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A study of elastico‑viscous fluid 
flow by a revolving disk with heat 
dissipation effects using HAM 
based package BVPh 2.0
M. Burhan Jafeer & M. Mustafa*

Von Kármán problem of infinite disk is re-examined when fluid under consideration is elastico-viscous, 
satisfying the constitutive relations of Walters-B model. Main target here is to demonstrate how 
the presence of elasticity alters heat transfer phenomenon for the said problem especially when 
heat dissipation term is included in the analysis. We assume a self-similarity solution that results in 
a system of coupled non-linear equations. An easy to use package BVPh 2.0 based on the homotopy 
analysis method is used to present series solutions for values of elastico-viscous fluid parameter 
( K  ) in the range 0 ≤ K ≤ 1 . Residuals are evaluated numerically at various order of approximations 
which depict that obtained solutions converge to the exact solutions. Boundary layer is substantially 
suppressed due to the consideration of elastico-viscous fluid assumption. Furthermore, velocity of 
the entrained fluid is inversely proportional to the parameter K  . The results predict a substantial drop 
in heat transfer rate whenever elasticity effects are present. A considerable role of heat dissipation 
towards thickening of thermal boundary layer is apparent from the findings.

Research interest in fluid motion triggered by the action of revolving disk has been ever growing since its dis-
covery by Von Kármán1. Such an interest is attributed to its occurrence in some technological processes includ-
ing electrochemistry (which involves rotating-disk electrodes), cooling of computer storage devices and food 
processing industries. Dynamics of rotating flows, their fundamental equations and practical applications were 
summarized in a book by Childs2. An excellent monograph was published by Shevchuk3 which includes formula-
tion of convective heat transfer in various rotating flow configurations. Integral methods, self-similar techniques 
and analytical approaches to deal with rotating disk were also described briefly in this monograph. In the past, 
many novel results associated with the Von Kármán system have been introduced. We summarize here only a 
few (significant) problems for the sake of brevity. Stuart4 modeled the suction/blowing effects in rotating-disk 
system and found that radial and circumferential flows are decelerated whenever notion of suction is present. 
Heat transfer process in Von Kármán’s model was assessed in early studies (Refs.5,6). In6, by assuming a linear 
relationship between viscosity and temperature, the authors obtained series solutions for both small and large 
Prandtl numbers. Benton7 introduced time-dependency in Von Kármán’s model by assuming that disk rotation 
sets up impulsively from rest. Also, more accurate solution for steady-state case was found. Later, Watson and 
Wang8 considered more realistic model in which disk angular velocity was assumed to decay as time from the 
initiation of motion progresses. They concluded that the disk can be made stress free by assigning an appropriate 
value to a parameter measuring the disk rotation rate. Miclavcic and Wang9 examined Von Kármán flow when 
the boundary (or rotating disk) admits partial slip characteristic. It was noticed that velocity slip contributes 
to a growth in minimum torque needed to keep disk in steady rotation. In articles10,11, Shevchuk considered a 
power-law surface temperature distribution (proportional to rn , where r is the radial and n is power-law index). 
He noticed that heat transfer rate of the infinite disk increases with power law index n in case of positive radial 
temperature gradient while opposite trend is found for negative radial temperature gradient. Similar model and 
conclusions were also depicted in another paper by Shevchuk and Buschmann12. Xu and Liao13 put forward a 
novel analytic solution for the unsteady flow driven by a disk which undergoes impulsive rotation from rest. 
Later, Fang and Tao14 modeled fluid flow by a stretching and revolving disk with deceleration. Their analysis 
depicts that resisting wall shear vanishes by selecting a suitable ratio of disk stretching rate to the rotation rate. 
Von Kármán flow was also examined by Turkyilmazoglu15 when the disk was assumed to shrink in the radial 
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direction. It was found that structure of solutions in shrinking case widely differ from those obtained in usual 
stretching case. Thermal transport in nanofluid flow triggered by a revolving disk was elucidated by Khan et al.16 
by assuming a realistic zero mass flux condition. Muthtamilselvan and Renuka17 analyzed flow situation between 
rotating and stretchable disks in nanofluid. Application of a non-Fourier heat flux theory for micropolar fluid 
flow occurring between revolving surfaces was presented by Doh et al.18. A rigorous analysis for swirling flow 
between parallel disks, one undergoing uniform rotation and other stretching/shrinking, was made by Abbas 
et al.19. A novel model of homogeneous-heterogeneous reaction for nanofluid flow triggered between revolv-
ing disks was analyzed by Renuka et al.20. Using homotopy analysis method, entropy growth in nanofluid flow 
contained between spinning stretchable surface was elucidated by Renuka et al.21.

