation; this is true for both EMODs and LODs, as follows:

β2(g + 1) = β2(g)− 0.5·m· (β2(g)− β1(g)). (1)

In the calculation for Population 2, β2(g) is the effect size (PRS) of Population 2 in generations
g + 1 using values from the previous generation g. In this case, 0.5 is the ratio for equal population
sizes, m is the admixture proportion, and β1 is the effect of Population 1; the equation for Population 1
mirrors Equation (1).
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Figure 3. Admixture of two populations with a 10-fold relative risk difference. The plots (A,B) show
the population mean polygenic risk score (PRS) equalizing between two populations depending on the
admixture rates for a disease with 50% heritability: (1) shows Population 1 and (2) shows Population 2.
Population 1, which was used as the reference, had a mean PRS of 0.00 and an initial prevalence of 0.1%.
Population 2 is the higher-risk population and had an initial PRS of 2.30 and an initial prevalence of
1%. The plots (C,D) show the corresponding disease prevalence change. Figure A2 shows a graphical
display from the simulation and illustrates the admixture between these two populations.

It is interesting to note that, even with a low 10% population admixture rate, the non-participating
Population 2 prevalence decreases, relative to the baseline, to 91% in one generation, 84% in two generations,
and 77% in three generations, and the improvement is even faster at higher admixture rates, with both
populations heading toward an asymptotic admixed prevalence of 32%. Prominently, the equalization is
reached in one generation in the 100% blending scenario (shown by the red lines in Figure 3).

2.3. Lowering Polygenic Disease Prevalence by Editing Effect SNPs

The gene therapy operations would change detrimental SNPs frequency in some fraction of a
population. The population-wide Hardy–Weinberg equilibrium will be reached after one generation
of random mating in an indefinitely large population with discrete generations, in the absence of
mutation and selection, and the frequency of genotypes will remain constant across generations [71,72].
In case of high heterogeneity in effect alleles between populations, it may take a number of generations
for the allele distribution to homogenize, accompanied with an increase in disease prevalence, as was
described in Section 2.1. This effect is barely detectable for smaller risk allele differences, as modeled
in the previous Section 2.2.

Simulations confirmed that modifying or turning off a number of causal alleles in a higher-risk
population can easily reduce the risk to that of a lower-risk population. Additionally, treating,
for example, half of the individuals in a population with double the number of corrected SNPs
(or any other proportion, as long as there are enough SNPs to correct) produces the same population
risk load reduction, as the corrected SNPs would distribute within a few generations of random
mating. Figure 4 demonstrates this by starting with a homogeneous population with identical risk in
generation 0, subdividing individuals into two equally sized populations, and lowering the average
RR of Population 1 by 10-fold (PRS = −2.3). The result is equivalent to those described for Population
1 and Population 2 in the previous Section 2.2, as shown in Figure 3, and is followed by an identical
admixture pattern. The variance of the combined population after admixture diminishes by 0.9%,
reflecting the lower frequency of the risk alleles in the population.
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Figure 4. Admixture of two populations following a gene therapy resulting in a 10-fold relative risk
difference. The homogeneous population was divided into two equal size populations. The initial
disease prevalence was set at 1%, and the disease heritability was 50%. In Population 1, an individual’s
SNPs were uniformly edited to achieve a 10-fold improvement in relative risk (RR) (PRS = −2.30)
in generation 1. Population 2 prevalence remained at the initial level in generation 1, while the
prevalence of Population 1 decreases to 0.1%. After that, admixture patterns become mirror images
of those in Figure 3. The plots in (A,B) show that the population mean polygenic risk score (PRS)
equalizes between the two populations, depending on the admixture rate. The plots in (C,D) show a
corresponding change in the mean disease prevalence.

2.4. Estimates of Population Genomic Parameters for Diseases Known to Have Large Risk Differences between
Ethnic Groups

Many diseases differ in terms of their risk and prevalence among subpopulations. In reviewed
published cases, admixed populations were shown to have intermediate liability. Examples include
differences in nicotine metabolism between Maori and European populations [41], differences in
type 2 diabetes (T2D) risk between European American and African American populations [73],
and differences in atrial fibrillation risk among a variety of populations [74], with prevalence usually
differing by less than 2-fold between affected populations.

Three examples of diseases with contrasting risk between populations, primarily for
middle-age-onset, are Dupuytren’s disease (DD), rheumatoid arthritis (RA), and lupus erythematosus
(LE). DD heritability was determined by Larsen et al. [75] as 80%, with extremely varied prevalence,
affecting at older ages 22–32% of men in populations originating from Northern European
countries [57], and significantly lower prevalence in populations from other origins, with the lowest
prevalence in Korea [76], Taiwan and China [77] at 100–1000 times lower prevalence than in Northern
European populations. According to Molokhia and McKeigue [78], West Africans have a higher risk
of LE than Europeans, and Native Americans have a higher RA risk than Europeans. Both diseases
also show intermediate risks in admixed populations. LE heritability is estimated to be 44% [59,79],
the prevalence was reported to be 0.35% for 60-year-old African American women and 0.1% for
European American women [80]. RA heritability is estimated to be 60% [58]; it has a prevalence of 3%
in Canadian Native Americans and 0.3% in Europeans [81].

The above three examples were specifically chosen because their maximum incidence rates occur
in early to late-middle ages. Therefore, prevalence of the diseases at moderately old ages approaches
the disease lifetime risk. The admixture simulation results are presented in Table 2 and graphically
illustrated in Figure A3.
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Table 2. Population admixture for diseases known to have large risk differences between ethnic groups.

