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Kidney transplantation is a primary therapy for end-stage renal disease (ESRD) all

the time. But it does not mean that we have fully unraveling the mystery of kidney

transplantation and confer every patient favorable prognosis. Immune rejection has

always been a stumbling block when we try to increase the success rate of kidney

transplantation and improve long-term outcomes. Even if the immune rejection is

effectively controlled in acute phase, there is a high possibility that the immune response

mediated by chronically activated antibodies will trigger chronic rejection and ultimately

lead to graft failure. At present, immunosuppressive agent prepared chemically is mainly

used to prevent acute or chronic rejection, but it failed to increase the long-term survival

rate of allografts or reduce the incidence of chronic rejection after acute rejection, and is

accompanied by many adverse reactions. Therefore, many studies have begun to use

immune cells to regulate the immune response in order to control allograft rejection.

This article will focus on the latest study and prospects of more popular regulatory

myeloid cells in the direction of renal transplantation immunotherapy and introduce their

respective progress from experimental research to clinical research.

Keywords: kidney transplant, regulatory myeloid cell, allograft rejection, immunosuppression, prevention,

end-stage renal disease

INTRODUCTION

In 1954, Dr. Merril and Murray of Harvard University completed the first successful kidney
transplant between a pair of twins in order to avoid allograft immunity. The patient did not
take any immunosuppressive drugs, and the transplanted kidney achieved long-term survival
(1). But this is a rare condition after all, and there are certain genetic differences between
most donors and recipients, mainly referring to human leukocyte antigen (HLA), which greatly
ascends the possibility of allograft rejection (2). Based on the onset time, the rejections that
occur after kidney transplantation can be classified into hyperacute rejection reaction, accelerated
rejection reaction, acute rejection reaction, and chronic rejection reaction. The most important
ones are acute rejection and chronic active antibody-mediated rejection (AMR). We are going
to discuss the prevention and treatment of them (3). Thanks to preoperative histocompatibility
tests, more reasonable and standardized surgical procedures, improved tissue typing, and especially
the advent of securer and more efficient immunosuppressive drugs, the incidence of rejection
(mostly acute rejection) during the first year has gradually decreased over the years (4). Clinical
kidney transplant has become the gold standard for ESRD, which improves patients’ quality
of life within a certain period compared with continuous dialysis (3, 5). At present, the main
clinical method of chemical immunosuppressive treatment routinely after kidney transplantation
is calcineurin inhibitor (CNI), and other drugs including mycophenolic acid and corticosteroids
are usually used in combination (6, 7). Immunosuppressive agents seem to have reached their
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limits, but many problems remain, such as leading to excessive
suppression of immune system and increasing the rate of
infectious diseases and the incidence of tumors (8). It can
also cause side effects without an immunological relationship,
including nephrotoxicity, making recipients susceptible
to cardiovascular dysfunction, metabolic diseases, and
complications of other organs (9). Unfortunately, due to
the lack of immunological or antigen specificity, CNI based
immunosuppressive can hinder alloresponses, but does not
ultimately prevent late dysfunction or loss. And in fact,
CNI treatment even causes inhibition of regulatory T-cell
development, which leaves a major challenge (10). Therefore,
although these drugs reduce the rate of acute rejection, they fail
to significantly improve the long-term survival of transplanted
kidney (11).

Given the concerns over chemical immunosuppressive agents
and the disappointing long-term results of kidney transplants, it
is clearly necessary to revisit our choice of immunomodulation
methods. Although immune rejection is mainly mediated by
effector T cells or antibodies secreted by B cells, some other types
of white blood cells can promote a tolerant immune response
and extend survival of the graft (12). In kidney transplant
immunity, mechanisms of tolerance are crucial because whether
an allograft is acceptable to the recipient depends largely on
the balance between effector cells with alloantigen reactivity and
regulatory immune cells (13). Regulatory immune cells are one
such group of leukocyte populations that have the potential
to specifically prevent acute rejection or graft-vs.-host disease
(GVHD). They gradually acquire regulatory functions during
development, and the immunosuppressive property is acquired
in the local microenvironment of allografts or in lymphatic tissue
drained by the graft. And this immunosuppressive property will
cause the surrounding environment to change toward the long-
term survival of the graft, thereby preventing the graft from
being rejected or GVHD. Therefore, regulatory immune cells
play a critical role in influencing long-term outcomes after kidney
transplantation (14).

