Molecular Modeling of the Axial and Circumferential Elastic Moduli of Tubulin

A. S. Zeiger*[†] and B. E. Layton[†]

*Materials Science Department, Massachusetts Institute of Technology, Cambridge, Massachusetts; and [†]Drexel University, Department of Mechanical Engineering and Mechanics, Philadelphia, Pennsylvania

ABSTRACT Microtubules play a number of important mechanical roles in almost all cell types in nearly all major phylogenetic trees. We have used a molecular mechanics approach to perform tensile tests on individual tubulin monomers and determined values for the axial and circumferential moduli for all currently known complete sequences. The axial elastic moduli, in vacuo, were found to be 1.25 GPa and 1.34 GPa for α - and β -bovine tubulin monomers. In the circumferential direction, these moduli were 378 MPa for α - and 460 MPa for β -structures. Using bovine tubulin as a template, 269 homologous tubulin structures were also subjected to simulated tensile loads yielding an average axial elastic modulus of 1.10 ± 0.14 GPa for α -tubulin structures and 1.39 ± 0.68 GPa for β -tubulin. Circumferentially the α - and β -moduli were 936 ± 216 MPa and 658 ± 134 MPa, respectively. Our primary finding is that that the axial elastic modulus of tubulin diminishes as the length of the monomer increases. However, in the circumferential direction, no correlation exists. These predicted anisotropies and scale dependencies may assist in interpreting the macroscale behavior of microtubules during mitosis or cell growth. Additionally, an intergenomic approach to investigating the mechanical properties of proteins may provide a way to elucidate the evolutionary mechanical constraints imposed by nature upon individual subcellular components.

INTRODUCTION

Microtubules provide a number of mechanical services in nearly all cell types throughout most of the major branches of the phylogenetic tree including archaea (1). They act as mitotic spindles for cell division (2), maintain transport conduits (3,4), and are used as flagella (5). Recently, they have also been implicated as playing a critical role in consciousness (6). Additionally, microtubules interact with actin filaments and the cellular membrane to provide a foundation that determines cell morphology (7,8). While typically constructed of a heterodimeric lattice, with intermonomeric bond stiffnesses and strengths contributing to cellular-scale behavior, microtubule function and assembly may also be attributed to the mechanical properties of individual tubulin monomers. While tubulin sequences vary significantly across species, the role that specific residues or tertiary-scale interactions contribute to the ultimate behavior of tubulin is difficult to predict (e.g., (9)).

Experimental approaches to determine the mechanical properties of tubulin have included optical tweezers (8), hydrodynamic flow (10), vesicle buckling (11), thermally induced vibrations (12), naturally occurring bending (13), and atomic force microscopy (14). Most of these experiments focus on obtaining buckling stiffness of microtubules and

This is an Open Access article distributed under the terms of the Creative Commons-Attribution Noncommercial License (http://www.creativecommons. org/licenses/by-nc/2.0/), which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2008 by the Biophysical Society 0006-3495/08/10/3606/13 \$2.00

have yielded a wide range of values for axial elastic modulus, 1 MPa to 7 GPa (1 MPa = 1 megapascal = 10^6 N/m²; 1 GPa = 1 gigapascal = 10^9 N/m²). These findings have been well reviewed (15).

Modeling approaches for predicting tubulin and microtubule properties include those of Tuszynski et al. (16) and Kerssemakers et al. (17). Often, simulations are run in vacuo, which reduces computational requirements by an exponential factor versus models employing implicit or explicit water. One of the first exhaustive three-dimensional intergenomic homology modeling studies of tubulin focused mainly on geometry, dipole moments, charge distributions, and C-terminus lattice structures, was by Tuszynski et al. (18). Their results offer an exhaustive comparison for the structural properties of homologous tubulin structures in Tuszynski et al. (19), but did not explore mechanical properties.

Here, we establish a framework comparing mechanical properties of members of the same family of proteins. We have performed molecular mechanics simulations on all of the currently sequenced α -, β -, and γ -tubulins. Specifically, we simulated axial and circumferential loading on all structures after mapping them onto a consensus structure (20). Our findings may elucidate the roles that key mutations or conserved regions may have played in driving tubulin toward its mechanically anisotropic state. Additionally, the mechanical effects of directed mutations, or of engineered protein sequences, may be estimated before employing molecular biological techniques.

For special terms and reference data used in this article, see Table 1.

Submitted February 21, 2008, and accepted for publication June 19, 2008. Address reprint requests to Bradley Edward Layton, Tel.: 215-895-1752; E-mail: blay@drexel.edu; or E-mail: blay@alum.mit.edu.

TABLE 1 Notation

D _i	Inner diameter of tubulin
D_0	Outer diameter of tubulin
E _{MT}	Elastic modulus of tubulin
E _{mono}	Elastic modulus of monomer
Ε	Elastic (Young's) modulus
Fi	Force on a MT filament
Ι	Second moment of inertia
<i>K</i> *	Inverse stiffness of dimer
k _α	Stiffness of α -tubulin
k _β	Stiffness of β -tubulin
k _{αβ}	Stiffness of monomer-monomer bond
$k_{\beta\alpha}$	Stiffness of dimer-dimer bond
k _B	Boltzmann's constant, 1.38×10^{-23} J/K
k ^{bond}	Axial stiffness of covalent bond
k ^{angle}	Rotational stiffness of covalent bond
kiihedral	Torsional stiffness of covalent bond
	Unstrained dimer length
ln.	Persistence length
	Axial length of monomer
\overline{M}	Change in length
M.	Bending moment
n:	Crystal plane number
r	Radial direction
Г:	Stretched bond length
r::	Atomic separation for Coulomb force
r 1] r:	Equilibrium bond length
T	Temperature
I	Total simulation energy
	Energy from bond stretching
U .	Energy from bond bending
	Energy from bond twisting
	Energy from van der Waals interactions
	Energy from Coulomb interactions
7	Avial direction
2	Fauilibrium value of ϕ
Λ	Deformation of α -tubulin
Δ_{α}	Deformation of <i>B</i> -tubulin
Δ_{β}	Deformation of monomer-monomer bond
$\Delta_{\alpha\beta}$	Deformation of dimer-dimer bond
ε	Strain
e	Maximum energy of separation
en e	Permittivity of free space
A	Circumferential direction
<i>А</i> .	Circumferential position of filament in MT
θ _i	bent bond angle
0 I	Equilibrium bond angle
	Curvature
0.	Tatrahadral bond angle
	Radius of curvature
Р (Т	Zero energy separation distance
o ij م	Angle between bond planes
ψ_i	Angle between bond planes

METHODS

Sequences used

We searched for all complete primary tubulin sequences within the Research Collaboratory for Structural Bioinformatics Protein Data Bank (PDB) (21). Utilizing the UniProt protein resource (22), we were able to obtain sequences for 269 tubulin structures. This series includes 96 α -structures, 147 β -structures, and 26 γ -structures. To date, a few hundred tubulin sequences have been identified and sequenced. Even fewer (only two or three) three-dimensional structures of tubulin dimers exist at a significantly high resolution to produce accurate homology models (21).

Structural homology matching

Since the tertiary structures of all nearly all of the presently sequenced tubulins are unknown, a three-dimensional consensus structure template was needed. For this, we selected the highest-resolution structure produced to date. Lowe et al. obtained a 3.5 Å resolution structure of the α - β dimer for bovine tubulin utilizing electron diffraction (PDB Identifier 1JFF) (20). This predicted structure corresponds to that of the tubulin dimer found in zincinduced tubulin sheets. Although there has been no systematic study to compare the sheet structure with the cylindrical structure, it is reasonable to assume that the individual dimers and monomers within the sheet are more flat in the circumferential direction. Recent simulation and imaging work (24) of a 15-filament structure indicates that the GDP-versus-GTP state of β -tubulin may be responsible for microtubule stability. Specifically, Krebs et al. (24) suggest that, since the 15-filament structure represents an intermediate form between the \sim 10-nm radius-of-curvature of a native microtubule and the infinite radius-of-curvature of the zinc-induced sheets, it may serve as a predictor of microtubule stability. Ideally, for microtubule-scale mechanical property prediction, tubulin-straining simulations such as those we have performed would be done on the curved configuration. However, since current experimental techniques preclude this level of detail, we are limited to the sheet configuration.

For γ -tubulin, we used the 2.71 Å resolution structure (PDB Identifier 1Z5V) obtained by Aldaz et al. (25). Utilizing the structure predicted by Lowe et al. (20) as a template for other α - β -tubulin structures, and Aldaz's structure for γ -tubulin, we created homology models of all tertiary structures. We began by using nanoscale molecular dynamics (NAMD) downloaded from the University of Illinois at Urbana-Champagne's Theoretical and Computational Biophysics Group (26) and separated the dimers into their monomeric units. From the dimer PDB files, a protein structure file (PSF) was created using NAMD's psfgen package, the topology file required for this PSF (using Chemistry at Harvard Molecular Mechanics, i.e., CHARMM, Ver. 22, for proteins and lipids). Topology files contain bond connectivity, angle, and charge distribution information. The parameter file, also CHARMM Ver. 22, contains force constants, equilibrium geometries, and various other calculations required to perform energy balances (27,28). Cutoffs were set in the force-field parameters at 12 Å. At 20 steps per cycle, and a 100-step minimization was performed on the monomer to produce a local minimum energy structure for α -, β -, and γ -tubulin (Fig. 1). This approach was necessary because the problem of de novo prediction of threedimensional structure from a one-dimensional sequence is exceedingly difficult and frequently yields nonunique solutions (29).

To perform energy minimization of the structures to be stretched we used SWISS-MODEL (http://swissmodel.expasy.org/SWISS-MODEL.html). Briefly, SWISS-MODEL follows the following protocol: initially it checks the sequence identity with the target. It then creates a ProModII job by first superimposing three-dimensional structures of the two related proteins and generates multiple alignments with the sequence to be modeled. By using the positions of atoms that are most similar between the template structure and predicted structure, it creates a framework and rebuilds any lacking loops. It then completes and corrects the backbone structure and the side chains, verifies the model structure quality, and finally refines the structure with energy minimization using GROMOS96. Lastly, a PDB file is produced and BLAST analysis is provided. The series of amino-acid sequences produced an average similarity of 85.82% and standard deviation of 9.39% with the template structures. Structures with a similarity at <25% were automatically rejected by the SWISS-MODEL server. Sequences with <50% similarity were usually a result of incomplete or fragmentary structures. However, these structures were still included in the simulation of stretching the tubulin structures. Sequence alignment and similarities were independently verified using CLUSTAL W (30).

To enhance the likelihood of finding the likely global minimal energy structure, in several test cases, we allowed our minimization procedure to run for 10,000 steps rather than the recommended 100 steps of steepest descent, followed by 200–300 steps of conjugate gradient energy minimization. In these extended simulations, no more than 5–10% difference was observed in total energy. Only one structure failed to stabilize (TBA8_CAEEL), regard-

3608

FIGURE 1 Template structures: (a) 1JFFA bovine α -tubulin (20), (b) 1JFFB bovine β -tubulin (20), (c) 1Z5VG human γ -tubulin (25) VMD atomic structures (67). The view is from the inside. The vertical arrow points toward the "plus" end, or growing end. In neurons, this end is furthest from the nucleus.

less of the number of time steps (31). While the sequences of all tubulin structures we studied are published, their exact three-dimensional structures have yet to be determined. Once the 269 tubulin homologous models were created, visual molecular dynamics (VMD) was used to visualize the structures to verify that three-dimensional consensus mapping resulted in globular protein structures of densities comparable to the template structure. All structural predictions were performed in vacuo. While this is a limitation of the model, since the force constants developed for NAMD through CHARMM were developed within an explicit water framework, recent work using a ubiquitin model indicates that this approach leads to errors that are statistically insignificant (p < 0.01) (32).

The majority of the structural data for MT(microtubule)s has been acquired from highly purified preparations, thus our simulations most likely closely represent the material behavior of tubulin in isolated microtubules. In a manner consistent with Tuszynski's approach, we worked under the assumption that errors within each model are negligible when compared against a group of models (19). This error can be reduced by using an initial minimization run before the tensile test is performed. Another notable quality of the molecular deformation experiments is that in general, the α -tubulin molecules exhibit multiple moduli as the protein unfolds (see Fig. 5). This type of behavior has been observed in fabric failure (34), but is not observed in solid structures.

Parameters used, boundary conditions, and optimization

Steered molecular dynamics (SMD) offers programmable dynamic simulation utilizing NAMD (35). The NAMD software was loaded with the original PDB files, PSF file, a reference file (1JFF and 1Z5V), and a configuration file to perform the simulation following previously developed methods (21,36). Briefly, NAMD is a parallel molecular dynamics code specifically designed for the simulation of large biomolecular systems. The software is opensource and available free of charge. It allows the user to perform chemical and conformation free energy calculations with multiple timestep integration. For our application, the ability to create scriptable code in Tool Command Language integrated with SMD allowed us to perform repeatable dynamic simulations of all structures we considered with the exception of one incomplete sequence: TBA8_CAEEL.

While there are no standards for simulated molecular mechanical property characterization, standard macroscale mechanical tensile tests utilize dogbone-shaped specimens to ensure a concentration of loading on a narrow portion of the sample with a precisely known cross-sectional area. In general, these tests result in a scale-invariant elastic modulus until smaller dimensions are reached, where moduli tend to increase and become more variable (37,38). While single molecule experiments have been performed on single proteins as they unfold (e.g., (39)), the opportunity to interrogate a single tubulin monomer in its naturally occurring state has not been realized. Thus, the Cartesian coordinates for every atom in the PDB structure were tabulated to determine a suitable region to act as a grasping area. This is shown in Fig. 2, which depicts a histogram of the distribution for a human tubulin species, similar to that of 1JFFB, in the axial direction. A histogram of the *z*-axis positions of each atom as provided in the PDB files was plotted in 3.3 Å increments using MS Excel. The C-termini tails of tubulin monomers, because of the extensive number of possible interactions that are still undetermined, were cut off before performing the simulations. Thus, an entire line of residues was removed—preventing the possibility that this relatively flexible region would dictate the simulation behavior. To facilitate our virtual tensile testing, we labeled 10% of the most distal N-terminus atoms as fixed atoms and 20% of the remaining most distal C-terminus atoms as steered atoms. These atoms were labeled appropriately in each PDB file with a value of 1.00 in the appropriate Fixed or Steered column.

We used SMD to pull the 6377-atom α -monomer and 6574-atom β -monomer in tension. Fixed atoms were held rigid, while steered atoms were directed by an SMD atom, pulled axially at 0.005 Å per time step. This translates to 2.5 Å/ps with a time step of 2 fs. The SMD "dummy" atom pulls the steered atom with a spring constant of 7 kcal mol⁻¹ Å⁻² \cong 500 pN Å⁻¹ = 5 Nm⁻¹, (1 kcal/mol⁻¹ = 69.5 pN Å).

These values were selected based upon a series of optimization simulations. We performed an initial set of simulations on the 1JFF β -monomer at a series of velocities ranging from 0.5 to 0.005 Å/ns. A velocity of 0.05 Å/ns was found to be asymptotic in that it achieved an elastic modulus that was within 2% of the modulus measured at the slower velocities. At velocities slower than this, computational time became unreasonable and produced errors in energy minimization cascades over long time-periods. Simulations run faster than 0.05 Å/ns resulted in inaccuracies caused by overstretched bond angles (Fig. 3). The velocity of pulling also reflects the effect of hy-

FIGURE 2 Histogram of atom distribution in TBA1_HUMAN ((68–72); W. V. Bienvenut, and D. Claeys, unpublished). The N-terminus of the protein is located at -20 Å. Most of the tubulin structures have relatively long C-terminus tails. *Z* is parallel to microtubule major axis.

FIGURE 3 To optimize computational resources, we performed our simulations at a series of velocities ranging from 0.5 to 0.005 Å/ns. At rates <0.05 Å/ns, modulus results were unaffected.

drogen embrittlement on the atomic structure. In calculating the iterative energies, the presence of hydrogen adds an extra force component to the system. In reality, the monomer may be more plastic as a consequence of hydrating the structure, resulting in lower moduli. Faster pulling rates also result in more brittle behavior (40).