Disease Prevalence
in Pop 1

Prevalence
in Pop 2

Admixed
Prevalence

Relative
Risk

PRS
Change

Edited
SNPs

SNPs in Disease
Architecture

DD 25% 0.25% 4.0% 100 8.44 89.0 3575
RA 3.0% 0.30% 1.0% 10 2.62 27.6 1350
LE 0.35% 0.10% 0.19% 3.5 1.20 12.7 700

Results of admixture of two equal size populations differing in the prevalence of early- to middle-age-onset
diseases and the estimated SNP corrections required to achieve disease parity. Disease abbreviations:
DD—Dupuytren’s disease; RA—rheumatoid arthritis; LE—lupus erythematosus. Pop 1 has a higher disease
prevalence, and Pop 2 has a lower disease prevalence. The term “Relative Risk” describes the number of times
by which the prevalence differs between Pop 1 and Pop 2. The average SNP effect is expressed in units of
natural log(RR), a combination of alleles with varying effects and frequencies, with an average RR value of 1.1
in this instance. As described in the Methods section, “SNPs in Disease Architecture” is the total number of
SNPs in the genetic architecture responsible for disease heritability.

The last three columns in Table 2 show the differences in PRSs between populations (in units
of log(RR)) and the average number of SNPs at the average genetic architecture effect size in need
of correction to match the risk in high-risk populations with that in lower-risk populations if such a
therapy were possible. It is shown that DD would require 89 SNPs to be corrected to reduce the high
risk in North European ethnicities to match that in the Korean population. RA and LE would require
significantly fewer edits. In each case, the number of edits constitutes only a small fraction of SNPs in
each disease’s common low-effect genetic architecture.

The values of the admixed prevalence of RA and LE closely follow the geometric mean of the
initial populations, as established in Section 2.2. The simulation results noticeably deviate from the
geometric mean in the case of DD, for which the geometric mean

√
0.25× 0.0025 equals 2.5%, rather

than the value of 4% found by the simulations. This indicates that 25% can hardly be considered a low
prevalence from the perspective of relative risk, particularly when considering large risk differences
between populations. Further simulation of scenarios with more common lower differences in disease
relative risk between populations showed that prevalences after admixture closely followed the
geometric mean of two initial populations; however, based on the assumption in Methods, the model
is better confined to prevalences in single digits and below, typical to EMODs.

2.5. An Estimate of Preventive Gene Therapy for Early- to Middle-Age-Onset Polygenic Diseases

The review of the three diseases above—DD, RA, and LE—estimated the differences in the number
of SNPs related to disease risks in naturally occurring populations and, accordingly, differences in the
number of SNP corrections that would be required to achieve population parity for these EMODs.

Following the evaluation of population stratification by disease risk, admixture, and a simple
correctional edit followed by population admixture in Sections 2.2 and 2.3, it is time to consider a
scenario that could allow for broader extrapolations. There can be countless potential scenarios of
therapy levels, stratification, and admixture. It can be hypothesized that there may be an optimal
level of population EMOD risk that can be achieved by lowering the average population PRS or,
equivalently, by lowering the true causal risk allele frequencies.

A scenario was chosen in which, for the individuals participating in gene therapy (Population 1),
the required number of risk SNPs was therapeutically edited to lower the population relative risk
by 10-fold, or by a PRS of β = −2.3, in the first generation of ongoing therapy, on the premise that a
10-fold risk reduction in any disease would be a commendable improvement. Subsequently, smaller
therapeutic interventions were applied in each generation to maintain Population 1 at this optimal
level; the number of edits per generation is shown in Figure A4.

The evaluation of the admixture scenarios for Population 2, which does not directly participate
in gene therapy (see in Figure 5), shows that, in the 100% admixture (blending) scenario, the disease
prevalence in Population 2 to plummets to 0.32% (or 32% of the prevalence baseline value), while
the population PRS reaches the exact halfway point between values in the original populations.
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However, unlike the admixture scenarios presented in Sections 2.2 and 2.3, the improvement continues
to asymptotically progress toward the treated Population 1 level of 10% of the baseline disease
prevalence. The PRS progression using Equation (1) would just require fixing β1(g) = Const—the level
of the chosen optimal treatment. From the perspective of the PRS admixture, this result is equivalent
to the basic island-continent migration model; however, the disease prevalence connotations are
noteworthy. Figure A5A also shows the renormalization of the relative PRS that can be applied to
estimates with any chosen initial values of relative risk improvement, and in Figure A5B the normalized
prevalence progression in case of the RR = 10 treatment level. For comparison, the therapy alleviating
population relative risk 4-fold depicted in Figure A5C showed that the relative prevalence reduction
for the non-participating populations with ongoing admixture, as compared to the treated population,
would be similar for varying degrees of treatment.
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Figure 5. Preventive gene therapy with a 10-fold relative risk correction. A constant level of PRS
= −2.3 is maintained for Population 1, undergoing admixture with Population 2. The 90◦-rotated
Gaussian-looking fills in plots (A,B) represent the population density for each generation at the
corresponding PRS values in log(RR) units on the y-axis, and the colors represent the fraction of each
population mix at each PRS value. (A) shows a 100% blending admixture, where the individuals
from Population 1 mate exclusively with individuals from Population 2; (B) shows a 25% admixture,
where individuals from each population have a 1/4 chance of mating with individuals who are outside
their own population; (C) shows the population mean polygenic risk score (PRS) equalizing between
the two populations, depending on the admixture rate; (D) shows the corresponding mean disease
prevalence change.

3. Discussion

With the accumulation of scientific knowledge of the genomic causes of common diseases
and the advancement of gene-editing technologies, gene therapies to prevent polygenic diseases
may soon become a reality. GWAS research over the past decade has ascertained that polygenic
EMODs and LODs share a genetic risk architecture: their causality is primarily attributable to
common low-effect alleles [4,30] in multiplicative joint associations with environmental risk factors [33].
With the application of the multiplicative genetic risk model, the computer simulations developed
in this research mapped the polygenic risk of the model genetic architecture of EMODs based
on their prevalence and heritability into individual disease probability. The results of these
simulations correlated well with epidemiological observations (see Appendix A.1). Simulations of
the admixture between modeled populations using this framework were performed to investigate a
hypothetically possible range of heterogeneity of causal SNPs in geographically distinct populations.
Subsequently, these simulations were applied to model scenarios of gene therapies to assess the
relationship between population admixture and disease prevalence throughout generations.