The frequent and broad occurrence of non-Newtonian behavior in diverse applications (both in nature and 
technology) is well established. Hoyt22 briefly summarized how non-Newtonian fluid flow is beneficial in some 
industrial processes including fluid friction reduction, surfactant applications for cooling/heating of large build-
ings and use of polymer additives to improve flow in petroleum pipe lines. Non-Newtonian behavior is also 
met in mining industry which treats slurries and muds, and in applications such as lubrication and biomedical 
flows. In most of the industrial processes, the Newtonian fluid assumption stands invalid and a complex non-
Newtonian response needs to be modeled. In the past, various contributions featuring non-Newtonian fluid flow 
occurring above a disk that undergoes uniform rotation have been reported. The first ever attempt was made 
by Elliot23 who revisited Von-Karman’s analysis by taking into account constitutive relations due to Walters-B 
model. Decades ago, Ariel24 used a robust approach to describe the viscoelastic fluid flow due to revolving disk 
placed in a second-grade fluid. He was able to construct approximate series solutions for small and large values 
of second grade fluid parameter. Andersson and De Korte25 numerically addressed axial magnetic field effects on 
rotating disk induced flow of power-law fluid. Their solution was based on generalized von Kármán transforma-
tions, which was valid even for highly shear-thickening fluids. Ariel26 later revisited Elliot’s work with a view to 
obtain accurate numerical results for large elasticity fluid parameter. Von Kármán flow analysis for viscoplastic 
fluid was made by Osalusi et al.27 using the well-accepted Bingham model. The articles published by Attia28 
and Sahoo 29 examined different physical characteristics associated with Reiner-Rivlin fluid flow caused by a 
rotating disk. Other contributions put forward in this domain include the works of Ahmadpour and Sadeghy30, 
Griffiths31, Guha and Sengupta32, Doh and Muthtamilselvan33, Tabassum and Mustafa34, Imtiaz et al.35, Sahoo 
and Shevchuk36 and Mustafa et al.37.

Our foremost interest is to formulate heat transfer in Von Kármán of Walters-B fluid under viscous dissipation 
effect. It will be shown later, that viscous dissipation effect yields several additional terms in the energy equation. 
Notably, viscous dissipation terms should be retained in situations where either fluid has high viscosity coefficient 
or its average velocity is high. Our second goal is to furnish series solutions for velocity and temperature by opti-
mal homotopy method using package BVPh 2.0. Averaged squared residuals for the system are worked out that 
support the series solutions obtained. The results indicate that contribution of elasticity combined with viscous 
dissipation term is significant in the analysis of resisting torque, wall shear, entrained flow and heat transfer rate.

Problem formulation
Suppose that an electrically conducting elastico-viscous fluid flows due to steady rotation of an infinite plane 
surface. Fluid is exposed to axial magnetic field with uniform magnetic flux density B0 . In a cylindrical coordi-
nate system (r,ϕ, z) , the disk taken along z = 0 is made to rotate steadily about the axis r = 0 (see Fig. 1). Fluid 