REGULATORY MYELOID CELLS

Currently, researchers working on organ transplantation
are hoping to minimize the dependence of recipients on
immunosuppressive drugs and increase donor-specific immune
tolerance using immunomodulatory therapy. Many animal
experiments and observations have shown that regulatory
immune cells can promote transplant tolerance and reduce
the infection rate after kidney transplantation (15). There
are also considerable experiments confirming that they could
prolong the survival of kidney allografts in non-human primate
(NHP) models (16, 17). Most of these experiments focus on
the role of regulatory T cells (Tregs). From basic experiments
to clinical related research, Tregs have excellent immune
regulation effect after transplantation of various organs, and they
occupied an important position in transplantation immunity
(13, 18, 19). There was some small-scale clinical trials which
purify Tregs from patients’ own blood and perform polyclonal

expansion. Experimental results show that the project is safe
and well-tolerated. The infused Tregs have a certain degree of
durability and stability, proven to reduce the inflammation of
the transplanted kidney through biopsy (20). Another group
of cells with regulatory functions, regulatory myeloid cells,
has excellent immunosuppressive effects in many transplant
responses, in addition to being more diverse and complex. Some
of these effects received widespread attention because they may
be related to Tregs (Figure 1). The regulatory myeloid cells
discussed in the previous articles generally include three types,
which are regulatory macrophages, regulatory dendritic cells,
and myeloid-derived suppressor cells (21). Due to the homology
and excellent anti-rejection prospects, here we will broadly
include bone marrow mesenchymal stromal cells. We will focus
on the progress of kidney transplantation immunity of several
regulatory myeloid cells, and their characteristics are shown
(Table 1).

REGULATORY MACROPHAGES

Macrophages are derived from monocytes and they are an
important part of innate immunity. When the body is
injured, monocytes in the blood vessels are transported to the
inflamed tissue and become macrophages. The accumulation
of macrophages in organs has been considered a feature
of allograft rejection for many years (26). Depending on
the microenvironment, immunogenic monocytes will infiltrate
into the allograft early after transplantation, and be renamed
macrophages, which will respond to the transplanted organ
and trigger organ rejection (27). The classically activated
macrophages’ (M1) inflammatory response is characterized by
high levels of pro-inflammatory cytokines in the surrounding
environment and the promotion of the Th1 response. However,
in addition to the role of M1 in promoting immune responses,
alternatively activated macrophages (M2) are believed to be
associated with the alleviation of tissue inflammation. The
latest research found that when macrophage colony-stimulating
factor (M-CSF) and interferon-γ (IFN-γ) act on monocytes,
they will transform into a new type of inhibitory cells called
regulatory macrophages (Mregs). Mregs are another uniquely
characterized group of cells that can produce interleukin 10
(IL-10) but do not generate arginase-1, which can reduce the
proinflammatory immune response (28). Recent studies have
shown that Mregs promote successful long-term transplantation
and may be necessary for inducing transplant tolerance (29).
Hutchinson et al. administered Mregs to two living donor
kidney transplant recipients. After transplantation, two patients
were treated with the smallest dose of tacrolimus monotherapy
(aiming for trough serum levels between 4 and 8 ng/ml) in 24
weeks and maintained favorable transplant function later. No
adverse effects were observed in 2 patients, with 3 years follow-
up (30). It is inferred that this phenomenon may be caused by
Mregs inhibiting the proliferation of effector T cells by producing
IFN-γ. During cell experiments, it was found that mouse Mregs
can produce induced nitric oxide synthase (iNOS) to inhibit the
activity of T cells in vitro and can kill and engulf co-cultured
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FIGURE 1 | Possible mechanism of different effects of regulatory myeloid cells on two types of T cells. IL, interleukin; CCL5, chemotactic C-C motif 5; IFN-γ,

interferon-gamma; iNOS, inducible nitric oxide synthase; TGF-β, transforming growth factor-β; IDO, indoleamine 2,3-dioxygenase; PAGP, progestagen-associated

endometrial protein; PGE-2, prostaglandin E2.

TABLE 1 | Feature of regulatory myeloid cell (22–25).