The simulations of admixture with differing causal SNPs between populations with identical
disease prevalence demonstrated that, in principle, even a large degree of heterogeneity in causal
allele sets for EMODs between populations would be difficult to detect. Whether all causal SNPs were
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identical or whether a large fraction of them differed between a pair of populations, the epidemiological
and clinical statistics would be practically indistinguishable. Equally, it was shown that the outcomes of
gene therapies would not be impeded under either situation. The commonality of causal gene variants
for polygenic diseases between geographically distinct populations, as reported by GWASs [38,39,82]
(with some models exploring a larger extent of allelic heterogeneity [83]), makes this extreme difference
in causal allele sets unlikely, and the differences in disease prevalence and disease manifestation
between populations appear to be primarily caused by differences in common allele frequencies.
The finely balanced risk of genetic architecture in this model scenario would be far exceeded by
the actual risk differences in geographically distinct populations, which often differ in disease
prevalence [84]. The simulated population admixture for all polygenic diseases with differing risks
among populations resulted in arithmetic averaging of the PRS, expressed as the sum of logarithms of
the causal alleles’ true relative risk, and the prevalence of EMODs followed the geometric mean of the
original populations.

The extreme differences in common EMOD risk, exemplified by DD, LE, and RA, demonstrate the
range of polygenic distribution differences that may develop between populations due to geographic
separation that occurred within an evolutionarily short time. Furthermore, these differences indicate
the potential to alleviate risks of these and other polygenic diseases using gene therapy. The simulation
results for typical EMODs show that the disease prevalence decreases in proportion to the degree by
which the treatment lowers the population average relative risk.

It is hard to imagine that, even if such gene therapies were available, everyone would participate.
In the hypothetical scenarios in which populations admix at a low rate of 10%—which would not
be typical, particularly in the Americas [84]—the prevalence rates of the targeted diseases in the
fraction of the population not directly receiving gene therapy would noticeably decrease in the second
generation and even more so in subsequent generations. Longer term, this admixture would lead
to a lower and more equal disease risk for all populations. A hypothetical example of such group
stratification with regard to preventive gene therapy is preventive genetic treatment during in vitro
fertilization (IVF), which could be legislatively limited only to situations in which the parents were
found to possess high PRSs of a polygenic disease [14]. In the first generation, only the direct recipients
would benefit, but normal admixture over the scale of generations would cause the whole population’s
disease prevalence to diminish, as the simulations in this research demonstrate.

Again, hypothetically, even if gene therapy were to be discontinued after significantly reducing
the risk of Mendelian diseases and EMODs over time, the low human germline mutation rate
(estimated to be on average 1.18× 10−8 mutations per nucleotide per generation, which corresponds
to 44–82 mutations per individual genome with an average of only one or two mutations affecting the
exome [85]), means that many generations would pass before the disease rates would significantly
increase again [86–88].

A complete picture of polygenic disease prevention must include LODs. The analysis method
applied to EMODs would not be valid for polygenic LODs because LODs typically manifest with
extremely low incidences of diagnosis at younger ages, followed by a period of a nearly exponential
annual increase in the disease incidence rate starting at relatively older and LOD-specific ages [49].
According to Chatterjee et al. [33], the conditional age-specific incidence rate of the disease can be
modeled using Cox’s proportional hazards model [50] and multiplicative joint associations between
low-penetrant SNPs and environmental risk factors [33]. An evaluation using this model [51] showed
that a moderate level of therapy that lowered the hazard ratio by 4-fold (OR = 0.25) by converting
detrimental SNPs to a neutral state would result in lifetime risk reduction by 30–54% for AD, T2D,
CAD, and stroke, and 59–73% improvement for the analyzed four cancers, as long as mortality from
all causes remained constant. With increasing longevity, this corresponded to a delayed onset of LODs,
with a delay of about three years for AD; between 10–15 years for T2D, cerebral stroke, and coronary
artery disease (CAD); and an even longer onset delay for breast, prostate, colorectal, and lung cancers.
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A recent clinical and GWAS analysis by Mars et al. [52] determined that the difference in age at
disease onset between the top and bottom 2.5% fraction of PRSs was 6–13 years for four LODs that
overlapped with Oliynyk [51]. A lower onset difference value was found to be characteristic of T2D and
CAD, while breast and prostate cancers showed the highest differences in terms of age of onset, thus
clinically confirming the patterns predicted by simulations in [51]. The naturally occurring difference
in the age of onset for the top and bottom fractions of the natural PRS variation [52], in principle,
shows that applying gene therapy that would turn a sufficient number of true causal SNPs into neutral
SNPs, thus turning the high risk population into the low risk population, would have the predicted
outcome reflected in years of a delayed LOD onset.

The current research confirms that, for polygenic diseases, including LODs, if gene therapy
were to lower the frequency of true causal risk alleles and the corresponding population PRS, these
proportions would propagate throughout subsequent generations [72]. In the case of admixture with
populations not directly participating in gene therapy, the PRS would distribute proportionately to
population mixing ratios, which for LODs will be reflected in disease onset delay [51] for all beneficiary
generations. The incidence of EMODs does not strictly stop at a particular age; rather, a later but lower
disease incidence occurs for all EMODs referenced herein. Therefore, preventive genetic treatment of
these conditions may to a degree result in a delay of disease onsets.

4. Methods

This study assessed population genetics dynamics for a hypothetical future in which gene therapy
can be applied to prevent polygenic diseases. In earlier research, the risk allele distribution for
polygenic LODs that accompanies aging was evaluated [49], and the potential of future preventive
gene therapy to delay onset ages and lower the lifetime risk of developing such LODs was successfully
quantified [51], as demonstrated in Figure 1B, by leveraging age-specific incidence rates under
multiplicative [33] Cox’s proportional hazards model [50]. The findings of this earlier publication
complement the results of the current research and are noted in the Discussion.