Total simulation energy, U_{total} , is calculated as a sum of contributions from three primary deformation modes (35,42), as well as van der Waals forces and Coulomb forces, as

$$U_{\text{total}} = U_{\text{bond}} + U_{\text{angle}} + U_{\text{dihedral}} + U_{\text{vdW}} + U_{\text{Coulomb}}.$$
 (1)

Each of these individual energies are found from

$$\begin{split} U_{\text{bond}} &= \sum_{\text{bonds i}} k_{i}^{\text{bond}} (r_{i} - r_{\text{oi}})^{2}, \\ U_{\text{angle}} &= \sum_{\text{angles i}} k_{i}^{\text{angle}} (\theta_{i} - \theta_{\text{oi}})^{2}, \\ U_{\text{dihedral}} &= \sum_{\text{dihedral i}} \begin{cases} k_{i}^{\text{dihedral}} [1 + \cos(n_{i}\phi_{i} - \gamma_{i})], & n_{i} \neq 0 \\ k_{i}^{\text{dihedral}} (O_{i} - \gamma_{i})^{2}, & n_{i} = 0 \end{cases}, \\ U_{\text{vdW}} &= \sum_{i} \sum_{j > i} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right], \text{ and} \\ U_{\text{Coulomb}} &= \sum_{i} \sum_{j > i} \frac{q_{i}q_{j}}{4\pi\varepsilon_{o}r_{ij}}. \end{split}$$
(2)

The variable, k^{bond} represents the axial bond stiffness; r_i is the stretched bond length; r_{oi} is the equilibrium bond length; k^{angle} is the torsional bond stiffness; θ_i is the bent bond angle; θ_{oi} is the equilibrium bond angle; k^{dihedral} is the torsional bond stiffness; *n* is the periodicity of the crystal structure or the number of instances of a plane of a given orientation; ϕ is the angle between adjacent planes; γ is the equilibrium value of ϕ defined on a per-atom basis; "O" (omicron) is the angle between the first three atoms in a tetrahedral structure where there is no crystal periodicity, i.e., (n = 0), ε_{ij} the maximum depth of the energy potential well for atomic separation; σ_{ij} is the distance between atom *i* and atom *j* at which the energy is zero; r_{ij} is the atomic separation distance; q_i and q_j are the charges of the respective atoms; ε_0 is the permittivity of free space; and r_{ij} is the distance separating atom *i* and atom *j*.

Axial modulus

Data output from the NAMD software in the form of energy and displacement was converted to force/displacement. Energy was determined by utilizing the equations in Li and Wu (1), which govern the bonding interactions between atomic groups. These equations utilize the CHARMM parameter sets as well as atomic position at each interval of the testing procedure. As the procedure is displacement-controlled, the resulting energy was converted to axial force by dividing the resulting energy by the given axial displacement at each increment, $f = U_{\text{total}} / \Delta L$. Strain was obtained by dividing the incremental displacement by the total length of each monomer ($\varepsilon = \Delta L/L_z$). The axial lengths of the template α - and β -monomers were determined to be 5.789 nm and 6.042 nm, respectively. Note that these dimensions are greater than the value of 4 nm typically reported in the literature. This discrepancy is caused by the overlap of ~ 2 nm between the monomers in their lattice configuration. The axial period of the center-to-center locations of individual monomers is ~4 nm, while their overall length is closer to 6 nm. Stress was calculated by determining the force per unit cross-sectional area, $\sigma = F/A_{xy}$. For α - and β -tubulin, cross-sectional area was determined by averaging the area of three least-squares ellipses drawn about the surface in the transverse direction at the center of the structure, at 40 and 60% of the distance between bottommost and topmost of the steered and fixed atoms. The resulting inaverage transverse cross-sectional areas of α and β were 25.43 nm² and 27.88 nm², respectively. This algorithm was applied to all structures to estimate the molecular cross-sectional area. All simulations were run at a constant temperature of 300 K.

Stress/strain curves for the simulated tensile tests were then produced for all simulations. The qualitative behavior of each of the simulations indicate that the individual molecules respond in a manner similar to that of macroscale material sample responds under tensile load, with the exception that slope variations associated with discrete binding events at the molecular scale are undetectable in a macroscale tensile test.

Circumferential modulus

When a microtubule is stretched, monomers interact both axially and circumferentially. While the precise response to multiaxial loading has yet to be determined, it is assumed that tubulin monomers will exhibit anisotropic behavior based on both their antisymmetric structure and their assembly modes (18). Thus, to determine the degree of anisotropy, the tensile tests described above were repeated on all structures in the circumferential direction. The axis of applied displacement we used was chosen to simulate the forces imposed by the binding with conjoining dimers within the helical structure of the microtubule.

With a total of 538 stress/strain curves produced (269 curves for axial tensile models and 269 curves for circumferential tensile models), we plotted our predicted elastic modulus values against the following physical parameters as determined by Tuszynski et al. (19): net dipole moment; net charge; volume; and surface area. Further characteristics such as number of residues, cross-sectional area, number of atoms, homology similarity, and percent distribution of each individual amino acid were also plotted as a function of the axial elastic modulus. Linear regression statistics demonstrated that, while none of these characteristics produced any observable trends, one prominent trend was an inverse correlation between axial stiffness and axial length.

Polyglycine simulations

To test the effects of simulation size on elastic modulus results, we also performed identical simulations on both linear and helical oligomeric glycine chains of lengths ranging from 10 Å to 500 Å. The first and last group of residues in the structure was deemed as fixed and steered atoms. The simulation directed a linear displacement along the axial direction of the glycine chain. These simulations were used to determine whether long-range electrostatic interactions contributed significantly to the simulation energy. Specifically, as the chains are stretched, covalent interactions dominate electrostatic interactions. Additionally, increasing the chain length of an oligomeric structure in vacuo was expected to artificially stiffen the structure as more residues are added, since additional residues added to either end may still interact with interior residues. This trend is expected to continue until a length is reached at which these boundary conditions become less prevalent.

RESULTS

Axial modulus

As seen in the stress/strain curves in Figs. 4 *b* and 5, our simulations demonstrate a failure curve reminiscent of polymerlike failure curves. There is an elastic region from 0 to 0.350 strain, followed by plastic deformation from 0.350 to 0.475 strain, and ultimately failure above 0.475 strain. These particular values are unique to the bovine β -tubulin structure. However, this overall shape was demonstrated by both the α - and β -template 1JFF monomers. In nature, a strain of 0.3 or greater is highly unlikely to ever occur. However, as microtubules have recently been used as potential components for nanomachinery (e.g., (43,44)), this may become a critical design parameter.

The axial modulus for each monomer was calculated in a manner similar to those outlined by Shah (45). For α -tubulin, the modulus was 12.51 pN/Å² (1.25 GPa). For β -tubulin, the modulus was 13.35 pN/Å² (1.34 GPa). These values agree well with other recent AFM and finite element analysis re-

sults that predict the modulus to be ~1.4 GPa (46). To evaluate whether our predicted elastic moduli agree with recently measured mechanical properties of single microtubules, we developed a beam-mechanics model wherein each monomer was given a spring constant, k, based on its predicted modulus, E, its area, A, and its length, L, via k = EA/L(see Appendix). We also assigned spring constants to the α - β binding site and the β - α binding sites, giving them values 0.1, 1.0, and 10 times that of the monomer stiffness. For these values, we found persistence lengths of 0.4, 2.3, and 4.1 mm, respectively. This agrees remarkably well with the recent empirical results of Pampaloni et al. (47), who found MT persistence lengths to range between 0.2 and 5 mm for MTs ranging in length from 2 to 40 μ m.

To quantify correlation between monomer geometry and elastic modulus, we plotted all moduli as a function of monomer length (Fig. 6). These data are summarized in Table 2. Our primary finding was that as monomer axial length increased, axial stiffness decreased. The regression lines for the α - and

FIGURE 4 (*a*) Incrementally stretched structure of 1JFFB (σ , stress; ε , strain). (*A*) $\varepsilon = 0.00$, $\sigma = 0.00$ MPa; (*B*) $\varepsilon = 0.041 \sigma = 210$; (*C*) $\varepsilon = 0.083$, $\sigma = 323$; (*D*) $\varepsilon = 0.124$, $\sigma = 522$; (*E*) $\varepsilon = 0.166$, $\sigma = 735$; (*F*) $\varepsilon = 0.207$, $\sigma = 1005$; (*G*) $\varepsilon = 0.248$, $\sigma = 1107$; (*H*) $\varepsilon = 0.290$, $\sigma = 1326$; (*I*) $\varepsilon = 0.331$, $\sigma = 1528$; and (*J*) $\varepsilon = 0.372$, $\sigma = 1567$. (*b*) Stress/strain plot for IJFFB.

FIGURE 5 Example stress-strain curves of other tubulin monomers demonstrating multimodulus behavior. (*a*) 1JFFA; (*b*) 1Z5VG.

 β -data are almost identical. For α -structures, $\sigma = -22.32\varepsilon + 2649.9$ MPa, with an R^2 of 0.8233. For β -structures, $\sigma = -24.07\varepsilon + 2861.5$ MPa with an R^2 of 0.4177. While we are reticent to make further predictions from the current data set, it could be that the high degree of similarity between these trends is a result of the tertiary interactions specific to tubulin. A similar trend was seen with the γ -tubulin simulations. However, since the range of lengths of the γ -monomers was significantly diminutive compared with those of α and β , only an insignificant correlation was found ($R^2 = 0.0489$).

FIGURE 6 Axial elastic modulus as a function of monomer length for α -tubulin (*triangles*), β -tubulin (*circles*), and γ -tubulin (*diamonds*). Top trace is that of polyglycine.

Typical bond energies are -9.1×10^{-21} to -2.4×10^{-20} J laterally and -2.8×10^{-20} to -3.9×10^{-20} J longitudinally (48). The typical work-to-failure of most our model systems were -5.1×10^{-18} J for β and -3.0×10^{-18} J for α . This is consistent with the observation that microtubule failure occurs between, rather than within, monomers.

Circumferential modulus

Elastic moduli in the circumferential direction were approximately one-third of those in the axial direction. To our knowledge, this is the first report of tubulin anisotropy at the tertiary level. We found an average circumferential elastic modulus of 935.6 MPa for α and 658.4 MPa for β across all structures. The circumferential elastic moduli of the α , β , and γ yielded no discernible trends as a function of axial length, circumferential length, cross-sectional area, volume, net charge, net dipole moment, residue fraction, number of atoms or number of residues—i.e., regression statistics demonstrated no significant correlation between the properties predicted by Tuszynski and monomer length. The results for circumferential modulus as a function of circumferential length are shown in Fig. 7 and summarized in Table 3.

Since we performed simulated stretching on the flat rather than the curved form of tubulin, the question remains open as to whether our results would be similar if the curved form found in MTs were to have been used. Paramount in this consideration is whether the superposition principle of mechanics (49) may be applied to MD. The superposition principle, as it applies to beam equations, states that the stress or strain state resulting from the three primary modes of loading (tension/compression, bending, or torsion) may be calculated separately and summed to find the overall state of the system. For example, if a beam is loaded in pure tension and subsequently in bending, the resulting stress state is the sum of the two. To our knowledge, such an investigation has not been undertaken in the MD literature, but deserves investigation. For the current work, the possibility exists that either or both of the axial results and circumferential results would be affected by simulating the curved versus the flat state. For example, as recently demonstrated by Krebs et al. (24), axially, the splayed state of a depolymerizing microtubule represents an intermediately stable form with a radius of curvature of $\sim 100-200$ nm about the θ -axis. In the circumferential direction, both the sheet conformation and the cylindrical conformation represent stable forms depending on the phosphorylation state of β -tubulin.

Polyglycine simulations

The polyglycine control simulations resulted in an inverse trend: longer structures were stiffer than shorter structures and approached an asymptote near a length of 75 Å. This effect is attributable to long-range interactions among individual atoms in the simulation, i.e., central atoms are affected by a greater number of boundary atoms, but as the fraction of

TABLE 2 Tabular d	ata of all axial moduli
-------------------	-------------------------