Regulatory

myeloid cell

Source Growth factor Immunophenotypic

markers

Regulatory

macrophages

Rodent BM cells

or human PBMC

M-CSF, IFN-γ CD14low CD16−/low

CD80low CD83−/low

CD86+/hi HLA-DR+/hi

Regulatory

dendritic cells

Rodent BM cells

or human PBMC

GM-CSF,IL-4

Tolerogenic

Factor(s):IL-10,

TGF-β, VitD3,

Dexamethasone,

rapamycin

MHC II low CD40low

CD80low CD86low

PDL1hi TGF-βhi

IL-10hi

Myeloid-derived

suppressor cells

Rodent BM cells

or human PBMC

Activation:IL-

1β, IL-6, IL-13,

PGE-2, TNF-α,

VEGF

Expansion:

G-CSF,

GM-CSF

Three subpopulations

(22)

Mesenchymal

stromal cells

Extraction from

BM

− CD117− CD31−

CD44+ CD29+

Sca-1+

BM, bone marrow; PBMC, peripheral blood mononuclear cell; M-CSF, macrophage

colony stimulating factor; IFN-γ , interferon-γ ; GM-CSF, granulocyte-macrophage colony

stimulating factor; TGF-β, transforming growth factor-β; PDL1, programmed cell death

ligand-1; PGE-2, prostaglandin E2; TNF-α, tumor necrosis factor-α; G-CSF, granulocyte

colony stimulating factor.

T cells subsequently (31). The latest research also shows that
Mregs can convert allogeneic CD4 + T cells into regulatory T
cells, thereby non-specifically inhibiting bystander T cells and
the maturation of dendritic cells. Preoperative administration
of donor-sourced Mreg to kidney transplant recipients can
cause a sharp increase in circulating Treg, promoting the
acceptance of allogeneic transplantation by rapidly inducing
Tregs (32). In addition to conducting further clinical and in
vitro experiments, some researchers have proposed the concept
of macrophage isolation and characterization according to the
tissue environment, and the function of macrophages according
to different circumstances (33). Du et al. conducted in vitro and
in vivo experiments and found that insulin-like growth factor
2 (IGF-2) can induce anti-inflammatory phenotype of mature
macrophages by changing their mitochondrial metabolism, and
transfer them to mice can alleviate their disease (34). Maybe
using IGF-2 or other inducing factors can also actively induce
macrophages to produce specific cells with Mreg function based
on their phenotypes for application in immune regulation after
kidney transplantation.

REGULATORY DENDRITIC CELLS

Dendritic cells (DCs) are another type of cells that are essential
to elicit a specific T cell response to alloantigen, but they
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can also enhance a tolerance response in some cases (35).
DCs are functionally classified as myeloid DCs (mDCs) and
plasmacytoid DCs (pDCs). Since most of them belong to mDCs,
they are generally classified as myeloid immune cells. DCs belong
to important antigen presenting cells (APCs), which play an
essential role in the activation and adjustment of non-specific
and specific immunity and induction of immune tolerance
to maintain homeostasis in steady state under inflammatory
conditions. Although the main function of DCs is to trigger
the immune system, it seems that both mDCs and pDCs can
enhance the tolerance to the same antigen (36). The two-way
role of DCs in coordinating this delicate balance has attracted
widespread attention. Increasing evidence indicates that the
coordinate ability of DCs is dependent upon their immature state
and can be regulated bymany factors such as immunosuppressive
molecules, genetic mechanism, certain pathogenic stimulation,
signals from immune cells or apoptotic cells, and tissue or
tumor microenvironment (37). Regulatory DCs (DCregs) retain
the ability to present antigens to specific T cells. However, at
the same time, they descend the expression of costimulatory
molecules (CD80, CD86, and CD40) and pro-inflammatory
cytokines (IL-12), and ascend the expression of inhibitory
molecules (PDL1, CD95L, and IDO) and anti-inflammatory
cytokines (TGF-β and IL-10), and is resistant to signals that
induce maturation (38). The mechanisms of DCregs promoting
immune tolerance include inducing T cell non-responsiveness,
generating Tregs, inhibiting T cell response and inducing T
cell apoptosis (39). The result published by Marin E et al.
shows that DCregs regulate immune responses through lactate
synthesis, inhibition of T cell proliferation and expansion of
Tregs by secreting factors. The high level of lactate shifts T cell
response to tolerance, delaying graft-vs.-host disease (40). At
the University of Nantes, as part of the ONE Study, autologous
DCreg infusion 1 day before transplant, is under examination
in renal transplantation with SOC triple immunosuppressive
(azathroprine, steroid, tacrolimus) (41). Therefore, researchers
have begun to consider how to efficiently prepare DCregs to
facilitate future large-scale use. Cai et al. produced enough high-
quality functional DCregs from induced pluripotent stem cells
(iPSCs) derived from murine, and named them iPS-DCregs.
Even under strong stimuli, this kind of DCreg can still be in a
“stable immature stage,” and can induce permanent acceptance
of mouse heart allografts (42). Some researchers have successfully
used mouse DCregs to perform allogeneic transplantation of
mouse skin and significantly prolonged graft survival (43).
Pang et al. went a step further, purifying exosomes from
DCregs and injecting them into allogeneic kidney transplantation
model mice. After observation, it was determined that the
exosomal group significantly improved survival, reduced the
levels of (CD4+) T cell and cytokines related to rejection
(IFN-γ, IL-2, and IL-17), and promoted the percentage of
(Foxp3+) (CD4+)T cells in mice allograft, which indicates
that exosomes of DCregs are involved in the induction of
immune tolerance (44). Recently, Thomson et al. have produced
Good Manufacturing Practice (GMP) grade DCregs for human
organ transplantation. They briefly reviewed their experience in