The main goal of this study was to quantify the impact of gene therapy from a population genetics
perspective while accounting for population stratification and admixture. The gene therapy corrections
that change detrimental SNPs frequency within a subset of a population will reach population-wide
Hardy–Weinberg equilibrium after one generation of random mating in an indefinitely large population
with discrete generations, in the absence of mutation and selection, and the frequency of genotypes
will remain constant throughout generations [71,72]. This equally applies to polygenic phenotypes [89],
and the extended diploid Wright–Fisher model simulation reproduced this expected behavior, thus
validating that the model’s granularity on a generational scale was appropriate for the intended
target of this research. Although the mean population PRS found in this study precisely follows the
Hardy–Weinberg principle, the behavior of disease risk variance in the polygenic admixture is more
gradual as a result of linkage disequilibrium and recombination [70,90,91].

The following sections review the simulation’s conceptual foundations and conclude by describing
the simulation steps.

4.1. Considerations for Liability Threshold Models

Of the polygenic diseases analyzed in this research, those with the highest incidence in early- and
middle-age are less suitable for the age-specific rates approach used earlier for LODs [51] because
subjects with an earlier age at onset do not necessarily show an increased polygenic risk burden,
as exemplified by the incidence of schizophrenia [64]. The prevalence of these diseases is sometimes
modeled using the liability threshold model, originally proposed by [65,66]. Under this model,
illustrated in Figure 1C,D, the disease prevalence is a function of disease liability, which is represented
by polygenic risk. In the liability threshold model, an individual can be characterized by a genetic
liability to a disease. A combination of genetic and environmental effects results in a probabilistic
disease distribution among individuals. In the original Falconer [65] interpretation, all individuals
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whose PRS exceeds the threshold contribute to the disease prevalence; graphically, these individuals
fall to the right of the threshold. Subsequent research has shown that the multiplicative risk model is
most suitable for explaining experimental data. This model is exemplified by three approaches: the
Risch risk model, the odds risk model, and the probit risk model [67,92,93]. The solutions based on
these models are typically obtained through simulations or numerical methods, with the exception
of the simplest scenarios that allow for analytic solutions, providing estimates of disease prevalence
according to the polygenic risk distribution. These models lack the ability to sample individuals in the
multi-generation population simulations required in this study, and they are also based on specific
allele distributions that will not be maintained during ongoing admixture and gene therapy. Hence,
this study developed the simulation approach described in Section 4.4, applying probabilistic sampling
of individuals by PRS validated in [51].

4.2. Conceptual Summary

The simulated diseases were assumed to have an early- to middle-age onset, with a negligible
disease incidence at older ages. The term “prevalence” is customarily used in liability threshold models.
However, often, whether the term pertains to a whole population or a population of a certain age range
is not well defined. Herein, the term is used in a narrower scope; in this study, “prevalence” means the
cumulative incidence of a disease at an age later than the typical onset age range, with negligible incidence
later on. Thus, the definition of prevalence in this context is more similar to the lifetime risk concept.

The heritability of EMODs usually ranges from 30% to 80%, as documented by Wang et al. [68] and
Polubriaginof et al. [69]. A heritability level of 50% was chosen for most simulations and analyses to
represent a typical EMOD, and the common low-effect-size genetic architecture SNP set was assembled
accordingly, as noted in Section 4.3. The analysis of specific EMODs used their heritabilities.

Large population sizes were used to make genetic drift effects imperceptible at the short
generational scale used in the simulations. Similarly, although the simulation design allowed for the
introduction of mutations, given the short generational scale under consideration, mutations could not
achieve common population frequency [86–88] and were not introduced.

This study was not concerned with evaluating potential obstacles due to pleiotropy, which,
in the context of gene therapy, is defined as the possible negative effects on other phenotypic features
resulting from an attempt to prevent an EMOD by modifying a subset of SNPs [94,95]. Under the
common low-effect genetic architecture used in the simulations, from an average of 514 such SNPs
in the average modeled individual (as shown in Figure A1A), gene therapies would only need to
correct an average of 15 SNPs to achieve a 4-fold decrease in the relative risk (PRS = −1.386) and
24 SNPs to achieve a 10-fold RR decrease (PRS = −2.30). Arguably, with personalized prophylactic
treatment, it would be possible to select a small fraction of variants from a large set of available choices,
as exemplified in Table 2 that do not possess antagonistic pleiotropy, or perhaps even select SNPs that
are agonistically pleiotropic with regard to some of the other EMODs and LODs. After all because of
a balance between selection, mutation, and genetic drift on evolutionary scales [87], a proportion of
low-effect detrimental SNPs have achieved common population frequency, simply because they were
not detrimental enough to have been selected out, rather than having been selected for because they
provide a physiological or survival benefit. Thus, these SNPs would constitute an uncontroversial
therapeutic target.

In the simulations, the F-statistic (Fst) for disease architecture alleles was calculated using
Hudson’s method, as recommended by Bhatia et al. [96], and the alternative allele frequency difference
(AFD) statistics were also calculated [97]. The statistics obtained were unsurprising for the simulated
populational processes, and including their interpretation in the reported results would be extraneous.
Nevertheless, for those interested, these results are available in Supplementary Data. While admixture
naturally involves multiple world populations, simulating the admixture of two populations was
adequate for the intended analysis and extrapolations.
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The analysis in this study is contingent on future genetic and computational techniques being
capable of determining and safely modifying a relatively small subset of disease genetic architecture
SNPs from a detrimental state to a neutral one. This is easy to accomplish in a population simulation,
in which the effect sizes and states of detrimental SNPs are known for each individual. These model
genetic architecture SNPs are treated as variants that are truly causal for disease liability and heritability.
A brief summary of current gene-editing technologies is included in Appendix A.2.

4.3. Allele Genetic Architecture

The common low-effect-allele architecture was implemented in a similar manner to that used in
the author’s earlier research [49], which followed the approach used by [17]. The summary, including
specifics of the implementation in this study, is available in Appendix A.3. In contrast to GWAS
tag SNPs, the model genetic architecture SNPs are truly causal for disease liability and heritability
variants, and they are assumed to be accurately identified for the purposes of personalized gene
therapy. Estimates using the liability threshold model customarily use RR values to model known
causal SNPs [67,98]. This research followed suit: SNP effects were treated in terms of relative risk,
and PRSs were expressed in terms of the sum of the logarithm of RR. This method is also justified
by the fact that the majority of EMODs have a prevalence of less than 2%, as exemplified by RA [58],
LE [59], schizophrenia and bipolar disorder [60,99,100], and Crohn’s disease [61,62], with only a small
number of diseases such as asthma [53] approaching a prevalence of 10% [68]. Dupuytren’s disease,
which has a prevalence of more than 30% in some Northern European ethnicities, although it is lower
in most of the world by 1–3 levels of magnitude, is an interesting example that was examined in
this research. The alleles were randomly distributed throughout the model genome; these results are
consistent with GWAS findings for asthma [53,101], schizophrenia [102], and other diseases [4].