IFFA 1251 TBA1_SCHIPO 1017 IFFE 1335 TBB1_ETTH 1325 TBB2_HOMAN 150 IZSVG 1491 TBA_AVESA 1080 TBA1_STYLE 1073 TBB_ACH 1405 TBB2_HUAWE 1335 TBB2_HUAM 1235 TBC_ALELC 1491 TBA_BORMO 1080 TBA1_YEAST 1336 TBB2_XENC 1306 TBB2_XENC 1305 TBC_ACHLW 1616 TBA_CHLW 1157 TBA2_ARATH 1077 TBB_ASPFA 1400 TBB_XENCR 1306 TBB2_XENCR 1305 TBC_ACHLW 1401 TBC_ACHLM 1441 TBB2_VENN 1441 TBC_ACHLM 1401 1401	Alpha			Beta					Gamma			
TBA_AVESA 1051 TBA_I_STYLE 1073 TBB_ACHKL 1405 TBE_THAWE 1336 TBB_LUMAN 1453 TBG_ANEPH 1117 TBA_BOMMO 1080 TBA_I_VOLCA 1086 TBA_LOLCU 1337 TBG_ANEPH 1137 TBA_CERLU 1337 TBG_ANEPH 1361 TBA_CHLVU 1151 TBA_ZARATH 1077 TBB_ASPPA 1410 TBB_VENIN 1444 TBB_ZORYSA 1355 TBG_CHLRE 1376 TBG_ZORYSA 1355 TBG_CHLRE 1170 TBA_EUPOC 105 TBA_ZOLCHLRE 1044 TBB_SABBO 1400 TBB_INARH 1476 TBB_ZORYSA 1360 TBG_NEUCR 1110 TBA_EUPOC 1066 TBA_ZELENN 1148 TBB_CEPAC 1303 TBB_ZORYSA 1377 TBB_ZORYSA 1376 TBG_SCHP 1411 TBG_PHYPA 1351 TBA_NOTCO 1063 TBA_ZEMON 1481 TBB_CEPAC 1303 TBB_ZORYSA 1376 TBS_ZORYSA 1405 TBS_ZORYSA 1376 TB	1JFFA	1251	TBA1_SCHPO	1017	1JFFB	1335	TBB_TETTH	1325	TBB2_HOMAM	1310	1Z5VG	1491
TBA_BOMMO 080 TBA_LVOLCA 1068 TBB_ACRAC 137 TBA_LVDAL 1259 TBG_CARAL 1618 TBA_CHUVU 1115 TBA_ZARATH 1077 TBB_ASPFL 1398 TBB_CORSA 1331 TBG_CARAL 1301	TBA_AVESA	1051	TBA1_STYLE	1073	TBB_ACHKL	1405	TBB_THAWE	1336	TBB2_HUMAN	1453	TBG_ANEPH	1117
TBA_CANAL 1583 TBA_YLEAX 1305 TBC_CANAL 1301 TBC_CANAL 1301 TBC_CANAL 1301 TBA_CHLVU 1115 TBA_ZARATH 1077 TBB_ASPRA 1400 TBB_VENIN 1444 TBB2_PRA 1320 TBC_CANAL 1301 TBC_CANAL 1101 TBA_ELIPOC 1015 TBA_ZCHICK 1000 TBB_BABDO 1403 TBB1_ANEPH 1476 TBB2_PRAPDO 1302 TBC_ENENI 1110 TBA_ELIPOC 1006 TBA_ZCHICK 1000 TBB_BADDCL 1333 TBB1_ANEPH 1476 TBB2_SOUTU 1280 TBG_NEURER 1110 TBA_ALPCO 1006 TBAZ_ELIENN 1148 TBB_CCFPAC 1301 TBB1_SUNT 1474 TBG_SCHIP 1341 TBG_SCHIP 1345 TBG_SCHIP 1341 TBG_SCHIP 1345 TBG_SCHIP 1341 136 TBG_SCHIP 1341 136 TBG_SCHIP 1341 <	TBA_BOMMO	1080	TBA1_VOLCA	1068	TBB_ACRCO	1473	TBB_TOXGO	1389	TBB2_LUPAL	1259	TBG_CAEEL	1618
TBA_CHLVU 1115 TBA_ZARATH 1077 TBA_SASPE. 1398 TBA_ELVCO 1307 TBA_ZCALEL 1537 TBA_ZCALEL 1537 TBA_ZCALEL 1557 TBA_ZENCO 1307 TBA_ZCALEL 1560 TBB_BABBO 1400 TBB_VEANT 1462 TBB_ZPHYPO 1307 TBG_ENTHI 1176 TBA_EUPOVA 1259 TBAZ_CHCK 1600 TBB_BABDO 1403 TBB_LAREH 1470 TBG_ENTHI 1176 TBA_EUPOVA 1259 TBAZ_CHCK 1600 TBB_BACTLO 1338 TBBL_ARATH 1377 TBBZ_SOLTU 1280 TBG_NEUCR 1110 TBA_MYCGR 768 TBAZ_LENENI 1110 TBB_CCHLN 1499 TBBL_CHCR 1324 TBBZ_WHEAT 1376 TBG_SCHP 1044 TBA_OCTOV 1125 TBAZ_URUKZ 1007 TBAZ_MAZE 1021 TBB_CCAR 1404 TBBL_COCR 1342 TBBZ_WHEAT 1376 TBG_SCHP 1044 TBA_OCTOV 1178 TBAZ_MAZE 1021 TBB_ENTY 1455 TBBL_GOCR 1413 TBG_SCHP 1044	TBA_CANAL	1583	TBA1_YEAST	1336	TBB_AJECA	1498	TBB_TRYBR	1376	TBB2_MAIZE	1313	TBG_CANAL	1361
TBA_DUCDI 1370 TBA_2CAEEL 1153 TBB_ASPCA 1410 TBB_VENN 1444 TBB_ZEA 1422 TBG_ENTH 1170 TBA_EUGOC 1046 TBA_2CHUK 1060 TBA_2CHUK 1100 TBB_CANAL 1388 TBBL_ANCH 1377 TBB2_SOLTU 1280 TBG_ENPLAE 1161 TBA_ALROCO 768 TBA_2ELEIN 1110 TBB_CANAL 1388 TBBL_CHUCK 1377 TBB2_SOLTU 1447 TBG_CENPL 1351 TBA_OTVO 1033 TBA_2LANAN 1378 TBB2_CHUCK 1411 TBG_SCHP 1064 TBA_OCTVO 1137 TBA2_MOUSE 1020 TBB_ELEIN 1364 TBB3_CHUCK 1441 TBG_SCHP 1064 TBA_OCYCGR 1178 TBA2_MOUSE 1020 TBB_ELEIN 1356 TBB3_CHUCK 1441 TBG_SCHP 1064 TBA_OCYCGR 1178 TBA2_MOUSE 1020 TBB_ENCHUR 1350 TBB	TBA_CHLVU	1115	TBA2_ARATH	1077	TBB_ASPFL	1398	TBB_TRYCR	1396	TBB2_ORYSA	1355	TBG_CHLRE	977
TBA_EUGGR 1046 TBA_Z-LHICK 105 TBA_Z-CHICK 106 TBB_BARBO 1403 TBB_Z-PHYPO 1320 TBG_EUPAR 1161 TBA_EUPVA 1290 TBA_Z-DROME 1000 TBB_BOTCI 1338 TBBL_ARATH 1476 TBBZ_SOTU 1301 TBG_EUPAR 1101 TBA_MYCGR 768 TBAZ_EMENI 1481 TBB_CPACL 1303 TBBL_SOTU 1411 TBG_PHYPA 1351 TBA_OTOVI 1125 TBAZ_HOWAM 1087 TBB_CALL 1310 TBB1_CHICR 1424 TBB2_WHEAT 1376 TBG_SCHUP 1064 TBA_OTOVI 1137 TBAZ_HOWAM 1111 TBB_CRLN 1481 TBB2_WHEAT 1376 TBG_SCHUP 1064 TBA_OTOVI 1103 TBAZ_MAUCE 1001 TBAZ_MAUCE 1002 TBB_LENT 1455 TBB1_COLCR 1342 TBS2_CHUP 1431 TBG_SCHUP 1431 TBG_SCHUP 1342 TBGZ_TVU 1103 TBAZ_TVU 1303 TBG_SCHUP 1340 TBG_SCH	TBA_DICDI	1370	TBA2_CAEEL	1153	TBB_ASPPA	1410	TBB_VENIN	1444	TBB2_PEA	1342	TBG_EMENI	1170
TBA_EUPOC 1015 TBA_2CHLRE 1054 TBB_BOMMO 103 TBB_ANEPH 1476 TBB_2ORPU 1317 TBC_EUPAE 1100 TBB_BORT 1385 TBB_ANEPH 1477 TBB_2ORTU 1307 TBB_2DEVIL 1411 TBC_PHYPA 1531 TBA_MYCGR 768 TBA2_ELEN 1110 TBB_CCPAC 1310 TBB_1CHICK 1379 TBB2_SOYBN 1411 TBC_PHYPA 1351 TBA_ONTOR 1125 TBA2_HOMAN 1087 TBB_CCLR 1444 TBB_1CCOLGR 1379 TBB2_XENLA 1413 TBC_SCHPO 1054 TBA_ONTOKE 1001 TBA2_MOLZE 1021 TBB_DENCI 1425 TBB1_EMEN 1385 TBB3_MAIZE 1307 TBG_MANZE 1333 TBG_MANZE 1333 TBG_MANZE 1307 TBG_MANZE 1333 TBG_MANZE 1330 TBG_GOCN 1437 TBG_MANZE 1333 TBG_MANZE 1330 TBG_MANZE 1330 TBG_MANZE 1330 TBG_MANZE 1330 TBG_MANZE 1337	TBA_EUGGR	1046	TBA2_CHICK	1060	TBB_BABBO	1403	TBB_YEAST	1462	TBB2_PHYPO	1320	TBG_ENTHI	1176
TBA_LEUPVA 1259 TBA_2_DROME 1000 TBB_B_OTCI 1338 TBB_L_RARTH 1377 TBB2_SOLTU 1280 TBC_NEUCR 1110 TBA_MAYCOR 768 TBA2_ELEIN 1100 TBB_CANCH 1385 TBBL_RVEN 1370 TBB2_SOLTU 1270 TBC_NEUCR 1370 TBB2_SOLVEN 1411 TBC_PHLP 1381 TBA_OCTOV 1125 TBA2_HOMAN 1087 TBB_CHLEN 1444 TBB1_CHOCR 132 TBB2_WHEAT 1376 TBC_SCHPO 1064 TBA_OCKC 1001 TBA2_MADXE 1021 TBD_ICLEN 1444 TBB1_CHOCR 1441 TBC_SCHPO 1064 TBA_OCKC 1001 TBA2_MADXE 1702 TBB2_ELEIN 1105 TBB3_CRICK 1441 TBC_SCHPO 1064 TBC_SCHPO 1302 TBC4_CRACK 1307 TBC3_CANCH 1328 TBC3_ECON 1449 TBB3_CMACK 1370 TBC3_MADXE 1370 TBC3_MADXE 1370 TBC3_MADXE 1370 TBC3_MADXE 1370 TBC3_CANCA <td>TBA_EUPOC</td> <td>1015</td> <td>TBA2_CHLRE</td> <td>1054</td> <td>TBB_BOMMO</td> <td>1403</td> <td>TBB1_ANEPH</td> <td>1476</td> <td>TBB2_PORPU</td> <td>1317</td> <td>TBG_EUPAE</td> <td>1163</td>	TBA_EUPOC	1015	TBA2_CHLRE	1054	TBB_BOMMO	1403	TBB1_ANEPH	1476	TBB2_PORPU	1317	TBG_EUPAE	1163
TBA_HACO 100 TBA_2ELEN 1110 TBB_CANAL 1385 TBB_SQUBN 1401 TBC_PHYPA 1451 TBA_MYCOR 768 TBA2_EMENI 1441 TBB_CENCLIN 1459 TBBL_CHOCR 1379 TBB2_SUPINI 1474 TBG_SCHPD 1054 TBA_OCTUO 1043 TBA2_HOMAN 1087 TBB_CLEN 1447 TBB_CCOLGR 1377 TBB2_XENLA 1413 TBG_SCHPD 1054 TBA_OCTUO 1043 TBA2_HOMAN 1111 TBB_CCALCR 1424 TBB1_CHOR 1365 TBB2_XENLA 1411 TBG_XENTI 1115 TBA_ONCKE 1001 TBA2_MALZE 1021 TBB_DENCICI 1405 TBB1_ELEIN 1355 TBB3_DROME 1282 TBG_XENTI 1115 TBA_MAN 958 TBA_ONCKE 1001 TBA2_NEUCU 103 TBB_ERVGR 1392 TBB1_GADMO 129 TBB3_MAIZE 1370 TBG1_MAUZE 1333 TBB3_ONYBN 1386 TBG2_ANTH 1044 TBB_ERVGR 1392 TBB1_CHOL 133 TBB3_ONYBN 1386 TBG2_ANTH 1041 TBA_ANTH	TBA_EUPVA	1259	TBA2_DROME	1000	TBB_BOTCI	1338	TBB1_ARATH	1377	TBB2_SOLTU	1280	TBG_NEUCR	1110
TBA_MYCOR 768 TBA2_EMENI 1481 TBB_CEPAC 1310 TBB_CHICK 1379 TBB2_TRIVI 1474 TBG_KETFI 1388 TBA_NOTVI 1125 TBA2_HORAN 1987 TBB_CHLIN 1459 TBB_CNCR 1342 TBB2_WHEAT 1376 TBG_SCHIP 1064 TBA_ONCKE 1001 TBA2_HORAN 1111 TBB_CCLAR 1444 TBB1_CVAPA 1364 TBB3_CHICK 1441 TBG_SCHIP 1064 TBA_ONCKE 1001 TBA2_HUMAN 1111 TBB_CETTI 1222 TBB1_BEDROME 1232 TBG_TASA 1300 TBG_TASA 1300 TBG1_MAIZE 1331 TBA_PLAYO 1022 TBA2_PLAYO 1022 TBA2_PLAYO 1022 TBA2_SCHPO 1021 TBB_EUPCR 1232 TBB1_MAIZE 1433 TBB3_ORDE 1433 TBB3_ORDE 1432 TBB3_ARATH 1043 TBB2_ORTEN 1386 TBG2_ARATH 1084 TBB1_MAIZE 1433 TBG3_NOVEN 1386 TBG2_AUAXA 1386 TBG2_AUAXA	TBA_HAECO	1006	TBA2_ELEIN	1110	TBB_CANAL	1385	TBB1_BRUPA	1339	TBB2_SOYBN	1411	TBG_PHYPA	1351
TBA_NOTVI 1125 TBA2_HORMM 1087 TBB2_CHLR 1444 TBB2_WHEAT 1376 TB62_SCHJP 1054 TBA_OCTOV 1178 TBA2_HORMAN 1111 TB62_SCHO 1064 TBA_OCTVU 1178 TBA2_MAIZE 1021 TB8_DICDI 1405 TB81_ELEN 1356 TB83_DROME 122 TB6_SCHO 1064 TBA_ONCKE 1001 TBA2_MAIZE 1021 TB8_EINTE 122 TB81_ELEN 1355 TB83_ELEN 1383 TB61_MAIZE 1333 TBA_PLAK 991 TBA2_PCHC 690 TB8_EINTE 122 TB81_ELEN 1350 TB83_ORYAS 1309 TB61_MAIZE 1333 TBA_PLAK 991 TBA2_PCHP 1043 TB8_EUPCR 129 TB81_EOCN 1457 TB83_ORYAS 1330 TB62_ARATH 1084 TB62_SCHR 1386 TB63_SOYAS 1386 TB62_EUPC 129 TB81_MAIZE 1473 TB63_SOYAS 1386 TB62_EUPC 102 TB8_EUPC 129 TB81_MAIZE 1473 TB63_CMAIZE 140 TB63_CMAIZE 120 TB63_MAIZE <td< td=""><td>TBA_MYCGR</td><td>768</td><td>TBA2_EMENI</td><td>1481</td><td>TBB_CEPAC</td><td>1310</td><td>TBB1_CHICK</td><td>1379</td><td>TBB2_TRIVI</td><td>1474</td><td>TBG_RETFI</td><td>1388</td></td<>	TBA_MYCGR	768	TBA2_EMENI	1481	TBB_CEPAC	1310	TBB1_CHICK	1379	TBB2_TRIVI	1474	TBG_RETFI	1388
TBA_OCTDO 1043 TBA2_HORVU 996 TBB_CHLRE 1444 TBB_COLGR 1377 TBB2_XENLA 1411 TBC_CSTP 1050 TBA_OCTVO 1178 TBA2_MAIZE 1021 TBB_DICICAR 1424 TBB1_CY2PA 1364 TBB3_CHICK 1441 TBG_USTVI 1150 TBA_ONCKE 1001 TBA2_MOUSE 1002 TBB_EIMTE 1222 TBB1_EMENI 1385 TBB3_MAIZE 1370 TBG1_MAIX 583 TBA_PIG 1071 TBA2_PAUVU 1043 TBB_EUGGR 1392 TBB1_GEOCN 1247 TBB3_ORIZA 1300 TBG1_MAIXE 1333 TBG3_PCRVA 1300 TBG1_MOUSE 1172 TBA_PLAYO 1022 TBA2_SCHPO 1280 TBB1_LOPAI 1433 TBB3_ORIXA 1300 TBG3_PCRVA 1360 TBG3_DROKE 1361 TBB1_ADIXE 1477 TBB3_ORIXA 1362 TBG3_DROKE 1301 TBG3_CHLCK 1207 TBG3_DROKE 1301 TBG3_DROKE 1301 TBG3_DROKE 1301 TBG3_DROKE <td>TBA_NOTVI</td> <td>1125</td> <td>TBA2_HOMAM</td> <td>1087</td> <td>TBB_CHLIN</td> <td>1459</td> <td>TBB1_CHOCR</td> <td>1342</td> <td>TBB2_WHEAT</td> <td>1376</td> <td>TBG_SCHJP</td> <td>1054</td>	TBA_NOTVI	1125	TBA2_HOMAM	1087	TBB_CHLIN	1459	TBB1_CHOCR	1342	TBB2_WHEAT	1376	TBG_SCHJP	1054
TBA_OCTVU 1178 TBA2_HOMAN 1111 TBB2_CICAR 1424 TBB1_CYAPA 1364 TBB3_DROME 1421 TBG_USTVI 1150 TBA_ONCKE 1001 TBA2_MOUSE 1002 TBB_EIMTE 1222 TBB1_ELEIN 1356 TBB3_DROME 1282 TBG_PLAFK 1117 TBA_PLAFK 991 TBA2_PELFA 1004 TBB_EUGGR 1511 TBB1_GADMO 1437 TBB3_ORYSA 1300 TBG1_MOUSE 1117 TBA_PLAFK 991 TBA2_SCHPO 1128 TBB_EUFCR 1292 TBB1_GADMO 1437 TBB3_ORYSA 1300 TBG1_MOUSE 1102 TBB_EUFCP 1299 TBB1_LUPAL 1433 TBB3_OVPN 1386 TBG2_EUFCR 1021 TBA_SCHPO 1380 TBB3_OVPN 1386 TBG2_EUFCR 1021 TBA_SCHPO 1380 TBB3_OVPN 1386 TBG2_EUFCR 1021 TBB_EUFCP 1299 TBB1_MAIZE 1433 TBB3_OVPN 1386 TBG2_EUFCR 1021 TBA_SCHPA 1335 TBB3_OVPN 1386 TBG2_CUPCR 1021 TBA_SCHPA 1335 TBB3_OVPN 1386 TBG	TBA_OCTDO	1043	TBA2_HORVU	996	TBB_CHLRE	1444	TBB1_COLGR	1377	TBB2_XENLA	1413	TBG_SCHPO	1064
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TBA_OCTVU	1178	TBA2_HUMAN	1111	TBB_CICAR	1424	TBB1_CYAPA	1364	TBB3_CHICK	1441	TBG_USTVI	1150
TBA_QOXYGR 1113 TBA2_NEUCC 1092 TBB_LEMIN 1222 TBB_LEMIN 1385 TBG1_HUMAN 958 TBA_PIG 1071 TBA2_NEUCC 690 TBB_EPTYG 1392 TBB1_GODN 1249 TBB3_ORYSA 1309 TBG1_MOUSE 1137 TBA_PLAYO 1022 TBA2_PELFA 1094 TBB_EUPCR 132 TBB1_HUMAN 1428 TBB3_ORYSA 1309 TBG1_MALZE 1330 TBG1_MALZE 1330 TBG1_MALZE 1330 TBG1_MALZE 1330 TBG1_MALXE 1330 TBG1_MALXE 1330 TBG1_MALXE 1330 TBG1_MALXE 1330 TBG1_MALXE 1332 TBG2_EUPCR 1021 TBG_TCM 134 TBG3_OYBN 1386 TBG2_EUPCR 1021 TBG_TCM 134 TBG3_OYBN 1366 TBG2_EUPCR 1021 TBG_TCM 1332 TBG1_MALXA 1351 TBG1_MALXA 1351 TBG1_MALXA 1351 TBG1_MALXA 1352 TBG1_MALXA 1360 TBG3_OYBN 1360 TBG3_OYBN 1360 TBG3_OYBN 1360 TBG3_OYBN 1361 TBG3_OYBN 1361 TBG3_OYBN 1361	TBA_ONCKE	1001	TBA2_MAIZE	1021	TBB_DICDI	1405	TBB1_ELEIN	1356	TBB3_DROME	1282	TBG_YEAST	1117