modulating immunotherapy in organ transplantation and the
generation and characterization of human monocyte-derived
DCregs. And they proposed a phase I/II safety study in which
the effect of donor-derived DCregs combined with traditional
immunosuppressive agent treatment on subclinical and clinical
allograft rejection and adverse reactions will be observed in
detail (45).

MYELOID-DERIVED SUPPRESSOR CELLS

Myeloid derived suppressor cells (MDSCs) are a heterogeneous
population of bone marrow-derived myeloid progenitors that
suppress immune responses in different kinds of inflammatory
environments, such as organ transplantation, malignant tumors,
infectious diseases, and autoimmune diseases (46). They are
functionally defined as a class because of phenotypically
expression with characteristics related to precursors of
hematopoietic cells that can stably differentiate into mature
macrophages, DCs and granulocytes at all stages (47). The
pivotal position of MDSCs was initially established in the field of
tumor immunity (48). Since then, many researchers have begun
to explore the role of MDSCs in the host’s immune response
during organ transplantation. Dugast et al. first reported the
important role of MDSCs in inducing tolerance in rat kidney
transplant models. By increasing the number of MDSCs, the
proliferation of allogenic T cells can be inhibited in vivo,
and MDSCs may participate in the phase of NO-dependent
tolerance maintenance (49). After this groundbreaking study
determined the importance of MDSCs in transplant immunity,
research on the therapeutic potential and immunoregulatory
effects of MDSCs has been extensively conducted. Currently,
MDSC are divided in three subpopulations: polymorphonuclear
(PMN), monocytic (M) and early-stage (e) MDSC, and each
one has different immunosuppressive mechanism (22). Dilek
et al. focused on the connection between MDSCs and Tregs
in transplant immunity and discovered the importance of a
chemotactic C-C motif 5 (CCL5) between the two. The results
show that the gradient of CCL5 around the graft contributes to
MDSC’s enhancement of tolerance in kidney allograft recipients.
This gradient controls the recruitment of Tregs to the graft,
which may help maintain tolerance (50). Studies performed
by Luan et al. revealed blood derived M-MDSCs were able
to expand Treg in vitro and correlated with increased Treg
numbers in vivo (51). There are also many studies focusing
on the effect of using MDSCs to extend the survival time of
transplants after allogeneic transplantation of organs such as
heart and skin in mice (52–55). These studies have discovered
pathways and mechanisms such as carbon monoxide that may
be related to the immune suppression of MDSCs through animal
experiments, but more teams have begun to turn more to clinical
trials. Meng et al. compared the allogeneic function, severity
of tissue damage, and long-term survival of patients with high
and low MDSCs in vivo after kidney transplantation. Compared
with the low-dose MDSCs group, the allograft function of the
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high-dose MDSCs group was significantly enhanced. In addition,
his team also found that MDSCs isolated from transplant
recipients can up-regulate Tregs and inhibit IL-17 production
in vitro (56). Hock et al. found that the number of MDSCs
in patients after kidney transplantation increased rapidly and
reached a peak after the start of immunosuppression, but then
fluctuated due to unknown reasons. Therefore, the purpose of
establishing follow-up research is to explore the factors that
regulate MDSC mobilization (57). Recent studies have shown
that in patients with intestinal transplantation, MDSCs increase
in vivo and restrain the response of effector T cells to the
intestinal epithelium of the graft (58). This shows that due to the
close relationship with T cells, MDSCs may have the prospect of
immunosuppression for various organ transplants throughout
the body. But some pessimistic points emerged, Lee et al. showed
that adoptive MDSCs transfer after transplantation improves
graft survival in mice, however their late depletion did not
damage graft survival (59). Moreover, Utrero-Rico et al. found
that higher maintained level of M-MDSC after transplantation
in kidney recipients is associated with higher risk of cancer
(60). These findings demonstrate together that MDSC could be
beneficial early after transplantation to prolong graft survival,
but, if maintained, it may promote tumoral development for
patients due to excessive immunosuppression.