Figure 1.   Geometry of the problem and coordinate system.
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motion takes place in the semi-infinite region z ≥ 0 and z = 0 is the only boundary. Let u, v and w symbolize 
velocity vector projections along r−,ϕ− and z-directions respectively. Assuming that electric field is absent and 
magnetic Reynolds number is small enough so that induced magnetic field is negligible, components of Lor-
entz force vector are Fr = −σB20u , Fϕ = −σB20v and Fz = 0 , where σ is the fluid electrical conductivity. Since 
the problem is symmetric about the vertical axis, one can neglect variation in velocities in ϕ-direction, that is, 
∂/∂ϕ ≡ 0 . Relevant equations embodying fluid flow about a rotating disk are24:

where Sij
(

i, j = 1− 3
)

 are components of stress tensor S . Beard and Walters38 proposed the following stress ten-
sor S for elastico-viscous liquids:

where A1 = ∇v + (∇v)t is known as first Rivlin-Ericksen tensor, η0 stands for apparent viscosity, κ0 is termed 
material fluid parameter, P stands for pressure, I is the identity tensor, and DA1/Dt is the upper-convected time 
derivative defined below:

Above equations are to be solved for the following constraints:

The components of stress tensor S are obtained from Eq. (5) as follows:
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while Eq. (4) vanishes identically. For the solution of Eqs. (1), (14) and (15), we use the transformations:

with η = z(ω/ν)1/2 as similarity variable.
With the aid of Eq. (16), the mass balance Eq. (1) is fulfilled whereas Eqs. (14) and (15) give rise to the fol-

lowing ODEs:

and boundary conditions (7a) and (7b) are transformed as follows:

where K = κ0ω/η0 is the elasticity parameter and M = σB20/ρω is termed magnetic interaction parameter.

Heat transfer analysis
The difference between surface temperature and that of the ambient fluid serves as driving potential for heat 
flow from the disk to the fluid. In absence of heat generation/absorption, energy equation can be expressed in 
the following form:

where κ stands for fluid thermal conductivity, Cp symbolizes specific heat capacity and � shows viscous dissipa-
tion term given by

Using (21) in (20) and then simplifying the resulting expression using boundary layer assumptions, one 
obtains:

We substitute T = T∞ + (Tw − T∞)θ(η) , where θ(η) is non-dimensional temperature and wall temperature 
Tw has the form Tw = T∞ + br2 , in which b > 0 is a constant. Equation (22) yields the following ODE:

and boundary conditions for θ are given below:

In Eq. (23), Pr = η0Cp/κ gives the Prandtl number an Ec = ω2/bCp defines the Eckert number.

Skin friction coefficients, local Nusselt number and volumetric flow rate
In examining Von Kármán boundary layer, an important characteristic is the shear stress experienced at the disk. 
We define the radial and tangential skin friction coefficients as follows:
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Upon utilizing Eq. (16) and boundary conditions (19a) in Eq. (25), one arrives at:

Another important concept is the Nusselt number defined as Nu = −rk(∂T/∂z)z=0/�T . It can be expressed 
as:

Entrainment velocity w(∞) can be used to determine the amount of fluid sucked towards the disk of radius 
R as follows:

Series solutions using optimal homotopy analysis method (OHAM)
An improved version of the well-known homotopy analysis method (HAM) was developed by Liao39 with an 
aim to tackle strongly non-linear problems. The concept was based on computing the best possible value of the 
so-called auxiliary parameter that eventually accelerates the convergence of HAM solutions. Afterwards, Liao 
et al.40 came up with a user-friendly MATHEMATICA package BVPh 2.0 based on the HAM, which is freely 
accessible online at http://numer​icalt​ank.sjtu.edu.cn/BVPh.htm. Using basic idea of HAM, the unknown func-
tions F,G and θ are expressed as under:
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Results and discussion
In order to ascertain that BVPh 2.0 code is working fine, we computed the total average squared residual (defined 
in Eqs. (35)) at different values of K , the elasticity parameter (see Fig. 2a–d). It is apparent that ET ,k decreases 
monotonically as we increase k , the order of approximations. This confirms that series solutions given by Eq. (29) 
converge to the exact solutions as k → ∞ . For a further check, numerical results of F ′′(0),G′(0) and θ ′(0) are 
compared with the numerical data of previous studies in limiting sense and found in complete agreement (see 
Table 1). Having validated the employed method, we now turn to foresee the role of different controlling param-
eters on the considered model.