4.4. Disease Prevalence Analysis

In order to track the changes in disease prevalence associated with population admixture and
gene therapy, it was necessary to map PRSs to the probabilities of succumbing to a polygenic disease
on the basis of the genetic architecture and disease prevalence. Individual RRs Ri were calculated as a
product of the RRs of all SNPs in the disease genetic architecture, as follows:

Ri = ∏
k

rak i
k , (2)

where rk is the kth SNP’s true RR, and ak i (equal to 0, 1, or 2) is the number of the kth allele in a pair of
individual chromosomes i. The PRS βi = log(Ri) is defined in Appendix A.3. Multiplicativity by RR is
equivalent to additivity by PRS.

The simulations sampled individuals from the allocated population without replacement,
proportionate to individual RR Ri, until a sample size of n individuals—those diagnosed with the
disease—reached the number that satisfied the disease prevalence K:

n = N·K. (3)

The goal was to map an individual’s PRS to the probability of them becoming ill on the basis
of disease prevalence and PRS distribution, dictated by heritability and allele genetic architecture,
as follows:

π(β) ∝ exp(β). (4)
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In practice, the simulation loop sorted the sampled diagnosed individuals into narrow PRS
intervals, from β to β + ∆β, and determined the probabilities π of each PRS band, as follows:

π(β, β + ∆β) =

iβ+∆β

∑
iβ

1/N = (iβ+∆β − iβ)/N, (5)

where iβ to iβ+∆β are numbers of individuals sorted by PRS in a PRS band, and N is the population size.
Thus, under the multiplicative risk model, an individual’s probability of being diagnosed

with the disease under consideration can be mapped to the individual PRS, and this mapping can
be used in subsequent generations in conjunction with gene therapy and population admixture.
The advantage of this approach is that once the mapping is determined, it can be saved and reused
in subsequent simulation runs as long as the chosen initial genetic architecture and prevalence are
identical. This initial mapping was made very accurate by building large sets of individual PRSs per
run of determination simulation (a set of eight billion was typically used) and averaging the mapping
over multiple runs. The resulting mapping distribution is shown in Figure 6.
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Figure 6. Disease probability distribution mapped to individual PRS. In simulations for a population
with a mean PRS normalized to zero and a heritability of 50%, the PRS probability of disease
curves reproduced the liability threshold model’s logistic distribution of probabilities [103]. This PRS
probability distribution allows for the precise reproduction of the original disease prevalence and is
used to determine changes in prevalence that result from simulated population admixture and gene
therapy. The mean PRS of a diagnosed population and the probability curve move toward lower PRS
values with increasing prevalence, as also illustrated in [67].

The application of this mapping, using identical PRS bands, to the initial population reproduced
the original prevalence with high precision and obtained a deviation of less than 2% in a two-sigma
(95%) confidence interval for the PRS and prevalence results. Thus, error bars in the graphs would
be extraneous. An exception is the population admixture figures in which a small relative change in
values necessitated the inclusion of the two-sigma error bars (for example, in Figure 2C).

4.5. Simulating Gene Therapy under Population Stratification and Admixture Scenarios

The following simulation steps were performed.
(1) Simulation initialization. The simulation initialization steps were performed, including the

allocation of population objects and the assignment of individual PRSs on the basis of the modeled
genetic architecture allele frequencies chosen for each population. Individuals were subdivided
into two populations, Populations 1 and 2, with equal relative sizes and male/female proportions
(configurable in the simulation setup). The initial disease prevalence and genetic architecture effect size
in Population 1 were always used as references for Population 2 and the combined population. When
gene therapy was performed, it was always applied to Population 1. For the validation of extreme
population stratification and admixture scenarios, four sets of genetic architectures were constructed
and specified in the simulation configuration. The population differences were set to 100% (all causal
SNPs differ between population genetic architectures), 66%, 33%, and 20% (i.e., one-fifth of the causal
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SNPs differ). The difference was estimated by the fraction of the PRS difference that was attributed to
differing SNP architectures between the two populations.

(2) Reproduction. The simulation proceeded through successive generations via reproduction
with the configured level of population admixture. The admixture was configurable in a range from
100% to 0%. The rate of 100% meant that exclusively members of the opposite populations reproduce
with each other (also referred as “blending”, where either population contributes exactly half of the
diploid genome to each offspring in a generation). Above 50%, the reproduction is preferentially
between opposite populations. The 50% probability means that there is an equal probability that
reproduction occurs within the same population and between opposite populations. Lower than 50%
values, for example, an admixture level of 10% means that the probability of individuals reproducing
within their own population is 90%, and the chance of admixture with the other population is 10%.
The offspring of the opposite populations had an equal chance to belong to either population, and the
offspring from reproduction within the same population remained in their parents population.

(3) Recombination. Because the parental pairs were chosen in the preceding step, each
parent’s genome proceeded through recombination. The reported results used an average of 36
Poisson-distributed recombinations per parent in a single linear genome (configurable), and accelerated
recombination of 1000 average Poisson-distributed crossovers was used to validate population
admixture with a high level of difference in disease genetic architectures between populations.

(4) Gene Therapy. The gene therapy step consisted of sampling risk alleles for each individual
chosen as a subject for gene therapy. The requisite number of risk alleles were turned off in order to
achieve the chosen PRS improvement. As expected, the population average PRS reached equilibrium
during the generation of random mating. The same PRS improvement was achieved by applying the
same level of cumulative therapy to the highest-risk individuals or by averaging it over the population
or any other population subset. Of the available simulation options, two were found to be the most
illuminating: (a) therapy in a single generation of Population 1, followed by a varying degree of
admixture with Population 2, and (b) the continuous maintenance of a chosen optimal population
health improvement (PRS level) in Population 1, accompanied by varying levels of admixture with
Population 2. Gene therapy included the ability to define the set of SNPs to be edited. This was carried
out by specifying the desired SNPs in a configuration file, which was valuable for validating the results
shown in Section 2.2.