MESENCHYMAL STROMAL CELLS

Bone marrow-derived mesenchymal stromal cells (MSCs)
are also a type of cells that have regulatory functions in
transplantation immunity. Although MSCs are found in many
tissues, most are derived from bone marrow, as we also include
them in regulatory myeloid cells. MSCs are a kind of cells
with multi-directional differentiation potential. They can induce
differentiation into a variety of tissue cells under specific in
vivo and in vitro environments (61). MSCs could also migrate
to sites of inflammation and to transplanted organs. So, many
researchers have put it into testing for autoimmune diseases
and post-transplant immunomodulatory therapies (62, 63). In
experiments aimed at post-transplant immunity, MSCs have
shown unique, effective, and undisputed immune-modulating
properties. MSCs can act on a wide range of immune cells such
as T cells, B cells, macrophages, natural killer cells, dendritic
cells, and granulocytes (64). The much profound impact of
MSC on adaptive immune response may be closely related to
its innate source, so myeloid cells may be the earliest affected
cells. MSCs interact with innate and acquired immune cells
and immunomodulate them to make them develop more stable
(and occasionally more intense) (65, 66). They impede the
differentiation of dendritic cells and inhibit their maturation,
thereby downregulating the ability of antigen presenting cells
in vivo and in vitro (67–69). MSCs reduce the cytotoxicity of
T lymphocytes that respond to foreign antigens and prevent
effector T cells from replicating at the G0/G1 phase, thereby
reducing their ability to produce IFN-γ and IL-2 (70). And they
also promoted T cells to differentiate into Tregs and induce graft

tolerance (71, 72). In addition, MSCs alter the proliferation of
natural killer cells and γδT cells (73), reduce cytotoxicity and
IFN-γ production, and inhibit B cell activation and antibody
secretion (74).

Although there are many studies in various fields, the exact
mechanism of action of MSCs has not been obtained. However,
since MSCs can be easily isolated from different tissues including
bone marrow, umbilical cord or connective tissue, and based
on the current advanced technology, MSCs can be expanded in
vitro to achieve an applicable cell dose in a relatively short time
for clinic (75). Many studies on the use of MSCs cell therapy
to modulate immunity after kidney transplantation have been
performed worldwide. The goal of these studies is usually to
induce inhibition through various forms of treatment withMSCs,
so that patients can maintain the effect of immune tolerance
based on minimal doses of immunosuppressive drug therapy to
get the long-time survival of graft (76).

CONCLUSION

From the above analysis, it can be found that the immune
system has a natural balance. This balance consists of the
coordination of pro-inflammatory and regulatory cells, which
involves a large series of regulatory factors. This is a very
complicated and delicate process. As an important part of
the regulatory cell side and possessing capability of promoting
Treg proliferation, regulatory myeloid cells are expected to
enhance success of early immunosuppressive drug withdrawal
and become one of the anti-rejection options for patients after
renal transplantation soon. An interesting matter to remark
would be the need of prospective studies regarding the regulation
of myeloid regulatory cells on the long term and which is the
effect of immunosuppressive regiments on these cells, as well
as their relationship with clinical outcomes, in order to develop
strategies to promote tolerance. Most pilot studies were highly
variable in design, did not incorporate a parallel trial arm of
patients. This requires us all to further carry out more clinical-
based experiments based on researches that has been reproduced
in order to prove the advantages of its efficacy and higher safety
and operability. In addition, whether it can be made into the very
promising and available cell-based medicinal products (CBMP)
also requires a unified standard. The existing data is still very
ambiguous on this point.
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