The disk surface temperature is assumed to vary quadratically with radial distance r . Such an assumption 
is necessary for the governing problem to exhibit self-similar solutions. Figure 3a–d include velocity curves 
and temperature profile for varying choices of elasticity parameter K . Note that radial velocity 

(

u = rωF ′
)

 and 
entrained flow are linked in such a way that the radially outflow, produced by centrifugal force, is responsible for 
drawing the fluid downwards towards the disk. Boundary layer is substantially thinned for increasing K-values. 
Reduction in radially driven flow by increasing K is noted in Fig. 3a. This in turn leads to decelerate the axial 
fluid motion and thus the volumetric flow rate. No overshoot in similarity profiles is detected for the considered 
range of K  . Circumferential flow is also predicted to slow down whenever elastic effects are considered (see 
Fig. 3c). On the contrary, fluid temperature rises for increasing K-values.

To see how present flow model is influenced by the presence of magnetic field, we prepared Fig. 4a–d showing 
velocity and temperature curves for a variety of M-values. It is noted that asymptotic value of F , that is F(∞) , 
decreases for increasing values of M . Also, it takes shorter distances from the disk for the velocity profiles to 
attain their respective asymptotic values as M is increased. Moreover, u-velocity profile 

(

u = rωF ′
)

 becomes 
flatter for higher values of M . Furthermore, the resistance offered to fluid motion by the Lorentz force leads to 
enhancement in temperature profile as apparent from Fig. 4d.

Figure 2.   Total residual error ( ET ,k ) versus order of approximations ( k ) at (a) K = 0 , (b) K = 0.25 , (c) K = 0.5 
and (d) K = 0.8.
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Figure 5a shows the change in temperature distribution by varying Pr , the Prandtl number. It takes smaller 
distances from the disk for temperature curve to reach η-axis for increasing Pr-values. Moreover, the effect of 
Eckert number Ec is seen to be typical of fluid gaining temperature (due to the loss of heat energy from the disk) 
(see Fig. 5b).

Table 1.   A comparison of 45th order HAM results with those obtained by Ariel24,41 for different values of M 
when K = 0. a Shows results given in Ariel41. b Our results.

M F
′′(0)a −G

′

(0)a F
′′(0)b −G

′

(0)b

0.2 0.453141 0.708795 0.453129 0.708793

0.4 0.405576 0.802376 0.405576 0.802376

0.6 0.366698 0.894476 0.366698 0.894476

0.8 0.335092 0.983607 0.335090 0.983607

1.0 0.309258 1.069053 0.309258 1.069053

1.2 0.287915 1.150635 0.287915 1.150635

1.4 0.270049 1.228466 0.270049 1.228466

1.6 0.254892 1.302793 0.254892 1.302793

2.0 0.230559 1.442094 0.230559 1.442094

Figure 3.   Curves of velocity components 
(

F , F ′,G
)

 and temperature (θ) for different values of elasticity 
parameter K.
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Figure 4.   Curves of velocity components 
(

F , F ′,G
)

 and temperature (θ) for different values of magnetic 
interaction parameter M.

Figure 5.   Temperature curves for different values of (a) Prandtl number Pr and (b) Eckert number Ec.
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In Fig. 6a–d, we present the graphs of Re1/2Cfr,Re1/2Cfθ,Re−1/2Nu and F(∞) against the elasticity parameter 
K  for the values of latter in the range 0 to 1. While the results reveal that radial skin friction can be lowered 
by including elastic effects, the azimuthal skin friction first decreases to a minimum and then increases as K 
increases. Nusselt number, measuring heat transfer rate, is predicted to elevate whenever K enlarges. Interest-
ingly, F(∞) has an inversely linear profile against both K and M . Both radial and azimuthal wall stresses exhibit 
increasing trends for increasing values of K.