(5) Analysis. The individual risk alleles in each individual were accounted for at a number of
stages in the simulation process and aggregated into the population PRS distribution, prevalence
analysis, and Fst and AFD statistics, which were saved in comma-separated values format for further
analysis and reporting.

(6) Repeat. Steps (2)–(5) were repeated until the defined generation limit was reached.
The simulation flow configuration included the option of re-running the same simulations multiple
times. This allowed the results of multiple simulation runs to be averaged and the resulting multi-run
variance and standard deviation for key statistics to be determined.

The simulation configuration screen, which references the described and additional options, can
be seen in Figure A6.

5. Conclusions

The simulations in this research demonstrated that, even if relatively large heterogeneity in
the causal allele set for EMODs existed between populations, it will not be easily detectable by
epidemiological studies in admixed populations. While the simulation results show that a large
heterogeneity would be hypothetically possible, GWAS findings indicate the existence of a discernible
commonality of causal SNPs for polygenic diseases between geographically distinct populations, and
the extent of the risk differences between populations due to unique causal SNPs is likely not extreme.
Even if it were large, this potential difference would not impede the outcomes of preventive gene
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therapies if they were applied to turn population-specific true causal SNPs into a naturally existing
neutral state of nucleotides, and this would hold after populations admix.

Preventive gene therapy that is designed to turn true causal SNPs into a naturally existing neutral
state of nucleotides would result in a decrease in EMOD prevalence proportionate to the decrease
in the population relative risk attributed to the edited SNPs. The outcome will manifest differently
for LODs, where the therapies would result in a delay in the disease onset and decrease in lifetime
risk; however, the lifetime risk would increase with prolonged life expectancy, a likely consequence of
such therapies. EMODs exhibit some degree of incidence later in life, and, hypothetically, some of the
outcomes may share characteristics with LODs.

In summary, the results of this study show that, if the preventive heritable gene therapies were
to be applied on a large scale, even with a fraction of the population participating, the decreasing
frequency of risk alleles in the population would lower disease risks or delay the ages of disease onset.
With ongoing population admixture, all groups would benefit throughout successive generations.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/20/5013/s1,
Supplementary Data: A zip file SupplementaryData.ZIP containing the simulation executable, the source code, R
scripts, batch files, and simulation results.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Alzheimer’s disease
AFD allele frequency difference statistic [97]
CAD coronary artery disease
DD Dupuytren’s disease
EMOD Early- to Middle-age-Onset polygenic Disease
Fst F-statistics, originally conceived as te fixation index by Wright, implemented here using Hudson’s

method [96]
GRS genetic risk score; used synonymously with polygenic risk score, abbreviated below
GWAS genome-wide association study
LE lupus erythematosus
LOD late-onset disease; herein, analyzed LODs are exclusively polygenic
MAF minor allele frequency; customarily implies the effect allele frequency
OR odds ratio
PRS polygenic risk score; in this study, a normalized sum of logarithms of additional relative risk

conferred by causal alleles
RA rheumatoid arthritis
RR relative risk or risk ratio
SNP single nucleotide polymorphism; in the context of this study, SNP is used synonymously with

the term ’allele’
T2D type 2 diabetes
WGS whole genome sequencing ff

Appendix A. Ancillary Chapters and Figures

Appendix A.1. Population Stratification and Admixture from the Perspective of Polygenic Disease Risk

Geographic and local population genetic stratification and variation complicate the ability to
diagnose and treat a number of medical conditions [34]. It is well known that people from different
geographic origins may have different rates of specific diseases, physiological responses to medications,
and, as a result, different medical treatment outcomes. For example, in the US, the prevalence of type
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2 diabetes is 12.8% in African Americans, 8.4% in Mexican Americans, and 6.6% in non-Hispanic
whites [40]. Belbin et al. [42] investigated the difference in allele frequencies among individuals
in Latin American populations and found that, although they were ostensibly derived from the
same population, the top and bottom quartiles of the dominant ancestral component in admixed
populations had larger changes in allele frequencies, with 20.4% of sites exhibiting a difference in
frequency of >10% in individuals in the upper and lower quartiles with European ancestry in Puerto
Rico. For individuals with Native American ancestry in a Mexican population, 36.0% of sites differed
by >10%. This characteristic is shared by all groups that have undergone recent admixture and has
been magnified by the multi-continental ancestry and local differentiation that underlie the genetic
history of Latino populations [42]. A study that reviewed the US Veteran Affairs database [74] found
age-adjusted prevalence values of atrial fibrillation (AF) of 5.7% in European Americans, 3.4% in
African Americans, 3.0% in Hispanics, 5.4% in Native Americans/Alaskans, 3.6% in Asians, and 5.2%
in Pacific Islanders. The differences in prevalence were accompanied by differences in AF symptoms,
management, response to anticoagulants, and outcomes for these populations [104]. Another example
is coronary artery disease genetic risk, which also varies in prevalence among populations [105].
In addition, breast cancer incidence is higher for Puerto Ricans and Cuban Latinas than for those from
Mexico [106], and there are statistical differences by national origin in the rates of prostate, colorectal,
lung, and liver cancers [106].

The predictive ability of GWAS and GWAS PRSs also varies broadly if the score is being applied
to a population other than the one for which the score was initially determined [36]. For example,
Holley et al. [107] observed significant differences in the distribution of SNPs associated with disease
risk in New Zealand Maori patients with myocardial infarction compared with those of European origin.
The authors concluded that although the genetic risk score (GRS) is overall higher for Maori when
applying existing GRS tools, careful evaluation is needed before internationally developed GRS tools
can be applied. Africa’s haplotype diversity, which is the highest on Earth, has important implications
for the design of large-scale medical genomics studies across the continent [108]. Investigations by
local research institutions, given their rich local clinical data and case-control base, could help to bridge
the existing knowledge gap and provide valuable nuanced genomic information for these communities
and their descendants, including those who have emigrated to other regions of the world.