TBA_PLG 1071 TBA2_PARK 901 TBB_PITY 1455 TBB_GADMO 1249 TBB3_MAIZE 1370 TBG1_MAIZE 1333 TBA_PLAYO 1022 TBA2_PELFA 1094 TBB_EUGGR 1511 TBB1_GCDCN 1475 TBB3_PCA 1267 TBG2_MOUSE 1172 TBA_PLAYO 1022 TBA2_SCHPO 1128 TBB_EUPCR 1282 TBB1_HUMAN 1303 TBB3_PORPU 1382 TBB3_SOYBN 1386 TBG2_EUPCR 1021 TBA_TETTH 1003 TBA3_ARATH 1154 TBB_GIBFU 1329 TBB1_MAIZE 1472 TBB4_CAEEL 1497 TBG2_HUMAN 1217 TBA_TORMA 1132 TBA3_BADROME 1104 TBB_GIBFU 1329 TBB1_MANSE 1414 TBB4_ARATH 1337 TBG2_HUMAN 1217 TBA_TORMA 1132 TBA3_BADROME 1104 TBB_GIBFU 1329 TBB1_MANSE 1414 TBB4_ARATH 1337 TBG2_HUMAN 1217 TBA_TORMA 1133 TBA3_MORU 1060 TBB_HALDI 1450 TBB1_ONTOCO 1477 TBB4_CAEEL 1497 <td>TBA_OXYGR</td> <td>1113</td> <td>TBA2_MOUSE</td> <td>1092</td> <td>TBB_EIMTE</td> <td>1222</td> <td>TBB1_EMENI</td> <td>1385</td> <td>TBB3_ELEIN</td> <td>1383</td> <td>TBG1_HUMAN</td> <td>958</td>	TBA_OXYGR	1113	TBA2_MOUSE	1092	TBB_EIMTE	1222	TBB1_EMENI	1385	TBB3_ELEIN	1383	TBG1_HUMAN	958
TBA_PLAFK 991 TBA2_PATVU 1043 TBB_ERYGR 1392 TBB_COCN 1457 TBB2_ORYSA 1309 TBG1_MOUSE 1172 TBA_PLAYC 1002 TBA2_PELA 1094 TBB_EUGR 1511 TBB_HAMAN 1350 TBB3_ORYSA 1309 TBG1_MOUSE 1102 TBA_PLAYC 1012 TBB_EUPCR 1282 TBB1_HUMAN 1350 TBB3_ORYSA 1386 TBG2_EUPCR 1021 TBA_TETYP 1003 TBA3_ARATH 1154 TBB_EUPCC 1319 TBB1_MAIZE 14172 TBB3_ORYBA 1386 TBG2_EUPCR 1021 TBA_TETYP 1003 TBA3_ARATH 1054 TBB_EGIALA 1533 TBB1_MAISE 1414 TBB4_CARATH 1357 TBG2_EUPCR 1021 TBA_TETYN 1043 TBA3_ARATH 1040 TBB_EIGRAC 1353 TBB1_MAISE 14172 TBB3_ORYNA 1305 TBG2_ARATH 1041 TBB4_CALELA 1305 TBG2_EUPCR 1201 1305 TBG2_ARATH 1041 TBB4_CALELA 1305 TBG2_ARATH 1041 TBB4_CALELN 1317 TBG2_ALUARA <	TBA_PIG	1071	TBA2_NEUCR	690	TBB_EPITY	1455	TBB1_GADMO	1249	TBB3_MAIZE	1370	TBG1_MAIZE	1333
TBA_PLAYO 1022 TBA2_PELFA 1094 TBB_EUGGR 1511 TBB1_HUMAN 1428 TBB3_PEA 1267 TBG2_ARATH 1080 TBA_PRUDU 1123 TBA2_SCYPLE 1102 TBB_EUPFO 1289 TBB1_HUMAN 1350 TBB3_DORDE 1382 TBB3_SOYBN 1386 TBG2_EUPCR 1021 TBA_TETPY 1003 TBA3_ARATH 1154 TBB_GIBLU 1393 TBB1_MAZE 1472 TBB3_WHEAT 1332 TBG2_EUPCR 1021 TBA_TORMA 1132 TBA3_DROME 1104 TBB_GIBLU 1329 TBB1_MAXE 1414 TBB4_CAEEL 1497 TBG2_EUPCR 1021 TBA_TOXGO 1143 TBA3_HORAM 1090 TBB_HALDI 1450 TBB1_NOTCO 1477 TBB4_CAEL 1497 TBG2_MAIZE 1199 TBA_TOXGO 1143 TBA3_HORAM 1090 TBB_HALDI 1450 TBB1_ORYSA 1336 TBB4_CAELK 1430 TBG2_MAIZE 1199 TBA3_MAIZE 1192 TBG3_MAIZE 1192 TBG3_MAIZE 1192 TBG3_MAIZE 1108 TBB1_VELA 1405 TBB4_	TBA_PLAFK	991	TBA2_PATVU	1043	TBB_ERYGR	1392	TBB1_GEOCN	1457	TBB3_ORYSA	1309	TBG1_MOUSE	1172
TBA_PKUDU 1123 TBA_SCHPO 1128 TBB_EUPCR 1282 TBB1_UUNAN 1350 TBB3_PORPU 1382 TSB3_SOYBN 1386 TBG2_EUPCR 1021 TBA_SORMA 693 TBA3_ARATH 1154 TBB_EUPCC 1319 TBB1_MAIZE 1427 TBB3_WHEAT 1332 TBG2_EUPCC 1021 TBA_TETTH 1043 TBA3_BARATH 1154 TBB_GIALA 1533 TBB1_MAIZE 1447 TBB4_CARATH 1357 TBG2_HUAAN 1217 TBA_TORMA 1132 TBA3_ELEIN 1062 TBB_GIALA 1533 TBB1_ORYSO 1336 TB4_CAEEL 1497 TBG2_MAIZE 1108 TBA_TORMA 1132 TBA3_HOMAM 1090 TBB_HORVU 1352 TBB1_ORYSA 1336 TB4_CHICK 1450 TB62_MOIXE 1408 TB63_MAIZE 1223 TB62_MOIXE 1108 TB63_MAIZE 1230 TB1_PARTE 1369 TB84_CHICK 1450 TB62_MOIXE 1400 TB63_MAIZE 1233 TB63_MAIZE 1233 TB63_MAIZE 1233 TB63_MAIZE 1233 TB63_MAIZE 1234 TB64_CHICK	TBA_PLAYO	1022	TBA2_PELFA	1094	TBB_EUGGR	1511	TBB1_HOMAM	1428	TBB3_PEA	1267	TBG2_ARATH	1084
TBA_ETEPY 1003 TBA_ZEPYC 1102 TBB_EUPPC 1229 TBB1_MALZE 1433 TBB3_WHEAT 1332 TBG2_EUPPC 1001 TBA_TETTH 1043 TBA3_ARATH 1154 TBB_GLEVPC 1301 TBB2_EUPPC 1002 1002 1002 1002 1001 1002 1001 1001 TBB_ATETTH 1062 TBB_GIBFU 1329 TBB1_MAZE 1444 TBB4_ACAEL 1450 TBG2_EUPOC 1001 TBA_TOXGO 1143 TBA3_HOMAM 1000 TBB_MELT 1305 TBG2_MOUSE 1108 TBA_TRYCR 1101 TBA3_MOUSE 1035 TBB_MACR 1443 TBB1_PARTE 1306 TBB2_ORYSA 976 TBA_ANDUSE 1035 TBB_MACR 1443 TBB1_PORPU 1440 TBB4_LELEN 1313 TBG2_ORYSA 976 TBA_ANDUSE 1035 TBB_NACGR 1443 TBB1_PORPU 1440 TBB4_MALZE 1233 TBA_ARATH 1007 TBA3_ADOUSE 1035 TBB_NCOCD 1440 TBB4_MALZE 1233 TBA_ARATH 1150 TBA5_ANAIZE </td <td>TBA_PRUDU</td> <td>1123</td> <td>TBA2_SCHPO</td> <td>1128</td> <td>TBB_EUPCR</td> <td>1282</td> <td>TBBI_HUMAN</td> <td>1350</td> <td>TBB3_PORPU</td> <td>1382</td> <td>TBB3_SOYBN</td> <td>1386</td>	TBA_PRUDU	1123	TBA2_SCHPO	1128	TBB_EUPCR	1282	TBBI_HUMAN	1350	TBB3_PORPU	1382	TBB3_SOYBN	1386
TBA_TEIPY 1005 TBA_ARATH 1154 TBB_EUPOC 1319 TBBI_MALZE 14/2 TBB2_WHEAT 1322 TBG2_EUPOC 1021 TBA_TETTH 1043 TBA3_DROME 1104 TBB_GIALA 1533 TBBI_MANSE 1414 TBB4_ARATH 1357 TBG2_HUMAN 1217 TBA_TOXGO 1143 TBA3_ELEIN 1062 TBB_GIBFU 1329 TBB1_NOTCO 1477 TBB4_CAEEL 1497 TBG2_MUZE 1199 TBA_TRYBR 1136 TBA3_HORVU 1068 TBB_HORVU 1352 TBB1_PARTE 1360 TBB4_UHAN 1313 TBG2_MUZE 1108 TBA_TRYDR 1136 TBA3_MONUE 1005 TBB_MACP 1357 TBB1_PARTE 1369 TBB4_UHAN 1387 TBG2_MUZE 1222 TBA_MEAT 1097 TBA3_MONUE 1035 TBB_NAEGR 1443 TBB1_PARTE 1404 TBB4_MHATE 1233 TBG2_MUZE 1233 TBA_ZENLA 1036 TBA3_MAIZE 1152 TBB_OCTOD 1406 TBB1_RAT 1352 TBB4_WHAT 1299 TBA_ARATH <	TBA_SORMA	693	TBA2_STYLE	1102	TBB_EUPFO	1299	TBBI_LUPAL	1433	TBB3_SOYBN	1386	TBG2_EUPCR	1021
IBA_TETH 1043 IBA_S_DROME 1104 IBB_GIALA 1533 IBB1_MARSE 1414 IBB4_ARATH 1537 IB02_HOMAN 1217 TBA_TORMA 1132 TBA3_ELEIN 1062 TBB_GIBFU 1329 TBB1_NOTCO 1477 TBB4_CAELL 1497 TBG2_MAIZE 1199 TBA_TOXGO 1143 TBA3_HORVU 1068 TBB_HALDI 1450 TBB1_ORYSA 1336 TB4_CHICK 1450 TB62_MOUSE 1108 TBA_TRYBR 1136 TBA3_MORVU 1068 TBB_NACGR 1352 TBB1_PARTE 1369 TBB4_ELEIN 1313 TBG2_MOUSE 1108 TBA_TRYBR 1007 TBA3_MAIZE 1035 TBB_NACGR 1444 TBB1_PORPU 1440 TBB4_ARIZE 1232 TBB4_MHAT 1337 TBG3_MAIZE 1222 TBA_MHEAT 1097 TBA3_MOUSE 1035 TBB_NCCR 1381 TBB1_PORPU 1440 TBB4_MAIZE 1232 TBB4_MHAT 1299 TBA1_ARATH 159 TBA5_CHICK 1440 TBB1_OORDU 1440 TBB1_CHICK 1340 TBB5_ARATH 1334 TBB5_	TBA_TETPY	1003	TBA3_ARATH	1154	TBB_EUPOC	1319	TBBI_MAIZE	1472	TBB3_WHEAT	1332	TBG2_EUPOC	1021
IBA_TOKMA 1132 IBA_S_LELN 1062 IBB_GIBFU 1329 IBB_INOTCO 14/1 IBB4_CALEL 14/9 IB02_MALE 1199 TBA_TRYGR 1143 TBA3_HOMAM 1090 TBB_HALDI 1450 TBB1_ORYSA 1336 TBB4_CHICK 1450 TBB2_CALEL 1450 TBB4_CALEL 1450 TBB4_CHICK 1450 TBB4_CHICK 1450 TBB4_CALEL 1450 TBB4_CALEX 1450 TBB4_CALEX 1450 TBB4_CALEX 1450 TBB4_CALEX 1450 TBB4_CALEX 1405 TBB4_CALEX 1405 TBB4_CALEX 1405 TBB4_CALEX 1222 TBA_TRYCR 1010 TBA3_ADUSE 1035 TBB_NAEGR 1443 TBB1_PHYPO 1404 TBB4_MAIZE 1223 TBA4_ARATH 1036 TBA4_CALEX 1400 TBB4_ANAIZE 1223 TBA4_ARATH 1337 TBG3_MAIZE 1229 TBA4_ARATH 1357 TBB4_DORDU 1487 TBB4_DORDU 1440 TBB4_ANAIZE 1229 TBA4_CALEX 1400 TBB4_CALEX 1402 TBB4_ACHATH 1334 TBA5_CHICK 1440 TBB5_ANAIZE 1240 TBB5_ARATH	TBA_TEITH	1043	TBA3_DROME	1104	TBB_GIALA	1533	TBBI_MANSE	1414	TBB4_ARATH	1357	TBG2_HUMAN	1217
IBA_IOXGO 1143 IBA_HOMAN 1090 IBB_HALDI 1430 IBB_IOKTSA 1330 IBB_CHICK 1430 IBB_OKTSA 1330 IBB_CHICK 1430 IBB_OKTSA 1330 IBB_CHICK 1430 IBB_OKTSA 1330 IBB_CHICK 1430 IBB_OKTSA 1330 IBB_CORTSA 1430 IBB_OKTSA 1330 IBB_CORTSA 1430 IBB_CORTSA 1430 IBB_OKTSA 1330 IBB_CORTSA 1430 IBB_OKTSA 1330 IBB_CORTSA 1430 IBB_CORTSA 1575 TBB_IDERA 1136 TBC_ORTSA 1760 TBA_ZANAIZE 1133 TBG_ORTSA 1760 TBA_ZANAIZE 1133 TBG_ORTSA 1760 1780 1780 1780 1780 1780 1864_DRAVE 1220 178	TBA_TORMA	1132	TBA3_ELEIN	1062	TBB_GIBFU	1329	TBBI_NOICO	14//	TBB4_CAEEL	149/	TBG2_MAIZE	1199
IBA_IRYBK 1136 IBA3_HOKVU 1008 IBB_HOKVU 1352 IBB1_PARIE 1369 IBB4_ELEIN 1313 IBG2_OKYSA 976 TBA_TRYCR 1010 TBA3_MAIZE 1199 TBB_MYCPJ 1575 TBB1_PEA 1405 TBB4_HUMAN 1387 TBG3_MAIZE 1222 TBA_WHEAT 1007 TBA3_MOUSE 1035 TBB_NAEGR 1443 TBB1_PHYPO 1404 TBB4_PORPU 1440 TBA_XENLA 1036 TBA3_YEAST 1441 TBB_NCCR 1381 TBB1_PORPU 1487 TB84_PORPU 1440 TBA1_ARATH 1000 TBA4_DROME 1152 TBB_OCTOO 1406 TBB1_RAT 1352 TB84_XENLA 1402 TBA1_CHICK 1249 TBB_AS_INCGI 1264 TBB1_SOYBN 1462 TB85_ARATH 1334 TBA1_CHICK 1407 TBB_PENDI 1377 TBB1_TRIVI 1347 TB52_CHICK 1485 TBA1_ELEIN 1115 TBA6_MAIZE 1033 TBB_PENDI 1350 TB82_NEPH 1348 TB85_WHEAT 1377 TBA1_ELEIN 1115	IBA_IOXGO	1143	TBA3_HOMAM	1090	IBB_HALDI	1450	IBBI_OKYSA	1336	TBB4_CHICK	1450	TBG2_MOUSE	1108
IBA_IRYCK 1010 IBA_MAIZE 1199 IBB_MYCP 157 IBB_IPEA 1405 IBB4_HUMAN 1387 IBG5_MAIZE 1222 TBA_WHEAT 1097 TBA3_MOUSE 1035 TBB_NAEGR 1443 TBB1_PEA 1405 IBB4_MAIZE 1233 TBA_XENLA 1036 TBA3_YEAST 1441 TBB_NEUCR 1381 TBB1_PORPU 1447 TBB4_ORPU 1440 TBA1_ARATH 1159 TBA5_CHICK 1162 TBB_OCTDO 1406 TBB1_RAT 1352 TBB4_WHEAT 1299 TBA1_ARATH 1159 TBA5_CHICK 1162 TBB_ONCGI 1264 TBB1_SOLTU 1367 TBB4_XENLA 1402 TBA1_CHICK 1249 TBA5_MAIZE 1143 TBB_PARLI 1449 TBB1_SOLTU 1367 TBB4_XENLA 1402 TBA1_CHIRE 1101 TBA6_ARATH 1033 TBB_PESMI 1290 TBB1_VOLCA 1488 TBB5_ECTVR 1489 TBA1_ELEIN 1115 TBA6_MAIZE 1033 TBB_PHYCI 1505 TBB2_ANEPH 1348 TBB5_CHICK 1477 <t< td=""><td>TBA_TRYBR</td><td>1136</td><td>TBA3_HORVU</td><td>1068</td><td>TBB_HORVU</td><td>1352</td><td>TBBI_PARTE</td><td>1369</td><td>TBB4_ELEIN</td><td>1313</td><td>TBG2_ORYSA</td><td>9/6</td></t<>	TBA_TRYBR	1136	TBA3_HORVU	1068	TBB_HORVU	1352	TBBI_PARTE	1369	TBB4_ELEIN	1313	TBG2_ORYSA	9/6
IBA_WHEAT 1097 IBA_MOUSE 1035 IBB_NAEGK 1443 IBBI_PHYPO 1404 IBBA_MAIZE 1235 TBA_XENLA 1036 TBA3_YEAST 1441 TBB_NEUCR 1381 TBB1_PORPU 1447 TBB4_PORPU 1440 TBA1_ANEPH 1000 TBA4_DROME 1152 TBB_OCDO 1406 TBB1_PORPU 1487 TBB4_WHEAT 1299 TBA1_ARATH 1159 TBA5_CHICK 1162 TBB_DOCGI 1264 TBB1_SOJTU 1367 TBB4_XENLA 1402 TBA1_CHICK 1249 TBA5_MAIZE 1143 TBB_PARLI 1449 TBB1_SOYBN 1462 TBB5_ARATH 1334 TBA1_CHICK 1249 TBA6_MAIZE 1037 TBB_PENDI 1377 TBB1_SOYBN 1462 TBB5_ARATH 1334 TBA1_CHICK 1108 TBA6_HUMAN 1033 TBB_PESMI 1290 TBB1_VOLCA 1488 TBB5_ECTVR 1489 TBA1_ELEIN 1115 TBA6_MAIZE 1089 TBB_PHYPCI 1505 TBB2_ANEPH 1348 TBB5_WHEAT 1377 TBA1_EELIN 904	IBA_IRYCK	1010	TBA3_MAIZE	1025	TBB_MYCPJ	15/5	IBBI_PEA	1405	TBB4_HUMAN	138/	IBG3_MAIZE	1222
IBA3_AENLA 1036 IBA3_YEASI 1441 IBB_NEUCK 1381 IBB1_PORPU 1487 IBB4_PORPU 1440 TBA1_ANEPH 1000 TBA4_DROME 1152 TBB_OCTDO 1406 TBB1_RAT 1352 TBB4_WHEAT 1299 TBA1_ARATH 1159 TBA5_CHICK 1162 TBB_OCTDO 1264 TBB1_SOLTU 1367 TBB4_WHEAT 1299 TBA1_CHICK 1249 TBA5_MAIZE 1143 TBB_PENDI 1377 TBB1_SOYBN 1462 TBB5_CHICK 1485 TBA1_CHICK 1249 TBA6_ARATH 1037 TBB_PENDI 1377 TBB1_TRIVI 1347 TBB5_CHICK 1485 TBA1_DROME 1108 TBA6_MAIZE 1089 TBB_PESMI 1290 TBB1_VOLCA 1488 TBB5_MAIZE 1346 TBA1_ELEIN 1115 TBA6_MAIZE 1089 TBB_PHYCI 1505 TBB2_ANEPH 1348 TBB5_MAIZE 1346 TBA1_ENENI 904 TBA6_MOUSE 1051 TBB_PHYCI 1505 TBB2_CAEEL 1423 TBB6_CHICK 1445 TBA1_ENTHI 1436 <td>IBA_WHEAT</td> <td>109/</td> <td>TBA3_MOUSE</td> <td>1035</td> <td>IBB_NAEGR</td> <td>1443</td> <td>IBBI_PHYPO</td> <td>1404</td> <td>IBB4_MAIZE</td> <td>1233</td> <td></td> <td></td>	IBA_WHEAT	109/	TBA3_MOUSE	1035	IBB_NAEGR	1443	IBBI_PHYPO	1404	IBB4_MAIZE	1233		