Table 2 contains the numerical data of entrainment velocity, radial wall stress and tangential wall stresses by 
changing the values of K and M . Axial velocity at infinity, measuring the volume of entrained fluid is lowered 
whenever K  or M is incremented. This reduction signals a growth in velocity gradients at the surface which 
yields higher magnitude of skin friction coefficients. Hence, we conclude that larger torque at the disk is required 
whenever elasticity and magnetic field effects are present.

Numerical data exhibiting the effect of involved physical parameters on Nusselt number is tabulated (see 
Table 3). For higher Pr-values, heat convection measuring heat transfer rate from the surface is significant rela-
tive to pure conduction. Hence, Nusselt number increases in absolute sense for increasing values of Pr . Heat 
dissipation due to fluid friction strengthens as Ec becomes large. This in turn yields expansion in temperature 
profile and reduction in Nusselt number. Figure 2a already indicated a clear reduction in axial velocity whenever 
elastico-viscous fluid is considered. Thus magnitude of the term w∂T/∂z (in Eq. (9)), measuring heat convection, 
reduces when K is enhanced. As a result, Nusselt number is seen to lower substantially when K enlarges. Similar 
conclusion can be made for the influence of magnetic force on Nusselt number.

Figure 6.   Profiles of skin friction coefficients, Nusselt number and volume flow rate versus elasticity parameter 
K at different values of M.
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Concluding remarks
In this framework, we discussed elastico-viscous fluid flow bounded by a rotating disk with heat dissipation 
effects. The analysis is based on a quadratic surface temperature distribution which is a prerequisite for achieving 
self-similar solution. The developed system of equations is treated via package BVPh 2.0 of MATHEMATICA 
based on the HAM. The specific conclusions of the present study are outlined as follows:

•	 Using the package BVPh 2.0, the averaged squared residual of the governing system is computed which 
reflects that series solutions converge to the exact solutions as k (order of approximation) tends to infinity.

•	 Akin to earlier works (see, for instance23,26), an increase in elasticity parameter K has an retarding effect on 
the boundary layer flow. The entrained volume of the fluid upon the disk also decreases with an enhancement 
in elasticity.

•	 The effect of elasticity is such that radial wall stress decreases as values of K are incremented. However, the 
resisting torque first decreases to a minimum and then increases for increasing K-values. Notably, for suf-
ficiently higher values of M , resisting torque is monotonically increasing function of K.

•	 An expansion in thermal boundary layer is found for increasing values of K . Such increase accompanies with 
reduced heat transfer rate from the rotating surface.

•	 The existence of axial magnetic field opposes radially outward flow initiated by the centrifugal force. Such 
opposition restricts the amount of fluid drawn vertically thereby providing an expansion in temperature 
profile.

•	 As we increase the Eckert number, a relative decrease in enthalpy is noticed which in turn leads to an enhance-
ment in the temperature profile.

Received: 11 April 2020; Accepted: 5 February 2021

Table 2.   Computational results of skin friction coefficients at different values of K and M at 20th-order of 
approximations.

K M F(∞) Re
1

2 Cfr
Re

1

2 Cfθ

0.2 0.5 0.175165 0.279125 − 0.857647

0.3 0.147619 0.226650 − 0.850164

0.4 0.122389 0.178885 − 0.835553

0.5 0.097984 0.136315 − 0.816793

0.2 0.2 0.295671 0.368621 − 0.728808

0.5 0.175165 0.279125 − 0.857647

0.8 0.104394 0.209732 − 0.984472

1.2 0.052581 0.139514 − 1.144154

Table 3.   Results of Nusselt number at different values of K ,M, Pr and Ec at 20th-order of approximations.

K M Pr Ec −θ
′

(0)

0 0.5 1.25 0.5 0.295399

0.2 0.228719

0.4 0.145372

0.6 0.057209

0.2 0.2 0.380507

0.4 0.280761

0.6 0.176379

1.0 0.008257

0.5 0.5 0.167541

0.75 0.193142

1.00 0.213086

1.25 0.228719

1.25 0 0.451032

0.30 0.316919

0.70 0.139779

1.00 0.006359
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