At the same time, there are indications of commonality of gene variants that are causal for
polygenic diseases among geographically distinct populations. A study by Seyerle et al. [38], which
was performed for five geographically distinct populations, found that, of 21 SNPs implicated as
genetic determinants in QT-interval prolongation, seven showed a consistent direction of effect in all
populations, and nine showed a consistent effect for four populations and typically small opposite
effects for the remaining population. The effect allele frequency (EAF) varied among these populations.
A GWAS on 28 diseases in Europeans and East Asians was conducted by Marigorta and Navarro [39],
who reported high trans-ethnic replicability, implying common causal variants. Admixed populations
usually show an intermediate level of liability or effect. For example, in individuals of Maori descent,
nicotine metabolism is 35% lower than that in Europeans, with the metabolism of admixed individuals
fitting between those of the two populations [41].

A simulation study by Zanetti and Weale [43] found that a combination of Euro-centric SNP
selection and between-population differences in linkage disequilibrium and EAF was sufficient
to explain the rate of previously reported trans-ethnic differences, without the need to assume
between-population differences in the true causal SNP effect size. These findings suggest
that the cross-population consistency found in this study is larger than that usually reported.
Martin et al. [45] stated that, contrary to the belief that the polygenic scores of diverse populations are
doomed to produce low PRS predictive power, diverse cohorts, rather than homogeneous cohorts,
should be used. The authors further claimed that the effect size estimates from diverse cohorts are
typically more precise than those from single-ancestry cohorts, and the resolution of causal variant
fine-mapping can be considerably improved.
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Appendix A.2. A Concise Summary of Gene-Editing Techniques

This study analyzed simulated populational outcomes of a hypothetical future gene-editing
therapy for the prophylaxis of polygenic heritable diseases. Many ethical and regulatory considerations
will need to be settled before such therapies become practicable [15,109]. Deeper scientific knowledge
and more advanced techniques are being developed, particularly for personalized determination (with
either computational methods or thoroughly verified genomic databases) of the deleterious effects of
common [110–112] and rare allele variations and exome mutations [46,113–118]. It may be many years
(likely decades) until precise knowledge is of sufficient depth for personalized medicine diagnostics to
be conducted.

Gene-editing techniques need to perfect the ability to precisely modify genomics sequences with
minimal off-target defects and to develop robust quality control measures for the results of editing.
The most promising current technology is clustered regularly interspaced short palindromic repeats
(CRISPR)-Cas9 [119], a rapidly developing technology, which replaced older technologies such as
zinc-finger nuclease (ZFN) [120] and transcription activator-like effector nuclease (TALEN) [121].
In 2019 alone, reports were published on the improved specificity of the CRISPR operation [122],
the modification of thousands of nucleotides while reducing DNS nicking [123], and the use of
CRISPR-associated transposons to insert custom genes into DNA without cutting it [124], among many
other developments. Synthetic genomics, which is mostly in the proof-of-concept stage [125,126], could
be another promising future technology. Continuous improvement is required for the technology
to reach sufficient specificity, access all areas of the genome, and achieve a sufficiently low number
of off-target edits and defects. Only following this will it be well suited for routine gene-editing
therapeutic use.

Appendix A.3. Implementation of Common Low-Effect Genetic Architecture

The genetic disease architectures used in this research were based on [17]—a simulation study that
determined the number of alleles needed to achieve a statistical distribution variance that corresponds
to the heritability of a particular polygenic disease or phenotypic feature. The allele architecture
scenarios were implemented in the simulations in an identical manner to that applied in earlier
research, in which five genetic architectures were validated and common low-effect-size genetic
architecture was determined to indeed best fit the observed experimental and clinical data (see [49] for
a comprehensive description). The common low-effect-size genetic architecture was used throughout
this study. A concise summary of its major concepts, reformulated in terms of allele relative risks and
the implementation steps that differed in this research follows.

The resulting variance of the allele distribution was determined to be

var = 2 ∑
k

pk(1− pk)(log(rk))
2, (A1)

where pk is the frequency of the kth genotype, and rk is the relative risk of any additional liability
presented by the kth allele for a particular individual. The contribution of genetic variance to the risk
can be expressed as the disease heritability:

h2 =
var

var + π2/3
, (A2)

where π2/3 is the variance of the standard logistic distribution [127].
Following [17], the variants were assigned to individuals with frequencies proportionate to the

minor allele frequency (MAF) pk for SNP k, producing, in accordance with the Hardy–Weinberg
principle, three genotypes (AA, AB, or BB) for each SNP with frequencies of p2

k , 2pk(1− pk), and (1−
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pk)
2. The diploid Wright–Fisher model simulation with recombination requires the tracking of SNPs

on two chromosomes, and the individual PRSs βind for k SNPs were calculated as follows:

βind = ∑
k

2

∑
c=1

ak c· log(rk), (A3)

where ak c (0 or 1) is the state of the kth SNP on chromosome c (1 or 2), and rk is the relative risk of the
additional liability presented by the kth allele for a particular individual. The population mean PRS
value βmean was calculated from the genetic architecture distribution using the following equation:

βmean = 2 ∑
k

pk· log(rk). (A4)

Two populations were always used in the simulations, and the βmean value of the first (reference)
population was applied to both populations, making it easy to compare the populations’ PRSs, as well
as the distribution of higher- and lower-risk individuals within and between the populations.