IBA1_AREPH 1000 IBA4_DROME 1132 IBB_OCIDO 1406 IBB1_KAT 1532 IBB4_wHEAT 1299 TBA1_ARATH 1159 TBA5_CHICK 1162 TBB_ONCGI 1264 TBB1_SOLTU 1367 TBB4_XENLA 1402 TBA1_CHICK 1249 TBA5_MAIZE 1143 TBB_PARLI 1449 TBB1_SOYBN 1462 TBB5_ARATH 1334 TBA1_CHLRE 1101 TBA6_ARATH 1037 TBB_PENDI 1377 TBB1_VOLCA 1448 TBB5_CHICK 1445 TBA1_DROME 1108 TBA6_MAIZE 1089 TBB_PENDI 1377 TBB1_VOLCA 1448 TBB5_MAIZE 1346 TBA1_ELEIN 1115 TBA6_MAIZE 1089 TBB_PHNO 1360 TBB1_WEAT 1405 TBB5_MAIZE 1346 TBA1_ELEIN 1143 TBA_MOUSE 1051 TBB_PHYCI 1505 TBB2_ANEPH 1348 TBB5_WHEAT 1377 TBA1_ENTHI 1436 TBA_SCHCO 1068 TBB_PLESA 1416 TBB2_COLGL 1322 TBB6_MAIZE 1292 TBA1_HORVU 1065	IBA_XENLA	1036	IBA3_YEASI	1441	TBB_NEUCK	1381	IBBI_PORPU	148/	TBB4_POKPU	1440		
IBA1_ARATH 1199 IBA5_CHICK 1162 IBB_ONCGI 1264 IBB1_SOULU 1367 IBB4_XENLA 1402 TBA1_CHICK 1249 TBA5_MAIZE 1143 TBB_PARLI 1449 TBB1_SOYBN 1462 TBB5_ARATH 1334 TBA1_CHLRE 1101 TBA6_ARATH 1037 TBB_PENDI 1377 TBB1_TRIVI 1347 TBB5_CHICK 1489 TBA1_DROME 1108 TBA6_HUMAN 1033 TBB_PENDI 1360 TBB1_VOLCA 1488 TBB5_CHICK 1489 TBA1_ELEIN 1115 TBA6_MAIZE 1089 TBB_PHANO 1360 TBB1_WHEAT 1405 TBB5_MAIZE 1346 TBA1_EMENI 904 TBA6_MOUSE 1051 TBB_PHYCI 1505 TBB2_ANEPH 1348 TBB5_WHEAT 1377 TBA1_EMENI 904 TBA6_MOUSE 1051 TBB_PHYCI 1505 TBB2_CAEEL 1423 TBB6_CHICK 1415 TBA1_HORVU 1065 TBAA_SCHCO 1068 TBB_PLAFK 1407 TBB2_COLGL 1322 TBB6_MAIZE 1292 TBA1_HUMAN 1130 <td>TDA1_ANEPH</td> <td>1150</td> <td>TBA4_DROME</td> <td>1152</td> <td>TBB_OUTDO</td> <td>1400</td> <td>IBBI_KAI</td> <td>1352</td> <td>IBB4_WHEAI</td> <td>1299</td> <td></td> <td></td>	TDA1_ANEPH	1150	TBA4_DROME	1152	TBB_OUTDO	1400	IBBI_KAI	1352	IBB4_WHEAI	1299		
TBA1_CHICK 1249 TBA2_MALZE 1143 TBB_PARLI 1449 TBB1_SOTBN 1402 TBB3_ARATH 1334 TBA1_CHLRK 1101 TBA6_ARATH 1037 TBB_PENDI 1377 TBB1_TRIVI 1347 TBB5_CHICK 1485 TBA1_DROME 1108 TBA6_MAIZE 1089 TBB_PESMI 1290 TBB1_VOLCA 1488 TBB5_ECTVR 1489 TBA1_ELEIN 1115 TBA6_MAIZE 1089 TBB_PHXOI 1360 TBB1_WHEAT 1405 TBB5_MAIZE 1346 TBA1_EMENI 904 TBA6_MOUSE 1051 TBB_PHYCI 1505 TBB2_AREPH 1348 TBB5_WHEAT 1377 TBA1_ENTHI 1436 TBA8_HUMAN 997 TBB_PHYCI 1505 TBB2_CAEEL 1423 TBB6_CHICK 1415 TBA1_HORVU 1065 TBAA_SCHCO 1068 TBB_PLAFK 1407 TBB2_COLGL 1322 TBB6_CHICK 1415 TBA1_HUMAN 1130 TBB_PLESA 1416 TBB2_COLGL 1322 TBB6_MAIZE 1292 TBA1_HUMAN 1130 TBB_PDEAA 1400 <td>TDA1_CHICK</td> <td>1139</td> <td>TDA5_MAIZE</td> <td>1102</td> <td>TDD DADLI</td> <td>1204</td> <td>TEEL SOLLU</td> <td>130/</td> <td>IBB4_AENLA</td> <td>1402</td> <td></td> <td></td>	TDA1_CHICK	1139	TDA5_MAIZE	1102	TDD DADLI	1204	TEEL SOLLU	130/	IBB4_AENLA	1402		
TBA1_CHLKE 1101 TBA0_AKATH 1057 TB5_FENDI 1577 TBB1_RIVI 1547 TB55_CHCK 1483 TBA1_DROME 1108 TBA6_HUMAN 1033 TBB_PESMI 1290 TBB1_VOLCA 1488 TB55_CHCK 1489 TBA1_ELEIN 1115 TBA6_MAIZE 1089 TBB_PHANO 1360 TBB1_WHEAT 1405 TB55_MAIZE 1346 TBA1_EMENI 904 TBA6_MOUSE 1051 TBB_PHYCI 1505 TB52_ANEPH 1348 TB5_WHEAT 1377 TBA1_ENTHI 1436 TBA8_HUMAN 997 TBB_PHYCI 1505 TB52_CAEEL 1423 TB66_CHICK 1415 TBA1_HORVU 1065 TBAA_SCHCO 1068 TBB_PLAFK 1407 TB52_CAEEL 1423 TB6_CHICK 1415 TBA1_HUMAN 1130 TBB_PLESA 1416 TB52_COLGL 1322 TB6_MAIZE 1292 TBA1_HUMAN 1130 TBB_PNECA 1400 TB52_COLGR 1330 TB7_ARATH 1432 TBA1_MOUSE 1073 TBB_POLAG 1383 TB2_DAUCA 1426	TDA1_CHICK	1249	TDAS_MAILE	1027	IDD_PAKLI	1449	TDDI_SUIDN	1402	TDD5_AKAIN	1334		
TBA1_DROME 1106 TBA0_HUMAN 1053 TB5_FESMI 1290 TBB1_VOLCA 1468 TB65_ECTVK 1469 TBA1_ELEIN 1115 TBA6_MAIZE 1089 TBB_PHANO 1360 TBB1_WHEAT 1405 TBB5_MAIZE 1346 TBA1_EMENI 904 TBA6_MOUSE 1051 TBB_PHYCI 1505 TBB2_ANEPH 1348 TBB5_WHEAT 1377 TBA1_ENTHI 1436 TBA8_HUMAN 997 TBB_PHYCI 1505 TBB2_CAEEL 1423 TBB6_CHICK 1415 TBA1_ENTHI 1436 TBA8_HUMAN 997 TBB_PHCI 1505 TBB2_CAEEL 1423 TBB6_CHICK 1415 TBA1_HORVU 1065 TBAA_SCHCO 1068 TBB_PLAFK 1407 TBB2_CAEEL 1423 TBB6_ECTVR 1381 TBA1_HUMAN 1130 TBB_PLESA 1416 TBB2_COLGL 1322 TBB6_MAIZE 1292 TBA1_MAIZE 1073 TBB_PNECA 1400 TBB2_COLGR 1330 TB7_ARATH 1432 TBA1_MOUSE 1080 TBB_POLAG 1383 TB2_DAUCA 1426	TRAL DROME	1101	TDAO_AKAIN	1037	IDD_PENDI	1200	TDDI_IKIVI	1347	TDD5_CHICK	1403		
TBA1_ELELIN 1115 TBA0_MALLE 1069 TBB_THARO 1300 TBB1_WHEAT 1400 TBB5_MALLE 1340 TBA1_EMENI 904 TBA6_MOUSE 1051 TBB_PHYCI 1505 TBB2_ANEPH 1348 TBB5_WHEAT 1377 TBA1_ENTHI 1436 TBA8_HUMAN 997 TBB_PIG 1315 TBB2_CAEEL 1423 TBB6_CHICK 1415 TBA1_HORVU 1065 TBAA_SCHCO 1068 TBB_PLAFK 1407 TBB2_CAEEL 1423 TBB6_CHICK 1415 TBA1_HUMAN 1130 TBB_PLAFK 1407 TBB2_COLGL 1322 TBB6_MAIZE 1292 TBA1_MAIZE 1073 TBB_PNECA 1400 TBB2_COLGR 1330 TBB7_ARATH 1432 TBA1_MOUSE 1080 TBB_POLAG 1383 TBB2_DAUCA 1426 TBB7_CHICK 1379 TBA1_MOUSE 1080 TBB_POLAG 1383 TBB2_DAUCA 1426 TBB7_CHICK 1379 TBA1_NEUCR 1367 TBB_PESAM 1511 TBB2_DROER 1365 TBB7_MAIZE 1389 TBA1_ORYSA	TDA1_DROME	11100	TDAO_HUMAN	1033	TDD_FESIMI	1290	TDD1_WUEAT	1400	TDD5_ECTVK	1409		
TBA1_EMENI 904 TBA0_MOUSE 1051 TB5_FHTC1 1305 TBB2_ANETH 1345 TBB5_WHEAT 1377 TBA1_ENTHI 1436 TBA8_HUMAN 997 TBB_PIG 1315 TBB2_CAEEL 1423 TBB6_CHICK 1415 TBA1_HORVU 1065 TBAA_SCHCO 1068 TBB_PLAFK 1407 TBB2_CAEEL 1423 TBB6_ECHICK 1415 TBA1_HUMAN 1130 TBB_PLESA 1416 TBB2_COLGL 1322 TBB6_MAIZE 1292 TBA1_MAIZE 1073 TBB_PNECA 1400 TBB2_COLGR 1330 TBB7_ARATH 1432 TBA1_MOUSE 1080 TBB_POLAG 1383 TBB2_DAUCA 1426 TBB7_CHICK 1379 TBA1_NEUCR 1367 TBB_PSEAM 1511 TBB2_DROER 1365 TBB7_MAIZE 1389 TBA1_ORYSA 1179 TBB_RHYSE 1538 TBB2_DROME 1355 TBB8_ARATH 1293 TBA1_PARLI 1116 TBB_SCHCO 1441 TBB2_ELEIN 1372 TBB8_MAIZE 1397 TBA1_PARA 1126 TBB_SCHCO	TDA1_ELEIN	004	TDA0_WAIZE	1069	TDD_FHANO	1500	TDD1_WILAI	12403	TDD5_WHEAT	1277		
TBA1_ENTIN 1430 TBA5_HOMAN 997 TBB_TIG 1315 TBB2_CALEL 1425 TBB0_CHICK 1415 TBA1_HORVU 1065 TBAA_SCHCO 1068 TBB_PLESA 1407 TBB2_CHICK 1276 TBB6_ECTVR 1381 TBA1_HUMAN 1130 TBB_PLESA 1416 TBB2_COLGL 1322 TBB6_MAIZE 1292 TBA1_MAIZE 1073 TBB_PNECA 1400 TBB2_COLGR 1330 TBB7_ARATH 1432 TBA1_MOUSE 1080 TBB_POLAG 1383 TBB2_DAUCA 1426 TBB7_CHICK 1379 TBA1_NEUCR 1367 TBB_PSEAM 1511 TBB2_DROER 1365 TBB7_MAIZE 1389 TBA1_ORYSA 1179 TBB_RHYSE 1538 TBB2_DROER 1355 TBB8_ARATH 1293 TBA1_PARLI 1116 TBB_SCHCO 1441 TBB2_ELEIN 1372 TBB8_MAIZE 1397 TBA1_PELFA 1060 TBB_SCHPO 1472 TBB2_EMENI 1468 TBB9_ARATH 1333 TBA1_PELFA 1060 TBB_STYLE 1435 TBB2_ERYPI	TBA1_EMENI	904 1/36	TBA9_MOUSE	007	TBB DIG	1305	TBB2_ANEFH	1/23	TBB6_CHICK	1/15		
TBA1_HOK V0 1005 TBAA_SCHCO 1005 TBB_PLEAFK 1407 TBB2_CHICK 1270 TBB6_ECTVK 1381 TBA1_HUMAN 1130 TBB_PLEAFK 1446 TBB2_COLGL 1322 TBB6_MAIZE 1292 TBA1_MAIZE 1073 TBB_PNECA 1400 TBB2_COLGR 1330 TBB7_ARATH 1432 TBA1_MOUSE 1080 TBB_POLAG 1383 TBB2_DAUCA 1426 TBB7_CHICK 1379 TBA1_NEUCR 1367 TBB_PSEAM 1511 TBB2_DROER 1365 TBB7_MAIZE 1389 TBA1_ORYSA 1179 TBB_RHYSE 1358 TBB2_DROME 1355 TBB8_ARATH 1293 TBA1_PARLI 1116 TBB_SCHCO 1441 TBB2_ELEIN 1372 TBB8_MAIZE 1397 TBA1_PEA 1126 TBB_SCHPO 1472 TBB2_ELEIN 1372 TBB8_MAIZE 1397 TBA1_PELFA 1060 TBB_SCHPO 1472 TBB2_ELEIN 1374 TB7 TBA1_PELFA 1005 Avg 1098 1367 TB8_CFOCN 1437 TBA1_PEL	TDAI_ENIHI	1450	TDA6_HUMAN	1069		1407	TDD2_CHICK	1423	TDD6 ECTVD	1415		
TBA1_IOMAR 1130 TBB_TLEEXA 1410 TBB2_COLGE 1322 1BB0_MALL 1292 TBA1_MAIZE 1073 TBB_PNECA 1400 TBB2_COLGR 1330 TBB7_ARATH 1432 TBA1_MOUSE 1080 TBB_POLAG 1383 TBB2_DAUCA 1426 TBB7_CHICK 1379 TBA1_NEUCR 1367 TBB_PSEAM 1511 TBB2_DROER 1365 TBB7_MAIZE 1389 TBA1_ORYSA 1179 TBB_RHYSE 1358 TBB2_DROME 1355 TBB8_ARATH 1293 TBA1_PARLI 1116 TBB_SCHCO 1441 TBB2_ELEIN 1372 TBB8_MAIZE 1397 TBA1_PEA 1126 TBB_SCHPO 1472 TBB2_ELEIN 1372 TBB_MAIZE 1397 TBA1_PELFA 1060 TBB_SCHPO 1472 TBB2_EMENI 1468 TBB9_ARATH 1333 TBA1_PELFA 1005 Avg 1098 ± 136 TBB_ECON 1574 Avg 1462 ± 151	TBA1_HUMAN	1130	IBAA_SCHCO	1008	TBB DIESA	1407	TBB2_CHICK	1270	TBB6 MAIZE	1202		
TBA1_MALL 10/3 TBB_TNECA 1400 TBB2_COLGK 1330 TBB7_ARTH 1432 TBA1_MOUSE 1080 TBB_POLCA 1383 TBB2_DAUCA 1426 TBB7_CHICK 1379 TBA1_NEUCR 1367 TBB_PSEAM 1511 TBB2_DROER 1365 TBB7_MAIZE 1389 TBA1_ORYSA 1179 TBB_RHYSE 1358 TBB2_DROME 1355 TBB8_ARATH 1293 TBA1_PARLI 1116 TBB_SCHCO 1441 TBB2_ELEIN 1372 TBB8_MAIZE 1397 TBA1_PEA 1126 TBB_SCHPO 1472 TBB2_EMENI 1468 TBB9_ARATH 1333 TBA1_PELFA 1060 TBB_STYLE 1435 TBB2_ERYPI 1437 TBA1_PNECA 1005 Avg. 1098 ± 136 TBB TBB TB72 GEOCN 1594 Avg. 1388 ± 68 Avg. 1162 ± 151	TBA1_HOWAN	1073			TBB_DNECA	1410	TBB2_COLOL	1322	TBB7 ADATH	1/32		
TBA1_MOOSE 1080 TBB_FOLAG 1383 TBB2_DACCA 1420 1927 1937 TBA1_NEUCR 1367 TBB_PSEAM 1511 TBB2_DACCA 1420 1937 TBA1_NEUCR 1367 TBB_PSEAM 1511 TBB2_DACCA 1420 1937 TBA1_NEUCR 1367 TBB_PSEAM 1511 TBB2_DACCA 1420 1937 TBA1_ORYSA 1179 TBB_PSEAM 1511 TBB2_DRORE 1365 TBB_ARATH 1293 TBA1_PARLI 1116 TBB_SCHCO 1441 TBB2_ELEIN 1372 TBB8_MAIZE 1397 TBA1_PEA 1126 TBB_SCHPO 1472 TBB2_EMENI 1468 TBB9_ARATH 1333 TBA1_PELFA 1060 TBB_STYLE 1435 TBB2_ERYPI 1437 TBA1_PNECA 1005 Avg 1098 ± 136 TBB TETPY 1537 TB2 GEOCN 1594 Avg 1462 ± 151	TBA1_MOUSE	1075			TBB_DOLAG	1383	TBB2_COLOR	1426	TBB7_CHICK	1452		
TBA1_NECCK 1307 TBB_1SEAW 1311 TBB2_DROEK 1305 TBB7_MALL 1337 TBA1_ORYSA 1179 TBB_RHYSE 1358 TBB2_DROME 1355 TBB8_ARATH 1293 TBA1_PARLI 1116 TBB_SCHCO 1441 TBB2_ELEIN 1372 TBB8_MAIZE 1397 TBA1_PEA 1126 TBB_SCHPO 1472 TBB2_EMENI 1468 TBB9_ARATH 1333 TBA1_PELFA 1060 TBB_STYLE 1435 TBB2_ERYPI 1437 TBA1_PNECA 1005 Avg. 1098 ± 136 TBB TETPY 1537 TBR2 GFOCN 1594 Avg. 1388 ± 68 Avg. 1162 ± 151	TBA1_MOUSE	1367			TBB_FOLAU	1505	TBB2_DAUCA	1420	TBB7_CHICK	13/9		
TBA1_OKT5X 1179 TBB_CKT5Z 1555 TBB2_DKOME 1555 TBB5_AKT11 1295 TBA1_PARLI 1116 TBB_SCHCO 1441 TBB2_ELEIN 1372 TBB8_MAIZE 1397 TBA1_PEA 1126 TBB_SCHPO 1472 TBB2_EMENI 1468 TBB9_ARATH 1333 TBA1_PELFA 1060 TBB_STYLE 1435 TBB2_ERYPI 1437 TBA1_PNECA 1005 Avg. 1098 ± 136 TBB TETPY 1537 TBR2 GEOCN 1594 Avg. 1388 ± 68 Avg. 1162 ± 151	TBAL OPVSA	1170			TBB PHVSE	1358	TBB2_DROLK	1355	TBBS ADATH	1203		
TBA1_PEA 1126 TBB_SCHOO 1441 TBB2_ELELIX 1572 1562_MALL 1597 TBA1_PEA 1126 TBB_SCHOO 1472 TBB2_EMENI 1468 TBB9_ARATH 1333 TBA1_PELFA 1060 TBB_STYLE 1435 TBB2_ERYPI 1437 TBA1_PNECA 1005 Avg. 1098 + 136 TBB TETPY 1537 TBR2_GFOCN 1594 Avg. 1388 + 68 Avg. 1162 + 151	TRA1 PARI	1116			TBB_KITSE	1441	TBB2_DROME	1372	TRR8 MAI7F	1307		
TBA1_EX TED_JOINTO	TRA1 PFA	1126			TBB_SCHPO	1472	TBB2_ELELIN	1468	TRR9 ARATH	1333		
TBA1 PNECA 1005 Avg 1098 + 136 TBB TETPY 1537 TBR2 GEOCN 1524 Avg 1388 + 68 Δvg 1162 + 151	TBA1 PELEA	1060			TBB_STYLE	1435	TBB2_ERYPI	1437	1997_/11/11	1555		
	TBA1 PNECA	1005	$A_{V\sigma} = 1098 + 1$	136	TBB TETPY	1537	TBB2_GEOCN	1524	Avg. 1388 +	68	Avg. 1162 +	151

boundary atoms diminishes, so does this effect. This correlation stood in direct contrast to the inverse correlation between axial stiffness and axial length, thus bolstering the validity of our approach.

DISCUSSION

We have used a molecular mechanics approach to perform tensile tests on individual tubulin monomers and determined values for elastic moduli for all currently known complete sequences. The results obtained from the simulations for each species were tabulated for cross-species comparisons. Sequences were chosen by Keeling and Doolittle, who demonstrated the divergent evolution of tubulin structures (50). Carpenter et al. (51) built upon Keeling and Doolittle's homology models, calculating structural and physical properties for >300 sequences, noting that a large fraction of these monomeric structures were incomplete. We have found that the axial modulus of elasticity decreases as a function of monomer length, whereas the circumferential modulus showed no such trend.

FIGURE 7 Circumferential elastic modulus as a function of monomer length for α -tubulin (*triangles*), β -tubulin (*circles*), and (*c*) γ -tubulin (*diamonds*). Top trace is that of polyglycine.

Our approach of mapping primary sequences to a known three-dimensional structure was necessary since the problem of de novo prediction of three-dimensional structure from a one-dimensional sequence is an exceedingly difficult problem and frequently yields nonunique solutions (29). We view this approach as a preliminary step toward quantifying tubulin's material response to axial loading and predicting tubulin's mechanical behavior in other loading modes such as bending, tension, and torsion. For example, predicting how a microtubule will bend or buckle under load may help explain specific functions of microtubules during mitosis or of their interactions with surrounding membranes. While the anisotropy of whole microtubules has been discussed elsewhere (18,52), to our knowledge, this relationship has not been simulated or demonstrated for any globular protein structure.

One potential limitation of our approach is that since we used bovine tubulin as our template structure, the possibility exists that our predicted structures likely had conformations similar to that of the template, and that this may have resulted in our predicted structures being confined to a local energy minimum rather than the global energy minimum. Restated, the method we chose for energy minimization is likely to have found the energy minimum closest to that of the bovine tubulin. The possibility exists that we did not find the global minimum. Other methods, such as the conformational space annealing genetic algorithms, have been shown to more efficiently and effectively find global minimums (53,54). However, what has not yet been determined is whether the predicted global minimum represents the in vivo state of the protein. Thus, finding a global minimum, while certainly providing an unequivocal standard for protein structure prediction, to our knowledge, has yet to be systematically compared to in vivo protein structure.

We also found reasonable agreement between the predicted moduli of the monomers simulated and the global behavior of individual MTs (47). One limitation of our beam analysis is that we did not include a separate stiffness for the

axial monomer-monomer bonds versus the dimer-dimer bonds. Since the native form of tubulin in the cell is dimeric rather than monomeric, it is likely that the monomer-monomer bond is stiffer than the dimer-dimer bond. However, in our order-of-magnitude approximation (Figs. 8 and 9), varying this stiffness from 0.1 to 10 times that of the predicted stiffness of individual monomers resulted in persistence length predictions all within the recent experimental results of Pampaloni et al. (47). Additionally, since the binding stiffness at the seam of the microtubule may have an energy different from that between the other filaments, this may have an effect on the MT-scale mechanical behavior. This is likely to manifest itself if shear interactions are accounted for. In our first-order analysis, we only considered axial interactions. An analysis that does include shear interactions (e.g., (47)) may benefit by assigning a separate shear modulus to this portion of the structure.

Unfortunately, no other empirical three-dimensional atomistic models of tubulin species exist. Previous studies, such as Tuszynski et al. (19), used software such as MODELLER to create the homologous structures to the template protein. However, because of the large number of structures under investigation in our study, we decided to use protocol SWISS-MODEL because of its known speed and accuracy. An additional limitation of our study is that most of the highresolution structures have been determined from crystalline preparations and are likely different from the native tubular form. However, since it is likely that tubulin oscillates about some minimal energy tertiary conformation in vivo, it seems reasonable to use the models generated by SWISS-MODEL (55) as approximations to demonstrate trends in stiffness behavior.

Presumably, as tubulin evolves, it performs a balancing act by maintaining a sequence that allows it to not only attain a structure that is mechanically the most efficient for sustaining compressive loads (i.e., a hollow cylinder) but also allows for rapid assembly and disassembly. Through evolution, the sequences within each species it serves change in a combination of ways that nature deems as either beneficial or detrimental, as it meets, or fails to meet, demands from external pressures (e.g., (19)). Through an intergenomic mechanical analysis such as ours, a demonstration of how evolution has affected the structure and strength of this protein may become possible. For example, by further analyzing the positions within the phylogenic tree of tubulin sequences and the tubulin's mechanical characteristics, a clearer picture emerges of what specific key mutations may have occurred to meet new demands. These techniques may also enable engineering of the tubulin sequence and thus the monomer structure to modify microtubule polymerization and mechanical loading characteristics.