For the common allele low-effect-size genetic architecture model, which, based on [17], was
expected to be the most suitable for explaining the heritability of the analyzed LODs, the risk alleles
were discretized into five equally spaced values within the defined range, with an equal proportion of
each allele and an equal odds ratio in each. In this case, the MAFs were distributed in equal proportions
of 0.073, 0.180, 0.286, 0.393, and 0.500, while the relative risk (RR) values were 1.15, 1.125, 1.100, 1.075,
and 1.05. Thus, 25 combinations were possible. These entire blocks were repeated until the target
heritability level was achieved, which, in this case, was 36 times for h2 = 50%. Figure A1 demonstrates
the populations’ SNP and PRS distribution for the 50% heritability scenario and the 80% scenario
used in the simulations of Dupuytren’s disease. The genetic architecture scenarios were defined in
comma-separated values (CSV) files in the executable folder. In this study, the files were given names
such as ’A0.txt’ and ’A11S.txt’.
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Figure A1. Population distribution of detrimental variant counts and polygenic risk scores (PRSs)
for common low-effect-size genetic architecture. (A) variant count for a simulated disease with 50%
heritability; (B) the PRS distribution for a simulated disease with 50% heritability; (C) variant count for
a disease with 80% heritability, exemplified by Dupuytren’s disease (DD); (D) the PRS distribution for
DD, with 80% heritability.

The file ’ConditionFiles.txt’ specifies which genetic architecture files were loaded for a given
simulation run. It contains two columns: the first column defines the number of times to repeat
the loading of a genetic architecture file to achieve the desired heritability, and the second column
specifies the name of the genetic architecture file. The simulations always operated on two populations.
Therefore, two files were always specified in two lines; the ‘#’ symbol was used as the first character in a
line to comment out that particular line. Genetic architectures can be specified by the same architecture
file when the initial population is homogeneous, or each file can represent different allele frequencies,
but the effect sizes must match.

Only the following columns from the genetic architecture files were applicable to these simulations
(the remaining columns may be set to 0 and ignored): SNP denotes the RSxxx-style SNP identifier;
EAF is the effect allele frequency; and OR is the odds ratio, which is actually the allele relative risk in
this case. Additional SNP lines were used to facilitate specific analyses. This was accomplished by
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duplicating the entries and setting alternate entries to either the EAF required in the genetic architecture
or a low frequency to simulate a different allele or an allele that was not represented in the populations.

Appendix A.4. Ancillary Figures
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Figure A2. Graphical display from the simulation screenshot showing the admixture of two populations
with a 10-fold difference in relative risk. The 90◦-rotated Gaussian-looking fills represent the population
density for each generation at the corresponding PRS values in log(RR) units on the y-axis, and the
colors represent the fraction of each population mix at each PRS value. (A) shows the 100% blending
admixture, in which the individuals from Population 1 mate exclusively with individuals from
Population 2; (B) shows the 50% admixture, in which individuals from each population have an
equal chance of mating within their population and with the other population; (C) shows the case in
which individuals in Population 1 have a 10% chance of mating with individuals from Population 2
and vice versa.
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Figure A3. Graphical displays from the simulation screenshots showing the population admixture
for diseases that are known to have large differences in risk between ethnic groups. Population 1:
higher-risk population (reference); Population 2: lower-risk population. The plots illustrate a scenario
with 100% population blending between Populations 1 and 2, which are equal in size. The 90◦-rotated
Gaussian-looking fills represent the population density for each generation at the corresponding PRS
values in log(RR) units on the y-axis, and the colors represent the fraction of each population mix at each
PRS value. (A) Dupuytren’s disease (DD), heritability 80%, Population 1 prevalence of 25%, Population
2 prevalence of 0.25% (100 times the relative risk). (B) Rheumatoid arthritis (RA), heritability 60%,
Population 1 prevalence of 3%, Population 2 prevalence of 0.3% (10 times the relative risk). (C) Lupus
erythematosus (LE), heritability 44%, Population 1 prevalence of 0.35%, Population 2 prevalence of
0.10% (3.5 times the relative risk).



Int. J. Mol. Sci. 2019, 20, 5013 22 of 29

100% blending
50%

Admixture rate:
25% 10%

0 5 10 15 20 25
0

5

10

15

20

25

Generations

A
ve

ra
ge

 e
di

te
d 

S
N

P
s

Figure A4. The average number of edited SNPs per individual in the scenario in which gene therapy
maintains a constant optimal level of disease risk in the population participating in gene therapy, with
differing degrees of admixture with a non-participating population. The depth of the first edit was
identical for all admixture scenarios. The highest admixture rate among populations led to a initially
higher number of the maintenance edits, and the asymptotic balance—the point at which maintenance
edits were no longer needed—was reached more quickly. Comparatively, lower levels of admixture
needed a lower initial number of maintenance edits per generation to maintain a constant risk level
for the population participating in therapy. However, the number of generations required to reach
equilibrium was much larger.
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Figure A5. Relative PRS and prevalence progression during population admixture. The normalized
relative change in the population PRS and disease prevalence, where “1” is the initial value of the
variable, and “0” is the equilibrium value. (A) shows the ∆PRS relative to the equilibrium value
of the normalized PRS. The displayed fractions are identical to the simple population admixture
proportions that would occur at the displayed rates of admixture; (B) shows the ∆Prevalence relative
to equilibrium normalized disease prevalence progression for population not directly participating in
the preventive therapy, when participating population average PRS is maintained at improved tenfold
PRS level (RR = 10.0, PRS = −2.30); (C) shows the ∆Prevalence relative to equilibrium normalized
disease prevalence progression for population not directly participating in the preventive therapy,
when participating population average PRS is maintained at improved fourfold PRS level (RR = 4.0,
PRS = −1.386). The normalized relative improvement for population not directly participating
in therapy was slightly slower if compared to (B). For 10% admixture rate, the improvement in
the first three admixed generations was to the level of 93%, 86% and 80% for RR = 4.0 scenario,
compared with 92.5%, 84% and 76% for tenfold improvement scenario (RR = 10.0) in (B). The higher
admixture ratios show even faster prevalence reduction. This shows the comparable relative prevalence
reduction, even though the absolute asymptotic reduction differs 2.5 times between these scenarios.
(D) shows, for comparison with Figure 5D, the absolute prevalence improvement thanks to admixture
for populations not participating in preventive gene therapy, when participating population average
PRS is maintained at improved fourfold PRS level (RR = 4.0, PRS = −1.386); the corresponding
normalized figure is depicted in (C).
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Figure A6. The configuration screen of the simulation program.
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