It is important to note that the accuracy of the results depend greatly on the original PDB structure. With this in mind, these simulations do offer an approximate model to in situ behavior while offering insight into mechanical properties as well as overall trends. For example, we anticipate that, once

TABLE 3	Tabular data of all circumferential moduli

Alpha			Beta					Gamma			
1JFFA	378	TBA1_STYLE	1038	1JFFB	460	TBB_THAWE	583	TBB2_LUPAL	741	1N5VG	401
TBA_AVESA	1126	TBA1_VOLCA	961	TBB_ACHKL	503	TBB_TOXGO	538	TBB2_MAIZE	506	TBG_ANEPH	493
TBA_BOMMO	1111	TBA1_YEAST	1075	TBB_ACRCO	524	TBB_TRYBR	628	TBB2_ORYSA	767	TBG_CAEEL	1412
TBA_CANAL	1007	TBA2_ARATH	921	TBB_AJECA	729	TBB_TRYCR	554	TBB2_PEA	778	TBG_CANAL	390
TBA_CHLVU	591	TBA2_CAEEL	1326	TBB_ASPFL	574	TBB_VENIN	602	TBB2_PHYPO	908	TBG_CHLRE	1172
TBA_DICDI	380	TBA2_CHICK	1403	TBB_ASPPA	553	TBB_YEAST	680	TBB2_PORPU	908	TBG_EMENI	484
TBA_EUGGR	920	TBA2_CHLRE	1144	TBB_BABBO	799	TBB1_ANEPH	847	TBB2_SOLTU	685	TBG_ENTHI	1109
TBA_EUPOC	755	TBA2_DROME	1122	TBB_BOMMO	456	TBB1_ARATH	645	TBB2_SOYBN	927	TBG_EUPAE	773
TBA_EUPVA	829	TBA2_ELEIN	882	TBB_BOTCI	695	TBB1_BRUPA	572	TBB2_TRIVI	613	TBG_NEUCR	401
TBA_HAECO	817	TBA2_EMENI	809	TBB_CANAL	682	TBB1_CHICK	697	TBB2_WHEAT	777	TBG_PHYPA	354
TBA_MYCGR	715	TBA2_HOMAM	931	TBB_CEPAC	557	TBB1_CHOCR	748	TBB2_XENLA	564	TBG_RETFI	405
TBA_NOTVI	831	TBA2_HORVU	281	TBB_CHLIN	633	TBB1_COLGR	742	TBB3_CHICK	504	TBG_SCHJP	775
TBA_OCTDO	936	TBA2_HUMAN	928	TBB_CHLRE	717	TBB1_CYAPA	602	TBB3_DROME	606	TBG_SCHPO	903
TBA_OCTVU	919	TBA2_MAIZE	1014	TBB_CICAR	657	TBB1_ELEIN	619	TBB3_ELEIN	752	TBG_USTVI	1005
TBA_ONCKE	872	TBA2_MOUSE	1100	TBB_DICDI	612	TBB1_EMENI	652	TBB3_MAIZE	659	TBG_YEAST	1040
TBA_OXYGR	988	TBA2_NEUCR	514	TBB_EIMTE	617	TBB1_GADMO	497	TBB3_ORYSA	608	TBG1_HUMAN	717
TBA_PIG	812	TBA2_PATVU	995	TBB_EPITY	704	TBB1_GEOCN	968	TBB3_PEA	791	TBG1_MAIZE	689
TBA_PLAFK	851	TBA2_PELFA	1114	TBB_ERYGR	591	TBB1_HOMAM	828	TBB3_PORPU	671	TBG1_MOUSE	1010
TBA_PLAYO	897	TBA2_SCHPO	1197	TBB_EUGGR	694	TBB1_HUMAN	684	TBB3_SOYBN	476	TBG2_ARATH	834
TBA_PRUDU	928	TBA2_STYLE	1235	TBB_EUPCR	786	TBB1_LUPAL	730	TBB3_WHEAT	635	TBG2_DROME	733
TBA_SORMA	840	TBA3_ARATH	652	TBB_EUPFO	712	TBB1_MAIZE	643	TBB4_ARATH	518	TBG2_EUPCR	594
TBA_TETPY	654	TBA3_DROME	792	TBB_EUPOC	686	TBB1_MANSE	686	TBB4_CAEEL	546	TBG2_EUPOC	793
TBA_TETTH	898	TBA3_ELEIN	1052	TBB_GIALA	622	TBB1_NOTCO	790	TBB4_CHICK	476	TBG2_HUMAN	1204
TBA_TORMA	838	TBA3_HOMAM	1105	TBB_GIBFU	671	TBB1_ORYSA	785	TBB4_ELEIN	679	TBG2_MAIZE	435
TBA_TOXGO	692	TBA3_HORVU	1085	TBB_HALDI	209	TBB1_PARTE	527	TBB4_HUMAN	735	TBG2_MOUSE	835
TBA_TRYBR	738	TBA3_MAIZE	962	TBB_HORVU	590	TBB1_PEA	872	TBB4_MAIZE	656	TBG2_ORYSA	579
TBA_TRYCR	943	TBA3_MOUSE	1099	TBB_MYCPJ	464	TBB1_PHYPO	594	TBB4_PORPU	849	TBG3_MAIZE	461
TBA_WHEAT	1075	TBA3_YEAST	1107	TBB_NAEGR	913	TBB1_PORPU	573	TBB4_WHEAT	620		
TBA_XENLA	897	TBA4_DROME	900	TBB_NEUCR	508	TBB1_RAT	486	TBB4_XENLA	603		
TBA1_ANEPH	988	TBA5_CHICK	707	TBB_OCTDO	452	TBB1_SOLTU	569	TBB5_ARATH	713		
TBA1_ARATH	765	TBA5_MAIZE	844	TBB_ONCGI	726	TBB1_SOYBN	665	TBB5_CHICK	675		
TBA1_CHICK	336	TBA6_ARATH	1026	TBB_PARLI	722	TBB1_TRIVI	649	TBB5_ECTVR	743		
TBA1_CHLRE	1012	TBA6_HUMAN	1072	TBB_PENDI	561	TBB1_VOLCA	655	TBB5_MAIZE	879		
TBA1_DROME	1322	TBA6_MAIZE	964	TBB_PESMI	658	TBB1_WHEAT	930	TBB5_WHEAT	622		
TBA1_ELEIN	1252	TBA6_MOUSE	921	TBB_PHANO	565	TBB2_ANEPH	859	TBB6_ARATH	507		
TBA1_EMENI	895	TBA8_HUMAN	1120	TBB_PHYCI	688	TBB2_ARATH	567	TBB6_CHICK	846		
TBA1_ENTHI	1021	TBA8_MOUSE	872	TBB_PIG	517	TBB2_CAEEL	559	TBB6_ECTVR	568		
TBA1_HOMAM	1121	TBAA_SCHCO	908	TBB_PLAFA	715	TBB2_CHICK	690	TBB6_MAIZE	594		
TBA1_HORVU	806			TBB_PLAFK	761	TBB2_COLGL	537	TBB7_ARATH	598		
TBA1_HUMAN	841			TBB_PLESA	814	TBB2_COLGR	566	TBB7_CHICK	643		
TBA1_MAIZE	847			TBB_PNECA	602	TBB2_DAUCA	774	TBB7_MAIZE	746		
TBA1_MOUSE	1258			TBB_POLAG	1155	TBB2_DROER	522	TBB8_ARATH	1034		
TBA1_NEUCR	893			TBB_PSEAM	752	TBB2_DROME	470	TBB8_MAIZE	722		
TBA1_ORYSA	872			TBB_RHYSE	494	TBB2_ELEIN	484	TBB9_ARATH	551		
TBA1_PARLI	1094			TBB_SCHCO	543	TBB2_EMENI	684				
TBA1_PEA	1171			TBB_SCHPO	488	TBB2_ERYPI	581				
TBA1_PELFA	1148			TBB_STYLE	718	TBB2_GEOCN	685				
TBA1_PNECA	1389			TBB_TETPY	776	TBB2_HOMAM	649				
TBA1_SCHPO	950	Avg. 936 ± 2	16	TBB_TETTH	551	TBB2_HUMAN	860	Avg. 658 ± 1	34	Avg. 741 ± 2	.93

more-complete data is reported on the complete sequences of all tubulin-expressing organisms, mechanical characteristics may help explain why a microtubule primarily used for mitosis in one organism, may have different mechanical properties than one used primarily for locomotion in another. We hope that, eventually, an approach such as ours, augmented by more advanced knowledge of additional structures as well as the inclusion of explicit water and a more effective energy minimization technique such as conformational space annealing, may begin to elucidate how tubulin's ancestor, FtsZ (56), evolved through various species to obtain its present form. We also hope that an analysis such as ours may be used to engineer novel tubulin structures for advanced nanotechnological devices (e.g., (43,57)). We are optimistic that this intergenomic approach may open the door to bulk modeling of multiple protein systems and homologs, across other structural proteins such as collagen, or other organellar structures or DNA-binding proteins, etc.

A similar scale-dependent modulus trend is also seen in the fibrous composites material literature, where larger speci-

FIGURE 8 (*a*) Discrete spring model of a microtubule. M_r represents a bending moment on the microtubule. (*b*) Spring constants: k_{α} represents the stiffness of α -subunit, $k_{\beta\beta}$ is the stiffness of β -subunit, $k_{\alpha\beta}$ is the binding between α - and β -subunits, and $k_{\beta\alpha}$ is the binding between β - and α -subunits. (*c*) Forces: F_i on the *i*th filament within the microtubule resulting from the externally applied moment causes deformations (Δ_{α} and Δ_{β} for the subunits, and $\Delta_{\alpha\beta}$ and $\Delta_{\beta\alpha}$ for the binding regions).

mens typically are weaker than smaller ones (58). This may be explained through a weakest-link analogy, whereby the more molecular bonds that are added to a structure, the more likely it becomes that a weaker bond will be added. In this work, this statistical explanation may also explain why a more compliant structure is created as additional binding sites are added. Of particular interest may be the investigation of evolutionary trends that drove tubulin to its current state as it evolved to support its myriad of mechanical roles (59,60).

Future work will include using values obtained for the elastic moduli and incorporating them into a finite element model to perform bending and buckling tests (e.g., (61)). We will assume the microtubule to be a fully stable polymerized chain. We will use the commonly accepted 13:3 lattice structure; 13 dimers with a helical pitch of 3 per complete

FIGURE 9 Microtubule persistence length as predicted by the ratio between the stiffness of the α - β bonds, $k_{\alpha\beta}$, and the stiffness of the α monomers, k_{α} . Note that since this is an order-of-magnitude analysis, we have assumed $k_{\beta\alpha}/k_{\beta} \cong k_{\alpha\beta}/k_{\alpha}$. For this simulation, we have used the calculated moduli, $E_{\text{TBA}-\text{PIG}} = 1100$ MPa, $E_{\text{TBB}-\text{PIG}} = 1300$ MPa; their predicted areas, $A_{\text{TBA}-\text{PIG}} = 25$ nm², $A_{\text{TBB}-\text{PIG}} = 28$ nm²; and their predicted lengths, $L_{\text{TBA}-\text{PIG}} = 6.0$ nm, $L_{\text{TBB}-\text{PIG}} = 6.0$ nm.

revolution; and assemble the dimers assuming the central axis of the microtubule to be straight (62). The radius of the tube will be set to 11.2 nm (63). While the data shown in this work are for tension only, we realize that compression and torsion are also important loading modes and will be modeled in future simulations. As the mechanical properties of the different types of microtubules are determined, additional microtubules will be incorporated into the simulation. In addition, these simulations were performed in vacuo. In vivo fluid interactions may have a small but significant impact on results (e.g. (64,65)). Dimer-dimer interactions are also an important consideration (shear, multiaxial loading, etc.). Future work will include simulation of dimer structures, and ultimately the superquaternary structure of microtubules themselves.

APPENDIX: RELATION OF MONOMER MODULUS E_{MONO} TO MICROTUBULE MODULUS E_{MT}

Typically in composite or multiscale structures, the smaller subunits tend to be stronger and stiffer than the macroscale structure (e.g., (66)). If the predicted moduli determined by our method are to inform the tubulin-scale behavior, a multiscale approach is warranted. Beginning with the length-dependent persistence length measurements recently completed by Pampaloni et al. (47), we may make an estimate of the axial elastic modulus (Young's modulus) of a microtubule and compare it to our results. The persistence length, l_p of a molecule is defined as

$$l_{\rm p} = \frac{EI}{k_{\rm B}T},\tag{3}$$

where *E* is Young's modulus of elasticity, *I* is the second moment of inertia, $k_{\rm B}$ is Boltzmann's constant, and *T* is temperature in Kelvins. An intuitive way to interpret this relationship is that $l_{\rm p}$ represents the ratio between the orderpreserving *EI* of the numerator and the disorder-maintaining $k_{\rm B}T$ of the denominator. The numerator has dimensions of energy \times length, while the denominator has dimensions of energy, resulting in a characteristic length that predicts how closely correlated the position of one end of a molecule (or supermolecular structure in the case of a microtubule) is with the other end. The persistence length of individual microtubules has been reported to be 5 mm for microtubules with contour lengths of 40 μ m, and close to 100 nm for microtubules with contour lengths <3 μ m. Solving Eq. 3 for *E* and using $D_0 = 25$ nm, $D_i = 10$ nm, $k_B = 1.38 \times 10^{-23}$, T = 310 K, and $l_p = 100$ nm to 5 mm, results in a predicted $E_{\rm MT}$ of 22.9 kPa to 1.14 MPa, or 3–5 orders-of-magnitude less than the $E_{\rm mono}$ found in our study. Thus it is likely that the binding both between and within dimers govern the microtubule's behavior. A discrete model that models spring constants of individual monomers and the spring constants of their binding follows.

The beam-bending moment equation is

$$M_{\rm r} = EI\kappa,\tag{4}$$

where M_r is the bending moment about the radial axis, and κ is the beam curvature, with dimensions of length⁻¹. I.e., $\kappa = 1/\rho$, where ρ is the radius of curvature at the center of the microtubule. Eliminating *El* between Eqs. 3 and 4 results in

$$l_{\rm p} = \frac{M_{\rm r}}{\kappa k_{\rm B} T}.$$
(5)

The next challenge is to relate the bending moment, M_r , acting upon the microtubule to its curvature. The moment may be taken as the sum of all of the individual forces acting within each filament as

$$l_{\rm p} = \frac{\sum_{i=1}^{13} \frac{F_i \times r_i}{\kappa_i}}{k_{\rm B}T},$$
 (6)

where r_i takes on the values of $R\sin\theta_i$, where R is the effective radius of the microtubule ~10.5 nm and θ is the circumferential position of the individual filaments, i.e., $\theta = 0$, $2\pi/13$, 4p/13,..., $24\pi/13$. The value κ has become discretized, since each filament's curvature differs, those being in compression having a greater curvature than those in tension. The force in each filament is shared by each α -subunit and each β -subunit as well as by the α - β bond and β - α bonds. Expressing F_i as a function of total bending-displacement of each of these, $\Delta_i = \Delta_\alpha + \Delta_\beta + \Delta_{\alpha\beta} + \Delta_{\beta\alpha}$ and the spring constant of each k_α , k_β , $k_{\alpha\beta}$, and $k_{\beta\alpha}$, results in

$$l_{\rm p} = \frac{\sum_{i=1}^{13} \frac{\Delta_i \times r_i}{\kappa_i}}{k_{\rm B}T},\tag{7}$$

where $K^* = 1/k_{\alpha} + 1/k_{\beta} + 1/k_{\alpha\beta} + 1/k_{\beta\alpha}$. Assuming a consistent curvature, κ , throughout the MT, the individual displacement, Δ_i , of each monomer reduces to $\kappa_i R L_0$, where L_0 is a dimer length, R is the average radial distance of a monomer from the center of the MT, and κ_i is the curvature of the i^{th} filament (i = 1...13). The spring constants, k_{α} and k_{β} , in units of N/m, may be taken directly from the simulation data and were ~5 N/m. Since the spring constants for the α - β bonds and β - α bonds are not known, we may use these as the independent variables to help determine the contribution individual monomer stiffness makes to MT stiffness. The most straightforward way to do this is through the persistence length,

$$l_{\rm p} = \frac{\sum_{i=1}^{13} \frac{R^2 L_0}{K^*} |\sin \theta_i|}{k_{\rm B} T}.$$
 (8)

We thank Danna Zeiger and Kathleen Allen for support and insight. The authors declare no conflicts of interest with regard to this work.

This work was funded in part by "Nanotechnology Meets Neuroscience" Pennsylvania Department of Health grant No. 4100026196-240418, The Keck Foundation, and a Department of Defense Graduate Research Fellowship (to A.S.Z.).

REFERENCES

- Li, J. Y., and C. F. Wu. 2003. Perspectives on the origin of microfilaments, microtubules, the relevant chaperonin system and cytoskeletal motors—a commentary on the spirochete origin of flagella. *Cell Res.* 13:219–227.
- Gardner, M. K., and D. J. Odde. 2006. Modeling of chromosome motility during mitosis. *Curr. Opin. Cell Biol.* 18:639–647.
- 3. Nogales, E. 2001. Structural insights into microtubule function. *Annu. Rev. Biophys. Biomed.* 30:397–420.
- Baas, P. W., C. V. Nadar, and K. A. Myers. 2006. Axonal transport of microtubules: the long and short of it. *Traffic*. 7:1–9.
- Li, C., C. Q. Ru, and A. Mioduchowski. 2006. Torsion of the central pair microtubules in eukaryotic flagella due to bending-driven lateral buckling. *Biochem. Biophys. Res. Commun.* 351:159–164.
- Arias-Navalon, J. A., and M. L. Cuadrado-Perez. 2003. Quantum physics and consciousness. *Rev. Neurol.* 36:400.
- Ingber, D. E. 2003. Mechanosensation through integrins: cells act locally but think globally. *Proc. Natl. Acad. Sci. USA*. 100:1472–1474.
- Kurachi, M., M. Hoshi, and H. Tashiro. 1995. Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. *Cell Motil. Cytoskeleton.* 30:221–228.
- Wang, H. W., and E. Nogales. 2005. Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. *Nature*. 435:911– 915.
- Dye, R. B., S. P. Fink, and R. C. Williams, Jr. 1993. Taxol-induced flexibility of microtubules and its reversal by MAP-2 and Tau. J. Biol. Chem. 268:6847–6850.
- Elbaum, M., D. Kuchnir Fygenson, and A. Libchaber. 1996. Buckling microtubules in vesicles. *Phys. Rev. Lett.* 76:4078–4081.
- 12. Gittes, F., B. Mickey, J. Nettleton, and J. Howard. 1993. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. *J. Cell Biol.* 120:923–934.
- Odde, D. J., L. Ma, A. H. Briggs, A. DeMarco, and M. W. Kirschner. 1999. Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 112:3283–3288.
- Vinckier, A., P. Gervasoni, F. Zaugg, U. Ziegler, P. Lindner, P. Groscurth, A. Pluckthun, and G. Semenza. 1998. Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins. *Biophys. J.* 74:3256–3263.
- Kasas, S., A. Kis, B. M. Riederer, L. Forro, G. Dietler, and S. Catsicas. 2004. Mechanical properties of microtubules explored using the finite elements method. *ChemPhysChem.* 5:252–257.
- Tuszynski, J. A., J. A. Brown, E. Crawford, E. J. Carpenter, M. L. A. Nip, J. M. Dixon, and M. V. Sataric. 2005. Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. *Math. Comput. Model.* 41:1055–1070.
- Kerssemakers, J. W. J., E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom. 2006. Assembly dynamics of microtubules at molecular resolution. *Nature*. 442:709–712.
- Tuszynski, J. A., T. Luchko, S. Portet, and J. M. Dixon. 2005. Anisotropic elastic properties of microtubules. *Eur. Phys. J. E. Soft Matter*. 17:29–35.
- Tuszynski, J. A., E. J. Carpenter, J. T. Huzil, W. Malinski, T. Luchko, and R. F. Luduena. 2006. The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. *Int. J. Dev. Biol.* 50:341–358.
- Lowe, J., H. Li, K. H. Downing, and E. Nogales. 2001. Refined structure of α-β-tubulin at 3.5 Å resolution. J. Mol. Biol. 313:1045–1057.
- Berman, H., K. Henrick, and H. Nakamura. 2003. Announcing the worldwide Protein Data Bank. *Nat. Struct. Biol.* 10:980.
- Bairoch, A., R. Apweiler, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale, C. O'Donovan, N. Redaschi, and L. S. Yeh. 2005. The Universal Protein Resource (UniProt). *Nucleic Acids Res.* 33:D154–D159.

- 23. Reference deleted in proof.
- Krebs, A., K. N. Goldie, and A. Hoenger. 2005. Structural rearrangements in tubulin following microtubule formation. *EMBO Rep.* 6:227– 232.
- Aldaz, H., L. M. Rice, T. Stearns, and D. A. Agard. 2005. Insights into microtubule nucleation from the crystal structure of human γ-tubulin. *Nature*. 435:523–527.
- Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual molecular dynamics. J. Mol. Graph. 14:33.
- Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. 1983. A program for macromolecular energy, minimization, and dynamics calculations. *J. Comput. Chem.* 4:187–217.
- MacKarell, A. D., B. Brooks, C. L. Brooks, L. Nilsson, B. Roux, Y. Won, and M. Karplus. 1998. The energy function and its parameterization with an overview of the program. *In* The Encyclopedia of Computational Chemistry. P. V. R. e. a. Schleyer, editor. John Wiley & Sons, Chichester.
- Schwede, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL: an automated protein homology-modeling server. *Nucleic Acids Res.* 31:3381–3385.
- 30. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22:4673–4680.
- Consortium, C. e. S. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 282:2012–2018.
- 32. Hassan, S., L. Gracia, G. Vasudevan, and P. Steinbach. 2005. Computer simulation of protein-ligand interactions: challenges and applications. *In* Methods of Molecular Biology. G. U. Nienhaus, editor. Humana Press, Totowa, NJ.
- 33. Reference deleted in proof.
- 34. Cox, B. N., and J. B. Davis. 2000. Braided composites for energy absorption under tensile loading. J. Mater. Sci. 35:3467–3478.
- Phillips, J. C., R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten. 2005. Scalable molecular dynamics with NAMD. *J. Comput. Chem.* 26:1781–1802.
- 36. Bhandarkar, M., R. Brunner, C. Chipot, A. Dalke, S. Dixit, P. Grayson, J. Gullingsrud, A. Gursoy, D. Hardy, J. Hénin, W. Humphrey, D. Hurwitz, N. Krawetz, S. Kumar, M. Nelson, J. C. Phillips, A. Shinozaki, G. Zheng, and F. Zhu. 2006. NAMD User's Guide. University of Illinois and Beckman Institute, Urbana, IL.
- Sasoglu, F. M., A. J. Bohl, and B. E. Layton. 2007. Design and microfabrication a high-aspect-ratio tapered PDMS microbeam array for parallel nanoscale force measurement and protein printing. *J. Micromech. Microeng.* 17:623–632.
- Odom, E. M., and D. F. Adams. 1992. Specimen size effect during tensile testing of an unreinforced polymer. J. Mater. Sci. 27:1767– 1771.
- Rief, M., M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub. 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. *Science*. 276:1109–1112.
- Ward, I. M., and J. Sweeney. 2004. An Introduction to the Mechanical Properties of Solid Polymers. Wiley, West Sussex, UK.
- 41. Reference deleted in proof.
- Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD: visual molecular dynamics. J. Mol. Graph. 14:27–38.
- Karafyllidis, I. G., and D. C. Lagoudas. 2007. Microtubules as mechanical force sensors. *Biosystems*. 88:137–146.
- Huang, Y. M., M. Uppalapati, W. O. Hancock, and T. N. Jackson. 2005. Microfabricated capped channels for biomolecular motor-based transport. *IEEE T. Adv. Pkg.* 28:564–570.
- 45. Shah, V. 1998. Handbook of Plastics Testing Technology. Wiley, New York.

- Munson, K. M., P. G. Mulugeta, and Z. J. Donhauser. 2007. Enhanced mechanical stability of microtubules polymerized with a slowly hydrolysable nucleotide analogue. *J. Phys. Chem. B.* 111:5053–5057.
- Pampaloni, F., G. Lattanzi, A. Jonas, T. Surrey, E. Frey, and E. L. Florin. 2006. Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. *Proc. Natl. Acad. Sci. USA*. 103:10248–10253.
- VanBuren, V., D. J. Odde, and L. Cassimeris. 2002. Estimates of lateral and longitudinal bond energies within the microtubule lattice. *Proc. Natl. Acad. Sci. USA*. 99:6035–6040.
- 49. Shigley, J. E., C. R. Mischke, and R. G. Budynas. 2004. Mechanical Engineering Design. McGraw-Hill, New York, NY.
- Keeling, P. J., and W. F. Doolittle. 1996. Alpha-tubulin from earlydiverging eukaryotic lineages and the evolution of the tubulin family. *Mol. Biol. Evol.* 13:1297–1305.
- Carpenter, E. J., J. T. Huzil, R. F. Luduena, and J. A. Tuszynski. 2006. Homology modeling of tubulin: influence predictions for microtubule's biophysical properties. *Eur. Biophys. J.* 36:35–43.
- Kis, A., S. Kasas, B. Babic, A. J. Kulik, W. Benoit, G. A. Briggs, C. Schonenberger, S. Catsicas, and L. Forro. 2002. Nanomechanics of microtubules. *Phys. Rev. Lett.* 89:248101.
- Liwo, A., C. Czaplewski, S. Oldziej, and H. A. Scheraga. 2008. Computational techniques for efficient conformational sampling of proteins. *Curr. Opin. Struct. Biol.* 18:134–139.
- Lee, J. S., H. A. Scheraga, and S. Rackovsky. 1997. New optimization method for conformational energy calculations on polypeptides. Conformational space annealing. *J. Comput. Chem.* 18:1222–1232.
- Peitsch, M. C. 1996. ProMod and SWISS-MODEL: internet-based tools for automated comparative protein modeling. *Biochem. Soc. Trans.* 24:274–279.
- Nogales, E., K. H. Downing, L. A. Amos, and J. Lowe. 1998. Tubulin and FtsZ form a distinct family of GTPases. *Nat. Struct. Biol.* 5:451– 458.
- Boal, A. K., H. Tellez, S. B. Rivera, N. E. Miller, G. D. Bachand, and B. C. Bunker. 2006. The stability and functionality of chemically crosslinked microtubules. *Small*. 2:793–803.
- Danielson, H. E. 1945. The statistical theory of the strength of bundles of threads. I. Proc. Roy. Soc. Lond. 183:405–435.
- Jekely, G., and D. Arendt. 2006. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. *Bioessays*. 28:191–198.
- 60. Li, J. Y., and C. F. Wu. 2005. New symbiotic hypothesis on the origin of eukaryotic flagella. *Naturwissenschaften*. 92:305–309.
- 61. Allen, K. B., and B. E. Layton. 2008. Cytoskeleton—membrane interactions in neuronal growth cones: a finite element analysis study. *ASME J. Biomech. Eng.* In press.
- Molodtsov, M. I., E. A. Ermakova, E. E. Shnol, E. L. Grishchuk, J. R. McIntosh, and F. I. Ataullakhanov. 2005. A molecular-mechanical model of the microtubule. *Biophys. J.* 88:3167–3179.
- Li, H., D. J. DeRosier, W. V. Nicholson, E. Nogales, and K. H. Downing. 2002. Microtubule structure at 8 Å resolution. *Structure*. 10:1317–1328.
- Trzesniak, D., and W. F. van Gunsteren. 2006. Pathway dependence of the efficiency of calculating free energy and entropy of solute-solute association in water. *Chem. Phys.* 330:410–416.
- Leroux, V., N. Gresh, W. Q. Liu, C. Garbay, and B. Maigret. 2007. Role of water molecules for binding inhibitors in the SH2 domain of Grb2: a molecular dynamics study. *J. Mol. Struct. THEOCHEM*. 806:51–66.
- Harlow, D. G., and S. L. Phoenix. 1978. Chain-of-bundles probability model for strength of fibrous materials. 1. Analysis and conjectures. *J. Composite Mat.* 12:195–214.
- 67. Pollard, T. D., and W. C. Earnshaw. 2002. Cell Biology. W. B. Saunders, New York.
- Dobner, P. R., E. Kislauskis, B. M. Wentworth, and L. Villa-Komaroff. 1987. Alternative 5' exons either provide or deny an initiator methi-

onine codon to the same α -tubulin coding region. *Nucleic Acids Res.* 15:199–218.

69. Strausberg, R. L., E. A. Feingold, L. H. Grouse, J. G. Derge, R. D. Klausner, F. S. Collins, L. Wagner, C. M. Shenmen, G. D. Schuler, S. F. Altschul, B. Zeeberg, K. H. Buetow, C. F. Schaefer, N. K. Bhat, R. F. Hopkins, H. Jordan, T. Moore, S. I. Max, J. Wang, F. Hsieh, L. Diatchenko, K. Marusina, A. A. Farmer, G. M. Rubin, L. Hong, M. Stapleton, M. B. Soares, M. F. Bonaldo, T. L. Casavant, T. E. Scheetz, M. J. Brownstein, T. B. Usdin, S. Toshiyuki, P. Carninci, C. Prange, S. S. Raha, N. A. Loquellano, G. J. Peters, R. D. Abramson, S. J. Mullahy, S. A. Bosak, P. J. McEwan, K. J. McKernan, J. A. Malek, P. H. Gunaratne, S. Richards, K. C. Worley, S. Hale, A. M. Garcia, L. J. Gay, S. W. Hulyk, D. K. Villalon, D. M. Muzny, E. J. Sodergren, X. Lu, R. A. Gibbs, J. Fahey, E. Helton, M. Ketteman, A. Madan, S. Rodrigues, A. Sanchez, M. Whiting, A. C. Young, Y. Shevchenko, G. G. Bouffard, R. W. Blakesley, J. W. Touchman, E. D. Green, M. C. Dickson, A. C. Rodriguez, J. Grimwood, J. Schmutz, R. M. Myers, Y. S. Butterfield, M. I. Krzywinski, U. Skalska, D. E. Smailus, A. Schnerch, J. E. Schein, S. J. Jones, and M. A. Marra. 2002. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. *Proc. Natl. Acad. Sci. USA*. 99:16899–16903.

- Rush, J., A. Moritz, K. A. Lee, A. Guo, V. L. Goss, E. J. Spek, H. Zhang, X. M. Zha, R. D. Polakiewicz, and M. J. Comb. 2005. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. *Nat. Biotechnol.* 23:94–101.
- Kalnine N., X. Chen, A. Rolfs, A. Halleck, L. Hines, S. Eisenstein, M. Koundinya, J. Raphael, D. Moreira, T. Kelley, J. LaBaer, Y. Lin, M. Phelan, A. Farmer. Cloning of human full-length CDSs in BD Creator system donor vector. At EMBL/GenBank/DDBJ databases, May 2003.
- 72. Livingston R. J., M. J. Rieder, N. Rajkumar, T. K. Downing, A. N. Olson, C. P. Nguyen, H. Gildersleeve, C. M. Cassidy, E. J. Johnson, J. E. Swanson, I. McFarland, B.Yool, C. Park, and D. A Nickerson. NIEHS-SNPs, environmental genome project, NIEHS ES15478, Department of Genome Sciences, Seattle, WA. Available at http://egp.gs.washington. edu. At EMBL/GenBank/DDBJ, databases, January 2005.